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STRICHARTZ ESTIMATES FOR SCHRÖDINGER-LAGUERRE
OPERATORS

SALEM BEN SAID

Abstract. In Rn × R we consider the Schrödinger equation

i∂tu(x, t) + Lku(x, t) = F(x, t) (E1)

with given boundary values on Rn. Here Lk = ‖x‖∆k − ‖x‖ is a differential-difference-
multiplication operator onRn,where k is a multiplicity function for the Dunkl Laplacian
∆k. In the k ≡ 0 case, L0 is the classical multi-dimensional Laguerre operator. In this
paper we obtain Strichartz estimates for the Schrödinger equation (E1). We then prove
that Strichartz estimates for the Schrödinger equation

i∂tυ(x, t) + ‖x‖∆kυ(x, t) = F(x, t) (E2)

can be obtained from those for (E1). The k ≡ 0 case is already new.

1. Introduction and main results

Strichartz estimates are a type of a-priori estimates for the solutions of a large class of
linear partial differential equations whose common property is that their solutions tend
to disperse over time. Originally, such estimates were proved by R. Strichartz [20] in the
late 1970’s for the wave equation but later researchers extended them to other dispersive
equations.

By the mid 1990’s Strichartz estimates became a standard tool in the analysis of
Schrödinger equations. Such estimates are powerful tools in the study of nonlinear
Schrödinger equations. For instance, they proved fruitful for determining whether var-
ious Schrödinger equations are well-posed (see e.g. [4, 21, 13, 23, 10, 15, 1] and ref-
erences therein); thus several attempts have been made to establish Strichartz estimates
for perturbed Schrödinger equations.

The primary aim of this paper is to prove Strichartz estimates for a Schrödinger equa-
tion associated with a Laguerre type operator coming from Dunkl’s theory of differential-
difference operators. To illustrate the main results, let us fix notation.

Let R be a reduced root system in Rn, and let k : R → R+, α 7→ kα, be a multiplicity
function. Let ∆k be the Dunkl Laplacian operator (see (2.3)). We note that when k ≡ 0,
∆k reduces to the Euclidean Laplacian ∆.

For 1 ≤ p ≤ ∞, let Lp(Rn, λk(x) dx) be the space of Lp-integrable functions on Rn

with respect to the measure λk(x) dx, where

λk(x) = ‖x‖−1
∏
α∈R

|〈α, x〉|kα .
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The density function λk has a degree of homogeneity equals to γk − 1, where

γk =
∑
α∈R

kα. (1.1)

For a multiplicity function k, we consider the following operator

Lk := ‖x‖∆k − ‖x‖, (1.2)

where ‖x‖ on the right hand side of the formula stands for the multiplication operator
by ‖x‖. This family of operators includes the multi-dimensional Laguerre operator L0 =

‖x‖∆ − ‖x‖. There is a rich structure theory associated with Lk, and, in particular, it has
a discrete spectrum. We refer to [2, 3] for more details.

The solution u to the k-Laguerre Schrödinger equationi∂tu(x, t) + Lku(x, t) = F(x, t), (x, t) ∈ Rn × R

u(x, 0) = f (x),
(1.3)

is given by

u(x, t) = eit Lk f (x) − i
∫ t

0
ei(t−s) Lk F(x, s) ds. (1.4)

The crucial tool in establishing Strichartz estimates for the solution u(x, t) is the integral
representation of the semigroup

Sk : C+ 3 z 7→ ez Lk

proved in [3]. Here C+ := {z ∈ C | Re(z) ≥ 0}. We pin down that Strichartz estimates
with the specialization k ≡ 0 are already new.

As the map t 7→ ‖eit Lk f ‖Lp(Rn,λk(x) dx) is going to be π-periodic, and thus determined by
its values for t ∈ I := [−π/2, π/2], we will measure the size of the solution u(x, t) to
(1.3) by means of the mixed space-time norm

‖u‖Lq(I,Lp(Rn,λk(x) dx)) :=
( ∫

I

( ∫
Rn
|u(x, t)|p λk(x) dx

)q/p

dt
)1/q

, (1.5)

with the obvious modifications if p or q = ∞, in which case we use the supremum. To
simplify the notation, we shall write Lq

t Lp
x instead of Lq(I, Lp(Rn, λk(x) dx)), where the

lower-indices in Lq
t Lp

x denote the relevant variables.

Definition 1.1. A pair (p, q) of exponents will be called k-admissible if
( 1

p ,
1
q

)
lies in the

following trapezoid (see Figure 1)

Tk =

{ (1
p
,

1
q

)
∈

]1
2

(
γk + n − 2
γk + n − 1

)
,

1
2

]
×

[1
2
, 1

] }⋃
(1.6){ (1

p
,

1
q

)
∈

]
0,

1
2

]
×

[
0,

1
2

[ ∣∣∣∣ 1
q
≥ (γk + n − 1)

(1
2
−

1
p

) }
.

Now we state the main results.
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A

B

Figure 1. The admissible trapezoid Tk (with α =
γk+n−1
γk+n−2 ).

Theorem A (Strichartz estimates). Suppose k is a non-negative multiplicity function
such that

γk + n − 1 > 0. (1.7)
Then, for any k-admissible exponent (p, q) we have:
1. (The homogeneous Strichartz estimate)∥∥∥eit Lk f

∥∥∥
Lq

t Lp
x
. ‖ f ‖L2

x
. (1.8)

2. (The dual homogeneous Strichartz estimate)∥∥∥∥ ∫
I
e−is Lk F(x, s) ds

∥∥∥∥
L2

x

. ‖F‖Lq′
t Lp′

x
, (1.9)

where p′ and q′ are the conjugate exponents of p and q.
3. (The diagonal retarded Strichartz estimate)∥∥∥∥ ∫ t

0
ei(t−s) Lk F(x, s) ds

∥∥∥∥
Lq

t Lp
x

. ‖F‖Lq′
t Lp′

x
. (1.10)

Observe that the condition (1.7) is automatically satisfied for n ≥ 2.
The following is an immediate consequence of the above statement.

Corollary B. Retain the assumptions of Theorem A. The solution

u(x, t) = eit Lk f (x) − i
∫ t

0
ei(t−s) Lk F(x, s) ds

to the Cauchy problemi∂tu(x, t) + Lku(x, t) = F(x, t), (x, t) ∈ Rn × R

u(x, 0) = f (x),
(1.11)

satisfies
‖u‖Lq

t Lp
x
. ‖ f ‖L2

x
+ ‖F‖Lq′

t Lp′
x
, (1.12)

for some initial datum f ∈ L2(Rn, λk(x) dx) and F ∈ Lq′(I, Lp′(Rn, λk(x) dx)).
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Write the set of k-admissible pairs (1.6) as Tk = T (1)
k ∪ T (2)

k in the obvious way. We
will show that for any k-admissible exponents (p, q) and ( p̃, q̃) in T (2)

k we have the non-
diagonal Strichartz estimate

‖u‖Lq
t Lp

x
. ‖ f ‖L2

x
+ ‖F‖Lq̃′

t L p̃′
x
. (1.13)

The proof uses the well know TT ∗ method (see e.g. [11]).
The second part of this paper deals with the k-Schrödinger equationi∂tυ(x, t) + ‖x‖∆kυ(x, t) = F(x, t), (x, t) ∈ Rn × R+

υ(x, 0) = f (x),
(1.14)

for real-valued f ∈ L2(Rn, λk(x) dx). Our aim is to obtain non-diagonal Strichartz esti-
mates for υ(x, t) via the non-diagonal Strichartz estimates (1.13). The first step towards
this goal is to find a link between the semigroups eit‖x‖∆k and eit Lk . To do so, we searched
for the expression of the heat kernel corresponding to the heat operator

∂t + ‖x‖∆k. (1.15)

In polar coordinates x = ‖x‖ω and y = ‖y‖ω′, we prove that the heat kernel is given by

Γk(x, y; t) = ck Γ
(γk + n − 1

2

)
t−(γk+n−1) exp

(
−
||x|| + ||y||

t

)
Vk

(
Ĩ γk+n−3

2

( √
2‖x‖ ‖y‖(1 + 〈ω, ·〉)

t

))
(ω′),

where Vk is the so-called Dunkl intertwining operator and Ĩλ(z) =
( z

2

)−λIλ(z) is the (nor-
malized) modified Bessel function of the first kind.

This allowed us to obtain the integral representation of the semigroup eit‖x‖∆k , which
in turn permits us to prove the following:

Theorem C. For all 1 ≤ p, q ≤ ∞ satisfying
1
q

= (γk + n − 1)
(1
2
−

1
p

)
, (1.16)

we have ∥∥∥eit Lk f
∥∥∥

Lq
t Lp

x ((0,π/2)×Rn)
=

∥∥∥eit‖x‖∆k f
∥∥∥

Lq
t Lp

x (R+×Rn)
. (1.17)

As we will see below, it does not matter whether the t-interval in (1.8) is I = [−π/2, π/2]
or [0, π/2]; the two mixed norms are proportional for real-valued functions f . Thus, as
an immediate consequence of the estimate (1.8) and Theorem C, we obtain:

Theorem D. For any k-admissible exponent (p, q) satisfying the additional condition
(1.16), i.e. for any exponent (p, q) such that

( 1
p ,

1
q

)
belongs to the borderline AB in

Figure 1, we have the homogeneous Strichartz estimate∥∥∥eit‖x‖∆k f
∥∥∥

Lq
t Lp

x (R+×Rn)
. ‖ f ‖L2

x(Rn). (1.18)

Using the homogeneous Strichartz estimate (1.18), and by the same proof as for the
non-diagonal estimate (1.13), one obtains:
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Corollary E. For any exponents (p, q) and (p̃, q̃) that satisfy the assumptions of Theo-
rem D we have the non-diagonal Strichartz estimate

‖υ‖Lq
t Lp

x (R+×Rn) . ‖ f ‖L2
x(Rn) + ‖F‖Lq̃′

t L p̃′
x (R+×Rn). (1.19)

A very preliminary version of this paper, posted in March 2011 on http://hal.archives-
ouvertes.fr/hal-00578446/fr/, contained also similar results for the Dunkl harmonic os-
cillator Hk = ∆k − ‖x‖2. In [16] (published in 2013) the author considered Strichartz
estimates for Hk. In these circumstances, we preferred to drop the harmonic case and to
keep only the Laguerre case.

〈Acknowledgement〉
It is a great pleasure to thank P. K. Ratnakumar for his valuable comments on a very

preliminary version of this article.

2. Background

Let 〈·, ·〉 be the standard Euclidean scalar product inRn as well as its bilinear extension
to Cn × Cn.

Let G ⊂ O(n) be a finite reflection group on Rn. Let R be the corresponding root
system. We will assume that 〈α, α〉 = 2 for all α ∈ R.

The norm ‖ · ‖ which is induced on Rn by 〈·, ·〉 extends to a G-invariant norm on Cn,
which will also be denoted by ‖ · ‖.

For α ∈ R, let rα denote the corresponding reflection, i.e.

rα(x) := x − 〈α, x〉α, x ∈ Rn.

The subgroup G ⊂ O(n) is generated by the reflections {rα | α ∈ R}. We refer to [12] for
more details on the theory of finite reflection groups.

Definition 2.1. A function k : R→ C is a multiplicity function if k is G-invariant.

Setting kα := k(α) for α ∈ R, we have khα = kα for all h ∈ G. Henceforth, K+ denotes
the set of multiplicity functions k = (kα)α∈R such that kα ≥ 0 for all α ∈ R.

Dunkl’s discovery in 1989 of the operators that now bear his name is one of the most
important developments in the theory of special functions associated with root systems
[6].

Definition 2.2. Let k ∈ K+ and ξ ∈ Cn. The Dunkl operator Tξ := Tξ(k) is defined on
C1(Rn) by

Tξ f (x) := ∂ξ f (x) +
1
2

∑
α∈R

kα〈α, ξ〉
f (x) − f (rαx)
〈α, x〉

,

where ∂ξ denotes the directional derivative corresponding to ξ.

It is shown in [7] that for any k ∈ K+, there is a unique linear isomorphism Vk (Dunkl’s
intertwining operator) on polynomials that intertwines the action of the Dunkl operators
and the ordinary partial derivatives. In [8] this result had been extended to a larger
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algebra of real analytic functions. Few years later, Rösler [19] proved that for each
x ∈ Rn there exists a unique positive probability measure µk

x on Rn such that

Vk f (x) =

∫
Rn

f (ξ) dµk
x(ξ). (2.1)

The measures µk
x are compactly supported and supp µk

x ⊂ {ξ ∈ R
n | ‖ξ‖ ≤ ‖x‖} .

Let {ξ1, . . . , ξn} be an orthonormal basis of (Rn, 〈·, ·〉). The Dunkl Laplacian operator
is defined as

∆k :=
n∑

j=1

T 2
ξ j
. (2.2)

By the normalization 〈α, α〉 = 2, we can rewrite ∆k as

∆k f (x) = ∆ f (x) +
∑
α∈R

kα
{
〈∇ f (x), α〉
〈α, x〉

−
f (x) − f (rαx)
〈α, x〉2

}
, (2.3)

where ∆ and ∇ are the usual Laplacian and gradient operators, respectively. Observe
that for k ≡ 0, the Dunkl Laplace operator ∆k reduces to the Euclidean Laplacian ∆.

Definition 2.3. The space of k-spherical harmonics of degree m is defined by

H m
k (Rn) = Ker ∆k ∩Pm(Rn),

where Pm(Rn) is the space of homogeneous polynomials of degree m on Rn.

Let Lp(Rn, λk(x) dx) be the space of Lp-integrable functions on Rn with respect to the
measure λk(x) dx where

λk(x) := ‖x‖−1
∏
α∈R

|〈α, x〉|kα .

Clearly λk(x) is G-invariant and homogeneous of degree γk − 1, where

γk :=
∑
α∈R

kα. (2.4)

The following normalization constant

ck :=
{ ∫
Rn

exp(−‖x‖) λk(x) dx
}−1

(2.5)

is needed for later use. For k ∈ K+ such that 〈k〉 + n − 1 > 0, the integral in (2.5)
converges and we have

ck = Γ
(
γk + n − 1

)−1dk, (2.6)

where

dk :=
{ ∫

S n−1

∏
α∈R

|〈α, ω〉|kα dσ(ω)
}−1

. (2.7)

The notation X . Y will be used to indicate that X ≤ CY with a positive constant C
independent of significant quantities.
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3. A Laguerre semigroup

Consider the operator
Lk = ‖x‖∆k − ‖x‖,

where ‖x‖ on the right hand side of the formula stands for the multiplication operator by
‖x‖. The operator Lk belongs to a large family of operators introduced and studied by
the author, T. Kobayashi and B. Ørsted [3]. It is proved in [loc. cit.] that Lk extends to a
self-adjoint operator on L2(Rn, λk(x) dx),when k ∈ K+ such that γk+n−1 > 0.Moreover,
there is no continuous spectrum of Lk and all the discrete spectra are positive.

For z ∈ C+ := {z ∈ C | Re z ≥ 0}, let

Sk(z) := exp(z Lk)

be the so-called k-Laguerre semigroup [2, 3]. In the k ≡ 0 case, S0(z) is the Laguerre
semigroup studied by T. Kobayashi and G. Mano [14]. In the following theorem we
resume the main properties of Sk(z).

Theorem 3.1. (see [3, Theorem 3.39]) Suppose k ∈ K+ satisfies the condition γk+n−1 >
0. Then,
1. The map

C+ × L2(Rn, λk(x) dx) −→ L2(Rn, λk(x) dx), (z, f ) 7−→ Sk(z) f

is continuous.
2. The operator norm ‖Sk(z)‖op is exp

(
− (γk + n − 1) Re z

)
.

3. If Re z > 0, then Sk(z) is a Hilbert Schmidt operator.
4. If Re z = 0, then Sk(z) is a unitary operator.

In view of the above theorem, it follows from the Schwartz kernel theorem that the
operator Sk(z) can be expressed by means of a distribution kernel Λk(x, y; z). If we
adopt Gelfand’s notation on generalized functions, we may write the operator Sk(z) on
L2(Rn, λk(x) dx) as an ‘integral transform’ against the measure λk(x) dx:

Sk(z) f (x) = ck

∫
Rn

f (y)Λk(x, y; z) λk(y) dy, (3.1)

where ck is as in (2.6). In [3, Theorem 4.23], with T. Kobayashi and B. Ørsted, we were
able to express the kernel Λk(x, y; z) in terms of elementary functions. Below we will
recall the expression of Λk(x, y; z). To do so, let us introduce the following continuous
function of u ∈ [−1, 1] with parameters r, s > 0 and z ∈ C+\iπZ :

hk(r, s; z; u) := Γ

(
γk + n − 1

2

)exp
(
− (r + s) coth(z)

)
sinh(z)γk+n−1 Ĩ γk+n−3

2

( √2(rs)1/2

sinh(z)
(1 + u)1/2

)
, (3.2)

where Ĩλ(w) :=
(w

2

)−λIλ(w) is the (normalized) modified Bessel function of the first kind.
Using polar coordinates x = rω and y = sη, the kernel Λk is given by

Λk(x, y; z) = Vη
k hk(r, s; z; 〈ω, ·〉)(η), (3.3)

where Vk is the Dunkl intertwining operator (see (2.1)), and the upper-script in Vη
k de-

notes the relevant variable. Note that if k ≡ 0, then Λ0(x, y; z) = h0(r, s; z; 〈ω, η〉).
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Fact 3.2. From (3.2), we have for all t ∈ R\πZ,

1. Λk(x, y;−it) = Λk(x, y; it).
2. Λk(x, y; i(t + π)) = e−iπ(γk+n−1)Λk(x, y; it).

In view of Fact 3.2.1, the function t 7→ ‖eit Lk f ‖Lp
x

(whenever it makes sense) is π-
periodic, and thus determined by its values for t ∈ [−π/2, π/2]. For this reason, we will
consider the mixed space-time norm (1.5) to measure the size of the solution u(x, t) to
the Cauchy problem (1.3).

The following estimates for the growth of the kernel Λk(x, y; z) play a significant role
in the next section.

Proposition 3.3. (see [3, Proposition 4.26]) The kernel Λk(x, y; z) satisfies:
1. For Re z > 0, there exists a constant c > 0 depending on z such that

|Λk(x, y; z)| ≤ | sinh z|−(γk+n−1) exp(−c(‖x‖ + ‖y‖)). (3.4)

2. For z = r + it, with r ≥ 0 and t ∈ R\πZ, we have

|Λk(x, y; z)| ≤ | sin t|−(γk+n−1). (3.5)

Fact 3.4. As an immediate consequence of Proposition 3.3 is that ez Lk is bounded on
the space L1(Rn, λk(x) dx) for Re z > 0. Moreover, by Theorem 3.1, we knew that ez Lk is
bounded on L2(Rn, λk(x) dx) for Re z ≥ 0. Then, by complex interpolation, we deduce
that ez Lk f belongs to Lp(Rn, λk(x) dx) for all 1 ≤ p ≤ 2 whenever f ∈ Lp(Rn, λk(x) dx)
and Re z > 0. Duality will then takes care of the range 2 ≤ p ≤ ∞.

4. A Laguerre-Schrödinger equation

We will prove the Strichartz estimates listed in Theorem A. The first step towards
those decay estimates is the following statement:

Lemma 4.1. Let z = r + it with r ≥ 0 and t ∈ R\πZ. For all 2 ≤ p ≤ ∞ we have

‖ez Lk f ‖Lp
x
≤ | sin t|2(γk+n−1)

(
1
p−

1
2

)
‖ f ‖Lp′

x
, (4.1)

where p′ is the conjugate exponent of p.

Proof. On the one hand, by the uniform estimate (3.5), we have

‖ez Lk f ‖L∞x ≤ | sin t|−(γk+n−1)‖ f ‖L1
x
, ∀ z ∈ C+\iπZ.

On the other hand, by Theorem 3.1.2, we have

‖ez Lk f ‖L2
x
≤ e−r(γk+n−1)‖ f ‖L2

x
.

Now, for all 2 ≤ p ≤ ∞, Riesz-Thorin’s interpolation implies

‖ez Lk f ‖Lp
x
≤ | sin t|2(γk+n−1)

(
1
p−

1
2

)
‖ f ‖Lp′

x
.

�

The following technical lemma is needed for later use.
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Lemma 4.2. Let h ∈ Lq(I, L2(Rn, λk(x) dx)) with 1 ≤ q ≤ ∞. For all r ≥ 0, the function

Fr(x, t, s) := e(r+it) Lkh(x, t) e(r+is) Lkh(x, s)

belongs to the space L1(Rn × I × I, λk(x) dx dt ds).

Proof. Since the function x 7→ h(x, t) belongs to L2(Rn, λk(x) dx), it follows from The-
orem 3.1 (or Lemma 4.1 with p = 2) that ‖e(r+it) Lkh(·, t)‖L2

x
≤ ‖h(·, t)‖L2

x
. Hence, by

Cauchy-Schwartz inequality we have∫
Rn
|Fr(x, t, s)| λk(x) dx ≤ ‖h(·, t)‖L2

x
‖h(·, s)‖L2

x
.

Now, applying Hölder’s inequality we obtain∫
I

∫
I

∫
Rn
|Fr(x, t, s)| λk(x) dx dt ds ≤

( ∫
I
‖h(·, t)‖L2

x
dt

)2

. ‖h‖2Lq
t L2

x

whenever 1 ≤ q ≤ ∞. �

Proof of Theorem A.2. The proof is mimicked from [17]. Let us start with a function
h ∈ Lq′

t (Lp′ ∩ L2)x. Then∥∥∥∥ ∫
I
e(r+it) Lkh(·, t) dt

∥∥∥∥2

L2
x

=

∫
I

∫
I

{ ∫
Rn

e(r+it) Lkh(x, t) e(r+is) Lkh(x, s) λk(x) dx
}

dt ds, (4.2)

where the interchange of the order of integration is accomplished by Lemma 4.2. Using
the integral representation (3.1) of the semigroup Sk(z) = ez Lk together with the fact
that

ck

∫
Rn

Λk(x, y; z1)Λk(x, y′; z2) λk(x) dx = Λk(y, y′; z1 + z2) (4.3)

(see [3, p. 1297]), we can rewrite the integral within brackets on the right hand side of
(4.2) as ∫

Rn
e(r+it) Lkh(x, t) e(r+is) Lkh(x, s) λk(x) dx

= c2
k

∫
Rn

{∫
Rn

Λk(x, y, r + it)h(y, t) λk(y) dy
}

{∫
Rn

Λk(x, y′, r + is) h(y′, s) λk(y′) dy′
}
λk(x) dx

= ck

∫
Rn

∫
Rn

h(y, t)h(y′, s)Λk(y, y′, 2r + i(t − s)) λk(y′) λk(y)dydy′

=

∫
Rn

h(y′, s)e(2r+i(t−s)) Lkh(y′, t) λk(y′) dy′.
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Thus, for all p, q ≥ 1, the identity (4.2) becomes∥∥∥∥ ∫
I
e(r+it) Lkh(·, t) dt

∥∥∥∥2

L2
x

=

∫
I

∫
Rn

{ ∫
I
e(2r+i(t−s)) Lkh(y′, t) dt

}
h(y′, s) λk(y′) dy′ ds

.
∥∥∥∥ ∫

I
e(2r+i(t−s)) Lkh(·, t) dt

∥∥∥∥
Lq

s Lp
x

‖h‖Lq′
s Lp′

x
.

We claim that for every k-admissible pair (p, q) (see Definition 1.1) we have∥∥∥∥ ∫
I
e(2r+i(t−s)) Lkh(·, t) dt

∥∥∥∥
Lq

s Lp
x

. ‖h‖Lq′
s Lp′

x
. (4.4)

Indeed, by Minkowski’s inequality [9] and Lemma 4.1, we have∥∥∥∥ ∫
I
e(2r+i(t−s)) Lkh(·, t) dt

∥∥∥∥
Lp

x

≤

∫
I

∥∥∥e(2r+i(t−s)) Lkh(·, t)
∥∥∥

Lp
x

dt

≤

∫
I

‖h(·, t)‖Lp′
x

| sin(t − s)|2(γk+n−1)
(

1
2−

1
p

) dt,

for all 2 ≤ p ≤ ∞. Let ξ(t) := | sin(t)|−2(γk+n−1)
(

1
2−

1
p

)
. Thus we may rewrite the last integral

placed on the right-hand side as the Euclidean convolution of the function t 7→ ‖h(·, t)‖Lp′
x

with ξ(t). Hence, using [18, Lemma 2] (see also the proof of Proposition 2 in [18]), the
estimate ∥∥∥∥ ∫

I
e(2r+i(t−s)) Lkh(·, t) dt

∥∥∥∥
Lq

s Lp
x

. ‖h‖Lq′
s Lp′

x

holds true for every k-admissible pair (p, q). This finishes the proof of the claim (4.4).
Now the desired estimate (1.9) follows from the density of Lq′

t (Lp′ ∩ L2)x in Lq′
t Lp′

x for
1 < p ≤ ∞. �

Proof of Theorem A.1. By an abstract result du to Ginibre and Velo [11, Lemma 2.1]
the estimates (1.8) and (1.9) are equivalent. However, for the sake of simplicity we will
give the details. We shall prove the estimate (1.8) for the semigroup e(r+it) Lk with r ≥ 0
(not just for r = 0). Let h ∈ Lq′

t Lp′
x . By invoking (ez Lk)∗ = ez̄ Lk (see [3, p. 1297]) and by

using Theorem A.2, we have∣∣∣∣ ∫
I
〈e(r+it) Lk f , h(·, t)〉L2

x
dt

∣∣∣∣ =
∣∣∣∣ ∫

I
〈 f , e(r−it) Lkh(·, t)〉L2

x
dt

∣∣∣∣
≤ ‖ f ‖L2

x

∥∥∥∥ ∫
I
e(r−it) Lkh(·, t) dt

∥∥∥∥
L2

x

. ‖ f ‖L2
x
‖h‖Lq′

s Lp′
x
.

�
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Proof of Theorem A.3. Below, the asterisk denotes the Euclidean convolution product.
By means Minkowski’s inequality and the estimates (4.1) and (4.4), we have∥∥∥∥ ∫ t

0
ei(t−s) Lk F(·, s) ds

∥∥∥∥
Lq

t Lp
x

.
∥∥∥∥ ∫ t

0
‖ei(t−s) Lk F(·, s)‖Lp

x
ds

∥∥∥∥
Lq

t

.
∥∥∥∥ ∫

I
‖ei(t−s) Lk F(·, s)‖Lp

x
ds

∥∥∥∥
Lq

t

.
∥∥∥∥‖F‖Lp′

x
∗ | sin t|−2(γk+n−1)

(
1
2−

1
p

)∥∥∥∥
Lq

t

. ‖F‖Lq′
t Lp′

x
.

�

Proof of Theorem B. Via Duhamel’s principle,

u(x, t) = eit Lk f (x) − i
∫ t

0
ei(t−s) Lk F(x, s) ds (4.5)

is the unique solution to the Cauchy problem (1.3). Now, by using Theorem A.1 and
Theorem A.3, we get

‖u(x, t)‖Lq
t Lp

x
. ‖ f ‖L2

x
+

∥∥∥∥ ∫ t

0
ei(t−s) Lk F(x, s) ds

∥∥∥∥
Lq

t Lp
x

. ‖ f ‖L2
x
+ ‖F‖Lq′

t Lp′
x

(4.6)

whenever (p, q) is a k-admissible pair. �

We shall prove the non-diagonal version (1.13) of the estimate (1.12). The proof uses
the Christ-Kiselev lemma which is very useful in establishing non-diagonal retarded
Strichartz estimates (see e.g. [5], [21, Lemma 2.4]). The concept that motivates this
lemma is that if an operator is bounded from one space to another, then any appropriate
‘localization’ of that operator must also be bounded.

Let

T (2)
k =

{(1
p
,

1
q

)
∈

]
0,

1
2

]
×

[
0,

1
2

[ ∣∣∣∣ 1
q
≥ (γk + n − 1)

(1
2
−

1
p

)}
⊂ Tk

(see Definition 1.1).

Proposition 4.3. For any k-admissible exponents (p, q) and (q̃, p̃) in T (2)
k , the following

non-diagonal Strichartz estimate

‖u‖Lq
t Lp

x
. ‖ f ‖L2

x
+ ‖F‖Lq̃′

t L p̃′
x

holds true.

Proof. The proof is standard and uses the so-called TT ∗ method. Consider the operator

T f (x, t) = eit Lk f (x)

and its formal adjoint

T ∗F(x) =

∫
I
e−is Lk F(x, s) ds.
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Composing the two estimates (1.8) and (1.9) we deduce the Lq̃′
t L p̃′

x → Lq
t Lp

x boundedness
of

TT ∗F(x, t) =

∫
I
ei(t−s) Lk F(x, s) ds

(we refer the reader to [11, Corollary 2.1] for an abstract argument). That is∥∥∥∥ ∫
I
ei(t−s) Lk F(x, s) ds

∥∥∥∥
Lq

t Lp
x

. ‖F‖Lq̃′
t L p̃′

x
. (4.7)

However, the non-diagonal untruncated estimate (4.7) still does not apply to (4.5). At a
fixed t, the time integral on the left hand side of (4.7) is over I, while the corresponding
integral on the right hand side of (4.5) only goes up to t. Thus, using Christ-Kiselev
lemma, one converts the non-diagonal untruncated estimate (4.7) to the non-diagonal
truncate estimate ∥∥∥∥ ∫ t

0
ei(t−s) Lk F(x, s) ds

∥∥∥∥
Lq

t Lp
x

. ‖F‖Lq̃′
t L p̃′

x
(4.8)

as long as q̃′ < q. The hypothesis that q̃′ < q is unfortunately necessary. �

5. The heat equation

Recall from Definition 2.3 the space H m
k (Rn) of k-spherical harmonics of degree m.

Let {Ym, j, j = 1, . . . , d(m, n)} be a real-coefficient orthonormal basis of H m
k (Rn) in

the Hilbert space L2(S n−1, dkλk(ω) dσ(ω)). Here S n−1 is the unit sphere in Rn, dσ is the
Lebesgue surface measure, λk(ω) =

∏
α∈R |〈α, ω〉|

kα , and dk is as in (2.7).
Let k be a non-negative multiplicity function such that γk + n − 1 > 0. For x, y ∈ Rn,

let
Jk(x, y) := eiπ

(
γk+n−1

2

)
Λk

(
x, y; i

π

2

)
,

where Λk is as in (3.3). The kernel Jk appeared in [3] as the integral kernel of a
generalized Fourier transform.

According to [3, Theorem 4.20], the kernel Jk admits the following series expansion

Jk(x, y) = Γ(γk + n − 1)
∞∑

m=0

d(m,n)∑
j=1

J (m)
k (‖x‖ ‖y‖)Ym, j(ω)Ym, j(ω′), (5.1)

where
J (m)

k (u) = e−imπu−(γk+n)/2+1Jλm

(
2
√

u
)
.

Here λm = 2m + γk + n − 2 and Jν is the Bessel function of the first kind.
For t > 0 and x, y ∈ Rn, define

Γk(x, y; t) := c2
k

∫
Rn

e−t‖ξ‖Jk(x, ξ)Jk(y, ξ) λk(ξ) dξ, (5.2)

where the constant ck is given by (2.6). Indeed Γk is a heat kernel so that the function

ϑ(x, t) =

∫
Rn

f (y)Γk(x, y; t) λk(y) dy
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solves the following heat equation{
∂tϑ(x, t) = ‖x‖∆kϑ(x, t), (x, t) ∈ Rn × R+

ϑ(x, 0) = f (x). (5.3)

This is due to the fact that

‖x‖∆x
kJk(x, ξ) = −‖ξ‖Jk(x, ξ), (5.4)

where the superscript in ∆x
k indicates the relevant variable (see [3, Theorem 5.7]).

Theorem 5.1. In polar coordinates x = ‖x‖ω and y = ‖y‖ω′, the heat kernel Γk is given
by

Γk(x, y; t) = ck Γ
(γk + n − 1

2

)
t−(γk+n−1) exp

(
−
||x|| + ||y||

t

)
Vk

(
Ĩ γk+n−3

2

( √
2‖x‖ ‖y‖(1 + 〈ω, ·〉)

t

))
(ω′),

where Ĩλ(z) =
( z

2

)−λIλ(z) is the (normalized) modified Bessel function of the first kind.

Proof. In view of the series expansion (5.1) of Jk and by the orthogonality of the k-
spherical harmonics, we have∫

S n−1
Jk(x, ‖ξ‖η) Jk(y, ‖ξ‖η) λk(η) dσ(η)

= d−1
k Γ(γk + n − 1)2

∞∑
m=0

d(m,n)∑
j=1

J (m)
k (||x|| ||ξ||)J (m)

k (||y|| ||ξ||)Ym, j(ω)Ym, j(ω′)

= d−1
k Γ(γk + n − 1)2(||x|| ||y||)−(γk+n)/2+1||ξ||−γk−n+2

∞∑
m=0

d(m,n)∑
j=1

Ym, j(ω)Ym, j(ω′)Jλm

(
2
√
||x|| ||ξ||

)
Jλm

(
2
√
||y|| ||ξ||

)
= dkc−2

k (||x|| ||y||)−(γk+n)/2+1||ξ||−γk−n+2

∞∑
m=0

d(m,n)∑
j=1

Ym, j(ω)Ym, j(ω′)Jλm

(
2
√
||x|| ||ξ||

)
Jλm

(
2
√
||y|| ||ξ||

)
.

Invoking the integral (5.2) leads to

Γk(x, y; t) = dk(||x|| ||y||)−(γk+n)/2+1
∞∑

m=0

d(m,n)∑
j=1

Ym, j(ω)Ym, j(ω′)ψm(t, ||x||, ||y||), (5.5)

where

ψm(t, ||x||, ||y||) =

∫ ∞

0
e−tuJλm

(
2
√
||x||u

)
Jλm

(
2
√
||y||u

)
du.
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The integral formula (see [22, Exercise 68])∫ ∞

0
e−p2u2

Jλ(αu)Jλ(βu) u du =
1

2p2 exp
(
−
α2 + β2

4p2

)
Iλ
(
αβ

2p2

)
implies

ψm(t, ||x||, ||y||) =
1
t

exp
(
−
||x|| + ||y||

t

)
Iλm

(
2

√
||x|| ||y||

t

)
.

Then the identity (5.5) becomes

Γk(x, y; t) = dk t−(γk+n−1) exp
(
−
||x|| + ||y||

t

)
∞∑

m=0

d(m,n)∑
j=1

( √
||x|| ||y||

t

)2m

Ĩλm

(
2

√
||x|| ||y||

t

)
Ym, j(ω)Ym, j(ω′).

Now, the statement follows from the addition formula (4.41) in [3]. �

We close this section by observing that Γk extends naturally to complex time argu-
ments z ∈ C∗.

6. A Schrödinger equation

In this section we turn our attention to the following Cauchy problemi∂tυ(x, t) + ‖x‖∆kυ(x, t) = F(x, t), (x, t) ∈ Rn × R+

υ(x, 0) = f (x).
(6.1)

Formally, the free Schrödinger equationi∂tυf(x, t) + ‖x‖∆kυf(x, t) = 0, (x, t) ∈ Rn × R+

υf(x, 0) = f (x)
(6.2)

is obtained by the transformation t 7→ it of the heat equation (5.3) to ‘imaginary time’.
In other words, for all f ∈ L2(Rn, λk(x) dx), the function

υf(x, t) = eit‖x‖∆k f (x) =

∫
Rn

f (y)Γk(x, y; it) λk(y) dy

solves the problem (6.2).
Next we will measure the Lq

t Lp
x-size of υf(x, t) by means of the Lq

t Lp
x-size of the solu-

tion u(x, t) to the Cauchy problem (1.11) with F ≡ 0. To do so, we will prove a relation
between the semigroups eit‖x‖∆k and eit Lk .

Recall form Fact 3.2 that the integral kernel Λk(x, y; it) of the semigroup Sk(it) = eit Lk

satisfies

Λk(x, y;−it) = Λk(x, y; it), Λk(x, y; i(t + π)) = e−iπ(γk+n−1)Λk(x, y; it).

Thus, for a real-valued function f , the map t 7→ ‖eit Lk f ‖Lp
x (Rn) is even and π-periodic,

and therefore determined by its values for 0 ≤ t ≤ π/2. Then, the two mixed norms
‖eit Lk f ‖Lq

t Lp
x (I×Rn) and ‖eit Lk f ‖Lq

t Lp
x ((0,π/2)×Rn) are proportional for real-valued functions f .
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Proposition 6.1. For all f ∈ L2(Rn, λk(x) dx) and for all s > 0, we have

ei arctan(s) Lk f (x) = (1 + s2)
(
γk+n−1

2

)
exp

(
− is‖x‖

)
eis‖x‖∆k f ((1 + s2)x).

Proof. The proof uses the change of variable s = tan(t) with t ∈ (0, π/2). �

Now we are ready to prove Theorem C.

Proof of Theorem C. Assuming p, q < ∞. Proposition 6.1 gives∫ π
2

0

{ ∫
Rn
|eit Lk f (x)|p λk(x) dx

}q/p

dt

=

∫ ∞

0

{ ∫
Rn
|eis‖x‖∆k f (x)|p λk(x) dx

}q/p

(1 + s2)q
{(

γk+n−1
2

)
− 1

q−
1
p (γk+n−1)

}
ds.

If the pair (p, q) satisfies the condition

(γk + n − 1)
1
p

+
1
q

=
(γk + n − 1

2

)
, (6.3)

then we have∫ π
2

0

{ ∫
Rn
|eit Lk f (x)|p λk(x) dx

}q/p

dt =

∫ ∞

0

{ ∫
Rn
|eis‖x‖∆k f (x)|p λk(x) dx

}q/p

ds.

The cases when p or q is infinite are similar. �

Proof of Theorem D. The statement follows from the estimate (1.8) and Theorem C. �

Proof of Corollary E. Let (p, q) and ( p̃, q̃) be two k-admissible pairs satisfying the as-
sumptions of Theorem D. The abstract Lemma 2.1 in [11] applied to the estimate (1.18)
yields ∥∥∥∥ ∫

R+

e−is‖x‖∆k F(x, s) ds
∥∥∥∥

L2
x(Rn)
. ‖F‖Lq̃′

t L p̃′
x (R+×Rn). (6.4)

Following the same argument as in Proposition 4.3, we obtain∥∥∥∥ ∫
R+

ei(t−s)‖x‖∆k F(x, s) ds
∥∥∥∥

Lq
t Lp

x (R+×Rn)
. ‖F‖Lq̃′

t L p̃′
x (R+×Rn). (6.5)

Now, by Christ-Kiselev’s lemma we get the non-diagonal truncated estimate∥∥∥∥ ∫ t

0
ei(t−s)‖x‖∆k F(x, s) ds

∥∥∥∥
Lq

t Lp
x (R+×Rn)

. ‖F‖Lq̃′
t L p̃′

x (R+×Rn)

(by the assumptions on (p, q) and ( p̃, q̃), the exponents q and q̃ satisfy already the con-
dition q̃′ < q). This finishes the proof of Corollary E.

�
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