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SCHRODINGER PROPAGATOR AND THE DUNKL LAPLACIAN
S. BEN SAID, A K. NANDAKUMARAN AND PK. RATNAKUMAR

ABSTRACT. We establish Strichartz estimates for a generalized Hermite—Schrodinger equation
associated to a family of differential-difference operators involving the Dunkl Laplacian and
unbounded potentials. This family includes the Hermite and Laguerre differential operators
in particular. The study relies on the analysis of the so-called (k, a)-generalized semigroup
studied in [1]]. Moreover, we prove that homogeneous Strichartz estimates for the Schrodinger
equation associated to the Dunkl Laplacian can be obtained from those for the generalized
Hermite—Schrddinger equation.

1. INTRODUCTION

In this paper, we establish Strichartz type estimates for the Schrodinger propagator associ-
ated to a wide class of differential-difference operators on RY. This class includes, in partic-
ular, the Hermite operator on R", the Laguerre differential operator on R* etc., as observed
in 2} 1]

For any self-adjoint differential operator . on R", having the spectral decomposition . =
fE AdP,, we can associate a one parameter oscillatory group {e™" : t € R} defined by

iy .
e it¥ — fe MdP/l.
E

Here dP, denotes the spectral projection for .Z; i.e., a projection valued ‘measure’ on the
spectrum E of .Z. The spectrum may be continuous, discrete or a combination of both, in
general.

Of special importance are operators . with discrete spectrum {A;} in which case the above
integral reduces to

e = ey (1.1)
k=1

Here P,’s are the projections onto the eigenspace corresponding to the eigenvalue A; and
these projections are orthogonal since .Z is self-adjoint.

The operators with discrete spectrum includes some of the important examples like pertur-
bation of the Euclidean Laplacian with a potential V unbounded near infinity; for instance, the
Hermite operator —Agny +||x||> on RY, the special Hermite operator —Acw +||z]|* +i Z?’zl(x 0y, —
y;0y;) on CV, the Laguerre differential operator on R* (see e.g. [28] for the definition), etc.
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Oscillatory group of the form (1.1) arises as solution operator for the initial value prob-
lem for the time dependent Schrédinger equation associated to .. More precisely, for f €
L2(RY), the function u(x,t) := e f(x) = Y2, e ™ P f(x) is the unique solution to the
following Cauchy problem

iOu(x,t) — Lu(x,t) =0, (x,) e RV xR,
u(x,0) = f(x).

The one parameter group {¢™"“ : t € R} which maps the initial data to the data at time ¢ is
called the Schrodinger propagator for .£.

Notice that . being self-adjoint, the operators e are unitary on L2 (R"). Thus, e7#¥
fails to map L*(R") into the Sobolev spaces W*,(R") defined by

(1.2)

WS, (RY) = { fel*RY): Z°fe L*RY), s> 0},

where .Z° is defined using the spectral theory; Z* f = 32, A7 P, f. Consequently, e ™ has
no regularizing effect in terms of the Sobolev space W_}(RN ).

Quite in contrast to the above phenomenon, in 1977, R. S. Strichartz proved an interesting
result for the Schrédinger propagator for the Laplacian on R (see [24]]). To recall Strichartz’s
result, consider the Cauchy problem for the inhomogeneous Schrédinger equation

iOu(x,t) + Au(x, t) = F(x, 1), (x,1) e RV xR,
u(x,0) = f(x),

2AN+2)

with f € L>(RY) and F € L%+ (RN x R). Strichartz showed the following estimate which
have come to bear his name:

<
||M||L2(1\;V+2> ®RVxE) J A1 2y + ||F||L2<11VV++3> RYXR)'

Since then various authors have published similar estimates for solutions to Schrodinger’s
equation, with a wide class of bounded potentials V, for more general spaces with different
exponents in space and time (see especially [30], [12], [7], [8]). See also the famous paper
by M. Keel and T. Tao [13] for a far reaching generalization of Strichartz estimates.

An interesting case of an unbounded potential can be found in [15} 16, 20], where the
authors consider the quadratic potential V(x) = ||x||>. The equation id,u(x,t) + Au(x,t) —
lIx|lu(x,t) = F(x,f) may be viewed as the Schrodinger equation for the Hermite operator
—A + ||x||> and the proof in [15] relies on the harmonic analysis of the Hermite operator.

Our aim in this paper is to establish a local Strichartz type estimate for Schrodinger propa-
gator for a wide class of differential-difference operators .Z having discrete spectrum, arising
in the study of the Dunkl Laplacian on R”, generalizing [13]. The crucial tool is the integral
representation of a generalized Laguerre semigroup studied in [1]].

To be more specific, let G be a finite reflection group on R with root system %. For a
G-invariant real function k = (k,).cs (multiplicity function) on % we write A, for the Dunkl
Laplacian on R" (see (2.3)).

For each a > 0 and a multiplicity function k, consider the operator

1
Ao = = (Il = 1P ), (1.3)
a
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where ||x|| in the right hand side of the formula stands for the multiplication operator by ||x||“.
There is a nice structure theory associated to this operator, and in particular, it has discrete
spectrum [1]]. Note that when a = 2 and k = 0, we have

which is the classical Hermite operator on RY.
Consider the Cauchy problem for the inhomogeneous Schrodinger equation
iOu(x, 1) — Aau(x, t) = F(x, 1), (x,H) eRY xR
u(x,0) = f(x),

with f € L,%’a(RN ). Here L] (RV), for 1 < p < oo, denotes the space of L’-functions with
respect to the weight

(1.4)

Fra(x) = 2 | e, 01
374
We may think of the Cauchy problem (1.4) as a generalized Hermite—Schrodinger equation.
The unique solution of (1.4) can be written in the form

u(x, 1) = " f(x) — i f e TINE (. 5)(x)ds (1.5)
0

via Duhamel’s principle. The first term is the solution of the homogeneous problem, that is
F = 01n (1.4). The second term is the solution of the inhomogeneous problem with initial
data f = 0.

In [1]] the authors established an integral formula for the so-called (k, a)-generalized La-
guerre semigroup e “*«, for Re(z) > 0, where a series expansion for the integral kernel is
given. For a = 1,2 the series is expressed more compactly (see (3.5-3.6)).

We introduce the mixed L” spaces over (—r/2, 1/2)xR" as the solution to the homogeneous
problem is going to be periodic in 7. Let Lqu:’a = Li((-m/2,7/2), Lf’a(RN )) be the space of
functions £ on (—/2, 1/2) x RY such that

< 00.
La((-n/2,m/2))

Wallarg, o= || 1 Dllp oy

A pair (p, ) is called admissible if (5, ;) belongs to the trapezoid

1{ 2y+N-2 1 1 11
(= F <—<-and = <-<1, (1.6 a)
2\2y+N+a-2) p 2 2 ¢
or
11 1 (2y+N+a-2\(1 1
0§—<—and—z(7 a )(———), (1.6 b)
g 2 q a 2 p

where y = % > oez ka-
We now state our main results on the regularity of the solution of the homogeneous and
inhomogeneous Schrodinger equation (1.4).
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A

—_ | =
|

N =
'

. A
1 1 1

2a 2 p
FiGure 1. Admissible trapezoid

Theorem A (Homogeneous Strichartz estimate). Suppose a = 1,2 and k is a non-negative
multiplicity function such that
a+2y+N-2>0. (1.7)

—l'IAk,a

Let (p, q) be an admissible pair (see (1.6 a—b)) and u = e f be the solution to the homo-
geneous problem (1.4) (i.e., F = 0) with f € L,%’a(RN ). Then we have the estimate

—itAr g
e Fllary < 11F 12 . (1.8)

Observe that (1.7) is automatically satisfied if N > 2.
Regarding the inhomogeneous part of the solution u (see (1.5)), we prove the following
result.

Theorem B (Retarded estimate). Suppose that a = 1,2 and that the non-negative multi-
plicity function k satisfies the inequality (1.7). Let (p,q) be an admissible pair and F €
LY ((-n/2,7/2), Ly, (RY)). Then the function,

!
F(x,1) := f e I F(x, s)ds

fo

belongs to Li((—n/2,7/2), Lf,a(RN )) for every admissible pair (p, §). Moreover, the following
estimate holds 3
5 S rep . .
”F“qu{a ~ ”F”L‘i Ly, (1.9)

In view of Theorems A and B, we obtain the following estimate for the general solution to
the inhomogeneous Schrodinger equation (1.4)).

Theorem C (Inhomogeneous Strichartz estimate). Suppose a = 1,2 and k is a non-negative
multiplicity function satisfying the inequality (1.7). Let (p,q) and (p,§) be two admissible
pairs. The solution

t
u(x, ) = e "M f(x) — i f e I (-, 5)(x)ds
0
to the initial value problem (1.4) satisfies
e Dlzozg, < Wz, + 1F 1L (1.10)

where f € L,ia(RN) and F € LY ((-n/2,7/2), Lf:a(RN)).
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In the last part of the paper we turn our attention to the Schrédinger equation associated to
the differential-difference part of A, (see (1.3)). In other words, we consider the initial value
problem

i0u(x,t) + éllxllz_“Akv(x, 1) =0, u(x,0) = f(x). (1.11)

Our goal is to prove that mixed norm estimates for the Schrodinger equation (1.11) can be
obtained from those in Theorem |Aland vice-versa.

Theorem D. Let 1 < p, g < oo such that

2y+N+a-2\(1 1) 1
(y a )(___)__:o_ (1.12)
a 2 p) q
For all f € L} (R) we have
—1 iL|x] 2-ap,
|le ZAk’"ﬂ|Lq((o,7r/2),L£a(RN)) = lle all AAf||Lq((0,oo),Lf#(R"’))' (1.13)

We will see that the two mixed norms on the left hand sides of (1.8) and (1.13) are pro-
portional for real functions f. By combining Theorem A with Theorem D, we deduce the
homogeneous Strichartz estimate for the Schrodinger equation (1.11) when the equality in
(1.12) holds. Observe that an admissible pair (p, g) satisfying (1.12) reads (%, é) belongs to
the line AD in Figure 1.

The paper is organized as follows: In the next section we state the background material
to define the Dunkl Laplacian. Section 3 is concerned with a priori estimates for the (k, a)-
generalized Laguerre semigroup introduced in [[1]. Using these estimates, we complete the
proofs of Theorem A, Theorem B and Theorem C in section 4. In section 5 we prove a
relation between the operators e~ and ¢/al*” "2 which implies Theorem D.

2. PREVIOUS RESULTS ON DUNKL OPERATORS

Let (-, ) be the standard Euclidean scalar product in RY. We shall use the same notation
for its bilinear extension to CV¥ x CV. For x € R", denote by ||x|| = (x, x)!/2.
For a € R \ {0}, we write r, for the reflection with respect to the hyperplane {a)* orthog-
onal to « defined by
(@, x)

—a x € RV,
lleel?

() :=x-2

We say a finite set % in R" \ {0} is a (reduced) root system if:

(R1) ro(Z) = % for all @ € Z,
(R2) Z NRa = {zxa}forall @ € Z.

In this article, we do not impose crystallographic conditions on the roots, and do not require
that Z spans RY. However, we shall assume % is reduced, namely, (R2) is satisfied.

The subgroup G ¢ O(N,R) generated by the reflections {r, | @ € &} is called the finite
Coxeter group associated with &%. The Weyl groups such as the symmetric group Sy for the
type Ay_; root system and the hyperoctahedral group for the type By root system are typical
examples. In addition, H3, H, (icosahedral groups) and I;(n) (symmetry group of the regular
n-gon) are also the Coxeter groups. We refer to [[11]] for more details on the theory of Coxeter
groups.
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Definition 2.1. A multiplicity function for G is a function k : % — C which is constant on
G-orbits.

Setting k, = k(a) for @ € #, we have ky, = k, for all g € G from definition. We say
k is non-negative if k, > 0 for all @ € Z. The C-vector space of non-negative multiplicity
functions on % is denoted by 2 *.

For & € CN and k € .#*, Dunkl [2] introduced a family of first order differential-difference
operators T¢(k) (Dunkl’s operators) by

T f () 1= 0 f (D) + Y kol &L D= LVeD),
€At <a’ X)

Here 0, denotes the directional derivative corresponding to &. Thanks to the G-invariance of
the multiplicity function, this definition is independent of the choice of the positive subsystem
X

It is shown in [3] that for any non-negative root multiplicity function k, there is a unique
linear isomorphism V; (Dunkl’s intertwining operator) on the space P(RY) of polynomial
functions on RY such that:

(I1) Vi(PnRY)) = P, (R") for all m € N,

(I12) Vilp,gyy = 1d,

(13) Te(k)Vi = ViO, for all € € RV,
Here, P,,(R") denotes the space of homogeneous polynomials of degree m. It is known that
Vi induces a homeomorphism of C(RY) and also that of C*(R") (cf. [28]]).

For arbitrary finite reflection group G, and for any non-negative multiplicity function k,
Rosler [21]] proved that there exists a unique positive Radon probability-measure p on RY
such that

feC'RM.

Vif () = fR FOd®. @.1)

The measure p* depends on x € RY and its support is contained in the ball B(||x||) :=
{§ e RN |1 < ||x||} . In view of the Laplace type representation (2.1), Dunkl’s intertwining
operator V; can be extended to a larger class of function spaces.

Aside from the development of the general theory of the Dunkl operators, we note that
explicit formulas for V; have been known for only a few cases: G = ZY, G = S3, and the
equal parameter case for the Weyl group of B, (see [4] for the recent survey by C. Dunkl).

Let {£1,...,&v) be an orthonormal basis of (RY,(:,-)). The Dunkl Laplacian operator is
defined as

N
A=) Te (k) 22)
j=1
The definition of A; is independent of the choice of an orthonormal basis of RY. In fact, it is
proved in [2] that A; is expressed as

2Vf@.a) S = [rax) } 2.3)

Af(x) = Af(x) + ka{
k a;+ (@, x) (a, x)?

where V denotes the usual gradient operator.
For k = 0, the Dunkl-Laplace operator A; reduces to the Euclidean Laplacian A.
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Remark 2.2. The Dunkl Laplacian arise as the radial part of the Laplacian on the tangent
space of a Riemannian symmetric spaces. Let g be a real semisimple Lie algebra with Cartan
decomposition ¢ = T ® p. We take a maximal abelian subspace a in p, and let X(g, a) be the
set of restricted roots, and m, the multiplicity of a € X(g,a). We may consider X(g, a) to
be a subset of a by means of the Killing form of g. The Killing form endows p with a flat
Riemannian symmetric space structure, and we write A, for the (Euclidean) Laplacian on p.
Put # = 23(g,a) and k,, := % 2 pes+rra Mp. We note that the root system % is not necessarily
reduced. Then the radial part of A,, denoted by Rad(A,), (see [9} Proposition 3.13]) is given
by
Rad(A,)f = Acf

for every G-invariant function f € C*(a).

Definition 2.3. A k-harmonic polynomial of degree m (m € N) is a homogeneous polynomial
p on RY of degree m such that Ayp = 0.

Denote by ﬂlf’(RN ) the space of k-harmonic polynomials of degree m. Let do be the

standard measure on the unit sphere S¥~!, and d, the normalizing constant defined by
-1
dy = [ f [ ] ke )Predorw)| . (2.4)
st acRt

For k =0, d,:l is the volume of the unit sphere, namely,
ré&)
2n
Thanks to Selberg, Mehta, Macdonald [17], Heckman, Opdam [18]], and others, there is a
closed form of d; in terms of Gamma functions when k is a non-negative multiplicity function
(see also [15]).

For a > 0, let L,%u(RN ) be the space of square integrable functions on RY against the
measure

: (2.5)

0:

. -2 2kq
Dra() := [l | | [, )7
aER*

It is G-invariant and homogeneous of degree 2y, where

Y= ke (2.6)

aER*

For ¢,m € N and p € H"(R"), we introduce the following functions on R":
a a,m 2 a 1 a
O (p, x) = pOL™ [ =|Inll* | exp == Il 2.7
a a

where Ly) denotes the Laguerre polynomial, and A, := %(Zm + 2y + N —2). It is shown in
[1]] that for k € " and a > 0, such that a + 2y + N — 2 > 0, the following vector space
Wea(R") := C-span {®’(p,-) | £ € N,m € N, p € H'(R))]

is a dense subspace of L; (RY).
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Throughout the paper we will use the notation f < g to denote f < Cg with a positive
constant C varying line by line and independent of significant quantities.

3. ESTIMATES FOR THE GENERALIZED LLAGUERRE SEMIGROUP

For a > 0, we have already introduced the differential-difference operator

A = (Il = [P A),

a
where ||x||* in the right hand side of the formula stands for the multiplication operator by ||x||*.
It is proved in [1]] that for a > O and k € JZ* such thata + 2y + N — 2 > 0, A, extends
to a self-adjoint on Lia(RN ). Moreover, there is no continuous spectrum of A;,, and all the
discrete spectra are positive. More specifically the set of discrete spectra is given by

{@at+2m+2y+N+a-2)/a, tmeN}, (N22),
{@at+2y+ax1)ja, teN}, (N = 1).

Note that when a = 2 and k = 0, the above discussions reduces to the case of Hermite

2 .
operator 3,7, x5 — X7, &5 on L*(R"), as mentioned before.
J

In [1], the authors have studied the so-called (k, a)-generalized Laguerre semigroup 1 ,(2)
with infinitesimal generator A ,, that is

1 1.a(2) := exp(=zAiq) (3.1)

for z € C such that Re(z) > 0.

Henceforth we will denote by C* the complex right-half plane {z € C | Re(z) > 0}. We
point that 7 »(z) is the Hermite semigroup, and 7 ;(z) is the Laguerre semigroup (see [10, 14]]
respectively).

In the following theorem we gather the main properties of the (k, a)-generalized Laguerre
semigroup J ,(z).

Theorem 3.1. (see [[I, Theorem 3.40]) Suppose a > 0 and k € &+ satisfying the condition
a+2y+N—-2>0. Then,

(1) The map
CHx Li (RY) — I3 ,RY),  (z,f)r— e™uf

is continuous.
(2) Forany p € H'"(RY) and € € N, ®(p, ) is an eigenfunction of the operator e -,
that is

e_ZAk‘”(D;a)(p, X) = e‘zukv”"”z”])(Dga)(p, X),

where Ay qm = Lom+2y+ N-2)and CI)E”)(p, x) is as in (2.7).

(3) The operator norm ||e‘ZA’<v“||(,17 is exp( - é(Z)f +N+a-2) Re(z)).
4) IfRe(z) > 0, then e« s a Hilbert Schmidt operator:
(5) IfRe(z) = 0, then e« is a unitary operator:
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Suppose a@ > 0 and k is a non-negative multiplicity function on the root system % satisfying
a+2y+N-2>0. (3.2)

Notice that (3.2) is immediately satisfied if N > 2. In [}, Section 4], an integral expression of
JT.4(2), for Re(z) > 0, is proved

e f() = chn f a3 2 f ) Ba)dy, (3.3)
RN
for all a > 0. Here
vy (2 -2\
Cra = a—(zfz)r( y+N+a ) d,, (3.4)
a

where d; is defined in (2.4). Moreover, in [1, Theorem 4.20] a series expansion for the kernel
Ay 1s given. For a = 1, 2 the series is expressed more compactly. Henceforth we will assume
thata = 1, 2.

To recall the expression of the kernel A ,(x,y; 2), for a = 1,2, we introduce the following
continuous functions of £ € [—-1, 1] with parameters r, s > 0 and z € C* \ in’Z :

exp( - %(r“ + 5%) coth(z))

ha(r, S;Z;g) inh( )(27+N—l
sinh(z)\ ™«
L 12
rfy+ N—l)lﬂw (M(l + 4)”2) C@=1,
% §2 sinh(z) 3.5)
rs
°xP (sinhz)’ (@=2)

— -1
where vy is defined in (2.6). Here I,(w) = (%) I,(w) is the (normalized) modified Bessel
function of the first kind.

By using the polar coordinate x = rw, y = sn, we set

Aka(x,y52) := VI ho(r, 532; (w, ) (1. (3.6)

Here V; is the Dunkl intertwining operator, and the superscript in V; denotes the relevant
variable. We note that Ay ,(x,y;2) = h,(r, s;z;(w, ) if k = 0.

Remark 3.2. From (3.5) it follows that

2y+N+a-2

Asalt,ys i + 1)) = e CEEDAL (=D, v i), (3.7)

forall u € R\ nZ.

In view of the Laplace type representation (2.1) of the intertwining operator V;, the kernel
Ay, can be written as

Ara(rw, sn;z) = f ha(r, 53 2; (@, )i (£), (3.8)
RN

where supp(ut) € (£ € RY | l€]l < 1),
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Using the fact that [L,(w)| < T(v + 1)"'e!®™) for y > —1/2 and w € C, it follows that

(A 1
Neg | ———2 /2 2 +/rs|Re(csch(z))|
7+Ta ( Sinh(z) (1 + <(L), §>) ‘ <e

for z € C*\ inZ, w € S"" and & € supp(u}). On the other hand, we have

‘ exp (l’S(a)a ‘f)) ’ < ersl Re(csch(z))l'

sinh 7

Using 7 + 5% > 2(rs)?, from (3.5), it follows that

1 loa, a _ .
ha(r, 53 23 (@, €))] < sl Retcom-IReteseh
|sinh(z)|(*5)

b

for z € C* \ inZ. Further, since ;12 is a probability measure on R", we deduce from (3.8) that

1A a(x, v 2)| < 1 o= S+ | Re(coth(@)—| Re(eseh@l | (3.9)
| Sinh(z)l(Zerl\:rafZ)
If we assume that Re(z) > 0, then Re(coth(z)) > |Re(csch(z))|. Thus the kernel Ay, decays

exponentially with respect to x and y. Moreover, if we write z = € + iy with € > 0 and
u € R\ nZ, then the addition formula

csch(e)csch(iw)
coth(e) + coth(iu)

csch(e + iu) =

gives |csch(e + iu)| < |csch(ip)|. Thus, for z = € + iy with € > 0 and u € R \ nZ, we may
rewrite the estimate (3.9) as

IAka(x,y;2)] <

[sin| ()

The inequality holds true for € = 0. Hence we have proved:

Proposition 3.3. For a = 1,2, the kernel Ay ,(x,y; z) satisfies the following upper estimates:
(1) IfRe(z) > 0, there exists a constant C > 0 depending on z such that

[Akal(x, y:2) < exp(—=C(|lxl|* + IIylI)). (3.10)

| Sinh Z|( 27+1\;+a—2)

(2) For z = €+ iu, such that € > 0 and pu € R \ nZ, we have

|Aka(x, y;2)| < (3.11)

| sin Iul( 2y+]\;+a—2) .

In view of the upper estimate (3.10), there exists a positive constant C, independent of x and
ysuchthat ey [y [Aka(X 3 Dea(x)dx < C forae. y € RV, and cra [y [Aca(x, y; DIFia(y)dy <
C.fora.e. x € RY. For then it follows that e**« is bounded on L, ,(R"). Moreover, as e~**« is
already bounded on L ,(RY) interpolation proves that e=*« f is in L;/ (R") forall I < p <2
when f € Lf’a(RN ). Duality will then takes care of the range 2 < p < co. Thus we have:
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Theorem 3.4. Suppose that a = 1,2 and that the non-negative multiplicity function k satisfies
the inequality (3.2). Let f € Lf’a(RN) for1 < p < oo. For Re(z) > 0, the (k,a)-generalized
Laguerre semigroup e is in L] (RN), and
e fllp < Cull gy,
for some constant C, > 0.
By virtue of the inequality (3.11) we can deduce the following result.
Theorem 3.5. Retain the assumptions of Theorem 3.4, For z = e +iu (e > 0,u € R\ nZ), the

holomorphic semigroup e~ satisfies

1
—A
e LAk,a p S /
I ]HLk.a Isin |2(W)(£—L)”f”L£’“,

for2 < p < oo, where p’ = p/(p—1).

Proof. By the uniform estimate (3.11) of the kernel A ,(x,y;z) in x and y, we get the L'—L*®
estimate: i
||€_ZA"‘”f||L;j’a S —an Il
sin (%)
for z € C* \ in’Z. Moreover, by Theorem 3.1(3), we have

2y+N+a-2

—7Aka -R
e £l < e

iz
Using Riesz-Thorin’s interpolation, we get that

2y+N+a-2
R E)0-))
el < e My

|Sin,u|( )(,%—1)

[sin P22 (-1) A1l s

for2 < p <oco,where 1/p+1/p" =1. O

In the light of Remark 3.2, the L} (R") norm of e~ f is mr-periodic as a function of ¢,
and thus determined by its values for —n/2 <t < n/2. Henceforth we will denote the space
L((-n/2,7/2), L} (R")) by LIL} .

Next, we shall estimate the L,ia—norm of the function [’ 7;//22 e~ € ap(. 1) (x)du for any
h e Li((-n/2,7/2), L; , N L,’;(RN )). For this, the following lemma is needed.
Lemma 3.6. Let h € Li((—n/2, 7r/2),Li’a(RN)) for 1 < g < oo. Then for € > 0, the function

F(u,v, x) 1= e” € heap(x, e~ €t map(x, v) is integrable on (—mn/2,m/2)* x RN with respect
to the measure 9y ,(x)dxdudy.

Proof. Since h(-,u1) € L} (RY), it follows that e “*#¥%h(-,u) € L} (R") for € > 0. Using
Theorem 3.1 and Cauchy-Schwartz inequality we get that

F (it v, 0l ()dx < TG, ol G0z

RN
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Therefore

/2 /2 /2 2
[ [ P oiawdsdridr) < ( [ el dogo)
-n/2 J-n/2 -n/2 ’
< Whllyorz.
for1 < g <ocoandq = gq/(q— 1), by Holder’s inequality. O
We are ready to estimate the L2 ,-horm of the function f_ 7;//22 e~ €ihap(. 1) (x)du, for h €
LY ((-n/2,7/2), L, nL” J(RM)). Indeed,

/2 )
Hf e_(E‘HN)Ak,ah(,’/l)dIJ

/2

2

2
Lk,a

/2 /2
f f {f _(€+iﬂ)Ak,ah(x, ,u)e_(f”")Akﬂh(x, v)ﬁk,a(x)dx} dudv,
/2 J-n/2

where the interchange of the order of integration is accomplished by Lemma 3.6. On the
other hand, the semigroup law e 184 o =28k = =(C1+2)Ma yields, see [[1]]

Ck,af Aka(X, Y3 20) Ak a(X, Y5 22) 00 o(X)dX = A o(3, Y521 + 22). (3.12)

RN

Now using the integral representation (3.3) of e~*« and the identity (3.12) we get

f e Aapy(x, 1) VD x, V)T o (X)dx
RN

Cia f { f ACx,y, € + i h(y, ) Ba()dy)| f ALY, €+ ) h(Y , V)0ka(Y)dy D a(x)dx
RN

Ca f f h(y, (', V) f A(x, Y, € + iR, €+ VD a(Ddx} i Wia)dydy’
RN

oo fR i fR O R IAG, Y 26 + 1 = Vi Wia ey’

= f h(y’, v)e DA p(y' 1y, (v )y

RN
2 /2 /2 .
f f ) ( f e—@f*’w—”)ﬂkﬂh@',u)du) By )y’ d
2, —x/2 JRN /2

/2
—Qe+i(u—v))Arq ’
p “h(y'. 0)d H Bl
m N O, Wl

for all p,q > 1, by Holder’s inequality. Here p’ and ¢’ are the conjugate exponents of p and
q respectively. Moreover, we claim that

Therefore

/2

/2

A

/2 )
H f ey M)dﬂump < Willy (3.13)
-n/2 k.a “
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Indeed, by Minkowski’s inequality [6], and Theorem 3.5, we have

/2 7/2
H f e—(25+z(u—v))Ak,ah(yl"u)dlu < f 'e—(26+l(ﬂ—V))Ak,ah(.’/l) o du
—n/2 _

71'/2 k.a

P
Lk,a

fr/z (LGN
< - du,
/2 | sin(u — V)ﬁ(%)(%—ﬁ
. _z(M)(l_l) .
for 2 < p < oo. Let us set «x(u) := |sin(w)| a 27»/. Thus we may rewrite the above

second integral as a convolution of ||a(:,-)||,» with the kernel k. Moreover, the function
k.a

belongs to the weak Ly, ((—m/2,/2)) space fof r > 1 such that 2r(%)(% - }U) < 1. That

is | < r < o5 57~ Hence we can apply [[19, Lemma 2] to deduce that

/2
—Qe+i(u—v))Arq
Hf o~ etilu=vNAy, h(y,,ll)d/lH o < ”h”Lq’L”'
—71'/2 L LkA,u k,.a

for g = 2r, with r as above, and for 1 < ¢ < 2. This finishes the proof of the claim (3.13).
Hence, we established the following theorem.

Theorem 3.7. Let (p, q) be an admissible pair (see (1.6 a-b) for the definition). Then, for all
h e L9 ((=n/2,7/2), LI, O L2 (®Y)), we have

> “ka
/2 .
[ [ eemencpd
-r/2

for € > 0. Here p’ and q' denote the conjugate of p and q respectively.

o Sl (3.14)

4. Proors oF THEOREMS A, B/ anp C

Theorem A is a special case of the following theorem, which concerns the Strichartz type
estimate for the (k, a)-generalised Laguerre semigroup J ,(z) (see (3.1)).

Theorem 4.1. Suppose a = 1,2 and k is a non-negative multiplicity function such that a +
2y + N -2 > 0. Let (p, q) be an admissible pair. Then for every € > 0, we have

—(e+i)Arq
e 0% fll e < I1F2 @.1)

Proof. 1If ||f||L§ = oo the estimate is trivial. If ”f”Li < oo choose h € LY ((-n/2,7/2), ija N
L,%’a(RN )). By the estimate (3.14), we have

/2 /2
| <e_(6+l,u)Ak,af’ h(-, M)>L,%adlu‘ | <f, e_(e—l/l)Ak,ah(-, M))Liadﬂ‘
-/2 , 2 |

/2
—(e—it)Ar g
< Wi | [ e menenma],
“ —71'/2 Lk,a
< 1l
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for an admissible pair (p,q). Above we have used the fact that (e )" = ¢7ka (see [I]
p- 33]). Now the theorem follows from the density of LY ((-n/2,7/2), Lf’a N Lia(RN )) in

LY ((-n/2,7/2), LI (RM)). O

Proof of Theorem B, Let (p, ¢) be an admissible pair and F € LY ((-n/2,71/2), Lf:a(RN )). Let

G belongs to a dense space in LY ((—=r/2,7/2), LZQ(RN )), for some admissible pair (7, ). We
consider the bilinear form
/2 t
T(F,G) = xfwwwn@jmmum%mm
-n/2 Jo “

By Holder’s inequality, we get

!
IT(F,G)| < sup er"SA"f“F(x,s)a’s
0

te(—m/2,m/2)

it Ak,a
o €G- (42)

Using Theorem 3.7 we deduce that

!
H f ei‘Ak'”F(x, $)ds
0

On the other hand, arguing as in the proof of Theorem 3.7, for the last term in (4.2), we show
that

L]%.a S ||F||L‘1,L]l:;'

itAk, .,
e Gz, < 1G 1,

holds for any admissible pair (p, g). Thus inequality (4.2) becomes
IT(F,G)| < IFll, 4 Gl

' -
k.a k.a

This shows that if F € LY ((-n/2, 7r/2),Lf:a(RN )) for some admissible pair (p, g), then the

function F(z, x) = fot e'sDaF (s, x)ds belongs to LI((—-r/2,7/2), Lk[” L (RY)) for any admissi-
ble pair (p, ), proving the theorem. O

Proof of Theorem C. Recall that

t
u(x, f) = eha f(x) — i f e =9aF(x, 5)ds

0

is the unique solution to the inhomogeneous Cauchy problem (1.4). By Theorem A, we have

!
—i(t-$)Mea .
wmmm@mw%+W£e RUCDIGIE

for any admissible pair (p, g). If in addition F' € L7 ((-n/2,7]2), Lf:a(RN )) for some admissi-
ble pair (p, ), then by Theorem B|we also have the following estimate

t
—i(t-$)Aa (. B
Hﬁe FC90s]|, S 1Pl

and hence the theorem. |
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5. A LINK BETWEEN SOLUTIONS OF THE GENERALIZED HERMITE—SCHRODINGER AND SCHRODINGER
EQUATIONS

Assume that a > 0 and that k is a non-negative multiplicity function such thata + 2y + N —
2 > 0. For x,y € RN let

Bia(x,y) = (5 Aky (x, Vs lg)

where Ay ,(x,y; z) is defined in (3.6). The kernel By ,(-, ) is defined in [[1]] as the integral kernel
of a (k, a)-generalized Fourier transform, which reduces to the Dunkl transform if a = 2, and
gives rise to a Dunkl analogue of the Hankel transform if a = 1. We refer to [1]] for more
details and properties on By (-, -).

In [1, Theorem 4.20], the authors obtained the following expansion formula for By ,(-,-) :

oo d(m,N)

27+N+a -2 27+N -2 2y + N +a— m ’
Bia(x.y) = "5 ) (555)r ( E )Z 3T AL, IYIDYon () Yo (),

m=0 j=1

where

AL, vl = e 22D iyl 2%,"( ||x||?||y||?).

In the above equation A,, = M, Y = Daecs kas Js 18 the Bessel function of type ¢ and

Y, ; are the k-spherical harmonics on S"~! which form an orthonormal basis for the Hilbert
space L*(SN™!, dy9(w)do(w)) where dj, is defined in (2.4).
For ¢ > 0 let us define

Il

Dha(x, y51) = Cl%,af T Bra(x, E)Bra(—1)7y, €9 a(€)d, .1
RN

where the constant ¢, is defined by (3.4). Then I';, is the heat kernel so that the function

ey [ FOTL 3000
R
solves the heat equation
1 —a
Ou(x, 1) = 5||X||2 Agu(x, 1), u(x,0) = f(x). (5.2)

This is due to the fact that

1P~ Af Bra(x, €) = ~I€]1*Bra(x, ), (5.3)

where the superscript in A} indicates the relevant variable (see [1, Theorem 5.7]).
In order to get a good formula for the heat kernel we proceed as follows. First we need to
calculate the integral

fs o Bra(x ©)Bral(= iy, €) n K, ;)P dor()

aeRt
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appearing in the definition of the heat kernel. (In the above and in what follows we have
written & = ||£][.) In view of the orthogonality of the k-spherical harmonics Y, ;, we obtain:

ﬁN_l By o(x, f)Bk,a((—l)%y, &) l—[ Ka, ,7>|2kad0.(n)

aeR*

a

2
_ d;lei”( 27+N+a—2)a2(27+;v—2)1_‘ (2’)/ +N+a- 2)

a
oo d(m,N)
2m m m 7
DD EDEAAL BEDAL A TN Yo j() Y ()
m=0 j=1
_ 2y+N-2 2 +N+Cl—22 e —2y—
= 'l )F( T ) (bl D72+ g 272

oo d(m,N) o) o)
D V@Yo @), (ZIIXIIZIEIIZ)JAM (5||y||2||§||2)

m=0 j=1

-2 —y=N/2+1|| g||-2y-N+2
= dic (Il Iyl ™= =

oo d(m,N)

, 2 a a 2 a a
DD V@)Y @), (—nxuznfnz) I, (—uynz IISIIZ) :
. a a
m=0 j=1
Using the above we can rewrite the heat kernel I'; ,(x, y; #) as
o d(m,N)
TeaC 35 1) = eIl IS ™D 3 Yo (@)Y @) e, L 1D,

m=0 j=1

where

00 iy 2 a a 2 a a a—
L (2, 1 X1, [IyI]) f e Jam(—IIXIIZMZ)JM(—Ilyllzuz)u 'du
0 a a

2 « _1y 2 a 2 a
= f e, (—nxnw)hm (—nynzv)vdv
aJo a a

1 ¢+ Iyl 2|ly||2
;exp(_IIXII Iyl )IA,,, (ZIIXIlzllyIIZ)_

ta ta

The above third equality is due to the following formula

© 22 1 a2+b2 ab
P J(at)J(bHtdt = — — =],
fo e a(ar)J(br) 27 exp( ppe ) A(zpz)
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(see [29, Exercise 68]). Therefore, using [1, formulas (4.40—4.41)], we obtain

dy 1 I+l
Dia(x, yi1) = exp|-——
i) = s e [
co d(m,N) a a2 a a
EIAEN = [ Il e ,
>y ( L, (2 Y, (@)Y ()
o e ta ta

_ Cka ( [lxll* + IIyII“)

t(%ﬂ) ta

r(y N N2— 1)% (Ty [ V2T + (w, ->>]) @), @=D,

t
7 (exp(IIXIItIIyII@, >)) (W), (a=2).

Let us record the above calculations in the following theorem.

Theorem 5.1. For x,y € RN and t > 0, the heat kernel T, is given by

12l + IIyII“)

ta

Cka
I (x,v;t) = ————exp|—
k,a( y ) t(2y+2,_2+1) p(

r(y+ v 1)% [7 . ( «/2||x||||y||§1 +(w, ->>D @), (a=1),

7, (exp(uxntnyn “ >)) ) o2

Remark 5.2. For a = 2, the expression of Iy 2(x,y; t) was previously proved in [22].

(5.4)

It is obvious from the above theorem that I'; , extends naturally to complex time arguments,
where ze C\{z€eR|z<0}fora=2,andz€ C* fora=1.
Now, we consider the initial value problem for the Schrédinger equation

(5.5)

i0u(x,t) + éllxllz‘“Akv(x, 1) =0, (x,1) € RN x (0, 00),
v(x,0) = f(x),

where A; denotes the Dunkl Laplacian (see (2.3)).
Formally, the Schrodinger equation (5.5) is obtained by the transformation ¢ + it of the
heat equation (5.2) to ‘imaginary time’. In other words, for all f € L,%’a(RN ), the function

€i£“x“27aAkf(x) = \L;N f(y)rk,a(xa s lt)ﬂk,a(y)dy

solves (5.5). In the remaining part of this section we will compare the operators e "¢ and
¢l M by searching for a link between their kernels Ag.(x, y; if) and Ty 4(x, y; if) respec-
tively.
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We recall from (3.5)) that
exp (f;(r“ + 5%) Cot(t))

l( 2y+}\;+a—2) Sln([)( Zy+l\;+a—] )

N-1\~ 2(rs)'/?
F(y+ > )zyw(ﬂi(uo”z), (a=1),

z isin(?)

hy(r, s;it; {)

X (5.6)

rsd B
Xp (i sin(t))’ @=2).

That is the kernel Ay ,(x, y; it) of e~ Ma gatisfies
Ak,u(xa ya _lt) = Ak,a(x’ y» ll)
Furthermore, by Remark 3.2 we have

2y+N+a-2

) Acal(=1)ex, y; if).

For real functions f, it follows that the L} (R") norm of e™"*« f is even and n-periodic as a
function of ¢, and thus determined by its Values for 0 < ¢ < 7. Hence the two mixed norms
||le~ Bk £ LA/ 20/, (RV) and ||~ Ak f] L9(O/2), L, (%)) ATe proportional for real functions f.

Using the change of variable s = tan(¢) with ¢ € (0,7/2), we get
Ilx]]*

Apalt,ys it + 1)) = e

Ava(t,y: iarctan s) = cg (1 + $2)(5) exp(—ls )Fka((l + D)o,y is).

The following is then immediate.
Theorem 5.3. For all f € L; (R") and all s > 0, we have

y+. +a2

emimean M () = (1 4+ )7 )eXp( Il ) A (1 4§27 ),

Now we are ready to prove Theorem D.

Proof of Theorem D. Assuming p, g < co, we obtain

I
0 RN
— ” —i arctan(s)Ay 4 p alp ds
= fo { fR e kf(x)' Fra(x)dx} —

2y+N+a-2

00 . /
:f { ol Akf((l + 52)$x)’pﬂk,a(x)dx}q p(l 4 ()1
0 R¥

}q/p

&% ()| Bal)dx

= foo{ l ||)C||2 “A’\f(x)‘ ﬂk a(X)dX} (1 { 27+N+a 2 —é—%—alp(zy.m 2)}d
0 RN

If in addition the pair (p, g) satisfies
2y+N+a-2 1+1_ 2y+N+a-2
P q 2a ’

(5.7)
a
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then

St

The cases when p or g is infinite are similar. O

.S —a /
ot Akf(x)'pﬁk’a(x)dx}q pds.

e—itAk,af(x)‘pﬁk,a(X)dx}q/pdl = foo { ‘[RN

0

As an immediate consequence of Theorem A and Theorem D we get a homogeneous
Strichartz inequality for the Schrodinger equation (5.5) when the equality in (5.7) holds.
We point out that an admissible pair (p, g) satisfying (5.7) reads (i, é) belongs to the line AD
in Figure 1.
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