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Abstract

We consider a Ginzburg-Landau type energy with a piecewise constant pinning term a in
the potential (a? — |u|?)2. The function a is different from 1 only on finitely many disjoint
domains, called the pinning domains. These pinning domains model small impurities in a
homogeneous superconductor and shrink to single points in the limit € — 0; here, ¢ is the
inverse of the Ginzburg-Landau parameter. We study the energy minimization in a smooth
simply connected domain 2 C C with Dirichlet boundary condition g on 92, with topological
degree degyn(g) = d > 0. Our main result is that, for small ¢, minimizers have d distinct
zeros (vortices) which are inside the pinning domains and they have a degree equal to 1. The
question of finding the locations of the pinning domains with vortices is reduced to a discrete
minimization problem for a finite-dimensional functional of renormalized energy. We also find
the position of the vortices inside the pinning domains and show that, asymptotically, this
position is determined by local renormalized energy which does not depend on the external
boundary conditions.
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1 Introduction and main results

In this work we study the minimizers of the Ginzburg-Landau type functional

Bustw) = 5 [ {190 + 5ozt — P2}, 0

where Q C C is a bounded, smooth, simply connected domain, ¢ is a positive parameter (the in-
verse of the Ginzburg-Landau parameter k = 1/¢), 6 = d(¢) > 0 is a geometric parameter and u
is a complex-valued map. In order to define the function as, we need to introduce the notion of a
pinning domain.

Fix M € N* points aq,...,ap € Q. Let w be an open subset such that @ C B(0,1) and 0 € w.
For 1 <i < M and for all § > 0 denote wf; ‘= a; + 0 -w, i.e. the set w scaled by § and centered at
a;.

Definition. The set ws := U@']\i1w§ is called a pinning domain.
For example, if w = B(0, %), then the pinning domain is ws = Ui‘ilB(ai, %)

We now define a5 : @ — {b,1}, b € (0,1) as:

b ifrew
as(x) =14 o 2)
1 ifzeQ\ws

The functionals of this type arise in models of superconductivity for composite superconduc-
tors. The experimental pictures suggest nearly 2D structure of parallel vortex tubes ([Rj], Fig 1.4).
Therefore, the domain €2 can be viewed as a cross-section of a multifilamentary wire with a num-
ber of thin superconducting filaments. Such multifilamentary wires are widely used in industry,
including magnetic energy-storing devices, transformers and power generators [[7], [Lq].

Another important practical issue in modeling superconductivity is to decrease the energy dissi-
pation in superconductors. Here, the dissipation occurs due to currents associated with the motion
of vortices ([R1]], [H]). This dissipation as well the thermomagnetic stability can be improved by
pinning (“fixing the positions”) of vortices. This, in turn, can be done by introducing impurities or
inclusions in the superconductor. In the functional (fl) the set ws models the set of small impurities



in a homogeneous superconductor. The size of the impurities in our model is characterized by the

geometric parameter § which goes to zero together with the material parameter €. We assume

henceforth that I 6(0)]?
Ind(e

——— = 0. H

|Inel (5)

Essentially, this condition means that ¢ is much larger than € on the logarithmic scale. For example,
if e =277 and §(e) = 27%0), then (H) implies that M — 0.

Notation. In what follows: ’

e We consider a sequence €, | 0 and we write € instead of ,,; the dependence of € on n is implicit.
e We simply write ¢ (instead of §(¢)); the dependence of § on € is implicit.

We study the minimization problem for the functional (f) in the class
Hy := {u € H'(Q,C) |troou = g}, (3)

where g € C*(9€,S!) is such that degy(g) = d > 0. Recall that the degree (winding number) of
g is defined as

1
degonls) = 5~ /a g x0.gdr

Here “x” stands for the vectorial product in C, i.e. 21 X 29 = Im(Z122), 21,22 € C, and 0, is the
tangential derivative. The degree is an integer, and the condition degyq(u) =d > 0, u € H(Q2,C)
implies that u must have at least d zeros (counting multiplicity) inside 2. The properties of the
topological degree can be found, e.g., in [13] or [H].

Minimization problems for Ginzburg-Landau type functionals have been extensively studied
by a variety of authors. The pioneering work on modeling Ginzburg-Landau vortices is the work
of Bethuel, Brezis and Hélein [II]. In this work the authors suggested to consider a simplified
Ginzburg-Landau model ([ll) with @ = 1 in Q (i.e. without pinning term), in which the physical
source of vortices, the external magnetic field, is modeled via a Dirichlet boundary condition with a
positive degree on the boundary (). The analysis of full Ginzburg-Landau functional, with induced
and applied magnetic fields, was later performed by Sandier and Serfaty in [27].

The functional (f[) with non-constant a(z) was proposed by Rubinstein in [Pq] as a model of
pinning vortices for Ginzburg-Landau minimizers. Shortly after, André and Shafrir [f] studied
the asymptotics of minimizers for a smooth (say C') a. One of the first works to consider a
discontinuous pinning term, which models a composite two-phase superconductor, was [[L§]. In this
work, a single inclusion described by a pinning term independent of the parameter ¢ was considered
for a simplified Ginzburg-Landau functional with Dirichlet boundary condition g on 9€2. Namely
the pinning term is

alz) = b ifzxecw

{1 ifreQ\w

here w is a simply connected open set s.t. @ C . The main objective of [[§] was to establish that
the vortices are attracted (pinned) by the inclusion w, and their location inside w can be obtained
via minimization of certain finite-dimensional functional of renormalized energy. Full Ginzburg-
Landau model with discontinuous pinning term was later considered by Aydi and Kachmar [f]. An
e-dependent but continuous pinning term a.(z) was studied by Aftalion, Sandier and Serfaty in [].
The work [fJ]] studies the case of the smooth a with finite number of isolated zeros, and in [J] the
pinning term a takes negative values in some regions of the domain 2. The other works related to
Ginzburg-Landau functional with pinning term include, e.g., [R1], [BY].

3



In this work, we consider the minimization problem (fl])-(f]) with a discontinuous pinning term
given by (f]). We prove that despite the fact that a. — 1 a.e. as € — 0, i.e. the pinning term
disappears in the limit, the pinning domains w; capture the vortices of Ginzburg-Landau minimizers
of ([ll) for small e.

The main difficulty in the analysis of this problem stems in the fact that the a priori Pohozhaev
type estimate |1 — |v|2||%2(ﬂ) < Cg? for the minimizer v (on which the analysis in [[[1] and [[[§]
is based) does not hold. Therefore, we develop a different strategy of reducing the study of the
minimizers of ([]) to the analysis of S'-valued maps via the uniform estimates on the modulus of
minimizers away from the pinning domains (see Proposition f] below).

Following [[§], let U. be the unique global minimizer of E. in H! with U, = 1 on 9. This U.
satisfies b < U, < 1. For v € H; we define

1 1
F.(v) = F.(v,Q) := 3 /Q {Ug]Vvlz + @Uﬁ(l - \0\2)2} dz.

Using the Substitution Lemma of [I§], we have that for v € H, gl,
E.(Unv) = E.(Ue) + F-(v). (4)

From the decomposition (f]), we can reduce the minimization problem (fl)-() to the minimization
problem for F, in H ;, namely, the minimizer v, of F; in H, ; has the same vorticity structure as the
original minimizer u. of (fl)-([).

Depending on the relation between M (number of inclusions), and d (number of vortices), we
distinguish two cases:
Case I: M > d (more inclusions than vortices),
Case II: M < d (more vortices than inclusions).

For example, we are going to show that for the minimizer v,:

e if M =3 and d =2 (Case I), we have two distinct inclusions containing exactly one zero each,

o if M =2 and d = 3 (Case II), we have one zero inside one inclusion and two distinct zeros inside
the other inclusion.

Generally speaking, outside a fixed neighborhood of d’ = min {d, M} inclusions (centered at a =
(aiy, - ai,)), the minimizer v. is almost an S'-valued map. Moreover, by minimality of v., the
selection of centers of inclusion containing its zeros and the distribution of degrees of v. around the
a;’s are related to the minimization of the Bethuel-Brezis-Hélein renormalized energy Wy. In other
words, we reduce the problem of finding vortices of the minimizers v. to a two-step procedure. As
the first step, we determine the inclusions with vortices, which is a discrete minimization problem
for W, and is significantly simpler then the minimization of this renormalized energy functional
over Q. Secondly, we determine the locations of the zeros (vortices) locally inside each inclusion
and show that their positions depend only on b, on the geometry of w and on the relation between
d and M, but not on the external Dirichlet boundary condition g (see Theorem [ below).
Our main result in Case I is the following:

Theorem 1. Assume that M > d. Let v. be a minimizer of F, in H;(Q) For any sequence e, | 0,
possibly after passing to a subsequence, there are d distinct points {a;,,...,a;,} C {a;;1 <i < M}
and a function v* € H} (Q\ {a;,...,a;,},S") such that:

1. v* is a harmonic map, i.e.

*

—Av* :,U*|V’U*|2 mQ\{ail,...,aid}
v =g on 092 .



2. We have v, — v* strongly in HL (Q\ {ai,...,ai,}) and ve, = v* in C(Q\ {a1, ..., an}).

loc

3. ve, has d distinct vortices x7,...,x]; such that 7, is inside wg’”, m = 1,...,d and for small
Jfized p, degaB(x?,p) (UEn) =L

4. The following expansion holds
F-(v.) = mdb?|Ine| + m(1 — b*)d|In 8| + W, ((aiy, 1), ..., (aiy, 1)) + W + 0-(1). (6)

Here W > 0 is a local renormalized energy depending only on d,b and w. Moreover, the d-
subset {a;,,...,a;,} C {a1,...,ap} minimizes the Bethuel-Brezis-Hélein renormalized energy
Wy among the d-subsets of {a1,...,ap}.

Remark 1. Here, W, denotes the renormalized energy given by Theorem 1.7 in [[L1|] (with the degrees
equal to 1 and the boundary data g). Its definition is recalled in Section f.3.

The main result in Case II is

Theorem 2. Assume that M < d. Let v. be a minimizer of I, in H;(Q) For any sequence e, | 0,
possibly after passing to a subsequence, there is v* € HL _(Q\ {a1,...,an},S*) which satisfies (§)
in Q\ {a1,...,an}, such that:

1. ve, — v* strongly in HL (Q\ {a1,...,an}) and ve, — v* in C2(Q\ {a1, ...,anm}).

2. For p > 0 small, ve, has evactly d; := degyp(q, p)(ve,) zeros in B(a;,p). They are isolated,
lie inside wf; and they have a degree equal to 1.

d d d d
[ ] d; [ ] + 1, where [ } 1s the integer part of (7)

Moreover, if % = mg € N, then di = mg,1 < i < M. Otherwise, the configuration
{(a1,d1),....,(anr, dpr)} minimizes the renormalized energy Wy among the configurations
{(a1,d1), ..., (anr,dar)}. Here {a; |1 < i < M} are fized and d; € Z are the subjects to the
constraints ([}) and Zi‘il d; =d.

4. The following expansion holds when & — 0
M ~
inf F. = ndb?|Ine| +7(> " d} — db®)|Ind| + W, ({a,d}) + W + o=(1). (8)
9 i=1

Here, {a,d} = {(a1,d1), ..., (anr,dn)} is a configuration given by the previous assertion and
W is local renormalized energy which depends only on w,b,d and M.

In both cases, we prove that the asymptotic location of the vortices inside a pinning domain
depends only on b, w and on the number of zeros inside the inclusion (see Theorem []): this location
is independent of the boundary data g on 0f2.

2 Main tools

In this section we establish:

e Estimates for U,
e Upper bounds for the energy of minimizers in Case I and Case 11,

e An n-ellipticity estimate for minimizers.



2.1 Properties of U.

Proposition 1 (Maximum principle for U, [[[§ Proposition 1). The special solution U satisfies
b<U.<1inQ.

Proposition 2. There are C,c > 0 (independent of €) s.t. for any R > 0 we have
la. — U] < Ce™ % in Vi = {z € Q|dist(z, dws) > R}, (9)

cR
Ce =
| v L€| <

in Vg (10)

The proof of the Proposition J is presented in the Appendix [A].

2.2 Upper Bounds
Proposition 3. Let £ = %
1. Upper bound in Case I: M > d
There is a constant C' depending only on g,w and £ s.t. we have

: 2
};;rl(g)FE(-,Q) < wdb*|In&| + wd|Ind| + C. (11)

2. Upper bound in Case II: M < d

There is a constant C' depending only on g,w and  s.t. for all dy,...,dpr € N st Y d; =d
we have

Hiﬁg)pa(-,m Swdbz\lnf\—l—wg:df\lné\—i—a (12)
The proof of Proposition [ is given in Appendix [B.

2.3 Identifying bad discs

Lemma 1. Let g.,go € C®(9Q,C) be s.t. 0 < 1— |g.| < e and g- — go in CL(ON). Let also
e, B € L*(Q,[b,1]).

Consider the weighted Ginzburg-Landau functional
w 1 B
FY(v) = 3 /Q {QEWUIQ + 5_;(1 — ]v[Q)Z}.

Denote ve a minimizer of F¥ in Hgls. Then the following results hold:
1. Let x = xc € (0,1) be s.t. x = 0. There are g > 0, C > 0 and C; > 0 depending only on
b, X, 2, [|90llcraqy 8-t for e <eo, if
Few(vg,B(x,sl/‘l) NQ) < x*/Ine| - Cy,
then
lve| > 1 —Cyx in B(z,e/?) N Q.

2. Let p € (0,1). Then there are e9,C > 0 depending only on b, i, 2, |gollc1a0) s-t- for e < g0,

if
F* (v, B(z,eY*) N Q) < Cllne|,

then
lve| > p in B(z,e/?) N Q.

Lemma [] is proved in Appendix [d.



3 A model problem: one inclusion
By combining the results of Section [, the proofs of both Theorem [I] and Theorem J are based
on the analysis of two distinct problems:

1. A minimization problem of the Dirichlet functional among S'-valued map defined on a per-
forated domain.

2. The study of the minimizers v. around an inclusion.

This section focuses on the second problem. More precisely, we fix p > 0 and study the minimization
problem of F.(-, B(a;, p)) with variable boundary conditions.
Fix p > 0 and let f., fo € C>®(0B(0,p)) be s.t. fy is S'-valued and s.t.

If= = folleraB0,p)) — 0 (13)
and
£l = U250, < Ce (14)

Assume also that degyp ) (f=) = degyp(o ) (fo) = do > 0.
For ¢ € {1, ..., M} consider the mlmmlzatlon problem

1 1
R, Blano) = [ fUAw 4 LUt - PR} as (15)
2 JB(aip) 2
in the class
Hj ;=={ve€ H' (B(ai,p),C) [ trop(a; pv(x) = fo(x — a;)}. (16)

Without loss of generality assume a; = 0. Let v. be a minimizer of ([L) in ([l§). Performing
the change of variables & = £ in ([l5), we have

PN 1 ~ N N .
Fa(ee, BO.p) = Felin, B0.2) = 5 | {Usrw?+—2v4< i} as an
07 2Jbwg 2

Here, for a map w € H'(B(0, p)), we denote (%) := w(6#) and & = =. The class ([[f) under this
change of variables becomes
p
i}, = {o € H'(B(0,£),0) | trop0,4)0() = f20 >}. (18)

Note that the above rescaling enables us to fix the pinning domain independently of €.
The asymptotic behavior of 0. will be obtained in several steps:

e We first establish a bound for |0.| (Proposition ). This bound will allow us to localize (roughly)
the vortices of v, near the inclusion.

e We next establish sharp energy estimates (Proposition fi) and use them to obtain the uniform
convergence of solutions away from the inclusion (Proposition [ and Corollary []). We establish
the strong H' convergence of solutions away from the ”vortices” (Proposition ) and derive the
equation satisfied by the limiting map (Proposition [[().

e The last step is the location and quantization of the vorticity: for small €, the minimizers admits
exactly dy zeros, and all the zeros lie in the inclusion and have a degree equal to 1 (Propositions

§ and [1)).

Following the same lines as for Proposition fJ, one may prove

Proposition 4. Let 0. be a minimizer of Fg in ([I4). Then there is a constant C independent of &
s.t. we have

F.(ve, B(0, p)) = Fe (-, B(0, g)) < ndob?| In €| + 2| nd| + C. (19)



3.1 Uniform convergence of |0.| to 1 away from inclusions

Proposition 5. Let K C R? be a compact set such that w C K and dist(OK,w) > 0. Then there
is C' > 0 independent of € s.t. for sufficiently small € we have

o] > 1 = C|ine| ™/ in Bo \ K.

Proof. Using Lemma [] with y = |Ine|™"/3, we find that there exist C,Cy > 0 s.t. for € > 0 small,
if F.(ve, B(z,eY%)) < llnes]% — C} then |v.| > 1 — Cyx in B(z,e/?).

We argue by contradiction. Assume that there exists a compact K containing w s.t. dist(0K,w) >
0 and s.t., up to a subsequence, there is a sequence of points Z. € B(0,5) \ K s.t. |0:(Z.)| <
1 — C|lne|~'/3 with C given by Lemma [. Note that #. € B(0, £)\ K corresponds to z. €

B(0,p)\ (6 - K). From Lemma [l and Proposition [

1 2, 1 212 1/3
Z — (1 — > _ )
5 o {17 g =l = el - o) (20)

We claim that due to the conditions (L), ([[4), we may extend v. (keeping the same notation for
the extension) to a smooth map, still denoted v, s.t.

ve(x) = 2% /|| in B(0,3p) \ B(0,2p)
(1—|v%)? < Ce? . (21)

B(0,3p)\B(0,p)
|[Vve| < C with C > 0 is independent of &

To make the above extension explicit, choose ¢ € C*®°(R*,[0,1]) s.t. ¢ =0 in [0,p] and ¢ =1 in
[2p, 3p] and take

ve(se?) = [¢(s) + (1= C(s)|fe(pe)|] etltotr(=ClNa=(oe)],

Here 2 = s, s > 0 and ¢. € C®(B(0, p),R) is s.t. fo(pe?) = |f.|e(d0F9<)  Consequently, as
follows from ([[J) and (RI)), this map satisfies

1 2 1 2\2
1 I o
2 /3(0,3/)) {‘Wa‘ oz (L= el } < C|lne|

Therefore, the map v. in B(0,3p) fulfills the conditions of Theorem 4.1 in [R7. This theorem
guarantees that:

e we may cover the set {x € B(0,3p—¢/b) | |v-(x)| < 1—(¢/b)'/®} with a finite collection of disjoint
balls B¢ := {Bje»};

e the radius of B%, rad(B°), which is defined as the sum of the radii of the balls B, rad(B°) :=
> rad(B5), satisfies rad(B°) < 10726 - dist(w, OK);

e denoting d; = degyp: (v:) if Bf C B(0,3p —¢/b) and d; = 0 otherwise;
J
we have

1 b? §
3/, {'WE'Q Tomls '”slz)Q} 27y |z~ C. (22)
J

Note that, by the construction of v, in B(0,3p) \ B(0, p), if we have degaB]; (v:) # 0 then B C
B(0,5p/2). Thus d; = degyp: (v:) for all j.
J



In order to obtain a lower bound for F. we use the identity

2

b2 2 b 2\2
> [Veel? + o (1= feef?) (23)

2 JB(z. ct/1yUBE
1

4= U? — v?)|Vo.|?
QL%wmwﬂs )V

1
+ 5 (U2 =Y (1 = [0}

F.(ve, B(xe, e/ UB?) =

The first integral in (2J) is estimate via (2):
b2 v |2 b2 (1| |2)2 > b2 I ()1 1) o
v v ™ € (vg)|In— —
2 JB(ae.c1/4)uBe : 2e2 c = Ej , 8op;(Ve)| I

> wb3dy 1n§ —Cp. (24)
g

By combining (R0) and Proposition B, we have for small &

1 1
5/ (U2 = ¥)[F0.f + o5 (U2 = )0 [uc)
2 B($E761/4)UBE 22’52
1— b2 9 1 212 2 1/3 /
> [Vve|* + o5 (L= o) p = C = (1 = %) Ine|/7 = C (25)
2 B(xg,€1/4) 2e

here we rely on the assumption () on the behavior of §(g) as € — 0.
Substituting the bounds (B4) and (2§) in () we obtain a contradiction with ([[1]). This com-
pletes the proof of Proposition [j. O

3.2 Distribution of Energy in B(0, %)
Proposition 6. The following estimates hold:

U2|Vio.|* = nd%|In 5| + O(1), (26)

1
2 /B(O,p/ts)\B(O,l)
and (recall that & = %)
Fe(b:, B(0,1)) = mdgb?®| In €| + O(1). (27)
Proof. We start by proving that
Fe (i, B(0,1)) > mdob?| In&| — O(1). (28)

As before, we use Theorem 4.1 in [R7: for 0 < r < rg := 1072 - dist(w, B(0, 1)), there are C > 0
and a finite covering by disjoint balls Bj,..., By, (with the sum of radii at most r) of the set
{# € B(0,1-¢/b) |1 —|o:-(2)] = (£/b)"/%} s.t.

1 . b? A
5/ {ng\z el - ]v5]2)2} > nD|In¢| - C, (29)
UjBJs

with D =}, |d;| and

; {degaB;@e) if BS C B(0,1—¢/b)
j =

0 otherwise



From Proposition [, for € small, if degypg (9.) # 0 then B; € B(0,1—r9) C B(0,1-¢&/b). It follows
J

that D > dy and then (P§) is a direct consequence of (Bg) and the bound U, > b.
We next prove that there is C' > 0 s.t.

1
—/ U2|V.|* > nd%|Ind| — (30)
B(0,5)\B(0,1)

By Proposition fl, |v-| > 1/2 in B(0, )\B(O 1), therefore, w. := | ;] is well-defined in this domain.

Observe that
1 1
_/ ’vwez’Q > = /
2 JB(0,2)\B(O,1) 2 JB(0,2)\B(O,1)

We claim that (B0) holds with C' = 7d3|In p| + 1 (for small €). By contradiction, assume (B0) does
not hold. Then, up to a subsequence, we have

1 N
—/ U2V < md2In 2 — 1. (32)
B(0,£)\B(0,1) 0

2

= nd2In g. (31)

2o

[EE

On the other hand, we have
|V®€|2 = |®€|2|VUA)€|2 + |V|®€||2

and therefore

/ Vol > / V| - / Q- val (33
B(0,5)\B(0,1) B(0,2)\B(0,1) B(0,5)\B(0,1)

Since |0.| > 3 in B(0,2)\ B(0,1) we have |Vi| < 2|Vé.|. Therefore, by (B3), Proposition ff and
(H) we estimate the last term in (B3):

1
/ (1 — |93 |V > < Cz\mg\—%/ Vo> < Cy | na\ —0.  (34)
B(0,2)\B(0,1) B(0,2)\B(0,1) | n6|

Combining (B1), (BJ) and (B4), we find that

/ |V, |? Zﬂd%lng —o0:(1).
B(0,2)\B(0,1) o

Since |U. — 1] < C&* in B, \ B(0,1) (see Proposition ), we obtain a contradiction with (B9), and
(BU) follows. Comparing the lower bounds (2§) and (B() with the upper bound in Proposition [,
the Proposition [ follows. O

Using exactly the same techniques as in the proof of Proposition fl, one may easily prove the
following estimate.

Corollary 1. For any Rs > R1 > 1

Ff(@EaB(O’R2) \B(Oa Rl)) = 0(1)

3.3 Convergence in C*°(K) for a compact K s.t. KNw =1
Proposition 7. Let K C R?\ @ be a smooth compact set. Then we have
0. is bounded in C*(K) for all k >0 (35)
and there is Cx > 0 s.t.
0] > 1 — Cg€? in K. (36)

10



Proof. From Proposition
B0 K) = 5 [ V0P + 550 - 02 = 0(1). (37)

As in [[[§], the following expansion holds

Ee(Ucto, K) = EBe(Ue, K) + Fe(0., K) + /8 (|oc|* = 1)0.8,U.. (38)
K
Using ([L0), we have

| (P = n0.0.0. = o0,

0K

With (B7) and (BY), we conclude that Eg(U e, K) = O(1). Since U, and U0, satisfy the Ginzburg-
Landau equation —Au = & Lu(l — |u?) in K, as well as |U.] <1 and |U.9.| < 1. Theorem 1 in [2J]

implies that X .
U. and U7, are bounded in Ck(K) for all k > 0.

It follows that ©. is bounded in C*(K) for each & > 0. On the other hand, using the fact that 0.
is bounded in C*(K) together with the equation of ., we find that 1 — |9.|> < Cx&? in K. O

Corollary 2. For K C R?\ @, up to a subsequence, there is some vg € C°(K,S!) s.t. 9. — vg in
C*(K).

We are now in position to bound the potential part of the energy.

Corollary 3. There exists C > 0 independent of € s.t.

1 / 2o 1 / 1212
— 1—|v = — 1—1|o <C. 39
= B(O’p)( [ve] %) e B(Owé)( |0:]7)° < (39)

Proof. Note that from Propositions f| and [f, we find that there is C' > 0 s.t.

1

(1—o*)* < C.
2 B(0,0/8)\B(0,1)

Thus it remains to prove the estimate in B(0,1) for small e. Using (BH), tryp(o,1)0: is bounded in
CY0B(0,1)) and 1 —|9.]?> < C¢2? on OB(0,1) (for small €). These properties, allow us to construct
a smooth extension ¥ of trpp(,1)0: into B(0,2) \ B(0,1), s.t. h = trop(2) e is S'-valued and
independent of ¢, 1 — |72 < C&2 in B(0,2) \ B(0,1) and

1
[ ek a2} < (40
B(0,2)\B(0,1) 28

(For example, this construction is performed by mimicking (1))
Define we as we = 9, in B(0,1) and w. = ¥ in B(0,2) \ B(0,1). Clearly, w. € H}(B(0,2)), w
is bounded in L?(B(0,2)) and, thanks to Proposition |§ and (E0),

1 o b2
i B . |
2 /3(072) {‘vw.e’ 252 (1 ‘w.e’ ) } S Wdo“ng’ +Cy

1
We may now apply Proposition 0.1 in [[[4] to w. in B(0,2) to conclude that & (1—|w.|?)?
B(0,2)
Cy. Therefore the bound (BY) holds. O

11



3.4 The bad discs
Consider a family of discs (B(z;,'/*))ses such that (here I depends on ¢)
for all i € I we have x; € €,
B(zi,e 4 /4) N B(x, e /4 /4) = 0 if i # j,
UieIB(xi,sl/A‘) DO

For p € (1/2,1), let C = C(u), eg = €o(1t) be defined as in the second part of Lemma [l. For e < &,
we say that B(xi,al/‘l) is p-good disc if

F.(ve, B(xs,e*) N Q) < C(p)| Ine
and B(z;,e"*) is p-bad disc if
F.(ve, B(zi,eY) N Q) > C(p)|Inel. (41)
Let J. = J := {i € I | B(z;,eY*) is a p-bad disc}.
Lemma 2. There is an integer N, which depends only on g and p, s.t.
CardJ < N.

Proof. Since each point of € is covered by at most 16 discs B(z;, 61/4), we have
> Fo(ve, Bz, e'*) N Q) < 16F (v, Q).
i€l

16Cy
AME O

The previous assertion implies that Card J <

The next result is a straightforward variant of Theorem IV.1 in [[L1].

Lemma 3. Possibly after passing to a subsequence and relabeling I, we may choose J' C J and a
constant X > 1 (independently of €) s.t.

J ={1,..,N'}, N = Cst,

|z; —a;] > 8AeVA forijeJ i
and

UieJB(,IZ', 61/4) C UieJ/B(xl', )\61/4).

We will say that, for i € J’, B(xi,)\sl/‘l) are separated p-bad discs. From now on, we work
"y
with separated p-bad discs. Denote &; = FZ By Proposition [| we know that for small €, we have
#; € By. Clearly, up to a subsequence,
there are o, ..., oy, K distinct points in By

{A1,..., A} a partition (in non empty sets) of J’ s.t. (42)
for i€ J', if i € A}, then &; — ay.

Note that for ¢ € J’, we have

Vn > 0, for small ¢,

Yy < {041, ...,Oz,.;} <~ { (43)

there is a p-bad disc inside B(y,n).

12



3.5 Convergence in H} (R*\ {ay,...,a.})

We have the following theorem.
Proposition 8. Let ay, ..., be defined by (). Then we have:
1. The points aq, ..., belong to w.

2. There exists vo € HL (R*\ {1, ..., },SY) s.t. (possibly after extraction)

be — vo in Hi (R?\ {a1,...,ax}) (44)

De = vp in CL(R2\ {a, ..., ax}). (45)
3. There exists ng > 0 s.t. for all 0 < n < ny and for sufficiently small € we have
degop, (o) (0=/|0:]) = degyp, (o) (v0) = 1.
4. k=dg.

Proof. Step 1: 9. — vy in HL (R?\ {1, ..., }), vo € HL.(R?\ {1, ..., },SY) and ay € w
Proposition | guarantees that oy, ..., € @. Let

1072 - mingp o — o] if £ >1
mo = Aelon —ow] x>l (16)
1 ifk=1
Applying Theorem 4.1 in [R7] we have for all 0 < 1 < 1 and for small ¢
1 v?
5/ {Ivacp + gz - 02} 2 rdom? - 0 (47)
2 Uke{1,...,x} Blag,m) 2€ §

with C independent of ¢ and 7. Combining ({7) with (R7) and Corollary [ we obtain that ©. is
bounded in H!(K); here K C R?\ {ay, ..., } is an arbitrary compact set. Therefore, there exists
vo € HE (R?\ {1, ..., }) s.t. we have 9. — vg in HL_(R?\ {1, ...,a,}) (possibly passing to a
subsequence). Since |1 — |o¢ ||| z2(x) — 0 for all compact sets K C R?\ {ay, ..., }, we find that vg
is S!- valued.

Following the proof of Step 7 in Theorem C in [[§], we can prove that ar,...,a, ¢ Ow, thus

aq, ..., € w, and the first assertion follows.

Step 2: Proof of 2.

Adapting the techniques of [[[0] (Theorem 2, Step 1), we establish ({4) and () in a ball
B = B(y,Ry) s.t. BCR?\ {1, ..., }.

Let y € R? and let R > R > 0 be s.t. B(y,R)) € R?\ {ay,...,a,}. Since Fx(o., B(y, R'))
is bounded independently on ¢, there is Ry € (R, R') (independent of ¢) s.t., passing to a further
subsequence if necessary we have

1
/ {|(9T®€|2 + (1= |f)€|2)2} < C with C independent of €. (48)
BB(vaO) 5
Indeed, for r € (R, R') denote
. 1 N
ro)= [ {wap e ga-ppr).
dB(y,r) £

13



Using the Fubini theorem and the Fatou Lemma we have
R R
0< / liminf I (r) dr < liminf/ I.(r)dr < C".
R € € R
C/
Consequently, liminf, I.(r) < oo for almost all r € (R, R'), so that (Jl§) holds with C = R

Let g. = trgpd.. Since |0.] > 1/2 in B = B(y, Ro), we have degyp(g:) = 0. The bound (4g)
implies that, up to choose a subsequence, g. is weakly convergent in H'(0B). Consequently there

is h € HY(0B,SY), h = e¥, p € HY(OB,R) s.t.
ge — h uniformly on 0B, (49)
ge — h in HY2(dB). (50)
Let 7. : B — R™ be the minimizer of /B {\Vm2 + 5_12(1 - 77)2} in H|lgs|(B,IR{). Then 7). satisfies
—&2An.+n.=1 inB
{775 = |g| on 9B

It follows from [[[]] that

[{ivnre+ ga-np}<ce (51)

Using ({9), there is p. € H'(0B,R), s.t. g = |ge|e*¥s and ¢. — ¢ uniformly on dB. Following
0], denote by 1. € Hés(B’R) the unique solution of —div(a?V4.) = 0. (Here a = b in w and
a =1inR*\w.) From (B(), ¢ — ¢ in H'(B) where ¢ € HL(B,R) is the unique solution of
—div(a®V4) = 0. Since n.e™= € H;E (B), we have

. . 1 N 1
Fe(i B) < Fetno¥, B) < 5 [ D20 +C6 o 5 [ avup (52)
2 B e—0 2 B
On the other hand, since 9. — vy in H'(B), we have vy = ¢'® with ¢ € H&,(B,R) and

, 1/ - 1 1
lim inf F¢ (9., B) 2liminf—/ U2|Vi|* > —/ a®|Vul? = —/ a?|Vol2. (53)
E e 2Jp 2 /B 2/p

(The last inequality follows from U. — ain L2, |U.| <1 and 6. — vp in H'.)
By combining (53), (F3) and the fact that ¢ minimizes [ a*/V -|? in H(B,R), we find that
B
(E4) holds. Furthermore, the map 1 in (BJ) is the same as ¢ in (5J).

Note that since
1 N
Z U2
/0

by comparing (F2) with (F3), we also have

2
—0:(1) < Fe(0e, B),

Ve

\Y

|0 |

R 1 R
| 1910l + - o 54
K §
In order to prove ([f), it suffices to establish the convergence
¢ — ¢ in L®(B) with ¢. € H},_(B,R) and 4. = |oc[e"%, (55)

and to use the fact that |0, — 1 uniformly.
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Proof of (BJ). If w N B = (), then the argument is the same as in [I(J]. Assume next that
OwN B # 0, and let ¢ € H32(B,R) be the harmonic extension of . Since ¢ := ¢ — e H}(B,R)
satisfies —div(a®V(¢) = div(a®V), Theorem 1 in [pJ] implies that ¢ € Wh?(B,R) for some p > 2.

We next prove that, for some ¢ > 2 and B = B(y/,R) s.t. B(y,2R) C B, we have ||¢. —
]| B 0 (Once proved, this assertion will imply, via Sobolev embedding that (FJ) holds.)

Note that (up to a subsequence) ¢. — ¢ in L?(B,R). Thus we have

[P — ¢HL2(B) —0

From Theorem 2 in 3], there is 2 < ¢ < p and C > 0 s.t.

{—div (U210:2V (6. = 6)] = div |(02[0:* — a®)Vo| i B

1962 = 6)llags) < C (B22/6: = Blliam) + (O26: = @)Vl 1am)) =, 0

Consequently, ||¢. — (ﬁHWl,q(B) — 0.

Step 3: We prove the third assertion
Let n9 > n > 0, with 79 defined by ([€). Denote dj, = degyB(ay,r) (Vo). These integers do not

depend on r € (1,19). Moreover, we have ), d;, = dy. For r € (1,1), we obtain that

1/2
2rld| g/ 00| < V2 (/ yaTvoyZ> ,
OB(ag,r) OB(ag,r)

and therefore 1
—/ |Vwol? > md? In m
B(ag,mo)\B(ax,n) n

2

Consequently, we have

1 1
liminf—/ \Vi|* > —/ |V o)?
2 J Uk B(amo)\B(anm) 2 J U B(osmo)\Bar.m)

> de%ln%. (56)
k

By combining (f7) and (56), we obtain the existence of C' independent of € and 7 s.t.

1 / 512 2170 n
= Vo[ > 7Y diln—+ndgln=—-C
Uk B(ak,mo) g n §

2
Tlo 2 Mo
= mdgln— +7 di —dg)Iln— — C.
oln ¢ (Ek » —do) ”

Therefore, dy, must be either 0 or 1. Otherwise, (R7) cannot hold for small 7. Applying the strong

convergence result from Step 2 with K = B(ay,7) \ B(ag, Z), we have that for small ¢,

e
di, = degop(ay ) <m> .

We next prove that dj = 1 for each k. By contradiction, assume that there is kg s.t. dg, = 0. We
may assume that ko = 1. From (i), there is a (separated) pu-bad disc B(ig, Ae'/*/6) in B(ay,m0).

Thus by (), we have R
Fe (b2, B(dg, \e¥*/38)) > C ()| Ine].
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On the other hand, since in |9.| > 1/2 in B(ay,n0) \ B(ak,1m0/2), applying Theorem 4.1 in [27] in
Blag,m0), k € {2,...,k}, with r = 1074 - g we find that

F£(®57B(ak7770)) > bz‘degaB(akmo)(@&)H lnf‘ - C7 k= 27 ey R

Since > 7 _, degyp(ay o) (0c) = do, the above estimates yield

Fe(i, B(0,5)) > Vdo| ng| + ()| Ine| - €

which is in contradiction with (H) and ([d]). Thus dx = 1 for k € {1,...,x} and consequently,
KR = do. O

We are now in position to estimate the rate of uniform convergence of |0.| in a compact set
K CR?2\ {a1,...,aq, }-

Corollary 4. There is C > 0 s.t. for ng >n > 0 and small € we have

[6:] > 1= C| el /% in B(0,£)\ Bla, ).

Proof. Due to (B), it is sufficient to establish this result in B(0,1)\ B(a;,n). Combining Corollary
f with (i), we obtain that

Fe(0, B(0,2) \ B(ai,n/2)) < C(n).
Thus for all z € B(0, p) s.t. B(z,e/4/8) € B(0,2) \ B(ag,1/2), for small € we have
F.(ve, B(z,e'/*)) < Fe(ie, B(0,2) \ B(a,n/2)) < |Inel'/3.

From Lemma [| (first assertion), we obtain the existence of C' > 0 (independent of & and 7)

st. |ve(z)] = [0o(2)] > 1 — C|lne|~"3. Finally, since for all & € B(0,1) \ B(as;,n) we have
B(#,e%/5) c B(0,2) \ B(ai,n/2), Corollary f follows. O
3.6 Information about the limit v,

Following [[L1] (Appendix IV, page 152) we have
Proposition 9. For all 1 < p < 2 and for any compact K C R?, 9, is bounded in WP(K).

Let 0; be the main argument of 2=ai and set 0 = 01 + ... + 04,- Note that V6 is smooth

|Z—a

away from {aq,...,a,} and II; Iﬁ:gh = e Let § := trogp,vo and ¢y € C®(0B1,R) be s.t. § =
Hi%ewo = e!(0*+%0) (see [[J] for the existence of ¢p).

Proposition 10. The limit vy satisfies —div (a2 vy X Vvo) =0 in D'(R?). Moreover we may write
vg = e 0T¥<) . Here o, is the solution of

—div [a®V (0 + ¢,)] =0 in By
. (57)
P = ¥0 on 0B,

Proof. Let ¢ € D(R?), and set K = supp(¢). By Proposition [], we have Ug be X Ve — a® vy x Vg
in LP(K) for p < 2. Multiplying the equation —div {UA'EQ e X V@e] = 0 by ¢ and integrating by

parts, we obtain
0:/ div [03@5 X V@g} o = / U246, x Vi - Vo
K K
— / a’vg x Vg - Vo = / —div (a2 g X Vvo) o.
K K
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Consequently —div (a2 vy X VUO) =0 in D'(R?).

In order to prove that —div [a?V (6 + ¢,)] = 0 in By \ {a1,...,aq, }, we follow [[§], Step 12 of
Theorem C.

Next, we prove that ¢, is harmonic in a neighborhood of aj. Fix A > 0 and zyp € w s.t.
B(zg,2)) C w\ {a1,...,aq,}. As we established in Proposition f, Step 2, F¢(0e, B(xo,2))) is
uniformly bounded in €. Proceeding as in Step 2, we conclude that exists A\g € (A, 2\) s.t., after
passing to a further subsequence, we have

1
[ Awapsgma-lerr}<c 9
OB(x0,M\0) 2§

with C and Ay independent of €. Now, if 4. minimizes

Ay L NEEREE SIS
B =g [ IV g la)

subject to u(r) = f-(6x) on 0B(0, £), then @, minimizes E¢ (@, B(wo, \o)) with respect to its own

boundary conditions. In other words, w. := %= minimizes the classical energy

s [ Awars ey
2 B(l‘o)\o) ‘ 252 ‘

among w € H'(B(zg,)\)) such that w = h, := % on 0B(xg,\g). It follows from (p§) and
Proposition | that h. also satisfies

/ {\&hdﬁ%(l— \hﬁ)z} <C+1. (59)
8B(z0,\0) 28

Note that by Proposition f| we have
e Lo (B(zo n)) < 1+ ce™F. (60)

Using (p0) and the uniform bound from Corollary [, we may repeat the arguments of Theorem 2
in ] and conclude that, up to a subsequence, there exists an S'-valued map wy s.t. for every
compact K C (w\ {a1,...aq,}) we have

We — wp in C(K) (61)
" (- [0.P)
b*(1 — |w .
Te — |Vwo|? in C®(K). (62)
i — o] dist(ag, O
Fix now r < min m1n|oz§ oz]|’ © (O;k’ w) and denote w, = {zr € w,dist(z,0w) > r}. It
follows from (B1]) that w. — qo := tra,,wo in C®°(Ow,). In view of Proposition ], we have

wy € WHP(w,), p < 2. By Remark L1 in [[[J], this implies that

Wy = W exp <2‘chln\x—akl+ix> i

k

Here:

e w is the canonical harmonic map (see L1, Sec. 1.3.) having singularities {ax, k = 1,...,dp} and
equal to gg on Owy;
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e the ¢;’s are real coefficients;

e  is the solution of
Ax=0 in w,
X($)+Zk0kln|$—ak|=0 on &,ur'

Repeating the argument of [[L1]], Theorem VII.1, Step 2 (the key ingredients of this proof are (1)),
(F9) and Corollary JJ), we find that ¢, = 0,k = 1,...,do, and, consequently, wp = w in w,. Finally,
by [, Corollary 1.2., we know that the canonical harmonic map w is of the form w = el(0+ex)
with ¢, harmonic in w,.

O

3.7 Uniqueness of zeros

Proposition 11. For ¢ sufficiently small, the minimizer 0. has exactly dy zeros.

Proof. Tt suffices to prove that for small ¢ there is a unique zero of 9. in B(ag,r), k = 1,...,dp,

with 7 defined in the proof of Proposition [I.
Since w, = {’%bUE, from Proposition P and Proposition [[(] we see that wg = vy = et OrtHr) ip
B(ay,r), where 0 is the phase of |§:3]Z\ and Hy = @, + vy is harmonic in B(ay,r). Using (61)
and () and arguing as in the alternative proof of Theorem VIIL.4 in [[J] (page 74) we obtain that
VH (o) =0.

Finally, we are now in position to obtain, as in Theorem IX.1 [[J]] (using the main result of [ff]),

that there is a unique zero of w. (and, therefore, of 9.) in B(ay,r).

O

3.8 Summary

We have thus proved

Theorem 3. Let ¢, | 0 and 0., be a minimizer of (L7) in (I§) for ¢ = €,. Then there exist dy
distinct points aq, ..., aq, € w and a function vg € HE (R?\ {ou,...,aq, },S) ﬂT/Vl})’f(RQ,Sl) (p<2)
s.t., up to a subsequence

1. e, — vo in Hlloc(R2 \{ai1,...,aq,}) and CI%C(RQ \{a1,...,aq,}),
2. e, — vp in Wi’f(Rz) (p <2),

3. for K € R2\{a,...,aq,}, |0=,| > 1—|Ine,| V3 in K and/K V0., ||* + 5%(1 — |0, ?)* = 0,
4. for K @ R?\ @, 9., — vy in C°(K) and 1 — |, | < Cgé?,
5. Ve, has exactly dy zeros x7, s T and x! — o,
6. vy satisfies —div (a2 vy X Vvo) =0 in D'(R?).
Let us summarize the proof of Theorem f:
e Statement I. is established in Proposition [,
e Statement 2. follows from Propositions f] and [L0,
e Statement 3. is a consequence of Corollary [ and (54)),

e Statement 4. is Corollary [,
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e Statement 5. is proved in Proposition [[],

e Statement 6. is established in Proposition [[J.
The proof of Theorem [J is complete.

4 Renormalized energy for the model problem

In this section, we establish the expansion for F. (v, B(0,p)) = Fg(@e, B(0, §)); specifically, we
derive the expression for

lim {Fg(@e, B(0, g)) — 7d2| In 8| — mdob?| 1ng|} . (63)
£

(We are going to prove that this limit exists).
In order to find an expression for (B3), our strategy is the following:

e (Section [.1) We first study the minimization of the Dirichlet functional among S!-valued maps
in annulars B(0, p/d) \ B(0,1) with the Dirichlet boundary conditions: f9(5-) on dB(0, p/§) and

g° on 0B(0,1). Here f° = |§; where f. is given in the model problem and ¢°, ¢° € C*(0By,S")

are s.t. ¢® — ¢° in C'. We get that the Dirichlet energy has the form wd31n(p/d) + Wo(fo) +
Wi(g°) + 05(1).

e (Sections [£.2, .3 and f4) In B(0,1), we study the weighted Ginzburg-Landau functional with
the Dirichlet boundary condition ¢° on 0B(0,1). Making use of the previous bullet point, one
may obtain the matching upper and lower bounds and use them to derive the third term of
renormalized energy, which depends on the limiting locations of the zeros B = (81, ..., B4,) € w
and on g°. We establish that

. b B
inf Fe(-, B(0,1)) = mdob? 1ng + dob®y + Wa(B, ¢°) + o:(1).
H é
g

e (Section [L.H) Finally, we make a fundamental observation: the limiting function gy = lim tryp, 0.

and the points e obtained form Theorem ] form a minimal configuration for Wy(g) + Wa(83, g).

Thus, introducing

W(3) = inf {W 3) + Wa(B, g }
(8) G0 (DBy.SY) 1(9) 2(8,9)
with degaBl (?]):do

we conclude that a minimizes W.
In this section we prove the following theorem.

Theorem 4. The following energy expansion holds when € — 0

. b ~ B

F¢ (0., B(0, g)) = ndgb* In : + md3 1n§ + Wo(fo) + W(e) + dob*y + 0-(1). (64)
Here the points a0 = (a1, ...,aq,) are obtained from Theorem [, v > 0 is an absolute constant and
Wo(fo), W(ex) are renormalized energies:
o Wy is independent of the points az,...,aq, and given by (73),
o W is given by (PQ), it is independent of fo and the limiting points (o, .., aq,) minimize w.

Remark 2. The renormalized energy in the expansion (f4) decouples into the part that depends
only on the external boundary conditions Wy(fy) and the part that depends only on the location of
the vortices W (ax). Since a minimizes W, the external boundary data has no effect on the location
of vortices inside the inclusion. This is a drastic difference with the results of [[[T] and [I§], where
the Dirichlet boundary data on the external boundary influences the location of the vortices.
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4.1 Minimization among S!-valued maps away from the inclusion

Denote B, := B(0, p). Let
s 0:n 1
— C'(0B
f 5o J¥ in C*(0By)

(f9)o<s<1 € C*(0B,,SY), > € C*(0B,,S") be s.t. {
degyp, (f°) = do

and
o 5 ¢ in CYOB
(6°)o<s<1 € C*°(9B1,SY), ¢° € C>®(9By,S") be s.t. {g o0 5 o
degyp, (9°) = do

For § € (0,1), we denote A5 = B, /s \ Bi and
Ws = {u € H'(4s,S") |trop, su(-) = £2(8) and trop,u = ¢°},

Ys = {u e H'(As,S) |trop, su(-) = £9(6-) and trpp,u = ¢°}.

Consider the following minimization problems:

1
Is(f° ¢%) = I; = inf = 2, P
5(f°,9°) =15 uEnW52A6’VU‘ (Ps)
1
0 0: :f—/ 2.
Js(f9) =Js nf 5 Aé\VUI (Qs)

Proposition 12. For small ¢, I5 is close to Js, namely
Is = Js+ 05(1). (65)

Proof. In this subsection 6 stands for the main argument of z i.e. ‘i =¥ For 6 > 0, let

2]
ps € C®(0B1,R) be s.t. ¢° = eld0+5) and ¢ € C>®(0B,,R) be s.t. [ = edof+G)  We may
assume that ¢s — ¢ in C1(0By) and (5 — (p in Cl(aBp). Note that

uwe Wy <= u =T with ¢ € wy. (66)

Here w; := { € H'(4;,R) [trap, o() = ¢5(0°) and trop, ¢ = ds}.
Since Af =0 in As and 0,0 = 0 on JAg, for u € Wy we have

/ Vul? = / V(o + dob)|? = &2 / Vo + / Vgl
As As As As

Consequently, the problem ([P]) has a unique solution us = e!dof+¢s) with s being the unique

solution of
—Aps =0 in Ag

¢5(-) = (5 (6-) om 0By .
05 = G5 on 0B,

With the same argument, the problem ([Q4) admits a unique solution vs = eUdof+vs) with 1)5 being
the unique solution of

_A¢6 =0 in A(g
¥s(-) = Co(6-) on 0Be .
s = ¢o on 0B;
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Denote ns = s — 1s. Then ns is the unique solution of

Ans =0 in Aj
=(—C on (9B§ )
ns = ¢s — Po on 0By

(Here {(x) := ¢(6z)).

One may prove that ||¢)s][z2(4,) is bounded and more precisely we have the following result.

Proposition 13.
1 2 2 2
5 /A(; ’V%! — ’¢0‘H1/2(S1) + ’CO’HI/Q(BBP), as 6 — 0.

Proof. Let (an)nez, (bn)nez C C be s.t.

eg):Zane and (o (pe'?) Zbe

neZ ne”
We have
|¢0|§_]1/2(Sl) = Z |n||an|2 and |C0|?{1/2(33p) = |60|?{1/2(83§) = Z |n||bn|2
z z

From [§] (Appendix D.), denoting R(5) = &, we have

1 2 |b0 - ao|2 |n| 2 2 2|n|

R — n 1

57, 190 = S+ g [l RGP

~ 2(bn -+ ab) R(O)|

2 2 |bo — ao|?
= |¢0|H1/2(aBl + |¢|H1/2(8B )T "InR(S)

+ Z 2|n\ = | (anl® + [6a]*) = (@nbn + anE)R@)\"l}

WO’HI/?(@BI) + ’CO‘Hl/Q(BBp) + 05(1)-
Consequently, as 6 — 0, we obtain ([7).
Following the same lines as Proposition [L3 we obtain

[V@sllz2(a,) < C with C independent of 4,

and
1Vnsllz2as) — O

It follows from (6§) and ((9) that

I = d—g/ \veyul/ Vo2
5 = B B " ©s
d2
_ 20/ |VO|? + /ngﬁ /Vl/J(s vn5+2/ |Vns|?
As

= J5+05( )
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From ([f0) and (7), we deduce that

Is = Js + o05(1) :delng + Wo(f°) + Wi(g®) + o0s(1) (71)
with R 3
Wo(fo) = ’COI%HM(@BP) and Wl(go) = ‘¢0’§{1/2(331)- (72)

One of the main ingredients in the study of the renormalized energy is that the Dirichlet condition
d

Jmin(7) = ’Yo%, Y0 € S' minimizes Wy. More precisely, for all fo € C*(9B1,S!) s.t. degyp, (fo) =

dp, we have

Wo(fmin) =0< WO(fO)' (73)
4.2 Energy estimates for S'-valued maps around the inclusion

Let ¢° € C*®(0B1,S') be s.t. degyp, (¢°) =do >0, B, ..., B4, are dg distinct points of w,
1 . . .
70 = 7 min {dlst(ﬁi,ﬁw),rﬁg |B; — ﬁ]|} .

For r € (0,79), we define

QT = Bl \ UkJB(/BkHT)a
&= {u S Hl(QT7S1) ’traBlu - 90 and degaB(&-ﬂ (u) = 1}

and
1 1 0 1 r—p
Fr = {u € H'(Q,,S%) [trgp,u = g~ and there are v; € S” s.t. tropg, »yu(r) = %’ 3l } .
b 1. _ Z
Consider two minimization problems
1
Krg8) = K(r) = inf 5 [ aVaf (R,)
uely 2 Q,
and )
L(r,¢°,8) = L(r) = inf —/ a?|Vul?, B8 = {B1, ..., Ba, }- (Sr)
uEFr 2 Q,
We denote 6 = 0; + ... + 04, where 6; is the main argument of %, i.e., % = ¢
Let 1 be the unique (up to an additive constant in 277Z) solution of
—div [a*(Vio + V6)] =0 in By ”
eUf+vo) — 40 on OB (74)
Lemma 4. ([[I§], Appendix A.)
1
K(r)= 5/ a?|V0 + Vol? + O(r|Inr|),
Qr
1
L(r) =3 / a®|V0 + Vipo|* + O(r|Inr|),
Q
with
1 2 2 _ 2 3 0 2
> [ aIV0+ Vol = wdot? Inv| + (B, ¢°) + O(). (75)
Q

T

In (F9), Wa(8, ¢°), whose explicit expression is given in [§], formula (106), depends only on 3
and ¢°.
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4.3 Upper bound for the energy

Lemma 5. Fiz p > 0 and let f- € C*(dB,), fo € C®(dB,,S!) be s.t. f- — fo in CY(OB,). Let
B = (B, Bay) € wh be s.t. B # B for i # j. Then, for each ¢° € C®(0By,S), the following
upper bound holds:

. b . . .
inf F. < mdob? Ing + 7d2In g + Wo(fo) + Wig?) + Wa(B, ¢°) + dob®y + 0-(1). (76)

H1 (B,)

Here Wy, Wy are defined by ([3) and Wa by ([79).
Proof. We construct a test function w. € H} (B,/s,C) which gives (7). Fix 0 < r < no. Let
us be the minimizer of ([P]) with ¢ =¢°and 0 = |§—6|
g

and
u, be the minimizer of ([5]).

Note that f® — fy = lim,. f. in CY(0B,). For each i = 1,...,dy let uf’r be the global minimizer of
the classic Ginzburg-Landau energy in B(f3;, ) with the parameter /b and the boundary condition
ufr(x) = hi(z) := %5 on B(B;, 1), v; € S! is defined through w,.. Denote

T

1 b2
I(¢/b,r) = inf = Vul? + —(1 — “} 77
) =, e /| (M{\ 4+ g1 = fuf?) (77)

= 3w - e
2 JB(Bir) 2

Lemma IX.1 in [[(] implies that

br

§

We next extend the u;’s to B,/5. For this purpose, we consider ¢ € C*°(R,[0,1]) s.t. ( =0 in R™
and ¢ =1 1in [1,00) and set

I(§/b,r) = mln — 4+ v + 0g(1). (78)

xe(se) = ¢ (s = 5+ 1) [Ifel(pe”) — 1] +1

In view of ([4), we have |x. — 1| 12(B,,;) < Ce. Consider the following test function

Xeus in B, \ By

U= < Uy in B \UB(,@Z, T') . (79)
Wt in B(B;,r)

(2

Clearly,

- . . . b
inf Fl < F(we) < mdy 1n§ +Wi(g°) + Wa(B,4°) + Wo(fo) + mdob” In et dob®y + 0=(1) + h(r)
fe

with h(r) = o,(1). Thus, letting » — 0 as ¢ — 0 we obtain the desired upper bound. O
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4.4 Lower bound

We prove that the upper bound ([f§) is sharp by constructing the matching lower bound.

Lemma 6. Let ¢, | 0, Oc,, be a minimizer of ([L7) in ([) for e =&, and a = (a1, ...,aq,) € w®
be given by Theorem [§. Denote go := limtryp, 9. € C*(0B1,S'). Then the following lower bound
holds:

b -
F(0e, By) > mdob? lng +mdj 1n§ +Wo(fo) + Wilgo) + Wa(e, go) + dob®y + o:(1). (80)

Proof. As in the proof of Lemma [, we split ng into three parts: ng \ By, By \ UB(a;,7) and
UB(a, r) with small 0 < r < .
In Be \ UB(a;,7) one may write 9. = |0 |w.. Using Corollary [ and (4) we have

o _ 1 Y . . U N
Fe(be,Be \ B1) = —/ _ QU2 Vwe? + U2V 0P + 5 5 (1 — [0:]*)?
> 2 By\Bi 3
_ 1 2 2 2 ~ 112 U_;l s 1232
= . UZ|Vwe|* + UZ| Ve ||” + 2(1 0:]7)" p +0c(1)
2 By \By 3
1 N
> —/ UZ|Vw.|?* + o:(1). (81)
2 Bp\B1
§
5 trop, Ue 5 trop,ve . ) . 5 s
We take g° = ————— and f° = ——F—. Note that with this choice of f°, ¢° one may apply the
ltrop, V| ltrop, Ve |

results of Sections [.1 and f.3. From (BI]) we obtain the lower bound in B 2 \ B1:

Ff(@E?Bg \Fl) > Js 4+ 0:(1) (82)

with Js the energy associate to the minimization problem (Q4) (see page R0).
Let vy be defined by (4). Since we have v. — vg in H*(B; \ UB(ay,7)) and U. — a in
L?*(B; \ UB(ay,)), from Proposition [0 and Lemma [ we obtain

/ a2 Vuol? + o.(1)
Bl\UB(ai,T)

/ a®|V0 + Vo[ + 0c(1)
Bl\UB(ai, )

= K(r)+ O(r|lnr|) + o-(1), (83)

~ [ —

Fg(f}g, B, \ UB(O&Z‘,T‘)) >

>

N~ N

where K (r) is defined by ([R)]) (see page P2).
In order to complete the proof of the lemma, we need to obtain a sharp lower bound in each
ball B(«;,r). Actually we will prove that

Fﬁ(r&&‘aB(aiar)) Z b2I(§/b,T) +OT‘(1) +0€(1)7 (84)
with 7(£/b,r) being defined in (7). The estimate (B4) is equivalent to
Fe(t=, B(ei,r)) > V2I(E/b, 7+ 12) + 0.(1) + 0c(1). (85)

Indeed by (f§) we have I(&,r +72) — I(&,7) = o,(1).
We now make use of the construction by Lefter and Radulescu in [R(] and [[9]. From Proposition
[0, we know that vy = e?i+#++%) with ¢, 1; harmonic, and therefore smooth in B(wy,n) (n > r
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small). Set o; = . + ;. Without loss of generality, we can assume that «; = 0 and 0;(0) = 0.
Consequently, |o;(z)| < C|z| with C independent of  and |z| < 7. Let

1(0;+0l)

U = Ac€ where A; 1= |0¢|.

From Proposition [§ and (p4), we obtain that

ol — o;in H'(B, 2\ By), (86)
_ 1
Ae = 1in HY(B,,,2 \ B,) and —2/ (1—=X)? = 0. (87)
€ JB, 2\B.
Let
Be(se) if s € [0,7)

10;y _ o 2 )
pelee) [1 2)\5(8—7“)%-)\5} exp{z <9i+0§‘ S—L; —i—r)} if s € [r,r + 12
r

r

T

Clearly, 8. € H!, (B,.,2). Consequently,
/[N

VAI(E/b,r +12) < Fe(0, Br) + Fe(Be, Byyy2 \ By) + 02(1).

From (B7), we easily obtain that

L i ga - a2 ] = o
B,,,2\B: 3

/BHTQ \Br

It remains to estimate )
—s+ri+tr
v {ei T . e H |
T

From (B4)
st —s+ 12+
/ V{0i+0272} :/ o V{Hi—i-aiiz} + 0(1).
BT+T2\E r BT+7‘2\BT "
Since |o;(se?)| < Css, |0s0;| < C and |9p,0:] < C's we have
2 2 2 2 9 2
‘v {gi N in} S PP e Y U OO W el
r r r T r
< ClA+rH)+r? =0(72).
Since |B, 2 \ By| = O(r3) we find that
—s5 412 2
/ v{wwg#} — O(r).
BT+7‘2\B_T r

It follows that F¢(B., By \ Br) = O(r) + 0-(1). Consequently, (B§) holds and thus we obtain
(B4). Combining (B), (B3) and (B4), together with (71l) and ([7H), we obtain

~

Fe(te,Be) > Is+ K(r) + b2 1(£/b,r) + 0:(1) + 0r(1)
b - -
— 7d2ln g 4 wdob® In £+ Wo(fo) + W (e, go) +
+ dob®y + 02(1) + oy(1). (88)

The conclusion of the Lemma follows by letting » — 0 as € — 0. O

25



4.5 The function gy and the points {a, ..., @4, } minimize the renormalized energy

In the previous section, we obtained an expansion for the energy Fg(@e,Bg) of the model
problem. To summarize, using (7€), (8J) and Theorem [ we get that there are gy = lim tryp, 0.
and a = (ay, ..., aq,) € W s.t.

, b _ N
Fe(0e, By) = mdob? lng +md; hlg + W (e, o) + Wo(fo) + dob®y + 0-(1), (89)
with

W (e, go) = Wi(go) + Wa(ax, go).

The goal of this section is to underline an important property of the points a, namely, that they

minimize the quantity infjocce 95, s1) W(-,g%).
We have the following

Proposition 14. Let 3 = (51, ..., B4,) € w be a dy-tuple of distinct points and let g° € C°(0By,S")
be s.t. degyp, (¢°) = do. Then

W (e, g0) < W(8, ¢°).

Proof. Let (B3,¢°) be as in Proposition [[4. Using the test function given by ([[g), we obtain that
for all ¢ > 0 and r > 0 (small) there is w, € H} (Bg,(C) s.t.

. b ~ ~
Fe(we) = mdob’In 7 + mdf In £+ (B, g°) + Wolfo) +dob?y + hl + I}
here h! = o.(1) and h2 = O(r).
On the other hand, taking into account the minimality of 9. and (BY) we have
W(B,go) > W(Oé,g(]) + 08(1) + h%

The previous estimate implies (letting ¢ — 0 and r — 0) that W (3, ¢°) > W (e, go) which completes
the proof. O

Thus, for B = (b1, ..., Bd,) € w¥ we define

W) = inf  W(B8,§) = inf  Wi(§) + Wa(B,§ 90
(18) gECOO(thSI) (18 g) gEC‘X’(thgl) 1(9) 2(6 g) ( )
degaBl (9)=do degaB1 (9)=do

with Wi and Wy given by (fd) and ([7H) respectively. It follows that for o given by Theorem B and
go = trop, vo:

W(a) = W(a,go) < W(B) for all B = (B, ..., Bag,) € wP.

5 Proofs of Theorems [I] and
In this section v, is a minimizer of F. in Hgl(Q, C). We split the proofs of Theorem [] and B in
three steps:

e (Section p.I]) Using estimates on |v.|, we first localize the vorticity to the neighborhoods of
selected inclusions. Then we find two separate energy expansions in two sub-domains of Q: away
from the selected inclusions and around them.

e (Section f.J) We study the asymptotic behavior of v.. We prove that, for small ¢, v. has exactly
d zeros of degree 1.

e (Section [.J) We give an expansion of F.(v:) up to o.(1) terms and relate the choice of the
inclusions with vortices to the renormalized energy of Bethuel, Brezis and Hélein.
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5.1 Locating bad inclusions

The following result gives a uniform bound on the modulus of minimizers away from the inclu-
sions.

Lemma 7. There exists C > 0 s.t. for small ¢ we have
1. v >1=Cllng|~Y3 in Q\ UM, B(a;,0),

2. there are at most d points a;,,...,a;, (1 < d =d. <d) st {jv] <1— Cllne|71/3} C
Ul B(ai,, ).

Proof. Using Lemma [l with x = |Ine|~'/3, we obtain that there exist C,C; > 0 s.t. for & > 0
small,

if F.(v., B(z,Y%)) < HHE‘% — C) then |v| > 1 — Cy in B(x,e/?).

We prove 1. by contradiction. Assume that, up to a subsequence, there is z. € Q\ Uf\ilB (a;,9),
s.t. |ve(z:)| <1 —C|lne|~'/3 with C given by Lemma []. From Lemma [] and Proposition [

= 2, 1 22 1/3
2 1- > 1 — 1). 1
2/,3(%81/4) {’WE’ + 5 (1 = vel) }_ |Inel o(1) (91)

Fix a bounded, simply connected domain €’ such that Q C €', and extend v, by a fixed smooth
St-valued map v in '\ Q, s.t. v =g on 9. )
In view of ([L]) for Case I or () for Case II, there exists C' > 0 s.t. for small ¢

1 1 ~
3 [, Ve + gz = a?)? < Clincl

Therefore, the map v, in Q' satisfies the condition of Theorem 4.1 [R7]. This theorem guarantees
that

e there exists B° = {B5}, a finite disjoint covering of the set
{z € Q' |dist(w,0Q) > /b and |v(x)| < 1 — (¢/b)"/%},
e such that rad(B°) := >, rad(Bj) < 1072 - dist(w, 0B(0,1)) - 4,
e and, denoting d; = |degyp, (v-)| if B C {dist(z, ') > ¢/b} and d; = 0 otherwise, we have

1 b? )
5/wsyvq)gm2—62(1_\%\2)2 > xY dint - C
b J
= 7Y dj|ln¢|-C, (92)
J

with C independent of ¢.

Note that since |v:| =1 in @'\ Q, if d; # 0 then Bs C {dist(x, 0%') > ¢/b}. Consequently, we have
dj = ‘degaij. (ve)l-
Assertion 1. follows as in the proof of Proposition f| (use (P1]), (92) instead of (R() and (£3)).

The proof of Assertion 2. of Lemma [] goes along the same lines. O

We next obtain the following lower bounds for the energy.
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Lemma 8. For k € {1,...,d'}, we denote dj, = dj, = deg@B(aik ) (vz). There exist C,mo > 0 s.t. for
small € and p € [20,m0] we have

d
1
5 [ Vo2 > 7S d I p| - C (93)
2 Jo\uj_, Blas, ») part
and
F.(ve, B(a;, ,26)) > 7|dg|b?|In&| — C. (94)

Proof. Let ny = 10~2 min; {dist(a;, 9Q), min;4; |a; — a;|} and 0 < p < np.
We prove (BJ). By Lemma[q, [vs| > 1/2 in Q\U¢_, B(a;,, p), therefore, w, = ﬁ is well-defined

in this domain. From direct computations in B(a;,,n0) \ B(a;,, p) we have

d
1
—/ V. |? szdfln@. (95)
2 Q\nglB(aik 7/)) =1 p

We claim that the bound (P3) holds with C = |Inng|+ 1. Argue by contradiction: assume that up
to a subsequence we have:

d
Vo2 <oy d?m ™ -1, (96)
p

.
2 Q\U¢_, B(aiy, ,p) i=1

On the other hand, we have
‘V%‘Z = ‘Ua‘zlvwa‘z + ’v‘%HQ

and therefore

/ Vol > / Veoel? = (1 — [oel?)| Ve (97)
Q\Uzle(aik ,0) Q\Ug:IB(aik 0)

Using the fact that |v.| > % in Q\ U¢_, B(a;,, p) we see that |[Vw.| < 2|Vuv,|. Therefore, by (04),
(H) and Lemma [f] we estimate the last term in (P7):

1
(1 — [ve]?)|Vwe|? < C|Ine| "3 /Q wo 2 <o el g (98)

lns\%

/Q\U‘é_lB(aik ,0)

By combining (pg), (p7) and (Pg), we see that (96) cannot hold for small &; this implies (PJ).
We now prove (B4). Performing the rescaling & = %, we obtain

R 1 . 1 .
F-(v, B(a;, ,20)) = Fe(0, B(0,2)) = _/ U2|Vo]> + = UX(1 —|9]*)? ¢ d,
2 /B(0:2) 3

where, as in the model problem we set ©(Z) = v(d2) and £ = %

By Theorem 4.1 [R7], for r = 10=2 there are C > 0 and a finite covering by disjoint balls
By, ..., By (with the sum of radii at most r) of {& € B(0,2 —&/b)|1 — |0:(&)| > (£/b)/®} and

1 R v? R
5/ {ng\z + @(1 — ]1)5]2)2} > 1D|In¢| — C, (99)
U; B;

Dy =3 ;|m;| and

degaBj (ve) if dist(B;,0B(0,2)) > £/b
o .
I 0 otherwise

Since, by Lemma [J, |9:] > 1/2 in B(0,2)\ B(0,1), Dy > dy, and (p4) follows from (B9) and the
estimate Uz > b.
O
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Corollary 5. Assume that M > d. Then d' = d and dy, = 1 for each k.

Corollary 6. Assume that M < d. Then d = M and dj, € { [%} , [%] + 1} for each k.

Proof of Corollaries [f and [§. By combining (p3) and (p4) we obtain the lower bound for F. in Q:

M
F(v:) +C1 = 1y {degopsa,(0:)% 10 0] + b?|degap(a, o) (vo) | In €1 (100)
=1

The conclusions of the above corollaries are obtained by solving the discrete minimization problem

of the RHS of ([I00). O

As a direct consequence of Proposition f] and Lemma f, we have

Corollary 7. There is C' > 0 independent of € s.t. for 1 > p > 26 we have

dl
1
5/ VeePde = 7Y dillnp|+O(1)
Q\nglB(aik 7p) k=1
md|In p| + O(1) in Case I

M
~— )7 _ min Zc@z\ Inp|+O(1) in Case II

hdl,...,dMeZ i=1

di+...+dpr=d

5.2 Existence of the limiting solution

We now return to the proof of Theorems [I] and J.

Recall that {i7,...,75 } is a set of distinct elements of {1,..., M}. We choose € small enough so
that i;’s are independent of €, thus we may simply denote this set by {i1,...,i¢}. In Case I, we
have d’ = d and we may assume that {i1,...,ig} = {1,...,d}. In Case II, we have d' = M.

Lemma [§ and Corollary [ imply that for an appropriate extraction € = ¢, | 0 and for a compact
K c Q\{ai,..-,ai, }, there is Cx > 0 s.t. for small ¢ we have

Fa(vaaK) <Cg

and
lve(2)] > 1—C|lne|~'/3 for all z € K.

Therefore, when € — 0, up to a subsequence, there exists v* € HY(Q\ {a;, ..., a;, },S") s.t.
ve = vt € Hlloc(Q \ {a;,, ...,aid,}).

We now fix such sequence and a compact K C Q\ {aj,...,a;, }. If K C Q\ {a;,1 <i < M},
then we have K Nws =  for small e. By exactly the same argument as in Proposition [ we deduce
that v, is bounded in C*(K) for all £ > 0 and 1 — |v.|? < Cke? in K.

Consequently, up to subsequence we have for a compact set K C Q\ {aq,...,an}

ve = v* in C¥(K) and 1 — |v.|? < Cge?. (101)

Now, assume that K is s.t. K C Q\ {a;,,...,a;, } but K Nws # 0 (then we are in Case I). Without

loss of generality, assume K = B(ay,, R), where ag, € {ag41,...,an} and R > 0 is sufficiently small
in order to have K N{ay,...,an} = {ak, }-
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Let he := trggve. Since 0K C Q\ {ay,...,an }, we have he — hg in C*°(0K) (possibly after
passing to a subsequence). Since deg(h,0K) = 0 we have deg(hg, 0K ) = 0 and consequently there
is some g € C°(OK,R) s.t. hg = €0,

Let © be a minimizer of / |Vo|? in the class H} (K,S"). Clearly,
K

/|V17|2§/ |Vo*|?.
K K

On the other hand, since U. < 1, we may construct (in the spirit of [[[(]]) a test function and find
that (see formula (93) in [L0])

1
Fe(ve, K) < 5/ V| + Ce, (102)
K
where 1), is the solution of
AY.=0 in K
Ve =¢. ondK
Here, ¢, is defined by
' h
e = = on OK.
|he

As ¢ — 0, we have

AT/J():O in K

. 103
Yo =¢o ondK (103)

Y. — g strongly in H'(K), where {

From the fact that v. — v, in L*(K), U. — 1 in L*(K) and |U.| < 1 we have U2Vv, — v* in
L?(K). Consequently, we obtain

1 1
—/ |Vo*2 < liminf—/ U2|Vu.|? < liminf F. (v, K). (104)
2 K e—0 2 K e—0

Combining (103), (103) and ([104) we deduce that

/\w*y?g/ ywoy?:/ Vo2,
K K K

It follows that v* minimizes the Dirichlet functional in
Hj; (K,S") :={ve H(K,S"),v = hg on OK}.

We find that hence © = v* in K. By a classic result of Morrey 4] (see also [I(]]), v* satisfies ().
Moreover, as follows from weak lower semicontinuity of Dirichlet integral, (102), ([L03) and ([L04)

1 1
—/ |Vo*|? §liminf—/ |V, |? < limsup F.(v., K / |Vo* |2,
2 K e—=0 2 K e—0
Therefore,
ve converges to v* strongly in H'(K). (105)

From ([[0]]) and ([[0) we obtain that v. — v* in HL (Q\ {a1,...,az}). The convergence up to
0f) will be established in the next section.

In order to prove Assertion 3. of Theorem [] and Assertion 2. of Theorem [, note that, for
small p > 0, the estimate ([L01]) implies that f. := try Bl(ai, o) Ve Satisfies the conditions ([3) and ([4)
of Theorem . This gives us 3. of Theorem [ and 2. of Theorem B

Assertion 3. of Theorem [ is is a consequence of Corollary .
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5.3 The macroscopic position of vortices minimizes the Bethuel-Brezis-Hélein
renormalized energy

Let us recall briefly the concept of the renormalized energy W,((b1,d1), ..., (bg,dy)) with
g € C®(09Q,Sh) s.t. degyn(g) =d

b1,...,b, € Q, bl#b] fOI"L'#j
di€Zand ) ;d; =d

For small p > 0, consider 2, = Q\ U;B(b;, p) and the minimization problem

weHY(Q,,S!) s.t.
w=g on O
w(b;4pe?)=a;erdif a; €St

. 1
L((b1, o ), (A1 o i) = inf 5 [ v
Qp

Such problem is studied in detail in [[[1] (Chapter 1). In particular Bethuel, Brezis and Hélein
proved that for small p, we have

Ip((bl, ey bk), (dl, ey dk)) = Wd‘ In p’ + Wg((bl, dl), ey (bk, dk)) + Op(l).

This equality plays an important role in the study done in [[[I]]. In the minimization problem of
the classical Ginzburg-Landau functional

1 1
5 L {17uP + - P2 e

the vortices (with their degrees) of a minimizer tend to form (up to a subsequence) a minimal
configuration for W,,.
We prove in this section that the (macroscopic) location of the vorticity of minimizers of F is
related to the minimization problem of Wy((b1,...,bx), (d1,...,dy)) with by, ..., by € {a1,...,aprr}.
We present here the argument for Case I (Theorem [). The argument in Case II is analogous.
The proof of Assertion 4. relies on two lemmas, providing sharp upper and lower bounds.

Lemma 9. There exists pg > 0 s.t., for every p < pg and every € > 0, we have
F.(ve) < md|Inp| +dJ(e, p) + Wy((ai,, 1), ..., (aiy, 1)) + 0,(1), (106)

where J(e, p) = infueH;p(Bp(O)) Fe(u) with g, = % on 0B(0, p).

Proof. The proof, via construction of a test function, is the same as proof of Lemma VIII.1 in

(). O
Lemma 10. Let p >0, p < pg. Then for small € we have
FE(UE) = 7Td| lnp| + d‘](e’ IO) + Wg((ail’ 1)’ Tt (aid? 1)) + Oﬂ(l)' (107)

Proof. Split the domain (2 into two sub-domains: Q \ U;B(ag,, p) and U;B(ag,, p). We start with
the lower bound in the first sub-domain. By the previous estimate, v. weakly converges to v* in
HY(Q\ U;B(ag,, p)). This implies that

1 1
mmﬁ—/ l@W%PZ—/ |Vo* 2.
2 Q\UkB(aik ,0) 2 Q\UkB(aik P)

Here, we used the fact that, since Uz — 1in L*(2), |U.| < 1 and Vv, — Vo* in L2(Q\UB(a;,, p)),

we have U.Vv. — Vo* in L*(Q\ U B(a;,, p))-
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Thus we deduce that, for small ¢,

1 1
5/ U2[Vo. ]2 > 5/ Vo2 — 2. (108)
Q\Ug B(ai, .p) Q\Ug B(ai, .p)

On the other hand, as proved in [1]],

1 1
—/ IVo*|? > wdIn = + W, ((ai,, 1), .., (ai,, 1)) + 0,(1). (109)
2 Q\UgB(ai, ,p) p

Thus, combining ([L0§), (L09) and using Proposition , for ¢ sufficiently small, we have
S 1
F.(ve, 2\ UpB(a;,,p)) > mdIn g + Wy((@iy; 1), ...y (aiy, 1)) + 0,(1). (110)

By Theorem [| and Corollary ] we have the following energy expansion:
F.(ve, B(ai,,p)) = mlnp + 7b%| Ine| + (1 — b?)|In §| + W () + Wo(fo) + b2y +o:(1).  (111)
Similarly, applying Theorem [ to J(e, p) we obtain
J(e,p) = mlnp + nb?|Ine| + (1 — b3)|Ind| + W (a) + Wo(z/|2]) + by + 0. (1). (112)

Here, the local renormalized energy W (a) is given by (B0) and is the same in ([[11]) and ([13).
From ([3), Wo(fo) > 0 while WO(‘—;) = 0. Consequently, we have F;(v., B(a;,,p)) — J(&,p) >

0-(1). Hence Vp > 0 there exists €, > 0 s.t. for € < ¢, we have

Fe(ve,B(aik’p)) > J(e,p) - /02

and thus

FE(UE’UkB(aik’p)) > dJ(e,p) - dpz’ (113)
which gives the lower bound in the second sub-domain. From ([[10) and ([13) the bound ([[07)
follows. O

Combining Lemma [J] and Lemma [[0, we see that the points {ai,,1 < k < d} minimize W,
among aq, ..., aps. The expansion (f) follows from ([[06), (T07) and ([[13).

We next turn to convergence of v, up to the boundary. It suffices to prove the H'-convergence
of v. in Q, = Q\ Uy, B(ai,,,p) (for small p > 0). We argue by contradiction and we assume that
there are some p; > 0 and n > 0 s.t.

1 1
liminfg/ |Voe|? > 5/ |Vo* 2 + 1. (114)

P1 Qpl

Note that for all p < py, (L14) still holds in €2,,.

If, in the proof of Lemma [[(, we replace ([[0§) by ([14) (with p; replaced by p), then we obtain
for small p a contradiction with Lemma [|. The proof of Theorem [l] is complete. The last assertion
of Theorem [ is obtained along the same lines.

A Proof of Proposition 2

Let xg € Vg be s.t. Bgr = B(zg, R) C 2\ Wy and assume that z¢ = 0.
We follow the proof of Lemma 2 in [[[]].
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In Br, n =1 — U, satisfies

—e2An+tn=-n(n®>—-3n+2—1t) in By
n<1 on 0BR ’

here, t will be chosed later.
Since n € (0,1 —b), if we take ¢t = b(1 + b), then we have

—e2An+1tn < 0in Bg.
On the other hand, the function w(z) = e?(7*~F*) gatisfies

—2Aw + tw = [-4e*y(1 +7[z|*) +t]w in Bg
w=1 on 0Bg

A simple computation gives that

—e2Aw+tw > 0 in B —e+ Ve +tR?
S0<y<L
~v>0 2R2¢
Take
—e+Ve2 +tR?
vy = > 0.
2R2%e

Setting v = n — w, we have
—e?Av+tv <0 in Bg
v<0 on 0Bg.

By the maximum principle, we have v < 0 in Bgr. Therefore,

—c+VeZ2 +tR? } VIR
5

n(0) < exp {— 5 < Ce i,

Consequently, () holds in {z € Q|dist(z,0Q) > R, dist(z,ws) > R}. The estimate close to the 99
is a direct consequence of 0 < U, < 1, () holds in {z € Q|dist(z,09) > R,dist(x,ws) > R} and
the equation —AU, = 6—2UE(1 — |U:|?) in {z € Q|dist(z,ws) > R}. Using a similar argument, we
establish (J) in the case Vg Nws. The proof of (f]) is complete.

In order to prove ([[d), note that in Wg = {z € Q|dist(x,dws) > R,dist(z,0Q) > R} the
function n = a. — U, satisfies An = %(a? —U2). Thus, applying Lemma A.1 [[I(] to » in conjunction
with (f) and the fact that R > &, we obtain

cR

Cie =

V| < in Whg.

Thus ([L0) holds far away from 9 and the inclusions.
We next prove that the bound ([[(J) holds near 9.
Indeed, fix a smooth compact K C  s.t. for small § we have ws C K. Clearly, by (H),

cR

0 <nr :=trggn < Ce = . In Q\ K, n satisfies

An=%U(1+U)y inQ\K
n=20 on Of)
n="nNK on 0K
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Let n = m1 + 12 be s.t. 11 solves

Am=%U(1+U)y inQ\K
m =0 on 0Q U IOK

and 7)o satisfies
An =0 in Q\K
n2 =0 on 0f)
ne =nk on K

cR

Note that ||n2]|z~ < Ce™ %" and thus lm|lre < Ce™ <.

Lemma A.2 in [[[(] implies the existence of a constant Co\x > 0 s.t.
_cR
CQ\ K€

In order to estimate Vg near 02, we express 72 in terms of Green’s function G(z,y) in Q\ K:
function, i.e.

mle) == [ )G @)ds) (115)

It follows from ([[15) and (ff) that V| < C’Oef% away from OK. The estimate ([[() is proved.

B Proof of Proposition

This appendix is devoted to the proof of Proposition [
We prove the first assertion: when M > d we have

inf  F.(v,Q) < wdb?|In&| + wd| Ind| + O(1).
it F(0.9) < ma ]+ wd nd]+ O()
Fix first d distinct points-centers of inclusions a1, ..., ag. Let pg := 10~2-min(dist(a;, 99), min;; |a;—
aj| > 0). Consider ¥ to be a smooth fixed function in Q \ U4, B(a;, po), such that [3] = 1 in
Q\ UL, B(a;, po) and

V=g on 0f)
o(z) = 2% on dB(a;,po)

T |x—ay]

Such a function clearly exists since the compatibility condition degyn(g) = Z?Zl degaB(a;,po) (V) 8
satisfied. Let ¢g = 1072 - dist(0, Ow). For every 1 <i < M, consider a disc B(a;, cpd) C wi. By the
choice of ¢g, we have dist(Ows, B(ai, cpd)) > cod. Therefore, using Proposition J

U2 —p? < Ce % in Bl(a;, cod). (116)
Consider the test function v§ defined as

0(z) for z € Q\ UiB(as, po)
xr — a; J—
vi(z) = 7= a for x € B(a;, po) \ B(ai,€)

Tr — a;

for € B(a;,¢)
£

Using ([L16) and (H]) we have

inf F. Q) < F.(2§
veglgl(ﬂ) =(v,Q) < 6(”0)

IN

mdb?|Ine| + wd(1 — b?)|In§| + C = wdb*| In&| 4 md|In 8| + C.
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Now we prove the second assertion: when M < d we have

inf  F.(v,Q) < mdb?|1 d?|Iné| + C.
oo Pl @) < |n£|+w§ijz|n|+

Let dy,...,dy € Nbes.t. S2d; =d. Set ¢g = 1072 - dist(0, 0w). For i € {1,..., M} s.t. d; >0,
fix a14,..., 4,5 € B(0, 10%¢) C w s.t.

min (rrig loji — o il dist(aj,i,(?w)> > 4cg.
J

Consider an e-dependent map o5 € H*(Q \ Ug,~0B(a;, 10%¢d),St) s.t.

U5 =9 on 02

Ug(x) = on dB(a;, 10%cy0)

and satisfying

/ IVEgl? <7 df|Ind|+C
Q\Udi>QB(a¢,10d005)

with C' depending only on 2, w and g.
(Such maps do exist, e.g., consider the map introduced in [L1]], Remark 1.5.)
For i € {1,..., M} s.t. d; > 0, we consider a map v{ € H'(B(0,10%;) \ U;l"le(aj,i,{),Sl) s.t.

o V5 (z) = xdi/]x\di on 0B(0, 1Odco)7

o v§(z) = (v —aj;)/|x — | on OB(ay4,8),

. / |Vvi|? < md;|In €| + C with C' depending only on w.
B(Ovlodco)\UjilB(aj,mﬁ)

(For example, the map considered in Remark 1.5 in [[L]] has these properties).
The necessary test function that satisfies the bound ([[J) is obtained by rescaling the v{’s (in
order to have maps defined in balls of size §) and gluing the rescaled maps with vg.

C Proof of the n-ellipticity Lemma

The main argument in the proof of the n-ellipticity result is the following convexity lemma
which is a generalization of Lemma 8 in [fJ]. The proof of Lemma [[1] is given in [Ig].

Lemma 11. [Convexity Lemma]/

Let C be a chord in the closed unit disc, C' different from a diameter. Let S be the smallest of
two regions enclosed by the chord and the boundary of the disc.

Let O be a Lipschitz, bounded, connected domain and let g € C(00,S).

Assume that v minimizes Ginzburg-Landau type energy

(o) = /O {a@)| Vo + B@)1 — o7} do

n Hgl(O), with &, B € L®(0,R) satisfying essinf@ > 0, essinf3 > 0. Then v(0) C S.
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We prove the first part of the lemma [ Let x € Q be s.t. dist(x,0Q) > el/4. We have

b 1
R 2 [ figups Sa- )
B(z,e'/*)\B(z,e/?)

bt 1
5[] {ng;? L1 oy }
el/2 T OB(x,r)

By Mean Value theorem, exists r € (¢1/2,£1/4) s.t

1 2F (v, B(z,e'/4
r/ {!V%!Q (1—\05! ) }S il = ( )).
OB(z,r)

Z’h’lg‘

There is Cy = Ca(x,b) > 0 s.t if F.(v., B(z,/%)) < x?|Ine|, we have
Var(ve, 0B(x,r)) < Cax, where Var (ve,0B(z,r)) := / |0-ve]. (117)
OB(z,r)

It follows that
|v€|2 >1—3Csx on 0B(z,T). (118)

Indeed, arguing by contradiction, assume that there is ¢, | 0 and y,, € dB(z,7) s.t. |vz, (yn)]? <
1 —3C2x. Using ([LI7) we obtain that

[v., | <1 — Cyx on dB(z,r)
which implies that

1 227212
27702)( an( 2 < ol

r
< = (1~ Joe,[)?
€n JOB(x,r)
%FEn(v5n7B(x7€n1/4)) < 8_
- Hne,| b

Clearly, the previous assertion gives contradiction.
From ([[17) and ([L1§), there is C = C(x,b) > 0 and &g = go(x) > 0 s.t. for € < &,

ve : 0By = {z € By |Rz >1—-Cx}.

Using Convexity Lemma (Lemma [[1]), we find that |v.| > 1 — Cx in B(z,r) D B(z,&%/?).
If dist(z,09) < /4, we denote S, = QN IB(z,r), r € ('/2,e1/4). Clearly, we have

cl/4

el/2 T

Using mean value argument and the facts that g. — go in C1(99Q,S') and that 0 < 1 — |g.| < ¢,
there are 7 € (£'/2,e'/4) and C; = C1(||gollc1, Q) s.t

1 F:(ve, B(z,e'/) + C
7“/ {‘({9 1)5’2 (1_ ’Ue’ ) }S b E(UE (x 9 ))+ 1.
(B(z,r)NQ)

HInel

Using the same argument as before (taking O = QN B(x,r)) we obtain the desired result.
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We prove the second part of the lemma. Let € (0,1) and z € {dist(z,d9) > £'/*}. Using
mean value argument, there is r € (¢1/2,1/4) s.t

1 2F (ve, B(x,el/%
7“/ {’vvel2+_2(1 _ ‘05’2)2} < b 5( 51 ( ))
OB(x,r) € il Ine|

There exists C; = C (i, b) > 0 s.t if Fi(ve, B(z,eY/*)) < Cy|Inel, we have

1—
Var(ve, 0B(x, 1)) < P oand 1— lve| < Eon 0B(z,r).
By Convexity Lemma |v.| > p in B(z,r) D B(z,&/?).

If dist(z,09) < £'/4, denote S, = QN IB(z,r), r € (¢1/2,e1/*). Since
c1/4

2 — 1 1
PR Bl N\ B ) 2 [ Lorar [ {190p e S0 P

el/2 T

and using the conditions on g., by mean value argument there is r € (61/2, 61/4) s.t

1 2F (v, B(z,e/%)) + C ,Q
r/ {|8Tv€|2 + 51— |v€|2)2} < b = (ve, B( : )+ C(llgollc )‘
A(B(z,r)NQ) € 7l Ine|

Using the same argument as before, the statement of the lemma follows.
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