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Abstract

In a convex domain 2 C R3 we consider the minimization of a 3D-Ginzburg-Landau
type energy with a discontinuous pinning term among Hl(Q7 C)-maps subject to a boundary
Dirichlet condition g € H'/?(9, S'). The pinning term a : R* — R’ takes a constant value
b€ (0,1) in w, an inner strictly convex subdomain of €2, and 1 outside w. We prove energy
estimates with various error terms depending on assumptions on 2, w and g. In some special

cases, we identify the vorticity lines via the concentration of the energy.
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In a convex domain Q C R3, we consider the minimization of a 3D-Ginzburg-Landau type
energy with a discontinuous pinning term among H'(Q, C)-maps subject to a boundary Dirichlet
condition g € H/2(0%,S'). The pinning term a : R3 — R takes a constant value b € (0,1) in
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w, an inner strictly convex subdomain of €2, and 1 outside w. The strict convexity of w is not
necessary but it allows to make a simpler description of the technics used in this article.
Our Ginzburg-Landau type energy is

B = [ {0 + 5500 - u@P?} o 0

In @), v € H :={ue H(Q,C)|traqu = g}.
Following [g], let U. be the unique minimizer of E. in H{. If v € H'(Q,C) and |v| = 1 on 99,
then [8]

1 Ut
E.(U.v) = E.(U.) + F.(v), where F.(v) = 5/ {U§|vv|2 + 2—;2(1 - |v|2)2} )
Q

Consequently the study of minimizers of E. in H, gl is related to the study of minimizers of F. in
H}.

Our technics are directly inspired from whose initially developed by Sandier in [12] (whose
purpose was to give, in some special situations, a simple proof of the 3D analysis of the Ginzburg-
Landau equation, by Lin and Riviere [9]), and by their adaptations in [2].

We prove energy estimates with various error terms depending on our assumptions on €2 and
g. In some special cases, we identify the vorticity lines via the concentration of the energy. At the
end of this section, we will present a strategy which could lead to the localization of the vortex
lines.

The results we present are a first step towards a more precise description of the vorticity defects
and of the asymptotic of minimizers.

Before stating our own results, we start by recalling the asymptotic expansion of the energy in
the standard Ginzburg-Landau model in 3D.

For g € H'Y/2(0%,SY), if we let

1 1
0 _ - 2 11232
then we have
1}rllle£ = C(g)|Ine| + o(| Ingl). (2)

Moreover, - is given by the length of a minimal connection connecting the singularities of g
(in the spirit of Brezis, Coron, Lieb [5]). (See [9], [10], [12] and [2]).

For special ¢’s and for a convex domain 2, (2) was obtained by Lin and Riviére [9] (see also
[10]) and Sandier [12]. The case of a general data g € H'/?(99Q,S') and a simply connected € is
due to Bourgain, Brezis and Mironescu [2].

The above articles are our main references in this work. One of our main results is the analog
of @) for the minimization of F. (Theorem [I). This result is first proved when g is in a dense
set H C H'Y/?(95,S") and then extended by density. The upper bound is obtained directly using
the technics developed in [12] and [2]. The lower bound needs an adaptation in the argument of
Sandier [12]. The main ingredient used to obtain a lower bound in Sandier [12] is the existence
of a "structure function" adapted to the singularities of g. In the spirit of [I2], we prove, under
suitable assumptions on §2, w and g, the existence of structure functions adapted to our situation.
We presente below constructions (in the spirit of Sandier) of structure functions under restric-
tive hypotheses on the geometries of ©,w and on the singularities of g (see Corollaries [I} 2 and

Proposition [7]).
Clg) is the length

of a minimal connection between the singularities of g. This minimal connection is7T computed with
respect to a metric d 2 depending only on a (see [@)). (This generalizes the case of the standard
potential (1 — |u|?)?, where the distance is the euclidean one.)

When g has a finite number of singularities, one may prove a concentration of the energy along
the vorticity lines (See TheoremsPland B]). As in [9] and [I2], we obtain, after normalization, that

In our situation, when g admits a finite number of singularities, the constant



the energy of minimizer is uniform along the vorticity lines (See Theorem [2]). These vorticity lines
are identified: they are geodesic segments associated to dgz.

The goal of this work is to explain how the vorticity lines are modified under the effect of a
pinning term. Although from the theorems below we have an idea on the form of the vorticity
lines, in order to have a complete description of the defects, we need an n-ellipticity results in the
spirit of [I] for the minimizers of F.. Namely: fix 7 > 0 then for small £ and v a minimizer of F.

F.(v, B(z,7))

if, in a ball B(x,r), the quantity Tne]
n

is small, then |v(z)| ~ 1.

It seems that an n-ellipticity result cannot be obtained by the standard method, which relies
on a monoticity formula obtained from a Pohozaev identity. The oscillating behavior of U, yields
impossible the direct application of monotonicity formulae. When U, does not oscillate, it is
possible to derive n-ellipticity (see e.g. [11]). In our case, n-ellipticity would require a uniform
control of the Lipschitz norm of U,; this does not hold in our situation.

This paper is divided as follows:

e We first present the fundamental properties of the special solution U, (Section [2]).

e In Section [3] we define and describe the main geometrical objects in the study. Once this done,
we state the main results.

e The proofs of the main results are sketched Section @l In particular we explain how we may use
[12] and [2] and we underline the required adaptations.

e The heart of the argument is based on energetic estimates. In Section [6l we proof upper bounds
according to various assumptions and in Section [7]we obtain lower bounds. Section[@lis dedicated
to the key tool used Section [7l

e Section [Blis devoted to the last argument in the proof of Theorem [

2 Description of the special solution U,

Let @ C Q C R3 be two smooth bounded open sets s.t. € is convex and w is strictly convex.
For b € (0,1) we define
a: R® — {b,1}

b frecw
T
1 otherwise

We denote E. the Ginzburg-Landau functional with a as pinning term, namely

B =5 [ {0 + 500" - u@P)?} @

For € > 0, we denote (see [§]) U. the unique global minimizer of F, in
H{ ={uec HYQ,C)|tropqu = 1}.

In the following, we will denote also U. € H. (R3,C) the extension by 1 of the unique global
minimizer of E. in H{.

Proposition 1. The following assertions are true

1. U.:R? — [b,1] (from [8]),
1 .
2. —AU, = ;Us(a2 —U2) in Q,

1 2 2\2 1 T
3. E.(U,) 2 A (a*=U?) ot (same argument as in [§]),



4. There are C,y > 0 s.t. for x € Q we have (same proof as in [7f)

|U5(CL') _ a(:v)| < Ce —vdist(m,aw)/57 (3)

5. IfveJ:={ve HY(Q,C)||traqu| = 1} then E.(Uv) = E-(U.) + F-(v) (same proof as [§])
with
r) = [ {vzr + S50 - oey @
‘ 2 Jo L ° 2e2 ’

6. If v minimises F. in Hy := {v e H'(Q,C) |traqu = g} then |[v]| <1 in Q (same proof as [§]).

3 Minimal connections, geodesic links and main results

In this section we define the main geometrical objects which appear in the description of the
vorticity lines.

3.1 Length of a minimal connection of a map g € H'/2(9Q,S!)

For g € H'/?(0Q,S"), following |2], one may associate to g a continuous linear form

T, : (Lip(092, R), || - |lLip) — R.

Here ||¢||lLip = |l@llzee + sup (@) = 2@l with |z — y| = deva(z, y) is the euclidean distance in
Lyiﬁﬂ |z =yl
a £y

R3 between z and 3.
The map T, is defined by the following way: let ¢ € Lip(9Q,R) and g € H'/2(0Q, R);

e fix u € H} and consider H = 2(0yu x d3u, dsu x dyu, dyu X dau);
e fix ¢ € Lip(Q,R) s.t. ¢ = ¢ on 09
then

T,: Lip(0Q,R) — R

%) — H-Vo¢
Q
is independent of the choice of u and ¢.
Notation 1. Here "x" stands for the "vectorial product" in C: (wq+1ws) X (21+122) = w122 —waz27,
wy, Wa, 21, 22 € R.

Following [2], we denote, for g € H/2(98,S') and d an equivalent distance with deye on 9,

L(g,d) == sup{Ty(¢) |lpla <1} = max{Ty(p) |[pla < 1} ()
with
|(P|d = sup |90(‘Z)(I_;’3(y)|
x,ZEgQ ,

Note that L(g,d) is finite, since Ty : (Lip(OQ,R),|| - ||Lip) — R is continuous and d,deuc are
equivalent on 9f).

In the spirit of [9],[12] and [2] we deal with prepared boundary conditions g’s. In this article
we use the dense subset # C H'/2(99,S")

g is smooth outside a finite set C,
) . VM € C we have for x close to M:
H=qoe [] WhoR,8 Vg(a)| < C/Jx - M|,

1<p<2 IRy € O(3) sit. ‘g(m) — Ry (é:—%)‘ < Clz — M|.

Here we considered S' ~ {0} x St C §2.



One may define deg(u, M), the topological degree of w with respect to M: if Ry € O(3)1 then
deg(u, M) = 1 otherwise deg(u, M) = —1.

In order to justify the term of "degree", assume that in a neighborhood of M € C, 92 is flat.
Then, for r > 0 sufficiently small, C' = 0B(M,r) N 0N is a circle centered in M. This circle
has a natural orientation induced by B(M,r) N Q. Thus g € C>(C,S") admits a well defined
topological degree (see e.g. [4]), and this degree does not depend on small r.

We consider

P={MeC|deg(u,M)=1} and N = {M € C|deg(u, M) = —1}.

One may also consider for g € H the degree of g with respect to QU for U a non empty smooth
open set of N s.t. QU does not contain any singularities of g. This degree is defined as

deg(g,0U) = Card({p € P|p € U}) — Card{n € N|n € U}). (6)
From [2], we have the following
Proposition 2. Let g,h € H1/2(8Q, S1), then we have
1. Tgp, =Ty + Ty, and Ty = =T, (Lemma 9),
2. [(Ty = Tu)(p)l < Clg = hlirs2(lglmirz + Wl g/2)[@lacea, © € Lip(99Q,R) (Lemma 9),
3. H is dense in H'/?(09Q,S") (Lemma B.1),

4. if u € H, then Card(P) = Card(N) and T, = 27 Z 0p — 21 Z dn (Lemma 2),
peEP neN

5. ifu € H, then L(g,d) = minges, Y, d(pi, no(;)) where d is a distance equivalent with deye on
02 (Theorem 1).

3.2 Minimal connections, minimal length, geodesic links

In the last assertion of Proposition 2] we used the notion of length of a minimal connection.
Namely, consider d a distance on C = PUN, P, N C R3 two sets of k distinct points s.t. PNN = ),
P = {p17 "'7pk} and N = {nla ank}

We denote by L(C,d) the length of a minimal connection of C in (C,d), i.e.,

k
L(C,d) = min » d(pino))- (7)

gES
Fli=1

In [5] (Lemma 4.2), the authors proved that

k
L(C,d) = maX{Z{w(m) —¢(ni)} [o:C =R, lplg < 1} (8)

with (@) — o)
e\r) — ey
lp|§ = sup o2
THy d(l‘,y)
z,yeC

A permutation o s.t. Y, d(pi,no(i)) = L(PUN,d) is called a minimal connection of (PUN, d).

In the following we will consider a special form of distance d on 99: the geodesic distance in ©
equipped with a metric we will describe below.

Let us first introduce some notations. Let f : R?® — [b2,1] be a Borel function and let ' C Q be
Lipschitz curve. We denote by long;(T") the length of I' in the metric fh (here h is the euclidean
metric in R3), i.e.,

1
long ;(I') := / F(v(s)) |7 (s)|ds, v : [0,1] — T is a admissible parametrization of T.
0



In this paper, when we consider a curve (or arc) T, it will be implicitly that it is a Lipschitz one.
We define dy as the geodesic distance in fh (h is the euclidean metric in R?).
Thus, for =,y € R3, x # y, we have

d = inf 1 T). 9
! (IE, y) r Lipslcrlllitz arc Ongf( ) ( )
with endpoints z,y

In the special case f = a2, one may easily prove the following proposition
Proposition 3. Let x,y € R3, x # y. The following assertions are true
1. In @) the infimum is attained.
We denote by Ty a minimal curve in ([@).
2. If x,y € Q then a geodesic Ty is included in Q.
3. A geodesic Tg = U._,S; is a union of at most three line segments.
4. These line segments are such that

a. ifx,y €w thenl =1,

b. if 1l =2 then SN Sy C Jw,

c. ifl =3 then z,y € R*\ @ and S is a chord of w,

d. if [x,y] Nw = {2z} then ! € {2,3}.

In the case d = d,2 and C = PUN C 0f2, we say that U;I'; is a geodesic link when ¢ is a minimal

connexion in (C,d,2) and I'; is a geodesic joining p; to n,(;y. In Figure [l we have represented a
geodesic link for £ = 2 and a certain b € (0,1).

3.3 The main results
Theorem 1. Let g € HY/2(0Q,S'). Then we have

inf F.(v) =7L(g,ds2)|Ine| + o(| Ingl).
veH]
Theorem 2. Let g € H be s.t. (C = PUN,d,z2) admits a unique geodesic link which is denoted
SIS
Let v. be a minimizer of F. in Hgl. Then the normalized energy density

U? U
7€|VU5|2 + é(l - |1}5|2)2
[Inel

e = H3 weakly converges in Q in the sense of the measure to wan%f&JiFi.
Here 3 is the 3-dimensional Hausdorff measure and %’Tbr
mesure on U;L;.

In other words

is the one dimensional Hausdorff

Vo € C°(Q,R) N L>=(,R) we have / ddpe — 7r/ pa* dA".
U,

Q il

Note that this result gives an (uniform) energy concentration property of the minimizers along
the geodesic link. Namely, for all compact K s.t. K NU;T; = (), we have F.(v., K) = o(|In¢]).

In order to obtain a more precise statement we assume that Q@ = B(0,1) and w = B(0,r9),
ro € (0,1), g € H is s.t. C = {p,n} with p = —n. Under these hypotheses we have

Theorem 3. The following estimate holds
1}51f F. = wd,2(p,n)|Ine| + O(1).
g
Moreover, for all n > 0, there is Cy) > 0 s.t. denoting V,; = {z € Q|dist(z, [p,n]) > n} and v. a

minimizer of F. in H;, we have

F.(ve, V) < C,.



Figure 1: Illustration of a geodesic link with & = 2: the boundary of € is in wire, the one of w
is black filled, the positive points are white, the negative ones are black and a geodesic link is
represented in white. The shaded off on the two penetration points gives indications about the
3D-geometry of the geodesic link and of the inclusion. (Courtesy of Alexandre Marotta)

4 Outline of the proofs

The proofs of the above theorems strongly rely on the technics developed in [I2]. The proofs of
theorems [1] Bl consist essentially into two parts devoted to obtaining respectively lower and upper
bounds.

The upper bound is obtained by the construction of a test function. The test function was
obtained by Sandier in [I2] in the situation where there is a geodesic link in (C,d,2) which is a
union of line segments. In this special case, one may obtain (see Section [5.1)):

inhf, F.(v) < 7L(g,ds2)|Ine| + O(1). (10)
KIS _37

For the general case, when the geodesic links are not unions of line segments, in [2], Bourgain,
Brezis and Mironescu adapted the construction of Sandier. In our case this leads to the bound:

inhf, F.(v) < 7L(g,ds2)|Ine| + o(] Inel). (11)
veE _37

(See Section [5:2)

The lower bounds are obtained as in [I2]. The key ingredient is the construction of a "structure
function" ¢ : R® — R (see Section [f] for a precise definition). Due to the fact that for M € R3,
x — Yar(x) = dg2(x, M) is not C! (its gradient is not continuous on dw since |Viips| = a® in
R3 \ Ow), we cannot obtain ¢ with exactly the same properties as in [12] (see Corollary [l). The
consequence of this lack of smoothness for the distance function implies that our best lower bound
is

inf F.(v) > wL(g,ds2)|Ine| — o(] Ingl). (12)
veH}



However, under strong symmetry hypotheses, namely, Q& = B(0,1),w = B(0,r9) and C =
{p,n = —p}, the structure function £ enjoys additional properties (see Proposition [7). In this
symmetric case, one may obtain the sharper bound

inf F.(v) > wL(g,ds2)|Ine| — O(1). (13)

veEH]

The estimate on infy F; in Theorem [ (resp. Theorem[) is a direct consequence of (II), [I2)

(resp. (I0) and (I3)) and of the density of H in H/?(9,S') (see Section ) .

Theorem [2 is proved along the main lines in [12].

Roughly speaking, under the hypotheses of Theorem ] for all = € €, there is p, > 0 s.t. for
K = B(x, p;), one may consider a structure function £ adapted to C which is constant in K (see
Section[62)). Arguing as in [12], if K does not intersect the geodesic link, then we obtain that in K,
a minimizer of F; has its energy of order o(|ln¢|) (see 21)). Thus p, the weak limit of p. (which
exists up to subsequence), is supported in Q \ K. Therefore, one may prove that the support of
is included in the geodesic link.

Otherwise, if x is on the geodesic link, as explain in [I2], then we obtain for v. a minimizer and

p sufficiently small that
F. (v, K)

lim sup 8| e < mlong2 (K NU;TY).

Theorem [2] is obtained by comparing u to FG%%’TEHFJ

5 First step in the proofs of theorems : an upper bounds for
iangng, g € H

5.1 The case where C admits a geodesic link in (R3,d,:) which is a union
of lines

Assume that there is I' = ULy, a geodesic link of C in (R3,d,2) s.t. T'; is a line segment for all
7. One may assume that the minimal connection associated to I' is the identity.

In this situation, we may mimic the construction of the test function made in Section 1 of
Sandier [12].

The test function is a fixed (independent of £) S'-valued function outside V,, an n-tubular
neighborhood of I' (1 small and independent of ).

Inside each tubular neighborhood V), ; of a geodesic p;I';n;, the test function takes the form (in
the basis {p;, (s, ey, e,)} where n; = (0,0, |p; — ni|))

a|(i’Z;| ifn<z<|p;—ni—nande<|(z,y) <n
(z,y) .
—Zifn<z<|pi—ni| — d |(z,y)| <
gz = Es bl and |y < (1)
3, {7 = ) < 2nnlnel 4 o

with 1}n,i:Vnyiﬁ{O<z<n, lpi — il —n < z < |pi —n;|}

Here o € S! is a fixed constant.
From the strict convexity of w, for all line D C R3?, we have

long(D N {z € R3|dist(z, 0w) < vz} < Cv/e with C' > 0 is independent of &.

Thus one may obtain from Proposition [I] Assertion 4. that (I0) holds.

5.2 The general case

One may adapt the above construction to the more general situation where the geodesic links
are not unions of line segments.



For the standard Ginzburg-Landau energy, this has been done in [2]; there, Q is not sup-
posed convex. Roughly speaking, the argument there consists in replacing in Sandier’s proof, line
segments by curves.

Their construction begins with the modification of  (flattening 992 close to the singulari-
ties) and, for n > 0, by the construction of an approximate (smooth) geodesic link I';, C Q s.t.
long,. (') <long,.(I") + 7. Here I is a geodesic link.

In order to be applicable to our situation, this construction requires the additional property
AN, N {dist(z, 0w) < /2}) ~ \/g; we can clearly find I',, satisfying this property.

By adapting the construction of v. in (I4)), one may construct a test function v? having I, as
set of zeroes and satisfying, for each n > 0, the estimate

inerH; F.(v) < Fe(v?)

T S Thagp -1 = Tlonga (D) + 02(1) < wlonga(I) £ 1+ 0.(1),

In order to obtain this estimate we rely on the formula of v?, Proposition [I] Assertion 4. and the
assumption 1 (T, N {dist(z, dw) < \/2}) ~ /&
Consequently we deduce that (1) holds.

6 The structure functions

For g € H, we will construct a suitable structure function adapted to the singularities of g.

Roughly speaking, a structure function ¢ is a smooth map which almost maximizes (). More
qualitative properties of £ will be describe in Corollaries [Il 2l and Proposition [7l

We present below three constructions of structure functions, corresponding to three different
settings.

Throughout this section, we fix C = PUN, Card(P) = Card(N) =k € N*, PN N = 0.

Let 6o = 1072 - dist(Ow, 9). For 0 < § < g, we define ws := w + B(0,4), ap = a? and

as: RP — {1,b%}
b2 if z € ws
1 otherwise

X

For z,y € R® and 0 < § < ¢ < &y, we have
day (,Y) < day (2, y) < day, (z,y) + O(0" = 9). (15)

The first inequality is a direct consequence of ag < as. We prove the second inequality. Consider
z,y € R?s.t. da,, (z,y) < da,(x,y). We obtain that if T is a geodesic joining z and y in (R?,d,,, ),
then we have I' N Qws: # .

Note that by Proposition Bl we have Card(I' N dws/) € {1, 2}.

Assume that I' N dws: = {2/, '} with da,, (z,2") < da,, (y,2"). The situation where I' N Ows =
{z} is similar.

Consider 2" = Hgz(2') and y” = Igz(y'). Here Il5; stands for the orthogonal projection on
ws. By the definition of 2" and y” we have deyal(2',2") = deva (v, y"") = ¢’ — 6. By Proposition [B]
we deduce that du,, (2", y") = dag (2", y").

Since z’,3’ € ', we have

da5/ (Ia y)

Qg (z, II) + dag/ (33/7 yl) + dag/ (y/a Y)
(#,2") 4 day, (2", y") + day, (v, y) — 20%[8" = 0]
&)+ do, (2, y") + day (v, y) — 20|6" — 6|
a5 (@,2") + day (¢, y') + doy (v y) — 2(1 + 67)[6" = 6
Yy

VIV IV IV

Consequently, (I3 holds.
Thus, for C = PU N as defined above, we obtain that

L(C,day) = L(C,da, ) + O — 6). (16)



6.1 Second step in the proof of Theorem [It construction of a structure
function

We have the following proposition

Proposition 4. For n > 0 there is §, > 0 s.t. for 6, > d > 0 there are Cps > 0, E; 5 C R and
&ps € CP(R3R) s.t.

1. |V§n75| < ag in R3

2. e &ns(pi) = &n5(ni)} = L(C,das) =1

3. HV(E,s5) <nand for allt € R\ E, s, {&,6 =t} is a closed two dimensional surface with
its second fundamental form which is bounded by Cy 5.

Proof. We construct &, s in five steps.

Let n>0and 0 < § < ¢ < dg. We denote a = as and o’ = agr. Assume that P = {p1, ..., px} and
N ={nq,...,ng} are s.t. ¢ =1d is a minimal connection in (C,d).

Step 1: There is & : C — R s.t. & is 1-Lipschitz in (C,dy) and &y(pi) — &o(ni) = da (pis i)
This step is a direct consequence of Lemma 4.2 in [5] (see also Lemma 2.2 in [12] or Lemma 2 in
131)-

Step 2: We extend & to R?: there is some & € Lip(R*, R) s.t. [V&| = o and & = &
Although the argument is the same as in [I2], for the convenience of the reader, we recall the

construction.
Consider

51 (‘T) = miax {50(197,) - do/ (x7pz)} , T € R3'
Then we have

e &c=¢&o: let M €Candibest. M€ {p;,n;} and j # 1, it is clear that

So(pi) — &o(pj) + dar(piyp;) 20 i M =p;

gO(pi) - dO/(Mapi) _go(p]) + do/(Mup]) = {50(”1) —fo(p]) +da’(ni7pj) 2 0 if M= n; .

o |V& | = a': for all i we have

|v [50(]91') - da’(xvpi)]l = |Vdo/(‘r7pi)| =a’in LOO(R3)

Step 3: We construct a smooth approximation: &, € C®(R3,R) is s.t. |[V&| < da (A < 1) and

D {6pi) — &)} > L(C,da) —n/2 (17)

1€Ng

Let 6 > 8 > 0 and let (p;)s>¢>0 be a classical mollifier, namely p;(z) = t3p(z/t) with p €
C>(R3,[0,1]), Suppp C B(0,1) and 5, p = 1.
Consider
La(x) == (1= B)& * pe().
Condition (I7) is clearly satisfied when ¢ and 8 are small. On the other hand, the point estimate
|V&a(x)] < (1 = B)|| V&L (B(z,t)) implies that [VE| < Ao for appropriate A < 1, provided ¢ is
sufficiently small.

Step 4: Let Q be a smooth and bounded open neighborhood of . We approximate & by &n,s st
we have &, s € C°°(R3,R) and
160,56 — §2HLoo(Q) < n/(4k),

|V€n,6| S a,



&y,5 1s a Morse function,
3R = R(n,0) > 0 s.t. in R*\ B(0, R), &,5 = |z|/2
Clearly &, 5 satisfies 1. et 2. of Proposition [l
Step 5: We follow [12]. We construct E, ;
Let {z1,...,2;} be the set of the critical points of &, 5. Then there is C' = C(n,d) > 0 s.t.:

inf IVEns| > £ since the critical points are not degenerate
BO,R\U:Bip) T C

and
A [6n,5(UiB(z4, p))] < Cp?.

We consider p > 0 s.t. Cp? < n and set E, 5 = &, 5(U; B(z;, p))-
For t ¢ E, 5, we have

o if z € {¢, 5 =t} \ B(0, R), then the second fundamental form of {¢, s =t} in z is bounded,

Csupp(o,r) | D*En 5]

o ifx € {&,s =t}NB(0, R), then the second form is bounded by C;, 5 = - )
inf p(0, R)\UiB(21.p) [VEn.sl

We find that the second fundamental form is globally bounded. O
Our next result provides a sharper estimate on the gradient of structure functions.

Corollary 1. For all n > 0, there is C;, > 0, E, C R, &, € C°(R*R) and ¢, > 0 s.t. for
0<e<egy,,

1. |V&| < min(a®, UZ +-¢*) in R?,
2. Yien, {&ni) = &(na)} = L(C,dg2) — 1,

3. AYE,) <nand for allt € R\ E,, {&, =t} is a closed hypersurface whose second fundamental
form is bounded by C,.

Proof. Let n > 0 and fix 0 < § < 6, (6, given by Proposition @) s.t.

L(C, day) + g > L(C, d,2).

Consider €, > 0 s.t. for 0 < e < ¢, we have
Ce™7%/¢ < &% (C and v are given by ().

We take &, = /2,5 obtained from Proposition 4
Clearly, &, satisfies 2. and 3. with F;, = E, /5 ; and C;; = C}; 3 5.
It is direct to obtain that

b2 —U2 <0 if dist(z,w) < 9§

4

V| = U2 < a5 — UZ < )
€ otherwise

It follows that &, satisfies I since oz < a?. O

6.2 Second step in the proof of Theorem construction of a structure
function

6.2.1 Definition and properties of a special pseudometric

Let f:R? — [b?,1] be a Borel function and let K C R? be a smooth compact set. We define
d?(x, y) =min{d;(z,y),ds(z, K) +ds(y,K)}.

Here df(z, K) = minyec i ds(z, y).



Then dff is a pseudometric in R3. If, in addition KNC = ), then d? is a distance in C. Therefore
the minimal connection of C and the length of a minimal connection L(C, d? ) with respect to d?
make sense.

Clearly, if z,y € R3, then we have dff(:t, y) =0<& z =yorxz,y € K. One may easily prove
that

df (z,y) < dg(z,y) < df (z,y) + diam(K).

We are interested in the special case K = B(xq, ) for some xg € Q and f = as with § € [0, dg).
Note that we have a similar estimate to ([I6), namely for 0 < § < ¢’ < &g
K K
L(C,dy,) = L(C,dy,,) + O(|6" —d]). (18)

O£5l
Definition 1. For y ¢ K and = € R3, we say that

e T'is a K-curve joining z,y if I is a finite union of curves included in R\ K s.t. their endpoints
are either x or y or an element of 0K,

e I' is a minimal K-curve joining z,y if I' = U;I'; is a K-curve joining x,y, where the I';’s are
disjoint curves and Y, long,»(T;) = d% (z,y).

We next sum up the main properties of dflg.

Proposition 5. Let o € R?, r > 0 and K = B(xg,r). Then:

1. Ify ¢ K then for all x € R? there is a minimal K -curve joining x,y. Moreover, a minimal
K -curve is the union of at most two geodesics in (R3,d,2).

2. For xg,z,y € R, x # y and x¢ # x,y, we have:

i. If 2o € R\ Ow and x¢ is on a geodesic joining x,y in (R3 d,2), then there is vy 4y > 0
s.t. for all v < 1y 4y, diS(2,y) = da2(z,y) — 2a%(x0)r,

ii. If 7o € Ow and xq is on a geodesic joining x,y in (R3,d,z2), then there is ryy 4y > 0 s.t.
for all r <y oy, d5%(2,y) = de2(z,y) — (1 + b)r,

iii. If xo is mot on a geodesic joining x,y in (R3 d,2), then there is ryy 4, > 0 s.t. for all
r< TI07I7y7 dég(x,y) = da2 (Iay)

Proof. We prove the first assertion. There are two cases to consider: z € K and z ¢ K.

If z € K and y ¢ K, then we have the existence of a unique point yo € K which minimizes
dq2(y, z) among the points z € K. Clearly considering I' a geodesic in (R?,d,2) joining y with yo,
by definition of yg, I' " K = (). Thus I' is a minimal K-curve according to the definition given
above.

If 2,y ¢ K, then we consider I' a geodesic joining z,y in (R?,d,2) and, for z € {z,y}, let T,
be a minimal curve in (R3,d,:) joining z with K.

If long,>(I'y) + long,(I'y) < long,»(I"\ K) < du2(z,y), then one may consider ', UT', as a
minimal K-curve. Indeed, in this situation, d% (z,y) < du2(z,y) which implies that a minimizing
sequence of K-curves I, satisfies for large n that T, contains curves with an endpoint on 9K .
More precisely, by definition, there are I'}, I'7 two connected components of I, s.t. for z € {z,y},
I'? has z and z/, for endpoints with 2z, € K. Therefore

long,2(T'y) + long,2(T'y) < long,» (f‘n),

and thus I') UT', is a minimal K-curve.

Otherwise, long,»(I';) + long,»(T'y) > du2(x,y). Consequently, denoting I' a geodesic in
(R3,d,2) joining x with y, '\ K is a K-curve and has a minimal length.

It remains to prove that T', a minimal K-curve, is a union of at most two geodesics in (R3, d,2).
If T is connected, then, by the definition of a K-curve, ' " K = (). Thus I is a geodesic joining
x,y.

Otherwise, assume that I is not connected. By the definition of a K-curve and by the minimality
of T, for z € {z,y}, there are 2’ € 0K and I, a connected component of I" s.t. z, 2’ are the endpoints

of I',. Thus, by minimality of T, T, is a geodesic joining 2,2’ and I' =T, UT',,.



Now we prove the second assertion. First, we assume that xo ¢ dw and that z is on a geodesic
curve joining x,y in (R3,d,2).

Consider g, 2.y = 1072 min {|x — x|, |y — 0|, dist(xo, dw)}. Then, for r < 74, 4 ,, considering
the K-curve I' \ K where I" a geodesic joining z,y in (R3,d,2) and containing x¢, we obtain that

da (,y) < dgz (2, y) — 2a° (wo)r. (19)

This comes from the fact that I' N K is a diameter of K and that this diameter is contained in
the same connected component of R? \ dw as zg. To obtain the reverse estimate, it suffices to
consider T', a minimal K-curve joining z,y. From ([9), we know that I" as exactly two connected
components: I'y, T’y with I'; has z, 2’ for endpoints with z € {z,y} and 2’ € K. Thus it suffices
to complete I' by the line segments [zg, '] and [zo,y’] to obtain the reverse inequality. (Note that
in this situation, [2/,y’] is a diameter of K)

If zp € Ow, then the argument is similar taking 0 < 7y ., < 1072min{|z — x|, |y — x0|}
sufficiently small s.t.:

o B(z0,7z,2,y) \ Ow has exactly two connected components,

e For all geodesic I' joining z,y in (R3,d,2), if 79 € T’ then (I'N K)\ Ow has exactly two connected
components: one in w and the other in R3 \ @.

Note that from Proposition Bl Assertion 4.d., 14, 2, is well defined.

Now we prove the last assertion arguing by contradiction. Assume that there is r, | 0 s.t.
denoting K,, = B(xg,7,), we have dfg” (z,y) < dg2(z,y). Consequently there are x,,y, € 0K,
and I';, = '} UTY where I'? is a geodesic joining z and z, in (R3,d,2), z € {x,y}. Consequently,
for z € {z,y}, one may complete I'" by the line segment [z, 9] whose length in (R3, d,) is at
most 7,,. We denote I this curve. Clearly d,2(z,x0) < long,2(I'?) < long, (') + rp.

It suffices to claim that in a metric space (X,d) which admits geodesic curves we have for
xg, x,y three distinct points in X

xo is on a geodesic joining z,y < d(z,y) = d(z, x0) + d(zo,y)-
Since g is not on a geodesic curve joining ,y in (R, d,2), there is n > 0 s.t. dy2(z,y) +1 <
dy2(z, o) + dg2(z0, y) and thus
long,,»(T'7) + long 2 (I'})) = dfg" (z,y) < dg2(z,y) < long,2(T) +long,2 (I'y) + 27, — 7.
Clearly we obtain a contradiction for n sufficiently large s.t. r, < n/2. O

Let 29 € Q and C C 9Q as above. If for all minimal connexion ¢ of C and for i € {1, ..., k}, we
have that o is not on a geodesic joining p;, nq(;) in (R3,dg2), then there is ry, ¢ > 0 s.t. for all

T < Tyo.c, we have for K = B(xg,r)

L(C,d%) = L(C,d,z). (20)

6.2.2 Construction of a structure function

Proposition 6. Let K = B(xo,7) be s.t. B(xo,2r) C R*\ C and n > 0. Then there is 6, > 0
s.t. for 0 < 8§ < &, i there are Cy k5, Ep ks CR and &, k.5 € C(R3,R) satisfying

1. |V& k5| < as in R? and &n.k,5 s constant in K,
2. Y ien x5 (pi) = Enr6(ni)} > L(C, L) —n,

3. AV E, Kks) <nand fort € R\ E, ks, {&, k.6 =t} is a closed hypersurface whose second
fundamental form is bounded by Cp K s.

Proof. The main point is that we require that &, ks is constant in K. All the other requirements
are satisfied by the map &, 5 constructed in Proposition [l

For § < r/2,1et K1 = B(xo,r + 20) and K2 = B(xg,r + ). We denote a = a5 et o/ = ags.
Step 1: As in the proof of Proposition [ there is a function & : C — R, 1-Lipschitz function with



respect to d5' and s.t. &(p;) — &o(ns) = d5 (pi, i)
Step 2: We extend & to a map & : R® — R, 1-Lipschitz and constant in K;
For example, we may take
&i(z) = mgX&(pi) — A3 (x, i)
As in the proof of Proposition ] &;¢c = & and |V < o’. Moreover, ¢; is constant in K. Indeed,
for all z € K1, we have & (z) = max; & (p;) — d5' (2, pi) = max; &(ps) — dar (pi, K1).

Step 3: We approximate & by & € C®(R?,R) satisfying |[V&| < Aa (A < 1), > ieng 162(pi) —
&(ng)} > L(C,dE) —n/2 (for § sufficiently small), and s.t. & is constant in Ko

The approximation &, is obtain (as in Proposition ) by regularization using a mollifier and noting
that

L(C,dY) > L(C,df) > L(C,d}?) > L(C,d}") > L(C,d}y) — O(6) = L(C,d}) — O(5).

s Yo s Yyt

Step 4: Let Q be a neighborhood of 0. We approximate & by &3 where &5 € O (R3,R) satisfies
€5 — §2HLoo(Q) <78,

14+ A

[V&s| <

«,

&3 is a Morse function,

3R > 0s.t. in R*\ B(0, R), & = |z|/2.

Step 5: We modify &3 in order to have &, ks = Co in K
By construction, there is Cy € £3(K) s.t. |[€3 — Col| Lo (k,) < n*6%. Noting that dist(9Ks, K) = 4,
one may construct &, x5 € C>(R?) s.t.

Enko =& MR\ Ky, & k5 =Coin K,
||§777K75 — OO||L00(K2) < 77252 and |v§n,K,6| < b?in K.

Clearly &, ks satisfies 1. and 2. in Proposition [6l
Step 6: We construct E, i s

For p > 0, we consider E} x5 = &, k,5(UiB(wi,p)) where {x1,...,2;} is the set of the critical
points of &, k5 in B(0,R) \ K».

For the same reasons as in Proposition @ we have 7' (E] . 5) < Cp.

We also define E? j 5 = &, rc,5(K2). By construction, we have s (E} . ;) < 216>,

Thus it suffices to consider §, p s.t. Cp + 27?6 <7 and to set By g5 = Ey s UE? 5. O

In the spirit of Corollary [l we have

Corollary 2. Let g € R3 be s.t. xo does not belong any minimal link of C in (R3,d,2). There is
Two > 0 s.t. denoting K = B(x0,74,), for n >0 there are &, x € C*(R3,R), E, x CR, Cp x >0
and eg.x >0 s.t. for 0 <e <eyk,

1. |V&, k| < min(a?, U2 +€) in R3
2. > iem n ik (Pi) — &n i (ni)} > L(Cydaz) — 1

3. AN Eyk) <nand for allt € R\ Eyk, {&,x = t} is a closed hypersurface whose second
fundamental form is bounded by Cy k.



Proof. Assume that o = Id is a minimal connexion in (C, dgz).

Let 75, ¢ > 0 (given by Proposition Bl Assertion 2.744) be s.t. for K = B(xg, rg,.c/2), we have
for alli e {1,...,k}: dﬁé (pi,ni) = dgz(pi, n;). Consequently, L(C,dg2) = L(C,dﬁg).

Now we apply Proposition[G} there is 9, /9 x > 0s.t. for 0 < 6 < 0,9 , there are Cy /5 g5 > 0,
E, 2 ks CRand & 5 x5 € C™ (R3,R) satisfying the conclusions of Proposition

From (20), one may fix 0 < 0 < d,/2 i s.t.

L(C,dy2) — L(C,d5 ) < n/2.

1 oy

Consequently, considering €, x > 0 s.t. for 0 < € < g, kg, we have Ce /e < gt (C and ~ are

given by ([3)).
We obtain the result taking Cy xk = Cy /2 k5, En.x = Epj2 ks and &k = &,/2 Kk 5-
O

6.3 Second step in the proof of Theorem Bt a structure function in
presence of symmetries

In this section we assume that Q@ = B(0,1) and that w = B(0,70), with r9 € (0,1).

Consider C = {(1,0,0),(-1,0,0)} = {p,n}, p = (1,0,0). It is clear that in this situation, the
line segment [p,n] is the unique geodesic between p and n in (R3,d,2).

The main result of this section is

Proposition 7. Let M € Q\ [p,n|. Then there is V, an open neighbourhood of M s.t. for e > 0,
there is &, : R3 — R a Lipschitz function s.t.

1. &(p) — & (n) = dy=(p,n),

2. |V&| < U2,

3 &=0inV,

4.Vt € &R\ {0,&(p), & (n)}, {& =t} is a sphere whose radius is at least 1.

Using the spherical symmetry of 2, w and the minimality of U., one may easily prove the
following proposition.

Proposition 8. The unique minimizer U. of E. in H{, is radially symmetric and non decreasing.
Proposition [7 is a particular case of the following lemma.

Lemma 1. [The dumbbell lemma]

Let U : R3 — [b,1] be a radially symmetric and non decreasing Borel function. Fiz p,n € S?,
p=—n and let M € Q\ [p,n].

Then there are ¢ : R® — R and BY, B~ two distinct open balls, BY, B~ are exteriorly tangent
and independent of U s.t.

1. &(p) — &(n) = dy=(p,n),
Ve < UZ,
L E=0inV =R\ (BYUB7),

2
3
4. M € T with T which is the common tangent plan of BY and B,
5. BT is centered in 2p, B~ is centered in 2n,

6

. denoting B+ (resp. B~ ) the ball centered in 2p (resp. 2n) with radius 1, £ is locally constant
in BTUB™,

7.Vt € ER3)\ {0,&(p),&(n)}, {€ =t} is a sphere centered in 2p or 2n.

Using the symmetry of the situation, the function £ is represented in the Figure



—— The unit circle

---- The boundaries of
Bt,B~, Bt B~

----- The level sets of
regular values of &

M is on the line segment [M; Mo]

Figure 2: The geometry of the level sets of ¢ (intersected with the plane defined by p,n, M)

Proof. Let p,n € 99, p = —n and {0, (e1, e2, e3)} an orthonormal and direct coordinate system of
R3 s.t. p=(1,0,0) et n = (—1,0,0). Let M(zo,0,20) € Q\ [p,n].
Step 1: We construct & : [-1,1] = R s.t. & (1) — &o(—1) = dy=2(p,n), &'(s) = U?(s,0,0) and
o(z0) =0

It suffices to consider .

o(s) = / U?(t,0,0)dt.
o

Step 2: We construct £ : R? — R

We denote

Y =0B((2,0,0),7) for r € (1,2 — z0)
and
Y. =0B((—2,0,0),r) for r € (1,2 4 x0).

We define £ : R? — R by its level sets:

&2—7r) onXf, re(l,2—ux)

&(r—2) onX,re (1,24 zo)
£=1{%&(-1)  inB((-2,0,0),1)

1) BE0,0)1)

0 otherwise

Step 3: ¢ satisfies the properties of Lemma [Tl
Assertion 1. is easily satisfied since £(p) = &o(1), £&(n) = &o(—1) and (1) —&o(—1) = dy=(p,n).
We take BT = B((2,0,0),2 — zo) et B~ = B((—2,0,0),2 + x9).
Clearly Assertions 8., 4., 5., 6. and 7. hold.
We check 2.. Since £ is locally constant in

V:=[R*\ (BTUB7)|JUB+UB-,

it suffices to prove that [V&| < U? in R3\ V.

The key argument is the fact that for Q,Q" € R3, Q # Q' and 0 < r < |Q — Q’| we have
dist(Q,0B(Q',r)) = |Q — Q'| — r = |Q — Qo| where [Q, Q'] NIB(Q’,r) = {Qo}. This is obvious if
we draw a picture and may be easily justified. Indeed, if Q¢ is a minimal point, then line segment
[@Q, Qo] is orthogonal to dB(Q’,r). Only two points on B(Q’, r) satisfy this condition and one of
them is clearly not minimal.



Consequently, taking @ = 0 and Q' € {2p, 2n} we have that

min_|Qo| = |((2 ~ r),0,0)|

OGET‘
Note that U is radially symmetric and non decreasing. Since in each connected components of
(B*UB™)\ BtUB-,
¢ admits a spherical symmetry, we have
VE@) &/ (2 = 1) = U*(2 = 1,0,0) = ming U? ifz e ¥,
x)| = B
&' (r —2)| = U?(r —2,0,0) = ming,- U? ifx € X
< U().

O

7 Lower bound for F.(v.) when g € H: the argument of
Sandier

In the computation of a sharp lower bound for F_ (v, ), one of the main ingredients is Proposition
3.5 in [I2]. For the convenience of the reader, we recall this result.

Proposition 9. Let X be a closed and oriented hypersurface in R® whose second fundamental form
is bounded by K. We denote by d(-,-) the Euclidean distance restricted to ¥.
Consider ¥ C X, a bounded open set and v : 3 — C s.t. there is 0 < § < 1 satisfying

dist(z,0%) < 8 = |v(z)| > 1/2.
Then we have the existence of C > 0 depending only on K and deg(v, d%) s.t.

1 1
3 /E {|VU|2 + 2—82(1 — |’U|2)2} > 7r|deg(v, O%)] lng - C.
This section is devoted to the proof the following propostion.

Proposition 10. Let g € H and C = PU N the set of its singularity.

1) We have
lim inf Fe(ve)
=0 |Ilne]

> 7L(g, dge). (21)

2) We denote < T > the union of all minimal links of C in (R® d,2) and for p >0, K, := {x €
Q|dist(z, < T' >) > pu}. Then we have

. (v, Q\ K))
_— = > .
hgn_)%lf el >wL(g,d.z) (22)

3) Moreover, if we are in the symmetric case of Section[6.3, then there is Cy, > 0 s.t.

F.(ve, 2\ K,) > wdg2(p,n)|Ine| — C,,. (23)

Theorem [l for g € H, as well as Theorems[2 Bl are straightforward consequences of Proposition
combined with the upper bounds (0], ().

We prove in detail (2II), and we will sketch the proofs of ([22)),(23) which are, as explain in [12],
obtained exactly in the same way as (21]).

We prove that for all 7j := n(8k? 4+ 3k + 1) > 0, the following holds

lim inf F‘i (ve)

e—0 | n5|

> wL(g, dg>) — 1. (24)



Let > 0, &, 1 0, let (vn)n C H, be a sequence of minimizers of F%, in H] and let &,,C,, E, be
given by Corollary [ (for n sufficiently large).
Let 0 < p < n and set

Q, = {z € R*|dist(z,Q) < p et dist(z,C) > p}.

One may assume that p is sufficiently small s.t. in Q, \ ©, IIpq, the orthogonal projection on 052,
is well defined and smooth.
Then we extend v, (we use the same notation for the extension) by letting

vp () ifze)

Up t Q, — RQ, T — ] '
’ {Q(Hasz(l’)) ifz€Q,\Q

Since g € H and v,|q,\q does not depend on n and takes its values in S, we obtain the existence
of C(p) depending only on p, 2, g s.t.

Fe, (Um Q) > F, (Unv Qp) - C(p)
If we define F = F,, , := E, U[§,(C) — 2p,&,(C) + 2p], then we have
HHF) <8kp+mn < (8k + 1)n.

If t € R\ F, we denote by ¥; = {¢, = t}. We construct for almost all t € R\ F a closed
submanifold ¥, C 3.

Note that for ¢ € R\ F', we have dist(¢,&,(C)) > 2p. Consequently, for ¢ € R\ F, we obtain
that 3 N {Q+ B(0,p)} = ;N Q.

Since t € R\ F' is not a critical value of &, the connected components W’s of ¥, = &, >
t} = {&, = t} have no boundary. If such W intersects €,, then we distinguish two cases:

a) WnoQ, =10
b) WnoQ, # 0.

Denote by Wi, resp. Wy, the set of the connected components satisfying a), resp. b).
If W, = 0, then we define 3; = 3, NQ, = {&, =t} NQ,,.
Thus it remains to construct 3; when W, # . Consider

[+ Q+B(0,p) — R?
x = (& (), dist[z, 0(Q2 + B(0, p))])

Using the Constant Rank Theorem (see Theorem 4.3.2, page 91 in [6]), the set f~({t} x [r, 00))
(r € (0,p/2)) is a manifold with boundary when

e ¢ is a regular value of &,,
e (t,r) is a regular value of f.

Thus, using Sard’s Lemma, for almost all ¢ € R\ F s.t. W, # 0, there is r = r(t) € (0,p/2)
st. X = fY{t} x [r,o0]) € ¥, is a closed submanifold with boundary. Moreover, we have
0%y CO{Q+ B(0,p— 1)} NQ,.

We denote by G the set

G:={tcR\F|W,=0o0r W, #0 and X; = f 1 ({t} x [r,00)) with r € (0,p/2)}.

For t € G we have
dist(0%, Q) > p/2. (25)

Let z € ¥ be s.t. dist(z,0%:) < p/2. Using (23], we have z € Q,\ 2 and therefore |v, (z)| = 1.
Finally, we are in position to apply Proposition

1 b2
3 / {|an|2 + ?(1 — |vn|2)2} > w|deg(vy, 0%¢)| In Eﬁ — C(deg(vn, 034)). (26)
Zt n n



For M € C and for t € G we denote M* € 9(Q2 + B(p — r(t)) s.t. Hoa(M?') = M. Here we set
7(t) = 0 when Wy, = 0, i.e., when ¥; = 3, N Q,. Tt is clear that M* is uniquely defined.

Since d(n, t) = deg(v,, %) = Card({p} € {gn > t}}) — Card({n! € {&, > t}}) takes at most 2k
values, one may assume that C(deg(v,, 9%;)) is uniformly bounded in n and ¢. Note that d(n,t)
is defined for almost all ¢.

The key argument in this proof is the way to pass from lower bounds on hypersurfaces to a
lower bound in 2. We have the following lemma.

Lemma 2. The following lower bound holds

/ d(n, ) dt > L(g, dy2) — 1(2k + 1).
R

Proof. Let m = infq, &,, then we have

/d<n,t> - /|{pze{5n2t}}|—|{nf-e{5n2t}}|
R R

> [ e 162 04—l € {6 21— o}
R
k o0
= Z/ {Te, (piy>t+o — Ley(niy>t—p}t
> Z{én i) — En(ni)} — 2kp > L(g, duz) — 1(2k + 1)

With the help of Lemma 2] we have
2

+ (1= ]

n

> > L /R\F2/Zt{|an|2+—(1—|vn|2)2}dt—Co
> @) > w(n —c>/R\F|d<n,t>|—co

F., (vn,9,) > (Corollary 0l) > 1/ (V& — ) [|an|2

En
> (Lemma2) > m(In 5£ —O) [L(g,du2) — n(2k + 1) — ko' (F)] — Co
> 7|Ine,| [L(g,da2) — n(8k* + 3k +1)] — C.

It follows that ” 0
liminf —S212 2 (vn, )
n [Iney|

> 7L(g,dg2) — n(8k* + 3k + 1), V1 > 0.
Proposition [[0l1) is obtained by letting 7 — 0 in the above estimate.

We now briefly sketch the arguments leading to (22)) and ([23). The fundamental ingredient is
a lower bound for F;(v.,Q\ K,). Without loss of generality, by compactness of K, we may only
consider the situation K = B(z,r,) for some x which does not belong to a geodesic link between
the singularities of g; here, r, > 0 is some small number.

In order to prove (22)), we use Corollary 2

Following the same lines of proof of lower bound as in Proposition [I0l1), we find that

lim inf Fon (vn, X\ K) (un, 2\ K)

n [lne,|

> 7rL(g, daz).

Combining this lower bound with (IIJ), we obtain

F., (vn, K) = o|Iney,]). (27)

n



In the symmetric case, using Proposition [T we obtain the existence of r,, s.t., with K = B(z,r;),
we have

E., (vn,Q\ K) > wd,2(p,n)|Ine| — Ck.
Consequently from the upper bound (I0), we deduce

F., (vn, K) < C.

8 Extension by density of Theorem [1I

From (22) and (IIl), we obtain that Theorem [I holds for g € H. This section is devoted to the
extension of Theorem [ to the general case g € H'/2(0Q,S!).
For g € H'/?(99,S"), we denote

feg = Unel}% F.(v).

Using exactly the same argument as in [2], we have

Proposition 11. 1. Let § € (0,1) Then there is C(8) > 0 s.t. for gi,g92 € HY/?(0Q,S'), we
have ((5.1),(5.2) in [2])

(1 - 5)]06791 - O(é)f&m < f579192 < (1 + 6)f5191 + C(a)fi,gr (28)
2. There is C > 0 depending only on Q s.t. for g € HY/2(9Q,S") we have ((5.4) in [2])

fs,g < O|g|§{1/2(ag)(1 + |1n€|). (29)

3. If (gn)n C H is s.t. gn — g in H'/?(0Q) then Lemma 17 in [2] applied with w, = g,/g and
v = g yields

gn

g

— 0. (30)

H1/2(09)
4. There is C > 0 depending only on Q and on a s.t. for gi,go € H'/?(0Q,S") we have ((2.6)
m [2])
|L(g1,do>) — L(g2,da2)| < Clg1 — g2lrirzo0) (1911m1/200) + |92l 172000 - (31)

Using this proposition, Theorem [I] is proved as follows.

Let g € H'/2(09,S'). By Proposition B (the third assertion), there is (¢n)n C H 8.t. gn — g
in H'/2(09).

Let € € (0,1) and 6 > 0. Then, by (28), we have

ferg fer9/9n Jeg Jeg fei9/9n
_ gyl _ggylesiim o Jes (g gy Tee | o) losiom
(=) e ~ O el = ey S U H g O,

From (29) and the fact that Theorem [ holds for g,, we have

(1= 6)7L(gn, du) — C'(0)lg/gul e < mnsmflffvg'
< limsupljlc;i'
< (1= O)Llgndez) + C'(O)lg/gul g (32)

Using (B1]), we obtain that L(g,,dq2) = L(g,d.2). If, in B2), we first let n — oo, we use B0) and
we next let § — 0, we obtain that

. feg
hgn el wL(g,dg2).

The proof of Theorem [l is complete.
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