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SCHRÖDINGER PROPAGATOR AND THE DUNKL LAPLACIAN

S. BEN SAID, A.K. NANDAKUMARAN AND P.K. RATNAKUMAR

Abstract. We establish Strichartz estimates for a generalized Hermite–Schrödinger equation
associated to a family of differential-difference operators involving the Dunkl Laplacian and
unbounded potentials. This family includes the Hermite and Laguerre differential operators
in particular. The study relies on the analysis of the so-called (k, a)-generalized semigroup
studied in [1]. Moreover, we prove that homogeneous Strichartz estimates for the Schrödinger
equation associated to the Dunkl Laplacian can be obtained from those for the generalized
Hermite–Schrödinger equation.

1. Introduction

In this paper, we establish Strichartz type estimates for the Schrödinger propagator associ-
ated to a wide class of differential-difference operators on RN . This class includes, in partic-
ular, the Hermite operator on RN , the Laguerre differential operator on R+ etc., as observed
in [2, 1].

For any self-adjoint differential operator L on RN , having the spectral decomposition L =∫
E
λ dPλ, we can associate a one parameter oscillatory group {e−itL : t ∈ R} defined by

e−itL =

∫
E

e−itλdPλ.

Here dPλ denotes the spectral projection for L ; i.e., a projection valued ‘measure’ on the
spectrum E of L . The spectrum may be continuous, discrete or a combination of both, in
general.

Of special importance are operators L with discrete spectrum {λk} in which case the above
integral reduces to

e−itL =

∞∑
k=1

e−itλk Pk. (1.1)

Here Pk’s are the projections onto the eigenspace corresponding to the eigenvalue λk and
these projections are orthogonal since L is self-adjoint.

The operators with discrete spectrum includes some of the important examples like pertur-
bation of the Euclidean Laplacian with a potential V unbounded near infinity; for instance, the
Hermite operator −∆RN +‖x‖2 on RN , the special Hermite operator −∆CN +‖z‖2 + i

∑N
j=1(x j∂y j−

y j∂x j) on CN , the Laguerre differential operator on R+ (see e.g. [28] for the definition), etc.
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Oscillatory group of the form (1.1) arises as solution operator for the initial value prob-
lem for the time dependent Schrödinger equation associated to L . More precisely, for f ∈
L2(RN), the function u(x, t) := e−itL f (x) =

∑∞
k=1 e−itλk Pk f (x) is the unique solution to the

following Cauchy problem{
i∂tu(x, t) −L u(x, t) = 0, (x, t) ∈ RN × R,
u(x, 0) = f (x). (1.2)

The one parameter group {e−itL : t ∈ R} which maps the initial data to the data at time t is
called the Schrödinger propagator for L .

Notice that L being self-adjoint, the operators e−itL are unitary on L2(RN). Thus, e−itL

fails to map L2(RN) into the Sobolev spaces W s
L (RN) defined by

W s
L (RN) =

{
f ∈ L2(RN) : L s f ∈ L2(RN), s > 0

}
,

where L s is defined using the spectral theory; L s f =
∑∞

k=1 λ
s
k Pk f . Consequently, e−itL has

no regularizing effect in terms of the Sobolev space W s
L (RN).

Quite in contrast to the above phenomenon, in 1977, R. S. Strichartz proved an interesting
result for the Schrödinger propagator for the Laplacian on RN (see [24]). To recall Strichartz’s
result, consider the Cauchy problem for the inhomogeneous Schrödinger equation{

i∂tu(x, t) + ∆u(x, t) = F(x, t), (x, t) ∈ RN × R,
u(x, 0) = f (x),

with f ∈ L2(RN) and F ∈ L
2(N+2)

N+4 (RN × R). Strichartz showed the following estimate which
have come to bear his name:

‖u‖
L

2(N+2)
N (RN×R)

. ‖ f ‖L2(RN ) + ‖F‖
L

2(N+2)
N+4 (RN×R)

.

Since then various authors have published similar estimates for solutions to Schrödinger’s
equation, with a wide class of bounded potentials V , for more general spaces with different
exponents in space and time (see especially [30], [12], [7], [8]). See also the famous paper
by M. Keel and T. Tao [13] for a far reaching generalization of Strichartz estimates.

An interesting case of an unbounded potential can be found in [15, 16, 20], where the
authors consider the quadratic potential V(x) = ‖x‖2. The equation i∂tu(x, t) + ∆u(x, t) −
‖x‖2u(x, t) = F(x, t) may be viewed as the Schrödinger equation for the Hermite operator
−∆ + ‖x‖2 and the proof in [15] relies on the harmonic analysis of the Hermite operator.

Our aim in this paper is to establish a local Strichartz type estimate for Schrödinger propa-
gator for a wide class of differential-difference operators L having discrete spectrum, arising
in the study of the Dunkl Laplacian on RN , generalizing [15]. The crucial tool is the integral
representation of a generalized Laguerre semigroup studied in [1].

To be more specific, let G be a finite reflection group on RN with root system R. For a
G-invariant real function k = (kα)α∈R (multiplicity function) on R we write ∆k for the Dunkl
Laplacian on RN (see (2.3)).

For each a > 0 and a multiplicity function k, consider the operator

∆k,a :=
1
a

(
‖x‖a − ‖x‖2−a∆k

)
, (1.3)
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where ‖x‖a in the right hand side of the formula stands for the multiplication operator by ‖x‖a.
There is a nice structure theory associated to this operator, and in particular, it has discrete
spectrum [1]. Note that when a = 2 and k ≡ 0, we have

2∆0,2 =

N∑
j=1

x2
j −

N∑
j=1

∂2

∂x2
j

,

which is the classical Hermite operator on RN .
Consider the Cauchy problem for the inhomogeneous Schrödinger equation{

i∂tu(x, t) − ∆k,au(x, t) = F(x, t), (x, t) ∈ RN × R
u(x, 0) = f (x), (1.4)

with f ∈ L2
k,a(RN). Here Lp

k,a(RN), for 1 ≤ p < ∞, denotes the space of Lp-functions with
respect to the weight

ϑk,a(x) := ‖x‖a−2
∏
α∈R

|〈α, x〉|kα .

We may think of the Cauchy problem (1.4) as a generalized Hermite–Schrödinger equation.
The unique solution of (1.4) can be written in the form

u(x, t) = e−it∆k,a f (x) − i
∫ t

0
e−i(t−s)∆k,a F(·, s)(x)ds (1.5)

via Duhamel’s principle. The first term is the solution of the homogeneous problem, that is
F = 0 in (1.4). The second term is the solution of the inhomogeneous problem with initial
data f = 0.

In [1] the authors established an integral formula for the so-called (k, a)-generalized La-
guerre semigroup e−z∆k,a , for Re(z) ≥ 0, where a series expansion for the integral kernel is
given. For a = 1, 2 the series is expressed more compactly (see (3.5–3.6)).

We introduce the mixed Lp spaces over (−π/2, π/2)×RN as the solution to the homogeneous
problem is going to be periodic in t. Let LqLp

k,a = Lq((−π/2, π/2), Lp
k,a(RN)) be the space of

functions h on (−π/2, π/2) × RN such that

‖h‖LqLp
k,a

:=
∥∥∥∥ ‖h(·, t)‖Lp

k,a(RN )

∥∥∥∥
Lq((−π/2,π/2))

< ∞.

A pair (p, q) is called admissible if
( 1

p ,
1
q

)
belongs to the trapezoid

1
2

(
2γ + N − 2

2γ + N + a − 2

)
<

1
p
≤

1
2

and
1
2
≤

1
q
≤ 1, (1.6 a)

or

0 ≤
1
q
<

1
2

and
1
q
≥

(
2γ + N + a − 2

a

) (
1
2
−

1
p

)
, (1.6 b)

where γ = 1
2

∑
α∈R kα.

We now state our main results on the regularity of the solution of the homogeneous and
inhomogeneous Schrödinger equation (1.4).
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Figure 1. Admissible trapezoid

Theorem A (Homogeneous Strichartz estimate). Suppose a = 1, 2 and k is a non-negative
multiplicity function such that

a + 2γ + N − 2 > 0. (1.7)
Let (p, q) be an admissible pair (see (1.6 a–b)) and u = e−it∆k,a f be the solution to the homo-
geneous problem (1.4) (i.e., F ≡ 0) with f ∈ L2

k,a(RN). Then we have the estimate

‖e−it∆k,a f ‖LqLp
k,a
. ‖ f ‖L2

k,a
. (1.8)

Observe that (1.7) is automatically satisfied if N ≥ 2.
Regarding the inhomogeneous part of the solution u (see (1.5)), we prove the following

result.

Theorem B (Retarded estimate). Suppose that a = 1, 2 and that the non-negative multi-
plicity function k satisfies the inequality (1.7). Let (p, q) be an admissible pair and F ∈
Lq′((−π/2, π/2), Lp′

k,a(RN)). Then the function,

F̃(x, t) :=
∫ t

t0
e−i(t−s)∆k,a F(x, s)ds

belongs to Lq̃((−π/2, π/2), L p̃
k,a(RN)) for every admissible pair ( p̃, q̃). Moreover, the following

estimate holds ∥∥∥F̃
∥∥∥

Lq̃L p̃
k,a
. ‖F‖Lq′Lp′

k,a
. (1.9)

In view of Theorems A and B, we obtain the following estimate for the general solution to
the inhomogeneous Schrödinger equation (1.4).

Theorem C (Inhomogeneous Strichartz estimate). Suppose a = 1, 2 and k is a non-negative
multiplicity function satisfying the inequality (1.7). Let (p, q) and ( p̃, q̃) be two admissible
pairs. The solution

u(x, t) = e−it∆k,a f (x) − i
∫ t

0
e−i(t−s)∆k,a F(·, s)(x)ds

to the initial value problem (1.4) satisfies

‖u(x, t)‖LqLp
k,a
. ‖ f ‖L2

k,a
+ ‖F‖Lq̃′L p̃′

k,a
, (1.10)

where f ∈ L2
k,a(RN) and F ∈ Lq̃′((−π/2, π/2), L p̃′

k,a(RN)).
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In the last part of the paper we turn our attention to the Schrödinger equation associated to
the differential-difference part of ∆k,a (see (1.3)). In other words, we consider the initial value
problem

i∂tυ(x, t) +
1
a
‖x‖2−a∆kυ(x, t) = 0, υ(x, 0) = f (x). (1.11)

Our goal is to prove that mixed norm estimates for the Schrödinger equation (1.11) can be
obtained from those in Theorem A and vice-versa.

Theorem D. Let 1 ≤ p, q ≤ ∞ such that(
2γ + N + a − 2

a

) (
1
2
−

1
p

)
−

1
q

= 0. (1.12)

For all f ∈ L2
k,a(RN) we have

‖e−it∆k,a f ‖Lq((0,π/2),Lp
k,a(RN )) = ‖ei t

a ‖x‖
2−a∆k f ‖Lq((0,∞),Lp

k,a(RN )). (1.13)

We will see that the two mixed norms on the left hand sides of (1.8) and (1.13) are pro-
portional for real functions f . By combining Theorem A with Theorem D, we deduce the
homogeneous Strichartz estimate for the Schrödinger equation (1.11) when the equality in
(1.12) holds. Observe that an admissible pair (p, q) satisfying (1.12) reads

( 1
p ,

1
q

)
belongs to

the line AD in Figure 1.
The paper is organized as follows: In the next section we state the background material

to define the Dunkl Laplacian. Section 3 is concerned with a priori estimates for the (k, a)-
generalized Laguerre semigroup introduced in [1]. Using these estimates, we complete the
proofs of Theorem A, Theorem B and Theorem C in section 4. In section 5 we prove a
relation between the operators e−it∆k,a and ei t

a ‖x‖
2−a∆k which implies Theorem D.

2. Previous results on Dunkl operators

Let 〈·, ·〉 be the standard Euclidean scalar product in RN . We shall use the same notation
for its bilinear extension to CN × CN . For x ∈ RN , denote by ‖x‖ = 〈x, x〉1/2.

For α ∈ RN \ {0}, we write rα for the reflection with respect to the hyperplane 〈α〉⊥ orthog-
onal to α defined by

rα(x) := x − 2
〈α, x〉
‖α‖2

α, x ∈ RN .

We say a finite set R in RN \ {0} is a (reduced) root system if:
(R1) rα(R) = R for all α ∈ R,
(R2) R ∩ Rα = {±α} for all α ∈ R.

In this article, we do not impose crystallographic conditions on the roots, and do not require
that R spans RN . However, we shall assume R is reduced, namely, (R2) is satisfied.

The subgroup G ⊂ O(N,R) generated by the reflections {rα | α ∈ R} is called the finite
Coxeter group associated with R. The Weyl groups such as the symmetric group SN for the
type AN−1 root system and the hyperoctahedral group for the type BN root system are typical
examples. In addition, H3,H4 (icosahedral groups) and I2(n) (symmetry group of the regular
n-gon) are also the Coxeter groups. We refer to [11] for more details on the theory of Coxeter
groups.



6 S. BEN SAID, A.K. NANDAKUMARAN AND P.K. RATNAKUMAR

Definition 2.1. A multiplicity function for G is a function k : R → C which is constant on
G-orbits.

Setting kα := k(α) for α ∈ R, we have kgα = kα for all g ∈ G from definition. We say
k is non-negative if kα ≥ 0 for all α ∈ R. The C-vector space of non-negative multiplicity
functions on R is denoted by K +.

For ξ ∈ CN and k ∈ K +, Dunkl [2] introduced a family of first order differential-difference
operators Tξ(k) (Dunkl’s operators) by

Tξ(k) f (x) := ∂ξ f (x) +
∑
α∈R+

kα〈α, ξ〉
f (x) − f (rαx)
〈α, x〉

, f ∈ C1(RN).

Here ∂ξ denotes the directional derivative corresponding to ξ. Thanks to the G-invariance of
the multiplicity function, this definition is independent of the choice of the positive subsystem
R+.

It is shown in [3] that for any non-negative root multiplicity function k, there is a unique
linear isomorphism Vk (Dunkl’s intertwining operator) on the space P(RN) of polynomial
functions on RN such that:

(I1) Vk(Pm(RN)) = Pm(RN) for all m ∈ N,
(I2) Vk|P0(RN ) = id,
(I3) Tξ(k)Vk = Vk∂ξ for all ξ ∈ RN .

Here, Pm(RN) denotes the space of homogeneous polynomials of degree m. It is known that
Vk induces a homeomorphism of C(RN) and also that of C∞(RN) (cf. [28]).

For arbitrary finite reflection group G, and for any non-negative multiplicity function k,
Rösler [21] proved that there exists a unique positive Radon probability-measure µk

x on RN

such that
Vk f (x) =

∫
RN

f (ξ)dµk
x(ξ). (2.1)

The measure µk
x depends on x ∈ RN and its support is contained in the ball B(‖x‖) :={

ξ ∈ RN | ‖ξ‖ ≤ ‖x‖
}
. In view of the Laplace type representation (2.1), Dunkl’s intertwining

operator Vk can be extended to a larger class of function spaces.
Aside from the development of the general theory of the Dunkl operators, we note that

explicit formulas for Vk have been known for only a few cases: G = ZN
2 , G = S 3, and the

equal parameter case for the Weyl group of B2 (see [4] for the recent survey by C. Dunkl).
Let {ξ1, . . . , ξN} be an orthonormal basis of (RN , 〈·, ·〉). The Dunkl Laplacian operator is

defined as

∆k :=
N∑

j=1

Tξ j(k)2. (2.2)

The definition of ∆k is independent of the choice of an orthonormal basis of RN . In fact, it is
proved in [2] that ∆k is expressed as

∆k f (x) = ∆ f (x) +
∑
α∈R+

kα

{
2〈∇ f (x), α〉
〈α, x〉

− ‖α‖2
f (x) − f (rαx)
〈α, x〉2

}
, (2.3)

where ∇ denotes the usual gradient operator.
For k ≡ 0, the Dunkl–Laplace operator ∆k reduces to the Euclidean Laplacian ∆.
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Remark 2.2. The Dunkl Laplacian arise as the radial part of the Laplacian on the tangent
space of a Riemannian symmetric spaces. Let g be a real semisimple Lie algebra with Cartan
decomposition g = k ⊕ p. We take a maximal abelian subspace a in p, and let Σ(g, a) be the
set of restricted roots, and mα the multiplicity of α ∈ Σ(g, a). We may consider Σ(g, a) to
be a subset of a by means of the Killing form of g. The Killing form endows p with a flat
Riemannian symmetric space structure, and we write ∆p for the (Euclidean) Laplacian on p.
Put R := 2Σ(g, a) and kα := 1

2

∑
β∈Σ+∩Rα mβ. We note that the root system R is not necessarily

reduced. Then the radial part of ∆p, denoted by Rad(∆p), (see [9, Proposition 3.13]) is given
by

Rad(∆p) f = ∆k f
for every G-invariant function f ∈ C∞(a).

Definition 2.3. A k-harmonic polynomial of degree m (m ∈ N) is a homogeneous polynomial
p on RN of degree m such that ∆k p = 0.

Denote by Hm
k (RN) the space of k-harmonic polynomials of degree m. Let dσ be the

standard measure on the unit sphere SN−1, and dk the normalizing constant defined by

dk :=

∫
SN−1

∏
α∈R+

|〈α, ω〉|2kαdσ(ω)

−1

. (2.4)

For k ≡ 0, d−1
k is the volume of the unit sphere, namely,

d0 =
Γ( N

2 )

2π
N
2

. (2.5)

Thanks to Selberg, Mehta, Macdonald [17], Heckman, Opdam [18], and others, there is a
closed form of dk in terms of Gamma functions when k is a non-negative multiplicity function
(see also [5]).

For a > 0, let L2
k,a(RN) be the space of square integrable functions on RN against the

measure
ϑk,a(x) := ‖x‖a−2

∏
α∈R+

|〈α, x〉|2kα .

It is G-invariant and homogeneous of degree 2γ, where

γ =
∑
α∈R+

kα. (2.6)

For `,m ∈ N and p ∈ Hm
k (RN), we introduce the following functions on RN:

Φ
(a)
` (p, x) = p(x)L(λk,a,m)

`

(
2
a
‖x‖a

)
exp

(
−

1
a
‖x‖a

)
, (2.7)

where L(λ)
` denotes the Laguerre polynomial, and λk,a,m := 1

a

(
2m + 2γ + N − 2

)
. It is shown in

[1] that for k ∈ K + and a > 0, such that a + 2γ + N − 2 > 0, the following vector space

Wk,a(RN) := C-span
{
Φ

(a)
` (p, ·) | ` ∈ N,m ∈ N, p ∈ Hm

k (RN)
}

is a dense subspace of L2
k,a(RN).
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Throughout the paper we will use the notation f . g to denote f ≤ Cg with a positive
constant C varying line by line and independent of significant quantities.

3. Estimates for the generalized Laguerre semigroup

For a > 0, we have already introduced the differential-difference operator

∆k,a =
1
a

(
‖x‖a − ‖x‖2−a∆k

)
,

where ‖x‖a in the right hand side of the formula stands for the multiplication operator by ‖x‖a.
It is proved in [1] that for a > 0 and k ∈ K + such that a + 2γ + N − 2 > 0, ∆k,a extends
to a self-adjoint on L2

k,a(RN). Moreover, there is no continuous spectrum of ∆k,a, and all the
discrete spectra are positive. More specifically the set of discrete spectra is given by{(

2a` + 2m + 2γ + N + a − 2
)
/a, `,m ∈ N

}
, (N ≥ 2),{(

2a` + 2γ + a ± 1
)
/a, ` ∈ N

}
, (N = 1).

Note that when a = 2 and k ≡ 0, the above discussions reduces to the case of Hermite
operator

∑N
j=1 x2

j −
∑N

j=1
∂2

∂x2
j

on L2(RN), as mentioned before.

In [1], the authors have studied the so-called (k, a)-generalized Laguerre semigroup Ik,a(z)
with infinitesimal generator ∆k,a, that is

Ik,a(z) := exp(−z∆k,a) (3.1)

for z ∈ C such that Re(z) ≥ 0.
Henceforth we will denote by C+ the complex right-half plane {z ∈ C | Re(z) ≥ 0}. We

point thatI0,2(z) is the Hermite semigroup, andI0,1(z) is the Laguerre semigroup (see [10, 14]
respectively).

In the following theorem we gather the main properties of the (k, a)-generalized Laguerre
semigroup Ik,a(z).

Theorem 3.1. (see [1, Theorem 3.40]) Suppose a > 0 and k ∈ K + satisfying the condition
a + 2γ + N − 2 > 0. Then,

(1) The map

C+ × L2
k,a(RN) −→ L2

k,a(RN), (z, f ) 7−→ e−z∆k,a f

is continuous.
(2) For any p ∈ Hm

k (RN) and ` ∈ N,Φ(a)
` (p, ·) is an eigenfunction of the operator e−z∆k,a ,

that is
e−z∆k,aΦ

(a)
` (p, x) = e−z(λk,a,m+2`+1)Φ

(a)
` (p, x),

where λk,a,m = 1
a (2m + 2γ + N − 2) and Φ

(a)
` (p, x) is as in (2.7).

(3) The operator norm ‖e−z∆k,a‖op is exp
(
− 1

a (2γ + N + a − 2) Re(z)
)
.

(4) If Re(z) > 0, then e−z∆k,a is a Hilbert Schmidt operator.
(5) If Re(z) = 0, then e−z∆k,a is a unitary operator.
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Suppose a > 0 and k is a non-negative multiplicity function on the root system R satisfying

a + 2γ + N − 2 > 0. (3.2)

Notice that (3.2) is immediately satisfied if N ≥ 2. In [1, Section 4], an integral expression of
Ik,a(z), for Re(z) ≥ 0, is proved

e−z∆k,a f (x) = ck,a

∫
RN

Λk,a(x, y; z) f (y)ϑk,a(y)dy, (3.3)

for all a > 0. Here

ck,a = a−
(

2γ+N−2
a

)
Γ

(
2γ + N + a − 2

a

)−1

dk, (3.4)

where dk is defined in (2.4). Moreover, in [1, Theorem 4.20] a series expansion for the kernel
Λk,a is given. For a = 1, 2 the series is expressed more compactly. Henceforth we will assume
that a = 1, 2.

To recall the expression of the kernel Λk,a(x, y; z), for a = 1, 2, we introduce the following
continuous functions of ζ ∈ [−1, 1] with parameters r, s > 0 and z ∈ C+ \ iπZ :

ha(r, s; z; ζ) :=
exp

(
− 1

a (ra + sa) coth(z)
)

sinh(z)
(

2γ+N−1
a

)
×


Γ

(
γ +

N − 1
2

)
Ĩγ+ N−3

2

 √2(rs)1/2

sinh(z)
(1 + ζ)1/2

 , (a = 1),

exp
( rsζ
sinh z

)
, (a = 2),

(3.5)

where γ is defined in (2.6). Here Ĩλ(w) =
(

w
2

)−λ
Iλ(w) is the (normalized) modified Bessel

function of the first kind.
By using the polar coordinate x = rω, y = sη, we set

Λk,a(x, y; z) := Vη
k ha(r, s; z; 〈ω, ·〉)(η). (3.6)

Here Vk is the Dunkl intertwining operator, and the superscript in Vη
k denotes the relevant

variable. We note that Λk,a(x, y; z) = ha(r, s; z; 〈ω, η〉) if k ≡ 0.

Remark 3.2. From (3.5) it follows that

Λk,a(x, y; i(µ + π)) = e−iπ
(

2γ+N+a−2
a

)
Λk,a((−1)

2
a x, y; iµ), (3.7)

for all µ ∈ R \ πZ.

In view of the Laplace type representation (2.1) of the intertwining operator Vk, the kernel
Λk,a can be written as

Λk,a(rω, sη; z) =

∫
RN

ha(r, s; z; 〈ω, ξ〉)dµk
η(ξ), (3.8)

where supp(µk
η) ⊂ {ξ ∈ R

N | ‖ξ‖ ≤ 1}.
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Using the fact that |̃Iν(w)| ≤ Γ(ν + 1)−1e|Re(w)|, for ν ≥ −1/2 and w ∈ C, it follows that∣∣∣∣Ĩγ+ N−3
2

 √2(rs)1/2

sinh(z)
(1 + 〈ω, ξ〉)1/2

 ∣∣∣∣ ≤ e2
√

rs|Re(csch(z))|

for z ∈ C+ \ iπZ, ω ∈ SN−1 and ξ ∈ supp(µk
η). On the other hand, we have∣∣∣∣ exp

(
rs〈ω, ξ〉
sinh z

) ∣∣∣∣ ≤ ers|Re(csch(z))|.

Using ra + sa ≥ 2(rs)
a
2 , from (3.5), it follows that

|ha(r, s; z; 〈ω, ξ〉)| ≤
1

| sinh(z)|
(

2γ+N+a−2
a

) e−
1
a (ra+sa)

[
Re(coth(z))−|Re(csch(z))|

]
,

for z ∈ C+ \ iπZ. Further, since µk
η is a probability measure on RN , we deduce from (3.8) that

|Λk,a(x, y; z)| ≤
1

| sinh(z)|
(

2γ+N+a−2
a

) e−
1
a (‖x‖a+‖y‖a)

[
Re(coth(z))−|Re(csch(z))|

]
. (3.9)

If we assume that Re(z) > 0, then Re(coth(z)) > |Re(csch(z))|. Thus the kernel Λk,a decays
exponentially with respect to x and y. Moreover, if we write z = ε + iµ with ε > 0 and
µ ∈ R \ πZ, then the addition formula

csch(ε + iµ) =
csch(ε)csch(iµ)

coth(ε) + coth(iµ)

gives |csch(ε + iµ)| < |csch(iµ)|. Thus, for z = ε + iµ with ε > 0 and µ ∈ R \ πZ, we may
rewrite the estimate (3.9) as

|Λk,a(x, y; z)| ≤
1

| sin(µ)|
(

2γ+N+a−2
a

) .
The inequality holds true for ε = 0. Hence we have proved:

Proposition 3.3. For a = 1, 2, the kernel Λk,a(x, y; z) satisfies the following upper estimates:
(1) If Re(z) > 0, there exists a constant C > 0 depending on z such that

|Λk,a(x, y; z)| ≤
1

| sinh z|
(

2γ+N+a−2
a

) exp(−C(‖x‖a + ‖y‖a)). (3.10)

(2) For z = ε + iµ, such that ε ≥ 0 and µ ∈ R \ πZ, we have

|Λk,a(x, y; z)| ≤
1

| sin µ|
(

2γ+N+a−2
a

) . (3.11)

In view of the upper estimate (3.10), there exists a positive constant Cz independent of x and
y such that ck,a

∫
RN |Λk,a(x, y; z)|ϑk,a(x)dx ≤ Cz for a.e. y ∈ RN , and ck,a

∫
RN |Λk,a(x, y; z)|ϑk,a(y)dy ≤

Cz for a.e. x ∈ RN . For then it follows that e−z∆k,a is bounded on L1
k,a(RN).Moreover, as e−z∆k,a is

already bounded on L2
k,a(RN) interpolation proves that e−z∆k,a f is in Lp

k,a(RN) for all 1 ≤ p ≤ 2
when f ∈ Lp

k,a(RN). Duality will then takes care of the range 2 ≤ p ≤ ∞. Thus we have:
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Theorem 3.4. Suppose that a = 1, 2 and that the non-negative multiplicity function k satisfies
the inequality (3.2). Let f ∈ Lp

k,a(RN) for 1 ≤ p ≤ ∞. For Re(z) > 0, the (k, a)-generalized
Laguerre semigroup e−z∆k,a is in Lp

k,a(RN), and

‖e−z∆k,a f ‖Lp
k,a
≤ Cz‖ f ‖Lp

k,a

for some constant Cz > 0.

By virtue of the inequality (3.11) we can deduce the following result.

Theorem 3.5. Retain the assumptions of Theorem 3.4. For z = ε + iµ (ε ≥ 0, µ ∈ R \ πZ), the
holomorphic semigroup e−z∆k,a satisfies

‖e−z∆k,a f ‖Lp
k,a
≤

1

| sin µ|2
(

2γ+N+a−2
a

)(
1
2−

1
p

) ‖ f ‖Lp′
k,a
,

for 2 ≤ p ≤ ∞, where p′ = p/(p − 1).

Proof. By the uniform estimate (3.11) of the kernel Λk,a(x, y; z) in x and y, we get the L1−L∞

estimate:
‖e−z∆k,a f ‖L∞k,a ≤

1

| sin µ|
(

2γ+N+a−2
a

) ‖ f ‖L1
k,a
,

for z ∈ C+ \ iπZ. Moreover, by Theorem 3.1(3), we have

‖e−z∆k,a f ‖L2
k,a
≤ e−Re(z)

(
2γ+N+a−2

a

)
‖ f ‖L2

k,a
.

Using Riesz-Thorin’s interpolation, we get that

‖e−z∆k,a f ‖Lp
k,a
≤

e−2 Re(z)
(

2γ+N+a−2
a

)(
1− 1

p′

)
| sin µ|

(
2γ+N+a−2

a

)(
2
p′ −1

) ‖ f ‖Lp′
k,a

≤
1

| sin µ|2
(

2γ+N+a−2
a

)(
1
2−

1
p

) ‖ f ‖Lp′
k,a
,

for 2 ≤ p ≤ ∞, where 1/p + 1/p′ = 1. �

In the light of Remark 3.2, the Lp
k,a(RN) norm of e−it∆k,a f is π-periodic as a function of t,

and thus determined by its values for −π/2 ≤ t ≤ π/2. Henceforth we will denote the space
Lq((−π/2, π/2), Lp

k,a(RN)) by LqLp
k,a.

Next, we shall estimate the L2
k,a-norm of the function

∫ π/2

−π/2
e−(ε+iµ)∆k,ah(·, µ)(x)dµ for any

h ∈ Lq((−π/2, π/2), L2
k,a ∩ Lp′

k,a(RN)). For this, the following lemma is needed.

Lemma 3.6. Let h ∈ Lq((−π/2, π/2), L2
k,a(RN)) for 1 ≤ q ≤ ∞. Then for ε ≥ 0, the function

F(µ, ν, x) := e−(ε+iµ)∆k,ah(x, µ)e−(ε+iν)∆k,ah(x, ν) is integrable on (−π/2, π/2)2 × RN with respect
to the measure ϑk,a(x)dxdµdν.

Proof. Since h(·, µ) ∈ L2
k,a(RN), it follows that e−(ε+iµ)∆k,ah(·, µ) ∈ L2

k,a(RN) for ε ≥ 0. Using
Theorem 3.1 and Cauchy-Schwartz inequality we get that∫

RN
|F(µ, ν, x)|ϑk,a(x)dx ≤ ‖h(·, µ)‖L2

k,a
‖h(·, ν)‖L2

k,a
.
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Therefore∫ π/2

−π/2

∫ π/2

−π/2

∫
RN
|F(µ, ν, x)|ϑk,a(x)dxdσ(µ)dσ(ν) ≤

( ∫ π/2

−π/2
‖h(·, µ)‖L2

k,a
dσ(µ)

)2

. ‖h‖LqL2
k,a

for 1 ≤ q ≤ ∞ and q′ = q/(q − 1), by Hölder’s inequality. �

We are ready to estimate the L2
k,a-norm of the function

∫ π/2

−π/2
e−(ε+iµ)∆k,ah(·, µ)(x)dµ, for h ∈

Lq′((−π/2, π/2), L2
k,a ∩ Lp′

k,a(RN)). Indeed,∥∥∥∥∥∥
∫ π/2

−π/2
e−(ε+iµ)∆k,ah(·, µ)dµ

∥∥∥∥∥∥2

L2
k,a

=

∫ π/2

−π/2

∫ π/2

−π/2

{∫
RN

e−(ε+iµ)∆k,ah(x, µ)e−(ε+iν)∆k,ah(x, ν)ϑk,a(x)dx
}

dµdν,

where the interchange of the order of integration is accomplished by Lemma 3.6. On the
other hand, the semigroup law e−z1∆k,a ◦ e−z2∆k,a = e−(z1+z2)∆k,a yields, see [1]

ck,a

∫
RN

Λk,a(x, y; z1)Λk,a(x, y′; z2)ϑk,a(x)dx = Λk,a(y, y′; z1 + z2). (3.12)

Now using the integral representation (3.3) of e−z∆k,a and the identity (3.12) we get∫
RN

e−(ε+iµ)∆k,ah(x, µ)e−(ε+iν)∆k,ah(x, ν)ϑk,a(x)dx

= c2
k,a

∫
RN

{ ∫
RN

Λ(x, y, ε + iµ)h(y, µ)ϑk,a(y)dy
}{ ∫

RN
Λ(x, y′, ε + iν) h(y′, ν)ϑk,a(y′)dy′

}
ϑk,a(x)dx

= c2
k,a

∫
RN

∫
RN

h(y, µ)h(y′, ν)
{ ∫
RN

Λ(x, y, ε + iµ)Λ(x, y′, ε + iν)ϑk,a(x)dx
}
ϑk,a(y′)ϑk,a(y)dydy′

= ck,a

∫
RN

∫
RN

h(y, µ)h(y′, ν)Λ(y, y′, 2ε + i(µ − ν))ϑk,a(y′)ϑk,a(y)dydy′

=

∫
RN

h(y′, ν)e−(2ε+i(µ−ν))∆k,ah(y′, µ)ϑk,a(y′)dy′.

Therefore∥∥∥∥∥∥
∫ π/2

−π/2
e−(ε+iµ)∆k,ah(·, µ)dµ

∥∥∥∥∥∥2

L2
k,a

=

∫ π/2

−π/2

∫
RN

h(y′, ν)
(∫ π/2

−π/2
e−(2ε+i(µ−ν))∆k,ah(y′, µ)dµ

)
ϑk,a(y′)dy′dν

.
∥∥∥∥ ∫ π/2

−π/2
e−(2ε+i(µ−ν))∆k,ah(y′, µ)dµ

∥∥∥∥
LqLp

k,a

‖h‖Lq′Lp′
k,a
,

for all p, q ≥ 1, by Holder’s inequality. Here p′ and q′ are the conjugate exponents of p and
q respectively. Moreover, we claim that∥∥∥∥ ∫ π/2

−π/2
e−(2ε+i(µ−ν))∆k,ah(y′, µ)dµ

∥∥∥∥
LqLp

k,a

. ‖h‖Lq′Lp′
k,a
. (3.13)
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Indeed, by Minkowski’s inequality [6], and Theorem 3.5, we have∥∥∥∥ ∫ π/2

−π/2
e−(2ε+i(µ−ν))∆k,ah(y′, µ)dµ

∥∥∥∥
Lp

k,a

≤

∫ π/2

−π/2

∥∥∥∥e−(2ε+i(µ−ν))∆k,ah(·, µ)
∥∥∥∥

Lp
k,a

dµ

≤

∫ π/2

−π/2

‖h(·, µ)‖Lp′
k,a

| sin(µ − ν)|2
(

2γ+N+a−2
a

)(
1
2−

1
p

)dµ,

for 2 ≤ p ≤ ∞. Let us set κ(µ) := | sin(µ)|−2
(

2γ+N+a−2
a

)(
1
2−

1
p

)
. Thus we may rewrite the above

second integral as a convolution of ‖h(·, ·)‖Lp′
k,a

with the kernel κ. Moreover, the function κ

belongs to the weak Lr
W((−π/2, π/2)) space for r > 1 such that 2r

(
2γ+N+a−2

a

)(
1
2 −

1
p

)
≤ 1. That

is 1 < r ≤ ap
(p−2)(2γ+N+a−2) . Hence we can apply [19, Lemma 2] to deduce that∥∥∥∥ ∫ π/2

−π/2
e−(2ε+i(µ−ν))∆k,ah(y′, µ)dµ

∥∥∥∥
LqLp

k,a

. ‖h‖Lq′Lp′
k,a

for q = 2r, with r as above, and for 1 ≤ q ≤ 2. This finishes the proof of the claim (3.13).
Hence, we established the following theorem.

Theorem 3.7. Let (p, q) be an admissible pair (see (1.6 a-b) for the definition). Then, for all
h ∈ Lq′((−π/2, π/2), Lp′

k,a ∩ L2
k,a(RN)), we have∥∥∥∥ ∫ π/2

−π/2
e−(ε+iµ)∆k,ah(·, µ)dµ

∥∥∥∥
L2

k,a

. ‖h‖Lq′Lp′
k,a
, (3.14)

for ε ≥ 0. Here p′ and q′ denote the conjugate of p and q respectively.

4. Proofs of Theorems A, B and C

Theorem A is a special case of the following theorem, which concerns the Strichartz type
estimate for the (k, a)-generalised Laguerre semigroup Ik,a(z) (see (3.1)).

Theorem 4.1. Suppose a = 1, 2 and k is a non-negative multiplicity function such that a +

2γ + N − 2 > 0. Let (p, q) be an admissible pair. Then for every ε ≥ 0, we have

‖e−(ε+iµ)∆k,a f ‖LqLp
k,a
. ‖ f ‖L2

k,a
. (4.1)

Proof. If ‖ f ‖L2
k,a

= ∞ the estimate is trivial. If ‖ f ‖L2
k,a
< ∞ choose h ∈ Lq′((−π/2, π/2), Lp′

k,a ∩

L2
k,a(RN)). By the estimate (3.14), we have∣∣∣∣∣∣

∫ π/2

−π/2
〈e−(ε+iµ)∆k,a f , h(·, µ)〉L2

k,a
dµ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ π/2

−π/2
〈 f , e−(ε−iµ)∆k,ah(·, µ)〉L2

k,a
dµ

∣∣∣∣∣∣
≤ ‖ f ‖L2

k,a

∥∥∥∥ ∫ π/2

−π/2
e−(ε−iµ)∆k,ah(x, µ)dµ

∥∥∥∥
L2

k,a

. ‖ f ‖L2
k,a
‖h‖Lq′Lp′

k,a
,



14 S. BEN SAID, A.K. NANDAKUMARAN AND P.K. RATNAKUMAR

for an admissible pair (p, q). Above we have used the fact that (e−z∆k,a)∗ = e−z̄∆k,a (see [1,
p. 33]). Now the theorem follows from the density of Lq′((−π/2, π/2), Lp′

k,a ∩ L2
k,a(RN)) in

Lq′((−π/2, π/2), Lp′

k,a(RN)). �

Proof of Theorem B. Let (p, q) be an admissible pair and F ∈ Lq′((−π/2, π/2), Lp′

k,a(RN)). Let
G belongs to a dense space in Lq̃′((−π/2, π/2), L p̃′

k,a(RN)), for some admissible pair (p̃, q̃). We
consider the bilinear form

T (F,G) =

∫ π/2

−π/2

∫ t

0
〈eis∆k,a F(·, s), eit∆k,aG(·, t)〉L2

k,a
dsdt.

By Hölder’s inequality, we get

|T (F,G)| ≤ sup
t∈(−π/2,π/2)

∥∥∥∥ ∫ t

0
eis∆k,a F(x, s)ds

∥∥∥∥
L2

k,a

‖eit∆k,aG‖L1L2
k,a
. (4.2)

Using Theorem 3.7 we deduce that∥∥∥∥ ∫ t

0
eis∆k,a F(x, s)ds

∥∥∥∥
L2

k,a

. ‖F‖Lq′Lp′
k,a
.

On the other hand, arguing as in the proof of Theorem 3.7, for the last term in (4.2), we show
that

‖eit∆k,aG‖L1L2
k,a
. ‖G‖Lq̃′L p̃′

k,a

holds for any admissible pair (p̃, q̃). Thus inequality (4.2) becomes

|T (F,G)| . ‖F‖Lq′Lp′
k,a
‖G‖Lq̃′L p̃′

k,a
.

This shows that if F ∈ Lq′((−π/2, π/2), Lp′

k,a(RN)) for some admissible pair (p, q), then the
function F̃(t, x) =

∫ t

0
ei(s−t)∆k,a F(s, x)ds belongs to Lq̃((−π/2, π/2), L p̃

k,a(RN)) for any admissi-
ble pair ( p̃, q̃), proving the theorem. �

Proof of Theorem C. Recall that

u(x, t) = e−it∆k,a f (x) − i
∫ t

0
e−i(t−s)∆k,a F(x, s)ds

is the unique solution to the inhomogeneous Cauchy problem (1.4). By Theorem A, we have

‖u(x, t)‖LqLp
k,a
. ‖ f ‖L2

k,a
+

∥∥∥∥ ∫ t

0
e−i(t−s)∆k,a F(·, s)(x)ds

∥∥∥∥
LqLp

k,a

,

for any admissible pair (p, q). If in addition F ∈ Lq̃′((−π/2, π/2), L p̃′

k,a(RN)) for some admissi-
ble pair ( p̃, q̃), then by Theorem B we also have the following estimate∥∥∥∥ ∫ t

0
e−i(t−s)∆k,a F(·, s)(x)ds

∥∥∥∥
LqLp

k,a

. ‖F‖Lq̃′L p̃′
k,a
,

and hence the theorem. �
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5. A link between solutions of the generalized Hermite–Schrödinger and Schrödinger
equations

Assume that a > 0 and that k is a non-negative multiplicity function such that a + 2γ+ N −
2 > 0. For x, y ∈ RN let

Bk,a(x, y) := eiπ
(

2γ+N+a−2
2a

)
Λk,a

(
x, y; i

π

2

)
,

where Λk,a(x, y; z) is defined in (3.6). The kernel Bk,a(·, ·) is defined in [1] as the integral kernel
of a (k, a)-generalized Fourier transform, which reduces to the Dunkl transform if a = 2, and
gives rise to a Dunkl analogue of the Hankel transform if a = 1. We refer to [1] for more
details and properties on Bk,a(·, ·).

In [1, Theorem 4.20], the authors obtained the following expansion formula for Bk,a(·, ·) :

Bk,a(x, y) = eiπ
(

2γ+N+a−2
2a

)
a
(

2γ+N−2
2a

)
Γ

(
2γ + N + a − 2

a

) ∞∑
m=0

d(m,N)∑
j=1

Λ
(m)
k,a (‖x‖, ‖y‖)Ym, j(ω)Ym, j(ω′),

where

Λ
(m)
k,a (‖x‖, ‖y‖) = e−iπ

(
2m+2γ+N+a−2

2a

)
(‖x‖‖y‖)−γ−

N
2 +1Jλm

(
2
a
‖x‖

a
2 ‖y‖

a
2

)
.

In the above equation λm =
2m+2γ+N−2

a , γ =
∑
α∈R+ kα, Jδ is the Bessel function of type δ and

Ym, j are the k-spherical harmonics on SN−1 which form an orthonormal basis for the Hilbert
space L2(SN−1, dkϑk(ω)dσ(ω)) where dk is defined in (2.4).

For t > 0 let us define

Γk,a(x, y; t) = c2
k,a

∫
RN

e−t ‖ξ‖
a

a Bk,a(x, ξ)Bk,a((−1)
2
a y, ξ)ϑk,a(ξ)dξ, (5.1)

where the constant ck,a is defined by (3.4). Then Γk,a is the heat kernel so that the function

u(x, t) :=
∫
RN

f (y)Γk,a(x, y; t)ϑk,a(y)dy

solves the heat equation

∂tu(x, t) =
1
a
‖x‖2−a∆ku(x, t), u(x, 0) = f (x). (5.2)

This is due to the fact that

‖x‖2−a∆x
k Bk,a(x, ξ) = −‖ξ‖aBk,a(x, ξ), (5.3)

where the superscript in ∆x
k indicates the relevant variable (see [1, Theorem 5.7]).

In order to get a good formula for the heat kernel we proceed as follows. First we need to
calculate the integral ∫

SN−1
Bk,a(x, ξ)Bk,a((−1)

2
a y, ξ)

∏
α∈R+

|〈α, η〉|2kαdσ(η)
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appearing in the definition of the heat kernel. (In the above and in what follows we have
written ξ = ‖ξ‖η.) In view of the orthogonality of the k-spherical harmonics Ym, j, we obtain:

∫
SN−1

Bk,a(x, ξ)Bk,a((−1)
2
a y, ξ)

∏
α∈R+

|〈α, η〉|2kαdσ(η)

= d−1
k eiπ

(
2γ+N+a−2

a

)
a2

(
2γ+N−2

a

)
Γ

(
2γ + N + a − 2

a

)2

∞∑
m=0

d(m,N)∑
j=1

(−1)
2m
a Λ

(m)
k,a (||x||, ||ξ||)Λ(m)

k,a (||y||, ||ξ||)Ym, j(ω)Ym, j(ω′)

= d−1
k a2

(
2γ+N−2

a

)
Γ

(
2γ + N + a − 2

a

)2

(||x|| ||y||)−γ−N/2+1||ξ||−2γ−N+2

∞∑
m=0

d(m,N)∑
j=1

Ym, j(ω)Ym, j(ω′)Jλm

(
2
a
||x||

a
2 ||ξ||

a
2

)
Jλm

(
2
a
||y||

a
2 ||ξ||

a
2

)
= dkc−2

k,a(||x|| ||y||)−γ−N/2+1||ξ||−2γ−N+2

∞∑
m=0

d(m,N)∑
j=1

Ym, j(ω)Ym, j(ω′)Jλm

(
2
a
||x||

a
2 ||ξ||

a
2

)
Jλm

(
2
a
||y||

a
2 ||ξ||

a
2

)
.

Using the above we can rewrite the heat kernel Γk,a(x, y; t) as

Γk,a(x, y; t) = dk(||x|| ||y||)−γ−N/2+1
∞∑

m=0

d(m,N)∑
j=1

Ym, j(ω)Ym, j(ω′)Im(t, ||x||, ||y||),

where

Im(t, ||x||, ||y||) =

∫ ∞

0
e−

t
a ua

Jλm

(
2
a
||x||

a
2 u

a
2

)
Jλm

(
2
a
||y||

a
2 u

a
2

)
ua−1du

=
2
a

∫ ∞

0
e−

t
a v2

Jλm

(
2
a
||x||

a
2 v

)
Jλm

(
2
a
||y||

a
2 v

)
vdv

=
1
t

exp
(
−
||x||a + ||y||a

ta

)
Iλm

(
2
||x||

a
2 ||y||

a
2

ta

)
.

The above third equality is due to the following formula

∫ ∞

0
e−p2t2 Jλ(at)Jλ(bt)tdt =

1
2p2 exp

(
−

a2 + b2

4p2

)
Iλ

(
ab
2p2

)
,
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(see [29, Exercise 68]). Therefore, using [1, formulas (4.40–4.41)], we obtain

Γk,a(x, y; t) =
dk

a
(

2γ+N−2
a

) 1

t
(

2γ+N−2
a +1

) exp
(
−
||x||a + ||y||a

ta

)
∞∑

m=0

d(m,N)∑
j=1

(
||x||

a
2 ||y||

a
2

ta

) 2m
a

Ĩλm

(
2
||x||

a
2 ||y||

a
2

ta

)
Ym, j(ω)Ym, j(ω′)

=
ck,a

t
(

2γ+N−2
a +1

) exp
(
−
||x||a + ||y||a

ta

)

×


Γ

(
γ +

N − 1
2

)
Ṽk

Ĩγ+ N−3
2

 √
2‖x‖‖y‖(1 + 〈ω, ·〉)

t

 (ω′) , (a = 1),

Ṽk

(
exp

(
‖x‖‖y‖

t
〈ω, ·〉

))
(ω′), (a = 2).

Let us record the above calculations in the following theorem.

Theorem 5.1. For x, y ∈ RN and t > 0, the heat kernel Γk,a is given by

Γk,a(x, y; t) =
ck,a

t
(

2γ+N−2
a +1

) exp
(
−
||x||a + ||y||a

ta

)
(5.4)

×


Γ

(
γ +

N − 1
2

)
Ṽk

Ĩγ+ N−3
2

 √
2‖x‖ ‖y‖(1 + 〈ω, ·〉)

t

 (ω′) , (a = 1),

Ṽk

(
exp

(
‖x‖ ‖y‖

t
〈ω, ·〉

))
(ω′), (a = 2).

Remark 5.2. For a = 2, the expression of Γk,2(x, y; t) was previously proved in [22].

It is obvious from the above theorem that Γk,a extends naturally to complex time arguments,
where z ∈ C \

{
z ∈ R | z ≤ 0

}
for a = 2, and z ∈ C∗ for a = 1.

Now, we consider the initial value problem for the Schrödinger equation{
i∂tυ(x, t) + 1

a‖x‖
2−a∆kυ(x, t) = 0, (x, t) ∈ RN × (0,∞),

υ(x, 0) = f (x), (5.5)

where ∆k denotes the Dunkl Laplacian (see (2.3)).
Formally, the Schrödinger equation (5.5) is obtained by the transformation t 7→ it of the

heat equation (5.2) to ‘imaginary time’. In other words, for all f ∈ L2
k,a(RN), the function

ei t
a ‖x‖

2−a∆k f (x) :=
∫
RN

f (y)Γk,a(x, y; it)ϑk,a(y)dy

solves (5.5). In the remaining part of this section we will compare the operators e−it∆k,a and
ei t

a ‖x‖
2−a∆k by searching for a link between their kernels Λk,a(x, y; it) and Γk,a(x, y; it) respec-

tively.
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We recall from (3.5) that

ha(r, s; it; ζ) :=
exp

(
i
a (ra + sa) cot(t)

)
i
(

2γ+N+a−2
a

)
sin(t)

(
2γ+N+a−1

a

)
×


Γ

(
γ +

N − 1
2

)
Ĩγ+ N−3

2

 √2(rs)1/2

i sin(t)
(1 + ζ)1/2

 , (a = 1),

exp
(

rsζ
i sin(t)

)
, (a = 2).

(5.6)

That is the kernel Λk,a(x, y; it) of e−it∆k,a satisfies

Λk,a(x, y;−it) = Λk,a(x, y; it).

Furthermore, by Remark 3.2 we have

Λk,a(x, y; i(t + π)) = e−iπ
(

2γ+N+a−2
a

)
Λk,a((−1)

2
a x, y; it).

For real functions f , it follows that the Lp
k,a(RN) norm of e−it∆k,a f is even and π-periodic as a

function of t, and thus determined by its values for 0 < t ≤ π
2 . Hence the two mixed norms

‖e−it∆k,a f ‖Lq((−π/2,π/2),Lp
k,a(RN )) and ‖e−it∆k,a f ‖Lq((0,π/2),Lp

k,a(RN )) are proportional for real functions f .
Using the change of variable s = tan(t) with t ∈ (0, π/2), we get

Λk,a(x, y; i arctan s) = c−1
k,a(1 + s2)

(
2γ+N+a−2

2a

)
exp

(
−is
‖x‖a

a

)
Γk,a

(
(1 + s2)

1
a x, y; is

)
.

The following is then immediate.

Theorem 5.3. For all f ∈ L2
k,a(RN) and all s > 0, we have

e−i arctan(s)∆k,a f (x) = (1 + s2)
(

2γ+N+a−2
2a

)
exp

(
−is
‖x‖a

a

)
ei s

a ‖x‖
2−a∆k f ((1 + s2)

1
a x).

Now we are ready to prove Theorem D.

Proof of Theorem D. Assuming p, q < ∞, we obtain∫ π
2

0

{ ∫
RN

∣∣∣∣e−it∆k,a f (x)
∣∣∣∣pϑk,a(x)dx

}q/p
dt

=

∫ ∞

0

{ ∫
RN

∣∣∣∣e−i arctan(s)∆k,a f (x)
∣∣∣∣pϑk,a(x)dx

}q/p ds
1 + s2

=

∫ ∞

0

{ ∫
RN

∣∣∣∣ei s
a ‖x‖

2−a∆k f ((1 + s2)
1
a x)

∣∣∣∣pϑk,a(x)dx
}q/p

(1 + s2)q
(

2γ+N+a−2
2a

)
−1ds

=

∫ ∞

0

{ ∫
RN

∣∣∣∣ei s
a ‖x‖

2−a∆k f (x)
∣∣∣∣pϑk,a(x)dx

}q/p
(1 + s2)q

{(
2γ+N+a−2

2a

)
− 1

q−
N
ap−

1
ap (2γ+a−2)

}
ds.

If in addition the pair (p, q) satisfies(
2γ + N + a − 2

a

)
1
p

+
1
q

=

(
2γ + N + a − 2

2a

)
, (5.7)
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then ∫ π
2

0

{ ∫
RN

∣∣∣∣e−it∆k,a f (x)
∣∣∣∣pϑk,a(x)dx

}q/p
dt =

∫ ∞

0

{ ∫
RN

∣∣∣∣ei s
a ‖x‖

2−a∆k f (x)
∣∣∣∣pϑk,a(x)dx

}q/p
ds.

The cases when p or q is infinite are similar. �

As an immediate consequence of Theorem A and Theorem D we get a homogeneous
Strichartz inequality for the Schrödinger equation (5.5) when the equality in (5.7) holds.
We point out that an admissible pair (p, q) satisfying (5.7) reads

( 1
p ,

1
q

)
belongs to the line AD

in Figure 1.
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