
HAL Id: hal-00578417
https://hal.science/hal-00578417v1

Submitted on 20 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniform resolvent estimates for a non-dissipative
Helmholtz equation

Julien Royer

To cite this version:
Julien Royer. Uniform resolvent estimates for a non-dissipative Helmholtz equation. Bulletin de la
société mathématique de France, 2014, 142 (4), pp.591–633. �hal-00578417�

https://hal.science/hal-00578417v1
https://hal.archives-ouvertes.fr


UNIFORM RESOLVENT ESTIMATES FOR A NON-DISSIPATIVE

HELMHOLTZ EQUATION

JULIEN ROYER

Abstract. We study the high frequency limit for a non-dissipative Helmholtz equation. We
first prove the absence of eigenvalue on the upper half-plane and close to an energy which
satisfies a weak damping assumption on trapped trajectories. Then we generalize to this
setting the resolvent estimates of Robert-Tamura and prove the limiting absorption principle.
We finally study the semiclassical measures of the solution when the source term concentrates
on a bounded submanifold of Rn.

1. Introduction and statement of the main results

The purpose of this paper is to study on Rn, n > 1, the high frequency limit for the Helmholtz
equation in a non-dissipative setting. After rescaling, this equation can be written

(Hh − E)uh = fh, where Hh = −h2∆+ V1(x) − ihV2(x). (1.1)

We recall that this equation models for instance the propagation of the electromagnetic field of
a laser in an inhomogeneus material medium. In this setting V1(x) − E is linked to the refrac-
tion index, V2(x) is the absorption index and fh is the source term. The parameter h > 0 is
proportional to the wavelength. In this paper we are interested in the asymptotic behavior of
the solution uh when h goes to 0.

The domain of Hh is the Sobolev space H2(Rn). All along this paper, we assume that V1 and
V2 are bounded and go to 0 at infinity. This implies in particular that the essential spectrum
of Hh is R+ as for the free laplacian. Our purpose is to study the resolvent (Hh − z)−1, where
z ∈ C+ = {Im z > 0} is close to E ∈ R

∗
+. We prove some estimates for this resolvent uniform in

the spectral parameter z, in order to obtain the limiting absorption principle and then existence
and uniqueness of an outgoing solution uh for (1.1). We also control the dependance in h of
these estimates. This gives an a priori estimate for the size of uh when h goes to 0. Note that it
is not clear that the resolvent is well-defined. More precisely the operator Hh may have isolated
eigenvalues in a strip of size O(h) around the real axis. Therefore we first have to prove that it
cannot happen where we study the resolvent.

Let δ > 1
2 . In the self-adjoint case (V2 = 0) it is known that there exist a neighborhood I of

E, h0 > 0 and c > 0 such that

∀h ∈]0, h0], sup
Re z∈I
Im z 6=0

∥

∥

∥〈x〉−δ (Hh
1 − z)−1 〈x〉−δ

∥

∥

∥

L(L2(Rn))
6
c

h
(1.2)

if and only if the energy E is non-trapping. Here we denote by Hh
1 the self-adjoint Schrödinger

operator −h2∆ + V1(x), by L(L2(Rn)) the space of bounded operators on L2(Rn), and 〈x〉 =
(

1 + |x|
)

1
2 . D. Robert and H. Tamura [RT87] proved that the non-trapping condition is suffi-

cient and X.P. Wang [Wan87] proved its necessity. In fact, if the non-trapping condition is not
satisfied then the norm in (1.2) is at least of size |lnh| /h (see [BBR10]).

For this result and all along this paper the potential V1 is assumed to be of long range: it is
smooth and there exist constants ρ > 0 and cα > 0 for α ∈ Nn such that

∀α ∈ N
n, ∀x ∈ R

n, |∂αV1(x)| 6 cα 〈x〉−ρ−|α|
.
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Let p : (x, ξ) 7→ ξ2 + V1(x) be the semiclassical symbol of H1 on R
2n ≃ T ∗

R
n and φt the

corresponding hamiltonian flow. For any w ∈ R2n, t 7→ φt(w) =
(

x(t, w), ξ(t, w)
)

is the solution
of the system







∂tx(t, w) = 2ξ(t, w),

∂tξ(t, w) = −∇V1(x(t, w)),
φ0(w) = w.

(1.3)

We recall that E > 0 is said to be non-trapping if

∀w ∈ p−1({E}), |x(t, w)| −−−−→
t→±∞

+∞.

For I ⊂ R, we introduce the following subsets of p−1(I):

Ω±
b (I) =

{

w ∈ p−1(I) : sup
t>0

|x(±t, w)| <∞
}

,

Ωb(I) = Ω−
b (I) ∩ Ω+

b (I),

Ω±
∞(I) =

{

w ∈ p−1(I) : |x(±t, w)| −−−−→
t→+∞

+∞
}

.

In [Roy10a] we considered the dissipative case V2 > 0. We proved (1.2) for Im z > 0 under a
damping assumption on trapped trajectories:

∀w ∈ Ωb({E}), ∃T ∈ R, V2
(

x(T,w)
)

> 0. (1.4)

This generalizes the usual non-trapping condition since we recover the condition that there is no
trapped trajectory when V2 6= 0.

To prove this result we developped a dissipative version of Mourre’s theory [Mou81], which
we applied to the dissipative Schrödinger operator. For this we constructed an escape function
as introduced by Ch. Gérard and A. Martinez [GM88], using the damping assumption to allow
trapped trajectories. Note that L. Aloui and M. Khenissi also proved some resolvent estimates
for a dissipative Schrödinger operator in [AK07]. They need a similar assumption but used a
different approach (see below).

We know that assumption (1.4) is both sufficient and necessary in the dissipative setting. Our
purpose is now to relax the dissipative condition, allowing negative values for the absorption
index V2. This means that the Schrödinger operator Hh is not only non-selfadjoint but also
non-dissipative.

If V2 can take negative values, the damping assumption need reformulating. The condition
we are going to use in this paper is the following:

∀w ∈ Ωb({E}), ∃T > 0,

∫ T

0

V2(x(t, w)) dt > 0. (1.5)

This condition is in particular satisfied when V2 > 0 and (1.4) holds. From this point of view,
the results we are going to prove here are stronger than those given in the dissipative setting.

In this setting we cannot use the dissipative version of Mourre’s commutators method. We
use the same approach as in [AK07] instead. The idea is due to G. Lebeau [Leb96] and N. Burq
[Bur02]. It is a contradiction argument. We consider a family of functions which denies the
result, a semiclassical mesure associated to this family and finally we prove that this measure
is both zero and non-zero. This idea was used in [Bur02] for a general self-adjoint and com-
pactly supported perturbation of the laplacian. In [Jec04], Th. Jecko used the argument to give
a new proof of (1.2) with a real-valued potential. The motivation was to give a proof which
could be applied to matrix-valued operators. To allow long range potentials, the author intro-
duced a bounded “escape function”which we use here. The method was then used in [CJK08] for
a potential with Coulomb singularities and in [Jec05, FR08, DFJ09] for a matrix-valued operator.

Let us now state the main results about the resolvent. An important difference with the
dissipative case is that we do not know if the resolvent is well-defined, even on the upper half-
plane C+. So in the results we state now, we first claim that Hh has no eigenvalue in the
considered region and then give an estimate for the resolvent. The first theorem is about spectral
parameters whose imaginary parts are bigger than βh for some β > 0:
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Theorem 1.1. Suppose V2 is smooth with bounded derivatives and V2(x) → 0 when |x| → +∞.
Let E > 0 be an energy which satisfies the damping assumption (1.5) and β > 0. Then there
exist a neighborhood I of E, h0 > 0 and c > 0 such that for h ∈]0, h0] and

z ∈ CI,hβ = {z ∈ C : Re z ∈ I, Im z > hβ}

the operator (Hh − z) has a bounded inverse and

∥

∥(Hh − z)−1
∥

∥

L(L2(Rn))
6
c

h
.

Note that this result is obvious when Hh is self-adjoint or at least dissipative. We can take
c = β−1 in these cases.

In a second step we study the resolvent up to the real axis, generalizing (1.2). Now V2 has to
be of short range, which means that there exist ρ > 0 and constants cα > 0 for α ∈ N such that

∀α ∈ N
n, ∀x ∈ R

n, |∂αV2(x)| 6 cα 〈x〉−1−ρ−|α| .

Theorem 1.2. Assume that V2 is of short range. Let E > 0 satisfy the damping assumption
(1.5) and δ > 1

2 . Then there exist a neighborhood I of E, h0 > 0 and c > 0 such that for
h ∈]0, h0] and

z ∈ CI,+ = {z ∈ C : Re z ∈ I, Im z > 0}
the operator (Hh − z) has a bounded inverse and

∥

∥

∥〈x〉−δ (Hh − z)−1 〈x〉−δ
∥

∥

∥

L(L2(Rn))
6
c

h
.

The proof of this theorem is inspired from [Jec04]. In particular we use a bounded escape
function at infinity to prove that the semiclassical measure we study is non-zero. But contrary
to the selfadjoint case (this could also be done in the dissipative case) we cannot use this escape
function to prove that this measure is supported in a compact subset of R2n. We use instead
the estimate for the outgoing solution to the Helmholtz equation in the incoming region proved
in [RT89].

As in the dissipative case we have only given a result on the upper half-plane. Here we
have no assumption about the sign of V2, but there still is a damping condition in (1.5). The
difference with the dissipative context is that we recover a symmetric situation under the stronger
non-trapping condition, so that the result we have proved for Im z > 0 now holds for Im z < 0:

Corollary 1.3. Assume that V2 is of short range. Let E > 0 be a non-trapping energy and
δ > 1

2 . Then there exist a neighborhood I of E, h0 > 0 and c > 0 such that for h ∈]0, h0],
Re z ∈ I and Im z 6= 0 the operator (Hh − z) has a bounded inverse and

∥

∥

∥
〈x〉−δ (Hh − z)−1 〈x〉−δ

∥

∥

∥

L(L2(Rn))
6
c

h
.

Once we have the uniform resolvent estimates, we can prove the limiting absorption principle.
This question has been studied for a long range self-adjoint Schrödinger operator in [IS72] and
[Sai79]. It is proved that the equation (H − E)u = f has a unique outgoing solution u ∈
H2

loc(R
n) ∩ L2,−δ(Rn) when f ∈ L2,δ(Rn), and this solution is given as the limit in L2,−δ(Rn)

of (H − z)−1f when z ∈ C+ goes to E (we do not work in the semiclassical limit here, so we
only consider the case h = 1). An outgoing solution is a solution which satisfies a radiation
condition of Sommerfeld type at infinity (see Definition 6.2). The strategy is to prove first
uniqueness of an outgoing solution. This is used to prove resolvent estimates, and then we can
get the limiting absorption principle. The result has been extended to the non-selfadjoint case
in [Sai74]. Y. Saito proves that when the potential has a short range imaginary part, the result
can be extended where we have uniqueness of the ougoing solution, which no longer holds for
any E > 0. Here we consider the case where the dissipative part has a long range positive part
and a short range negative part. Contrary to these papers, we use the fact that we already have
uniform resolvent estimates to obtain uniqueness of the outgoing solution and then the limiting
absorption principle. With Theorem 1.2 we obtain the following result:
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Theorem 1.4. Let V2, E and δ be as in Theorem 1.2. Then there exist a neighborhood I of E
and h0 > 0 such that for any h ∈]0, h0], λ ∈ I and f ∈ L2,δ(Rn) the limit

lim
z→λ
z∈CI,+

(Hh − z)−1f

exists in L2,−δ(Rn) and defines the unique outgoing solution for the equation (Hh−λ)u = f (see
Definition 6.2).

Note that when the dissipative part V2 is non-negative we can prove directly uniqueness of
the outgoing solution and hence we can proceed as in the self-adjoint case (see Proposition 6.9).

Now that the outgoing solution

uh = (Hh − (E + i0))−1fh

is well-defined in L2,−δ(Rn) for any h ∈]0, h0] (h0 > 0 being given by Theorem 1.4) and fh ∈
L2,δ(Rn), we can study its semiclassical measures when the source term fh concentrates on a
submanifold of Rn. We recall that a measure µ on the phase space T ∗Rn ≃ R2n is said to be
a semiclassical measure for the family (uh)h∈]0,h0] if there exists a sequence (hm)m∈N

∈]0, h0]N
such that

hm −−−−→
m→∞

0 and ∀q ∈ C∞
0 (R2n),

〈

Opwhm
uhm

, uhm

〉

−−−−→
m→∞

∫

R2n

q dµ.

Here Opwh (q) denotes the Weyl h-quantization of the symbol q:

Opwh (q)u(x) =
1

(2πh)n

∫

Rn

∫

Rn

e
i
h
〈x−y,ξ〉q

(x+ y

2
, ξ
)

u(y) dy dξ.

We will also use the standard quantization:

Oph(q)u(x) =
1

(2πh)n

∫

Rn

∫

Rn

e
i
h
〈x−y,ξ〉q(x, ξ)u(y) dy dξ.

The first paper in this direction is [BCKP02], where fh is assumed to concentrate on Γ = {0}
as h goes to 0 (see also [Cas05]). This was extended in [CPR02, WZ06] to the case where fh
concentrates on an affine subspace Γ in Rn. J.-F. Bony gives in [Bon09] another proof for the
case Γ = {0} using different assumptions and above all a different approach. We used this point
of view in [Roy10b] to deal with the case where the absorption index is non-constant and Γ is
any bounded submanifold of dimension d ∈ J0, n− 1K in Rn. Trapped trajectories of energy E
for the classical flow were allowed under assumption (1.4). Our purpose here is to check that
this result still holds –under hypothesis (1.5)– when V2 takes negative values. The proof is ac-
tually approximately the same. We will have to prove the estimates in the incoming region in
this non-dissipative setting (see Theorem 4.1) and be careful with the fact that the semi-group
generated by Hh is no longer a contraction semi-group.

Throughout this paper we denote by C∞
0 (Rn) the set of smooth and compactly supported

functions on Rn, by C∞
b (Rn) the set of smooth functions whose derivatives are bounded, and

S(Rn) is the Schwartz space. For δ ∈ R, we denote by S
(

〈x〉δ
)

the set of symbols a ∈ C∞(R2n)
such that

∀α, β ∈ N
n, ∃cα,β > 0, ∀(x, ξ) ∈ R

2n,
∣

∣

∣∂αx ∂
β
ξ a(x, ξ)

∣

∣

∣ 6 cα,β 〈x〉δ .
We also denote by Sδ(R2n) the set of symbols a ∈ C∞(R2n) such that

∀α, β ∈ N
n, ∃cα,β > 0, ∀(x, ξ) ∈ R

2n,
∣

∣

∣
∂αx ∂

β
ξ a(x, ξ)

∣

∣

∣
6 cα,β 〈x〉δ−|α| .

For R > 0 we denote by BR the open ball of radius R in Rn, by BcR its complement in
R
n, and by SR the sphere of radius R, endowed with the Lebesgue measure. We also set

Bx(R) = {(x, ξ) : |x| < R} ⊂ R2n.

In Section 2 we recall some properties the flow φt defined by (1.3) and discuss assumption
(1.5). Section 3 is devoted to the proof of Theorem 1.1. Before giving a proof of Theorem 1.2
in Section 5, we state a non-dissipative version for the estimate of the outgoing solution for the
Helmholtz equation in the incoming region (see Section 4). With the uniform resolvent estimates,
we prove the limiting absorption principle in Section 6. We finally show in Section 7 that the
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result known for the semiclassical measure for the outgoing solution of (1.1) when the source
term concentrates on a bounded submanifold of Rn remains valid in our non-dissipative setting.

Acknowledgement. This work is partially supported by the French National Research Project
NONAa, No. ANR-08-BLAN-0228-01, entitled Spectral and microlocal analysis of non selfadjoint
operators.

2. More about classical dynamics and the weak damping assumption

The good properties of the flow at infinity come from the fact that for any ν > 0 there exists
R > 0 such that

∀x ∈ R
n, |x| > R =⇒ |V1(x)|+ |x| |∇V1(x)| < ν. (2.1)

This means that far from the origin the refraction index has low influence on the flow and hence
the classical trajectories behaves as in the free case.

In particular for J = [E1, E2] ⊂ R∗
+ and R such that (2.1) holds for ν = 2E1

3 , we have

∂2t |x(t, w)|2 > 8E1 − 12ν > 0 if p(w) ∈ J and |x(t, w)| > R. As a consequence a classical
trajectory of energy E ∈ J which leaves Bx(R) cannot come back and goes to infinity. This
implies that

p−1(J) = Ω+
b (J) ⊔ Ω+

∞(J) = Ω−
b (J) ⊔ Ω−

∞(J) = Ωb(J) ∪ Ω+
∞(J) ∪ Ω−

∞(J).

Moreover Ω±
b (J) is closed in R2n and Ωb(J) ⊂ Bx(R) is compact. If B± is a bounded subset of

Ω±
b (J), we choose R such that (2.1) holds for ν = 2E1

3 and B± ⊂ Bx(R) to prove that the set
{

φ±t(w), t > 0, w ∈ B±

}

is bounded in R2n.

For R > 0, d > 0 and σ ∈ [−1, 1] we denote by

Z±(R, d, σ) =
{

(x, ξ) ∈ R
2n : |x| > R, |ξ| > d and 〈x, ξ〉 R σ |x| |ξ|

}

the incoming and outgoing regions. The proposition we prove now ensures that a trajectory
starting outside some incoming region and far enough from the origin stays away from the
influence of V1:

Proposition 2.1. Let E2 > E1 > 0, J ⊂ [E1, E2] and σ ∈ [0, 1[ such that σ2E2 < E1. Then
there exist R > 0 and c0 such that

∀t > 0, ∀(x, ξ) ∈ Z±(R, 0,∓σ) ∩ p−1(J), |x(±t, x, ξ)| > c0(t+ |x|).

Proof. Let R̃ such that (2.1) holds for ν ∈
]

0, 2E1

3

[

so small that

ν̃ = 1− σ2 E2 + ν

E1 − 3
2ν

> 0.

Let R be greater than R̃/
√
ν̃ and (x, ξ) ∈ Z±(R, 0,∓σ) ∩ p−1(J). Suppose there exists t > 0

such that |x(±t, x, ξ)| < R̃ and let

t0 = inf
{

t > 0, |x(±t, x, ξ)| < R̃
}

.

Let E3 = E1 − 3
2ν > 0. For t ∈ [0, t0] we have ∂2t |x(±t, x, ξ)|2 > 8E3 and hence

|x(±t, x, ξ)|2 > |x|2 − 4tσ |x| |ξ|+ 4E3t
2 > |x|2

(

1− σ2 |ξ|2
E3

)

> |x|2 ν̃ > R̃2.

This gives a contradiction when t = t0. This proves that these inequalities actually hold for all
t > 0. We also have

∀t > 2σ |x| |ξ|E3, |x(±t, x, ξ)|2 − |x|2 − 2E3t
2 > 2t(E3t− 2σ |x| |ξ|) > 0,

which concludes the proof. �



6 JULIEN ROYER

We now discuss assumption (1.5). We still denote by V2 the function (x, ξ) 7→ V2(x) on R
2n.

We first remark that since (x, ξ) and (x,−ξ) are simultaneously in Ωb({E}), assumption (1.5)
could be equivalently formulated looking at trajectories in the past:

(1.5) ⇐⇒ ∀w ∈ Ωb({E}), ∃T ∈ R, V2
(

x(−T,w)
)

> 0. (2.2)

Using compactness of Ωb([E/2, 2E]), we can also check that assumption (1.5) is an open property:

Proposition 2.2. If assumption (1.5) holds for some E > 0, then it also holds for any λ in
some neighborhood of E.

We now prove that assumption (1.5) ensures that the absorption is positive on trapped tra-
jectories “on average” in time.

Proposition 2.3. Let J ⊂ R∗
+ be such that assumption (1.5) holds for any λ ∈ J . Then for all

compact K ⊂ Ω±
b (J) there exist c0 > 0 and C > 0 such that

∀t > 0, ∀w ∈ K,

∫ t

0

(V2 ◦ φ±s)(w) ds > c0t− C.

Remark 2.4. This proposition implies that

∀w ∈ Ω±
b (J), lim inf

t→+∞

1

t

∫ t

0

(V2 ◦ φ±s)(w) ds > 0.

The claim that the average in time of the absorption is positive on trapped trajectories becomes
clear on periodic trajectories. If w ∈ p−1(J) and T > 0 are such that φT (w) = w, then

∫ T

0

(V2 ◦ φt)(w) dt > 0.

To prove this we only have to apply (1.5) to w0 = φt0(w) ∈ Ωb({E}), where t0 ∈ [0, T ] is the

time for which t 7→
∫ t

0 V2(x(s, w)) ds reaches its maximum.

Proof of Proposition 2.3. Since K is compact we can asssume without loss of generality that J
is a compact subset of R∗

+.

1. Let w ∈ Ωb(J). By assumption there exist Tw, γw > 0 such that
∫ Tw

0

(V2 ◦ φ±s)(w) ds > 2γw.

Since the left-hand side is a continuous function of w, we can find a neighborhood Vw of w in
R2n such that for all v ∈ Vw we have

∫ Tw

0

(V2 ◦ φ±s)(v) ds > γw.

As Ωb(J) is compact, it is covered by a finite number of such sets Vw. Hence we can find
T1, γ1 > 0 such that

∀w ∈ Ωb(J), ∃t ∈ [0, T1],

∫ t

0

(V2 ◦ φ±s)(w) ds > γ1.

2. Let ν =
2+T1‖V2‖

∞

γ1
and T2 := T1 (1 + ν). Let w ∈ Ωb(J). We set t0 = 0 and for all k ∈ N we

consider by induction tk+1 ∈]tk, tk + T1] such that
∫ tk+1

tk

(V2 ◦ φ±s)(w) ds > γ1.

We necessarily have tk+1 > tk + γ1/ ‖V2‖∞ for all k ∈ N, and hence tk → +∞ (if V2 = 0 the
statement of the proposition is empty). In particular any t > 0 belongs to ]tk, tk + T1] for some
k ∈ N. Let t > T2 and N ∈ N such that t ∈]tN , tN + T1]. We have N > ν and hence

∫ t

0

(V2 ◦ φ±s)(w) ds >
N−1
∑

k=0

∫ tk+1

tk

(V2 ◦ φ±s)(w) ds +
∫ t

tN

(V2 ◦ φ±s)(w) ds > Nγ1 − T1m−,
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where m− = − inf V2. This proves that

∀w ∈ Ωb(J), ∀t > T2,

∫ t

0

(V2 ◦ φ±s)(w) ds > 2.

3. By continuity, there exists a neighborhood U of Ωb(J) such that

∀w ∈ U ,
∫ T2

0

(V2 ◦ φ±s)(w) ds > 1.

4. Now let K be a compact subset of Ω±
b (J). We prove by contradiction that there exists TK > 0

such that φ±t(w) ∈ U for all w ∈ K and t > TK . If it is not the case we can find sequences
(tm)m∈N

and (wm)m∈N
with wm ∈ K and tm → +∞ such that φ±tm(wm) /∈ U . Each term

of the sequence (φ±tm(w))m∈N belongs to the bounded set
⋃

t>0 φ
±t(K), so after extracting a

subsequence if necessary, we can assume that it converges to

w∞ ∈ Ω±
b (J) \ U ⊂ Ω∓

∞(R).

Let R be such that (2.1) holds for ν = 2 inf J/3 > 0 and K ∪ {w∞} ⊂ Bx(R). There exists
T∞ > 0 such that |x(∓T∞, w∞)| > 2R. By continuity and properties of R, we can find a neigh-
borhood V ⊂ Bx(R) of w∞ such that |x(∓t, v)| > 2R for all v ∈ V and t > T∞. Hence for large
m we have φ∓tm(V) ∩K = ∅, and in particular φ±tm(wm) /∈ V . This gives a contradiction.

5. Let w ∈ K, t > TK and N be the integer part of t−TK

T2
. We have

∫ t

0

(V2 ◦ φ±s)(w) ds

>
∫ TK

0

(V2 ◦ φ±s)(w) ds +
N−1
∑

k=0

∫ TK+(k+1)T2

TK+kT2

(V2 ◦ φ±s)(w) ds +
∫ t

TK+NT2

(V2 ◦ φ±s)(w) ds

> −TKm− +N − T2m−

> −TKm− +
t− TK
T2

− 1− T2m−.

Since this integral is not less than −TKm− when t ∈ [0, TK ], this gives the result with c0 = 1/T2
and C = 1 + (TK + T2)m− + T/T2. �

We are going to use in section 7 a more precise result:

Proposition 2.5. Let R > 0 and J ⊂ R∗
+ such that assumption (1.5) holds for any λ ∈ J .

Then for any compact subset K̃ of p−1(J) there exist c0, C > 0 such that

∀t > 0, ∀w ∈ K̃,

∫ t

0

(V2 ◦ φ±s)(w) ds > c0t− C or |x(±t, w)| > R.

If K ⊂ Ω±
b (J) this comes from Proposition 2.3, and if K ⊂ Ω±

∞(J), the second conclusion
holds for t large enough, uniformly in w ∈ K, and the first conclusion is always true for finite
times. The problem therefore comes from the boundary between Ω±

b (J) and Ω±
∞(J).

Proof. As above we may assume that J is compact. Since the conclusion is stronger if R is
taken larger, we may assume that (2.1) holds for ν = 2 inf J/3. Let K = K̃ ∩ Ω±

b (J). K is a

compact subset of Ω±
b (J). We use the notation introduced in the proof of Proposition 2.3. We

know that there exists TK > 0 such that φ±t(w) ∈ U for all t > TK and w ∈ K. By continuity

of the hamiltonian flow, there exists a neighborhood V of K in K̃ such that φ±TK (w) ∈ U for all
w ∈ V .

We now prove that there exists Tf > 0 such that for all w ∈ V \ K ⊂ Ω±
∞(J) we can find

τw > TK which satisfies:

∀t ∈ [TK , τw], φ±t(w) ∈ U and ∀t > τw + Tf , |x(±t, w)| > R. (2.3)

This means that even if we cannot say when a trajectory coming from V \K will leave Bx(R),
we control the time it can stay in Bx(R) \ U .

Assume that we cannot find Tf such that (2.3) holds. Then we can find a sequence (wm)m∈N

of elements in V \K and times tm > TK , θm > m for m ∈ N such that

φ±tm(wm) /∈ U and ∀t ∈ [tm, tm + θm], |x(±t, wm)| 6 R.
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After extracting a subsequence if necessary, we may assume that wm converges to w∞ ∈ K̃.
If w∞ ∈ Ω±

∞(J) then there exist T∞ > 0 and a neighborhood W of w∞ such that |x(±t, v)| > R
for all t > T∞ and v ∈ W , which is impossible. This means that the limit w∞ actually belongs
to K.

If the sequence (tm)m∈N
is bounded we can assume, after extraction, that tm → t∞ > TK ,

which cannot be true since we would have φ±tm(wm) → φ±t(w∞) ∈ U and hence φ±tm(wm) ∈ U
for m large enough. Extracting again a subsequence, we can assume that tm → +∞.

Let vm = φ±tm(wm). The sequence (vm)m∈N
is bounded so without loss of generality we

can assume that it converges to some v∞ ∈ p−1(J). Since tm, θm → ∞ and the sequences
(φ∓tm(vm))m∈N and (φ±θm(vm))m∈N are bounded, we obtain as before that v∞ ∈ Ωb(J), which
gives a contradiction and hence proves (2.3).

The complement K̃ \ V is a compact subset of Ω±
∞(J). Choosing Tf larger if necessary, we

can assume that
∀w ∈ K̃ \ V , ∀t > Tf , |x(±t, w)| > R.

As a consequence, given t > 0 and w ∈ K̃ such that |x(±t, w)| 6 R, we have φ±s(w) ∈ U for all
s ∈ [TK , t− Tf ] and hence

∫ t

0

(V2 ◦ φ±s)(w) ds > −m−TK +
t− TK − Tf

T2
− 1− T2m− − Tfm−.

�

3. Resolvent at distance of order h from the real axis

In this section we give some general properties about the semiclassical measures we consider
and prove Theorem 1.1.

Proposition 3.1. Let (zm)m∈N
∈ C

N and (hm)m∈N
∈]0, 1]N be sequences such that

hm −−−−→
m→∞

0, λm := Re zm −−−−→
m→∞

E > 0 and βm := h−1
m Im zm −−−−→

m→∞
β ∈ R.

Consider δ > 0 and a sequence (vm)m∈N
∈ H2(Rn)N such that

‖vm‖L2,−δ(Rn) = 1, ‖(Hhm
− zm)vm‖L2,δ(Rn) = o

m→∞
(hm),

and

∀q ∈ C∞
0 (R2n),

〈

Opwhm
(q)vm, vm

〉

L2(Rn)
−−−−→
m→∞

∫

R2n

q dµ (3.1)

for some (non-negative) measure µ on R2n. Then we have the following two properties.

(i) If q ∈ S
(

〈x〉−2δ )
is supported outside p−1(J) for some neighborhood J of E we have

〈

Opwhm
(q)vm, vm

〉

−−−−→
m→∞

0.

In particular µ is supported on p−1({E}) and for χ ∈ C∞
0 (Rn) we have

〈χvm, vm〉L2(Rn) −−−−→m→∞

∫

R2n

χ(x) dµ(x, ξ).

(ii) For q ∈ C∞
0 (R2n) and t > 0 we have

∫

R2n

q dµ =

∫

R2n

(q ◦ φt) exp
(

−2

∫ t

0

(V2 + β) ◦ φs ds
)

dµ. (3.2)

Proof. (i) For m large enough (such that λm ∈ J̊) we set:

am(x, ξ) =
q(x, ξ) 〈x〉2δ
p(x, ξ)− zm

.

Since q vanishes on p−1(J), we have am ∈ S
(

〈ξ〉−2 )
uniformly in m. We can write

〈

Opwhm
(q)vm, vm

〉

6
∥

∥Opwhm
(q)vm

∥

∥

L2,δ(Rn)

6
∥

∥Opwhm
(am)(H1

hm
− z)vm

∥

∥

L2,−δ(Rn)
+ o
m→∞

(hm)

6
∥

∥Opwhm
(am)(Hhm

− z)vm
∥

∥

L2,−δ(Rn)
+ o
m→∞

(hm)

−−−−→
m→∞

0,
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which proves the first assertion. Applied with q ∈ C∞
0 (R2n), this proves that µ is supported on

p−1({E}). Now let χ ∈ C∞
0 (Rn) and χ̃ ∈ C∞

0 (Rn) such that Rn× supp(1− χ̃) does not intersect
p−1({E}). Then

〈

Opwhm

(

χ(x)(1 − χ̃(ξ))
)

vm, vm
〉

−−−−→
m→∞

0,

and hence

lim
m→∞

〈χ(x)vm, vm〉 = lim
m→∞

〈Opwh (χ(x)χ̃(ξ))vm, vm〉 =
∫

R2n

χ(x)χ̃(ξ) dµ(x, ξ)

=

∫

R2n

χ(x) dµ(x, ξ).

(ii) Let q ∈ C∞
0 (R2n) and t > 0. For τ ∈ [0, t] we set

q(τ, w) = q
(

φt−τ (w)
)

exp

(

−2

∫ t

τ

(V2 + β)
(

φs−τ (w)
)

ds

)

.

Since the union of supp(q ◦φt−τ ) for τ ∈ [0, t] is bounded in R2n we can use differentiation under
the integral sign:

d

dτ

∫

R2n

q(τ) dµ =

∫

R2n

d

dτ
q(τ) dµ

=

∫

R2n

(

2(V2 + β)q(τ) − {p, q(τ)}
)

dµ

= lim
m→∞

〈

Opwhm

(

2(V2 + β)q(τ) − {p, q(τ)}
)

vm, vm
〉

= lim
m→∞

〈(

2(V2 + βm)Opwhm
(q(τ)) − i

hm

[

H1
hm
,Opwhm

(q(τ))
]

)

vm, vm

〉

= lim
m→∞

i

hm

〈(

Opwhm
(q(τ))(Hhm

− zm)− (H∗
hm

− zm)Opwhm
(q(τ))

)

vm, vm
〉

= 0.

This gives statement (ii). Here we do not have to worry about decay properties of vm since we
only work with compactly supported symbols. �

We now turn to the proof of Theorem 1.1. We first remark that it is easy when β > m− since

Hh − z =
(

Hh − ihm−

)

−
(

z − ihm−

)

and Hh− ihm− is maximal dissipative. This proves that if Im z > hm− the resolvent (Hh−z)−1

is well-defined and
∥

∥(Hh − z)−1
∥

∥

L(L2(Rn))
6

1

Im z − hm−
. (3.3)

As said in introduction we proceed by contradiction to prove the general case. So we assume
we can find sequences (vm)m∈N

∈ H2(Rn)N, (zm)m∈N
∈ CN and (hm)m∈N

∈]0, 1]N such that

hm → 0, λm := Re zm → E, βm := h−1
m Im zm > β, ‖vm‖L2(Rn) = 1

and

‖(Hhm
− zm)vm‖L2(Rn) = o

m→∞
(hm).

Since we already have the result for large β, the sequence (βm)m∈N
is necessarily bounded.

After extracting a subsequence if necessary, we can assume that βm → β̃ > β. Since a bounded
sequence in L2(Rn) always has a semiclassical measure (see [Bur97, EZ]), we can assume after
extracting another subsequence that (3.1) holds for some nonnegative Radon measure µ on Rn.
Our purpose is now to prove that µ is both zero and non-zero to get a contradiction.

Proposition 3.2. The measure µ is non-zero.

Proof. As V2 goes to 0 at infinity, there exists R > 0 such that V2(x) > −β
2 for all x ∈ BcR. We

have
∫

Rn

(V2(x) + βm) |vm(x)|2 dx = −h−1
m Im 〈(Hhm

− zm)vm, vm〉L2(Rn) −−−−→m→∞
0
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and hence, for χ ∈ C∞
0 (Rn, [0, 1]) equal to 1 on BR,

β

2
=
β

2

∫

Rn

(1− χ(x)) |vm(x)|2 dx +
β

2

∫

Rn

χ(x) |vm(x)|2 dx

6
∫

Rn

(V2(x) + βm)(1 − χ(x)) |vm(x)|2 dx+
β

2

∫

Rn

χ(x) |vm(x)|2 dx

6
∫

Rn

(

β

2
− V2(x)− βm

)

χ(x) |vm(x)|2 dx+ o
m→+∞

(1)

6
(

β

2
+m−

)∫

Rn

χ(x) |vm(x)|2 dx+ o
m→+∞

(1).

This proves that

∫

R2n

χ(x) dµ(x, ξ) = lim
m→∞

∫

Rn

χ(x) |vm(x)|2 dx 6= 0.

�

We now prove that µ is actually zero. Note that by Proposition 3.1 we already know that µ
is supported on p−1({E}).
Proposition 3.3. The total measure of µ is finite.

Proof. Let q ∈ C∞
0 (R2n, [0, 1]). We have

‖Opwh (q)‖L(L2(Rn)) 6 C ‖q‖L∞(R2n) + O
m→∞

(
√

hm
)

where C only depends on the dimension n (see for instance Theorem 5.1 in [EZ]), and hence:
∫

R2n

q dµ = lim
m→∞

〈

Opwhm
(q)vm, vm

〉

6 lim sup
m→∞

C ‖q‖L∞(R2n) ‖vm‖2L2(Rn) 6 C.

Considering q equal to 1 on the ball BR2n(k) of radius k ∈ N in R2n proves that µ(BR2n(k)) 6 C
for all k ∈ N. �

Proposition 3.4. µ = 0 on Ω−
∞({E}).

Proof. Let q ∈ C∞
0 (R2n, [0, 1]) supported in Ω−

∞(R∗
+). There exists T > 0 such that for w ∈

supp q and s > T we have V2(x(−s, w)) + β > β
2 . Put

C = sup
supp q

exp

(

−2

∫ T

0

(V2 + β) ◦ φ−s ds
)

.

According to (3.2) and Proposition 3.3, we have for all t > T :

0 6
∫

R2n

q dµ =

∫

R2n

(q ◦ φt) exp
(

−2

∫ t

0

(V2 + β) ◦ φt−s ds
)

dµ

6 µ(R2n) sup
supp q

exp

(

−2

∫ t

0

(V2 + β) ◦ φ−s ds
)

6 Cµ(R2n) exp (−(t− T )β)

−−−→
t→∞

0.

This implies that the integral of q is zero and proves the proposition. �

Proposition 3.5. µ = 0 on Ω−
b ({E}) and hence on R2n.

Proof. We follow the idea of the previous proof, now using the absorption assumption on trapped
trajectories. Let q ∈ C∞

0 (R2n, [0, 1]). Since µ is supported on Ω−
b ({E}) we have for all t > 0:

0 6
∫

R2n

q dµ =

∫

R2n

(q ◦ φt) exp
(

−2

∫ t

0

(V2 + β) ◦ φt−s ds
)

dµ

6 µ(R2n) sup
Ω−

b
({E})∩supp q

exp

(

−2

∫ t

0

(V2 + β) ◦ φ−s ds
)

.

Now using Proposition 2.3, we can conclude that the integral of q is zero. �
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Propositions 3.2 and 3.5 give the contradiction which proves Theorem 1.1. We remark that
assumption (1.5) is stronger than necessary to prove Proposition 3.5, since we did not use the
fact that Im zm is allways greater that β. We can actually prove the following result:

Corollary 3.6. Let E > 0 and β > 0 such that

∀w ∈ Ωb({E}), ∃T > 0,

∫ T

0

(

V2(x(−s, w)) + β
)

ds > 0.

Then there exist a neighborhood I of E, h0 > 0 and c > 0 such that for h ∈]0, h0] the operator
Hh has no eigenvalue in CI,hβ and

∀z ∈ CI,hβ,
∥

∥(Hh − z)−1
∥

∥

L(L2(Rn))
6
c

h
.

As explained before Corollary 1.3, we obtain results on the lower half-plane under the more
“symmetric” non-trapping condition:

Corollary 3.7. Let E > 0 be a non-trapping energy and β > 0. Then there exist a neighborhood
I of E, h0 > 0 and c > 0 such that for h ∈]0, h0], Re z ∈ I and |Im z| > hβ the operator (Hh−z)
has a bounded inverse and

∥

∥(Hh − z)−1
∥

∥

L(L2(Rn))
6
c

h
.

Proof. We only have to apply Theorem 1.1 to Hh and its adjoint H∗
h. �

4. Estimate in the incoming region

In this section we prove an estimate for the outgoing solution of the Helmholtz equation in
the incoming region. Assume that V2 is of short range. Let I ⊂ R, h0 > 0, δ > 1

2 , c > 0, k ∈ N

and suppose that for h ∈ ]0, h0] and z ∈ CI,+ the resolvent (Hh − z)−1 is well-defined and
∥

∥

∥〈x〉−δ (Hh − z)−1 〈x〉−δ
∥

∥

∥

L(L2(Rn))
6

c

hk
. (4.1)

Theorem 4.1. Let R1 > 0, d > d1 > 0 and σ > σ1 > 0. Then there exists R > R1 such that for
z ∈ CI,+, β ∈ R, ω ∈ S0(R

2n) supported outside Z−(R1, d1,−σ1) and ω− ∈ S0(R
2n) supported

in Bx(r) ∩ Z−(R, d,−σ) (for some r > 0), we have
∥

∥

∥
〈x〉β Oph(ω−)(Hh − z)−1Oph(ω) 〈x〉β

∥

∥

∥

L(L2(Rn))
= O
h→0

(h∞),

and the size of the rest is uniform in z ∈ CI,+. Moreover if the limiting absorption principle
holds in L(L2,δ(Rn), L2,−δ(Rn)) for λ ∈ I and h > 0 small enough, then the estimate remains
true for (Hh − (λ+ i0))−1, λ ∈ I.

Remark 4.2. We are going to use this result for a small perturbation of a dissipative Schrödinger
operator in order to prove Theorem 1.2 (see Proposition 5.3). Then, once Theorem 1.2 is proved,
we can use Theorem 4.1 for the full non-dissipative Schrödinger operator Hh we are interested
in (see Section 7).

The result being stronger in this case, we can assume without loss of generality that d1 and σ1
are positive. The proof of this theorem follows that of the dissipative analog given in [Roy10b].
We recall the sketch of the proof for the reader convenience and refer to [RT89, Wan88, Roy10b]
for more details.

Let d0 ∈]0, d1[ and σ0 ∈]0, σ1[. There exist R0 > 0 and φ ∈ C∞(R2n) such that

∀(x, ξ) ∈ Z−(R0, d0,−σ0), |∇xφ(x, ξ)|2 + V1(x) = |ξ|2 (4.2)

and, for some ρ > 0:

∀(x, ξ) ∈ R
2n, ∀α, β ∈ N

n,
∣

∣

∣∂αx ∂
β
ξ

(

φ(x, ξ) − 〈x, ξ〉
)

∣

∣

∣ 6 cα,β 〈x〉1−ρ−|α|

(see [IK85]). As explained in [Wan88], we can assume that the constants cα,β > 0 for α, β ∈ Nn

are as small as we wish as long as we replace φ by

(x, ξ) 7→
(

φ(x, ξ) − 〈x, ξ〉
)

χ
( x

R

)

+ 〈x, ξ〉 (4.3)
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for R > 2R0 large enough and χ ∈ C∞(Rn) such that χ(x) = 0 for |x| 6 1/4 and χ(x) = 1 for
|x| > 1/2. In this case (4.2) remains valid on Z−(R/2, d0,−σ0).

For all (x, ξ) ∈ R2n we denote by t 7→ r(t, x, ξ) ∈ Rn the solution of the problem
{

∂tr(t, x, ξ) = ∇xφ
(

r(t, x, ξ), ξ
)

,
r(0, x, ξ) = x.

We can check that this defines a smooth function on R× R2n. If R was chosen large enough in
(4.3), then for (x, ξ) ∈ Z−(0, d1,−σ1) and t > 0 we have

|r(−t, x, ξ)| > |x|+ σ1d1t

2
.

Moreover for α, β ∈ Nn with |α|+ |β| > 1 there exists cα,β > 0 such that
∣

∣

∣∂αx ∂
β
ξ r(−t, x, ξ)

∣

∣

∣ 6 cα,β(t+ 〈x〉) 〈x〉−|α|
.

For t > 0 and (x, ξ) ∈ Z−(0, d1,−σ1) we now set

F (t, x, ξ) = ∆xφ(r(t, x, ξ), ξ) − V2(r(t, x, ξ)

in order to define on Z−(0, d1,−σ1) the symbols

a0(x, ξ) = exp

(

−
∫ ∞

0

F (−2s, x, ξ) ds

)

and, for j > 1:

aj(x, ξ) = i

∫ +∞

0

∆xaj−1

(

r(−2τ, x, ξ), ξ
)

exp

(

−
∫ τ

0

F (−2s, x, ξ) ds

)

dτ.

These functions are solutions of the transport equations

2∇xa0 · ∇xφ+ a0∆xφ− a0V2 = 0

and, for j > 1:
2∇xaj · ∇xφ+ aj∆xφ− ajV2 − i∆xaj−1 = 0.

Moreover aj decays as a function of S−j(R
2n) and there exists c0 > 0 such that

∀(x, ξ) ∈ Z−(0, d1,−σ1), |a0(x, ξ)| > c0.

Note that V2 has to be of short range here but the sign does not matter.

Since we work on Z−(0, d1,−σ1), we now introduce a cut-off function as follows. We choose
R2 and R3 such that max(R1, R/2) < R2 < R3 < R, d2 and d3 such that d1 < d2 < d3 < d and
finally σ2 and σ3 such that σ1 < σ2 < σ3 < σ. Then we consider χ1, χ2, χ3 ∈ C∞(R, [0, 1]) such
that χ1(s) = 0 for s 6 R2, χ1(s) = 1 for s > R3, χ2(s) = 0 for s 6 d2, χ2(s) = 1 for s > d3,
χ3(s) = 0 for s 6 σ2 and χ3(s) = 1 for s > σ3. We fix N ∈ N. Let us define

a(h) =

N
∑

j=0

hjaj and b(x, ξ, h) = χ1(|x|)χ2(|ξ|)χ3

(

− x · ξ
|x| |ξ|

)

a(x, ξ, h).

We also consider

p(h) =
i

h

(

|∇xφ|2 + V1 − |ξ|2
)

b(h) +
(

2∇xb(h) · ∇xφ+ b(h)∆xφ− b(h)V2
)

− ih∆xb(h).

The symbols b(h) and p(h) are supported in Z−(R2, d2,−σ2) and for α, β ∈ Nn there exists a
constant cα,β > 0 such that for h ∈]0, 1] we have

∀(x, ξ) ∈ Z−(R2, d2,−σ2),
∣

∣

∣∂αx ∂
β
ξ b(x, ξ, h)

∣

∣

∣+
∣

∣

∣∂αx ∂
β
ξ p(x, ξ, h)

∣

∣

∣ 6 cα,β 〈x〉−|α|

and

∀(x, ξ) ∈ Z−(R3, d3,−σ3),
∣

∣

∣∂αx ∂
β
ξ p(x, ξ, h)

∣

∣

∣ 6 cα,β h
N+1 〈x〉−2−N−|α|

.

If R is chosen large enough, R5 ∈]R3, R[, d5 ∈]d3, d[ and σ5 ∈]σ3, σ[, then we can construct

(see [Wan88, Lemma 4.5]) a symbol e(h) =
∑N
j=0 h

jej such that ej ∈ S−j(R
2n) is supported in

Z−(R5, d5,−σ5) for all j ∈ J0, NK and

Ih(e(h), φ)Ih(b(h), φ)
∗ = Oph(ω−) + hN+1Oph(r(h)),
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where r(h) ∈ S−N (R2n) uniformly in h ∈]0, 1] and for u ∈ S(Rn) we have set

Ih(b, φ)u(x) =
1

(2πh)n

∫

Rn

∫

Rn

e
i
h
(φ(x,ξ)−〈y,ξ〉)b(x, ξ)u(y) dξ dy.

For any t > 0 we have

Ih(b(h), φ)
∗Uh(t) = Uh0 (t)Ih(b(h), φ)

∗ −
∫ t

0

Uh0 (s)Ih(p, φ)
∗Uh(t− s) ds,

and hence

Oph(ω−)Uh(t) = −hN+1Oph(r(h))Uh(t) + Ih(e(h), φ)U
h
0 (t)Ih(b(h), φ)

∗

−
∫ t

0

Ih(e(h), φ)U
h
0 (s)Ih(p(h), φ)Uh(t− s) ds.

Contrary to the dissipative case, we cannot write

(Hh − z)−1 =
i

h

∫ ∞

0

e−
it
h
(Hh−z)dt =

i

h

∫ ∞

0

e
it
h
zUh(t) dt

for any z ∈ C+, but only when Im z > h ‖V2‖∞. For such a z, we obtain from the previous
equality:

〈x〉β Oph(ω−)(Hh − z)−1Oph(ω) 〈x〉β

= −hN+1 〈x〉β Oph(r(h))(Hh − z)−1Oph(ω) 〈x〉β

+
i

h
〈x〉β

∫ ∞

0

e
it
h
zIh(e(h), φ)U

h
0 (t)Ih(b(h), φ)

∗Oph(ω) 〈x〉β dt

−〈x〉β
∫ ∞

0

e
is
h
zIh(e(h), φ)U

h
0 (s)Ih(p(h), φ)

∗(Hh − z)−1Oph(ω) 〈x〉β ds.

This equality is proved for Im z > ‖V2‖∞ but the two integrands decay with time uniformly in
z ∈ CI,+. Each term is holomorphic on CI,+, so for any h ∈]0, h0] this equality remains valid on
CI,+ by unique continuation. Then it only remains to estimate each term of the right-hand side
to conclude (we use assumption (4.1) here). This can be done as in the dissipative case.

5. Uniform resolvent estimates

We now prove the uniform resolvent estimates for the non-dissipative Schrödinger operator
up to the real axis. In order to use Theorem 4.1 we assume that V2 is of short range. But we
expect Theorem 1.2 to be true under a weaker assumption on V2, so we are going to give the
other arguments only assuming that V2 ∈ C∞(Rn) is of long range with a short range negative
part: there exist ρ > 0, C > 0 and constants cα for α ∈ R

n such that for all x ∈ R
n we have

V2(x) > −C 〈x〉−1−ρ
and ∀α ∈ N

n, |∂αV2(x)| 6 cα 〈x〉−|α|−ρ
. (5.1)

As for Theorem 1.1, we proceed by contradiction. We suppose that Theorem 1.2 is wrong
and consider sequences (vm)m∈N

∈ H2(Rn)N, (zm)m∈N
∈ CN and (hm)m∈N

∈]0, 1]N such that if

we set λm = Re zm and βm = h−1
m Im zm then for some δ ∈

]

1
2 ,

1+ρ
2

[

we have

hm → 0, λm → E, 0 < βm → 0, ‖vm‖L2,−δ(Rn) = 1

and

‖(Hhm
− zm)vm‖L2,δ(Rn) = o

m→∞
(hm).

We remark that vm is assumed to be in H2(Rn) for all m ∈ N, but is only uniformly bounded
in L2,−δ(Rn).

We are going to prove that such a sequence (vm)m∈N
cannot exist. First considering a se-

quence of eigenvectors, this will prove that for h small enough, Hh has no eigenvalue with real

part close to E and positive imaginary part. Then, the operator 〈x〉−δ (Hh − z)−1 〈x〉−δ is well-
defined as a bounded operator from L2(Rn) to H2(Rn) when Im z > 0, Re z is close to E and h
is small enough. Applying again the argument now gives the estimate of Theorem 1.2.
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If there exists a subsequence (mk)k∈N
such that βmk

> β > 0 for all k ∈ N, then we obtain a
contradiction with Theorem 1.1. Therefore we can assume that

βm −−−−→
m→∞

0.

After extracting a subsequence if necessary, we can assume that (3.1) holds for some non-negative
Radon measure µ. We already know that µ is supported in p−1({E}). In order to get a contra-
diction, we prove that µ = 0 and µ 6= 0.

Let W2 = V2 + 2C 〈x〉−1−ρ > C 〈x〉−1−ρ, the constant C being given by (5.1). We first prove
that µ 6= 0. The proof relies on the existence of an escape function in the sense of [Jec04].

Proposition 5.1. Let E > 0. There exist f ∈ C∞
b (R2n,R), χ ∈ C∞

0 (Rn, [0, 1]) and χ̃ ∈
C∞

0 (R, [0, 1]) equal to 1 in a neighborhood of E such that

∀(x, ξ) ∈ R
2n, {p, f}(x, ξ) = (1− χ(x))χ̃(p(x, ξ)) 〈x〉−2δ

.

The proof of this proposition is postponed to appendix A.

Proposition 5.2. The measure µ is non-zero.

Proof. 1. Let θ ∈ C∞
0 (Rn, [0, 1]) be supported in B2 and equal to 1 on B1. For R > 0 we set

θR(x) = θ
(

x
R

)

. If there exists R > 0 such that
∫

R2n

θR(x) 〈x〉−1−ρ
dµ(x, ξ) 6= 0, (5.2)

then the proposition is proved. Otherwise for any R > 0 we have

lim sup
m→∞

∣

∣

∣

∣

〈

〈x〉−1−ρ
vm, vm

〉

L2(Rn)

∣

∣

∣

∣

6 lim sup
m→∞

∣

∣

∣

∣

〈

θR 〈x〉−1−ρ
vm, vm

〉

L2(Rn)

∣

∣

∣

∣

+ lim sup
m→∞

∣

∣

∣

∣

〈

(1− θR) 〈x〉−1−ρ
vm, vm

〉

L2(Rn)

∣

∣

∣

∣

6
∥

∥

∥〈x〉2δ−1−ρ
(1− θR)

∥

∥

∥

L∞(Rn)
6 〈R〉2δ−1−ρ

.

This proves that
〈

〈x〉−1−ρ
vm, vm

〉

L2(Rn)
−−−−−→
m→+∞

0,

and hence:

βm ‖vm‖2L2(Rn) +
∥

∥

∥

√

W2vm

∥

∥

∥

2

L2(Rn)
(5.3)

= −h−1
m Im 〈(Hh − zm)vm, vm〉L2(Rn) + 2C

〈

〈x〉−1−ρ vm, vm

〉

L2(Rn)
−−−−−→
m→+∞

0.

Since both terms of the left-hand side are non-negative, this means that each goes to 0 as m goes

to +∞. Moreover
√
W2 is smooth and all its derivatives of order at least 1 belong to S

(

〈x〉−δ
)

,

so for any f ∈ C∞
b (R2n) we have

∥

∥

∥

√

W2Opwh (f)vm

∥

∥

∥

L2(Rn)
=
∥

∥

∥Opwh (f)
√

W2vm

∥

∥

∥

L2(Rn)
+ O
m→∞

(hm) −−−−→
m→∞

0. (5.4)

2. Let χ ∈ C∞
0 (Rn, [0, 1]), χ̃ ∈ C∞

0 (R, [0, 1]) and f ∈ C∞
b (R2n,R) as given by Proposition 5.1.

For m ∈ N we have:

1 =
〈

〈x〉−2δ
vm, vm

〉

=
〈

〈x〉−2δ
χ(x)vm, vm

〉

+
〈

Opwhm

(

〈x〉−2δ
(1− χ(x))((1 − χ̃) ◦ p)

)

vm, vm

〉

+
〈

Opwhm

(

〈x〉−2δ (1− χ(x))(χ̃ ◦ p)
)

vm, vm

〉

.

According to Proposition 3.1, the second term goes to 0 as m goes to +∞. We now prove that
this also holds for the third term to prove that

∫

R2n

〈x〉−2δ χ(x) dµ(x, ξ) = lim
m→∞

〈

〈x〉−2δ χ(x)vm, vm

〉

6= 0.
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3. We have
i

hm
[H1

hm
,Opwhm

(f)] = Opwhm
({p, f}) + h2mOpwhm

(r3(hm)),

where r3(h) ∈ S
(

〈x〉−1−ρ )
uniformly in h ∈]0, 1], and hence

〈

Opwh
(

(χ̃ ◦ p)(1− χ(x)) 〈x〉−2δ )
vm, vm

〉

=
〈

Opwhm
({p, f})vm, vm

〉

=
i

hm

〈

[Hh
1 ,Opwhm

(f)]vm, vm
〉

+ O
m→∞

(h2m).

Since vm ∈ H2(Rn) for all m ∈ N and according to (5.3)-(5.4) we have
〈

Opwh
(

(χ̃ ◦ p)(1− χ(x)) 〈x〉−2δ )
vm, vm

〉

(5.5)

=
i

hm

〈(

(Hhm
− zm)

∗Opwhm
(f)−Opwhm

(f)(Hhm
− zm)

)

vm, vm
〉

+ o
m→∞

(1)

−−−−→
m→∞

0,

which concludes the proof. �

Let
H2
h = −h2∆+ V1(x)− ihW2(x).

The Schrödinger operator H2
h is dissipative and its dissipative part is positive on trapped tra-

jectories of energy E, so there exist a neighborhood I of E, h0 > 0 and C2 > 0 such that for
h ∈]0, h0] and z ∈ CI,+ we have

∥

∥

∥〈x〉−δ (H2
h − z)−1 〈x〉−δ

∥

∥

∥

L(L2(Rn))
6
C2

h

(see [Roy10a]). Since 2δ < 1 + ρ we can write 2C 〈x〉−1−ρ
=W3 +W4 where W4 ∈ C∞

0 (Rn) and

∀x ∈ R
n, 〈x〉2δ |W3(x)| 6

1

2C2
.

Put
H3
h = −h2∆+ V1(x) − ihW2(x) + ihW3(x) = H2

h + ihW3(x).

Let z ∈ CI,+. By a standard perturbation argument, we know that for h ∈]0, h0] the resolvent
(H3

h − z)−1 is well-defined and
∥

∥

∥〈x〉−δ (H3
h − z)−1 〈x〉−δ

∥

∥

∥

L(L2(Rn))
6

2C2

h
. (5.6)

As a result we can apply Theorem 4.1 with H3
h on CI,+ (we recall that V2 has to be of short

range here). We use this result to prove that the semiclassical measure µ is supported outside
Ω−

∞({E}):
Proposition 5.3. µ = 0 on Ω−

∞({E}).
Proof. Let J ⊂ I∩]E/2, 2E[ be a neighborhood of E. We first check that µ = 0 in the incoming
region Z−(R, 0,−1/2) for some R large enough. Let R1 be such that suppW4 ⊂ BR1

, d ∈
]0,
√

E/2[ and σ = 1
2 . Let R be given by Theorem 4.1 applied to H3

h, and finally ω− ∈ C∞
0 (R2n)

supported in Z−(R, d,−1/2). For m large enough the operator (H3
hm

− zm) has a bounded
inverse, so we can write

Opwhm
(ω−)vm = Opwhm

(ω−)(H
3
hm

− zm)−1(H3
hm

− zm)vm

= Opwhm
(ω−)(H

3
hm

− zm)−1(Hhm
− zm)vm

− ihmOpwhm
(ω−)(H

3
hm

− zm)
−1W4vm.

According to (5.6) and Theorem 4.1 we obtain
∥

∥Opwhm
(ω−)vm

∥

∥

L2,δ(Rn)
(5.7)

=
∥

∥

∥〈x〉δ Opwh (ω−) 〈x〉δ
∥

∥

∥

∥

∥

∥〈x〉−δ (H3
hm

− zm)−1 〈x〉−δ
∥

∥

∥ ‖(Hhm
− zm)vm‖L2,δ(Rn)

+hm

∥

∥

∥〈x〉δ Opwh (ω−)(H
3
hm

− zm)−1W4 〈x〉δ
∥

∥

∥ ‖vm‖L2,−δ(Rn)

−−−−→
m→∞

0.
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This proves that
〈

Opwhm
(ω−)vm, vm

〉

L2(Rn)
−−−−→
m→∞

0,

and hence µ = 0 on Z−(R, d,−1/2). Now let q ∈ C∞
0 (R2n) supported in Ω−

∞(J). For t > 0 large
enough we have φ−t(supp q) ⊂ Z−(R, d,−1/2). According to Proposition 3.1 we obtain

∫

R2n

q dµ =

∫

R2n

(q ◦ φt) exp
(

−2

∫ t

0

V2 ◦ φs ds
)

dµ = 0,

which proves that µ = 0 on Ω−
∞(J). �

When (5.2) holds for some R > 0, then Proposition 5.2 is proved but not (5.5). So we cannot
use it to show that µ is zero at infinity as is done in the self-adjoint case (see [Jec04]).

Proposition 5.4. µ = 0 on Ω−
b ({E}).

Proof. This proposition is proved as Proposition 3.5, even though the total measure of µ is no
longer necessarily finite. Let q ∈ C∞

0 (R2n, [0, 1]). We know that µ is supported in Ω−
b ({E}), so

according to Proposition 3.1 we can write
∫

R2n

q dµ =

∫

R2n

1Ω−

b
({E})(q ◦ φt) exp

(

−2

∫ t

0

V2 ◦ φt−s ds
)

dµ.

Since the set
⋃

t>0

φ−t(supp q ∩Ω−
b ({E}))

is bounded, there exists c > 0 such that for all t > 0
∫

R2n

q dµ 6 c sup
supp q∩Ω−

b
({E})

exp

(

−2

∫ t

0

V2 ◦ φ−s ds
)

.

Then we can conclude with Proposition 2.3. �

6. Limiting Absorption Principle

After having proved resolvent estimates on CI,+, we can show the limiting absorption principle
and study existence and uniqueness of an outgoing solution for (1.1). Before giving more precise
statements, we introduce some notation. Let

C++ = {ζ ∈ C : Re ζ > 0, Im ζ > 0} .
For u ∈ H1(Rn) supported outside a neighborhood of 0 we set

∂ru =
x · ∇u
|x| , Dru = ∂ru+

n− 1

2 |x| u and ∇⊥u = ∇u − x∂ru

|x| .

We are going to use the following basic properties of these operators:

Proposition 6.1. For u, v ∈ H1(Rn) supported outside a neighborhood of 0 we have

d

dr
〈u, v〉

Sr
= 〈Dru, v〉Sr + 〈u,Drv〉Sr ,

and

〈∂ru, ∂rv〉 = 〈Dru,Drv〉+
〈

(n− 1)(n− 3)

4 |x|2
u, v

〉

.

If moreover u belongs to H2(Rn) we also have

∂r∇⊥u(x) = − 1

|x|∇⊥u(x) +∇⊥∂ru(x).

In this section we consider a Schrödinger operator

H = −∆+ V1(x) − iV2(x)

with domain D(H) = H2(Rn). V1 and V2 are bounded and real-valued. We assume that

V1 − iV2 =W1 − iW2 +W3, (6.1)

where:

(i) W1 and W2 are differentiable,
(ii) for all x ∈ Rn we have W1(x) ∈ R, W2(x) > 0 and W3(x) ∈ C,
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(iii) there exist ρ > 0 and c > 0 such that for all x ∈ R
n we have

|W1(x)| +W2(x) 6 c 〈x〉−ρ and |∇W1(x)|+ |∇W2(x)| + |W3(x)| 6 c 〈x〉−1−ρ
. (6.2)

For x ∈ Bc1 we also set

W̃3(x) =W3(x) +
(n− 1)(n− 3)

4 |x|2
.

Définition 6.2. Let ζ ∈ C++, f ∈ L2
loc(R

n), and suppose that u ∈ H2
loc(R

n) is a solution for
the equation

(H − ζ2)u = f. (6.3)

Then we say that u is an outgoing solution for (6.3) if there exists δ > 1
2 such that (Dr − iζ)u ∈

L2,δ−1(Bc1).

Let δ ∈
]

1
2 ,

1
2 + ρ

4

[

be fixed for all this section, ρ begin given by (6.2). Let K be a compact

subset of C++ such that K = K ∩ C+. We set K∗ = K ∩ C+.

Proposition 6.3. Assume the resolvent (H − ζ2)−1 is defined for all ζ ∈ K∗ and the equation
(H − λ2)u = 0 has no non-trivial outgoing solution when λ ∈ K ∩ R∗

+. Let λ ∈ K ∩ R∗
+ and

f ∈ L2,δ(Rn).
Then (H − ζ2)−1f converges in L2,−δ(Rn) to the unique outgoing solution for the equation

(H − λ2)u = f when ζ ∈ K∗ goes to λ.
Moreover, there exists a constant C > 0 such that for any ζ ∈ K and f ∈ L2,δ(Rn), if we

denote by u the unique outgoing solution for the equation (H − ζ2)u = f then we have for all
R > 0 the following estimates:

‖u‖L2,−δ(Rn) + ‖(Dr − iζ)u‖L2,δ−1(Bc
1
) +Rδ−

1
2 ‖u‖L2,−δ(Bc

R
) 6 C ‖f‖L2,δ(Rn) . (6.4)

We denote by (H − (λ2 + i0))−1f the unique outgoing solution u ∈ H2
loc(R

n) ∩L2,−δ(Rn) for
the equation (H − λ2)u = f . To prove this theorem, we study the behavior of the solutions at
infinity. In a compact subset of Rn, the estimates we need are given by the interior regularity
(see for instance [Eva98, §6.3.1]):

Proposition 6.4. Let f ∈ L2
loc(R

n) and z ∈ C. If u ∈ H2
loc(R

n) is a solution for the equation
(H − z)u = f then for all R > 0 we have

‖u‖H2(BR) 6 C
(

‖f‖BR+1
+ ‖u‖BR+1

)

,

where C is uniform for (z,R) in a compact subset of C× R+.

The difficulty is to give some estimates of (H − ζ2)−1f uniform when ζ approaches R∗
+. For

some fixed ζ ∈ K∗ we have the following lemma:

Lemma 6.5. Let f ∈ L2,δ(Rn) and ζ ∈ K∗. Then u and ∇u belong to L2,δ(Rn).

The self-adjoint version of the following result is Lemma 4.1 in [Sai79].

Lemma 6.6. There exists C such that for ζ = ζ1+iζ2 ∈ K∗, f ∈ L2,δ(Rn) and u = (H−ζ2)−1f
we have

ζ2 ‖u‖L2,1−δ(Rn) 6 C
(

‖u‖L2,−δ(Rn) + ‖(Dr − iζ)u‖L2,δ−1(Bc
2
) + ‖f‖L2,δ(Rn)

)

and
∥

∥

∥

√

W2u
∥

∥

∥

2

L
2, 1

2
−δ(Rn)

6 C
(

‖u‖L2,−δ(Rn) + ‖(Dr − iζ)u‖L2,δ−1(Bc
2
) + ‖f‖L2,δ(Rn)

)

‖u‖L2,−δ(Rn) .

Proof. We consider χ : x 7→ χ̃(|x|) on Rn, where χ̃ ∈ C∞(R, [0, 1]) is equal to 0 on ]−∞, 2] and
equal to 1 on [3,+∞[. Let α ∈ [0, 1− δ], ζ = ζ1 + iζ2 ∈ K∗, f ∈ L2,δ(Rn) and u = (H − ζ2)−1f .
According to Lemma 6.5 u belongs to L2,δ(Rn), so we can write

〈

(H − ζ2)u, χ2(x)(1 + |x|)2αu
〉

L2(Rn)
=
〈

f, χ2(x)(1 + |x|)2αu
〉

L2(Rn)
.
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Taking the imaginary part in this equality gives
∥

∥

∥
χ
√

W2u
∥

∥

∥

2

L2,α(Rn)
+ 2ζ1ζ2 ‖χu‖2L2,α(Rn)

6 ‖f‖L2,δ(Rn) ‖u‖L2,2α−δ(Rn) + ‖u‖L2,−δ(Rn) ‖W3u‖L2,2α+δ(Rn)

+ ‖χ∂ru‖L2,−δ(Rn)

∥

∥

(

2(1 + |x|)2α∂rχ+ 2α(1 + |x|)2α−1χ
)

u
∥

∥

L2,δ(Rn)

6 c
(

‖f‖L2,δ(Rn) + ‖χ(Dr − iζ)u‖L2,δ−1(Rn) + ‖u‖L2,−δ(Rn)

)

‖u‖L2,2α+δ−1(Rn) .

Proposition 6.4 and this inequality with α = 1− δ give the first estimate. We take α = 1
2 − δ to

obtain the second. �

For all ζ ∈ K∗ and x ∈ Rn the complex number ζ2 + iW2(x) belongs to C+ and hence has
a unique square root ζW (x, ζ) = ζ1(x, ζ) + iζ2(x, ζ) ∈ C++. Moreover there exists C > 0 such
that for all ζ = ζ1 + iζ2 ∈ K∗ and x ∈ Rn we have

C−1
(

2ζ1ζ2 +W2(x)
)

6 ζ2(x, z) 6 C
(

2ζ1ζ2 +W2(x)
)

(6.5)

and
|∇xζW (x, ζ)| 6 C 〈x〉−1−ρ

,

where ρ > 0 is given by (6.2). For ζ ∈ K∗ we set

Dζ
r = Dr − iζW (x, ζ).

Proposition 6.7. There exists C such that for ζ = ζ1 + iζ2 ∈ K∗, f ∈ L2,δ(Rn) and u =
(H − ζ2)−1f we have

‖(Dr − iζ)u‖L2,δ−1(Bc
2
) + ‖∇⊥u‖L2,δ−1(Bc

2
) 6 C

(

‖u‖L2,−δ(Rn) + ‖f‖L2,δ(Rn)

)

.

The proof is inspired from the self-adjoint version given in [Sai79].

Proof. 1. Since

|ζW (x, ζ) − ζ| = W2(x)

|ζW (x, z) + ζ| 6 cW2(x),

we have
‖(Dr − iζ)u‖L2,δ−1(Rn) 6

∥

∥Dζ
ru
∥

∥

L2,δ−1(Rn)
+ c ‖u‖L2,−δ(Rn) ,

where c > 0 denotes different constants which do not depend on ζ ∈ K∗ and f ∈ L2,δ(Rn). It is
therefore enough to prove the proposition with (Dr − iζ) replaced by Dζ

r .

2. We consider χ : x 7→ χ̃(|x|), where χ̃ ∈ C∞(R, [0, 1]) is non-decreasing, equal to 0 on ]−∞, 1]
and equal to 1 on [2,+∞[. For R > 2 we set χR(x) = χ̃(|x|)− χ̃(|x|−R). Let ζ = ζ1+ iζ2 ∈ K∗,
f ∈ L2,δ(Rn) and u = (H − ζ2)−1f . It is enough to consider the case Nu < Nd, where

Nu = ‖u‖L2,−δ(Rn) + ‖f‖L2,δ(Rn) and Nd = max
(

∥

∥χDζ
ru
∥

∥

L2,δ−1(Rn)
, ‖χ∇⊥u‖L2,δ−1(Rn)

)

.

According to Proposition 6.1 we can write

Re
〈

f, χ2
R(1 + |x|)2δDζ

ru
〉

= Re
〈

(H − ζ2)u, χ2
R(1 + |x|)2δ−1Dζ

ru
〉

= Re
〈

Dru,Drχ2
R(1 + |x|)2δ−1Dζ

ru
〉

+Re
〈

∇⊥u,∇⊥χ
2
R(1 + |x|)2δ−1Dζ

ru
〉

+Re
〈

W1(x) + W̃3(x)− ζW (x, ζ)2, χ2
R(1 + |x|)2δ−1Dζ

ru
〉

=: A1(R) +A2(R) +A3(R) +A4(R) +A5(R).

3. We have

A1(R) +A5(R) = Re
〈

Dζ
ru,Drχ2

R(1 + |x|)2δ−1Dζ
ru
〉

+Re
〈

−i(∂rζW (x, ζ) + ζW (x, ζ)Dζ
r )u, χ

2
R(1 + |x|)2δ−1Dζ

ru
〉

.

According to Lemma 6.5 Dζ
ru belongs to L2,δ(Bc1) and hence

lim inf
R→∞

Re
〈

Dζ
ru,Drχ2

R(1 + |x|)2δ−1Dζ
ru
〉

=
1

2
lim inf
R→∞

(〈

Dζ
ru, ∂r(χ

2
R(1 + |x|)2δ−1)Dζ

ru
〉)

>
(

δ − 1

2

)

∥

∥χDζ
ru
∥

∥

2

L2,δ−1(Rn)
− c

∥

∥Dζ
ru
∥

∥

2

L2(B2∩Bc
1
)
.
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Moreover

lim inf
R→∞

Re
〈

−i(∂rζW (x, ζ) + ζW (x, ζ)Dζ
r )u, χ

2
R(1 + |x|)2δ−1Dζ

ru
〉

> lim inf
R→∞

Re
〈

−i∂rζW (x, ζ)u, χ2
R(1 + |x|)2δ−1Dζ

ru
〉

> −c ‖u‖L2,−1−ρ+δ(Rn)

∥

∥χDζ
ru
∥

∥

L2,δ−1(Rn)
.

According to Proposition 6.4, these two estimates give

lim inf
R→∞

(A1(R) +A5(R)) >
(

δ − 1

2

)

∥

∥χDζ
ru
∥

∥

L2,δ−1(Rn)
− cNdNu. (6.6)

With the same kind of argument and using the last property of Proposition 6.1 we prove that

lim inf
R→∞

A2(R) >
(

3

2
− δ

)

‖∇⊥u‖2L2,−δ(Rn) − cNuNd.

Using (6.5) and Lemma 6.6 we show that

lim inf
R→∞

A3(R) > −cNuNd.

We have the same estimate for A4(R) and

∀R > 2, Re
〈

f, χ2
R(1 + |x|)2δDζ

ru
〉

6 cNuNd,

so we finally have
(

3

2
− δ

)

‖∇⊥u‖2L2,δ−1(Bc
2
) +

(

δ − 1

2

)

∥

∥χDζ
ru
∥

∥

2

L2,δ−1(Bc
2
)
6 cNuNd,

which, together with Proposition 6.4, concludes the proof. �

As in the self-adjoint case we also use the following estimate:

Proposition 6.8. There exists C such that for R > 0, ζ ∈ K∗, f ∈ L2,δ(Rn) and u = (H −
ζ2)−1f we have

‖u‖2L2,−δ(Bc
R) 6 CR1−2δ

(

‖u‖2L2,−δ(Rn) + ‖f‖2L2,δ(Rn)

)

.

Proof. For all r > 0 we have

|(Dr − iζ)u|2
Sr

= |Dru+ ζ2u|2Sr + ζ21 |u|2Sr +2ζ1 〈V2u, u〉Br
+ 4ζ21 ζ2 ‖u‖2Br

+ 2ζ1 Im 〈f, u〉Br
(6.7)

(see [Sai79, Prop.3.4] in the self-adjoint case). In particular

ζ21 |u|2Sr 6 |(Dr − iζ)u|2
Sr

+ 2ζ1 ‖f‖L2,δ(Rn) ‖u‖L2,−δ(Rn) + c ‖u‖2L2,−δ(Rn) .

We multiply by (1 + r)−2δ and integrate from R to +∞ to prove the proposition. �

With all these estimates and uniqueness of the outgoing solution for the equation (H−λ2)u = 0
we can now conclude that the limiting absorption principle holds as in the self-adjoint case.

The first step is to prove that if we have the estimates (6.4) on K∗, then we have the limiting
absorption principle. We refer to [Sai79, Lemma 2.6] and recall briefly the idea. If ζm → λ and
um = (H − ζ2m)−1f , then a subsequence of (um)m∈N

converges to some u in L2
loc(R

n) according

to Proposition 6.4. We obtain convergence in L2,−δ(Rn) according to the last estimate of (6.4).
Using again Proposition 6.4 we also have convergence in H2

loc(R
n). The limit u is necessarily

an outgoing solution for the equation (H − λ2)u = f . And since we have uniqueness for such a
solution, we actually have convergence of the whole sequence.

To apply this result, we still have to check the first estimate of (6.4). This is a contridaction
argument: we assume that we can find sequences (fm)m∈N

∈ L2,δ(Rn)N and (zm)m∈N
∈ (K∗)N

such that

zm −−−−→
m→∞

λ ∈ K ∩ R
∗
+,

∥

∥(H − zm)−1fm
∥

∥

L2,−δ = 1 and ‖fm‖L2,δ(Rn) = o
m→∞

(1).

All the estimates of (6.4) hold for this sequence and hence (H − zm)−1fm converges to an out-
going solution for the equation (H − λ)u = 0, which must be zero. This gives a contradiction
(see the proof of Theorem 2.3 in [Sai79]).

For the dissipative Schrödinger operator everything holds as in the self-adjoint case on the
upper half-plane:
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Proposition 6.9. If V2 > 0 then the assumptions and hence the conclusions of Proposition 6.3
hold for any K.

Proof. If V2 > 0 then the operatorH with domainH2(Rn) is maximal dissipative, so its resolvent
(H − z)−1 is at least well-defined for Im z > 0. Moreover, if u ∈ H2

loc(R
n) ∩ L2,−δ(Rn) is an

outgoing solution for the equation (H − λ2)u = 0 for some λ ∈ K ∩R
∗
+, then according to (6.7)

the solution u vanishes on the support of V2 and hence is an outgoing solution for the equation
(H1 − λ2)u = 0, where H1 = −∆+ V1(x) is the self-adjoint part of H . We know from [Sai79,
§3] that such a solution must be zero. �

In the non-selfadjoint case we do not have such a systematic result. In order to prove Theorem
1.4 we use the fact that for h > 0 small enough and z ∈ CI,+ we already have existence and
uniform estimates for the resolvent (Hh − z)−1.

Proof of Theorem 1.4. Let θ0 > 0 be such that V2(x) + θ0 〈x〉−1−ρ > 0 for all x ∈ Rn. There
exist a neighborhood I of E, h0 > 0 and C > 0 such that for all h ∈]0, h0], z ∈ CI,+ and
θ ∈ [0, θ0] we have

∥

∥

∥〈x〉−δ (Hθ
h − z)−1 〈x〉−δ

∥

∥

∥

L(L2(Rn))
6
C

h
,

whereHθ
h = Hh−hθ 〈x〉−1−ρ

. Indeed, Theorem 1.2 gives such an estimate for any fixed θ̃ ∈ [0, θ0],
and the perturbation argument already used to prove (5.6) gives an estimate uniform for θ in a

neighborhood of θ̃. Now let θ1 ∈ [0, θ0] and assume that u = 0 is the unique outgoing solution
for the equation (Hθ

h − λ)u = 0 when θ ∈ [θ1, θ0], λ ∈ I and h ∈]0, h0]. Let h ∈]0, h0], λ ∈ I,
θ ∈ [θ1 − C/2, θ1] and let u ∈ H2

loc(R
n) ∩ L2,−δ(Rn) be an outgoing solution for the equation

(Hθ
h − λ)u = 0. We have

(Hθ1
h − λ)u = h(θ1 − θ) 〈x〉−1−ρ

u ∈ L2,δ(Rn).

According to Proposition 6.3, the outgoing solution for the equation (Hθ1
h − λ)u = f is given by

the limiting absorption principle and hence we have

‖u‖L2,−δ(Rn) 6
C

h

∥

∥

∥h(θ1 − θ) 〈x〉−1−ρ
u
∥

∥

∥

L2,δ(Rn)
6

1

2
‖u‖L2,−δ(Rn) .

This proves that u = 0. �

7. Semiclassical Measure

We study in this section the semiclassical measures for the outgoing solution of (1.1) when
the source term fh concentrates on a bounded submanifold of Rn, V1 is of long range and V2
is of short range. We adapt to this purpose the proof given in [Roy10b] for the dissipative setting.

Let Γ be a (bounded) submanifold of dimension d ∈ J0, n−1K in Rn. We consider A ∈ C∞
0 (Γ),

S ∈ S(Rn) and define

fh(x) =

∫

Γ

A(z)S

(

x− z

h

)

dσΓ(z), (7.1)

where σΓ is the Lebesgue mesure on Γ. We can check that fh is microlocalized on NΓ and
‖fh‖L2,δ(Rn) = O(

√
h) for any δ > 1

2 . Let E > 0 be an energy which satisfies assumption (1.5).

We assume that
∀z ∈ Γ, V1(z) < E. (7.2)

Let

NEΓ = NΓ ∩ p−1({E}) =
{

(z, ξ) ∈ Γ× R
n : ξ⊥TzΓ and |ξ|2 = E − V1(z)

}

.

Assumption (7.2) ensures that NEΓ is a submanifold of dimention n−1 in R2n. The Riemannian

structure g on NEΓ is defined as follows. For (z, ξ) ∈ NEΓ and (Z,Ξ), (Z̃, Ξ̃) ∈ T(z,ξ)NEΓ ⊂ R2n

we set

g(z,ξ)
(

(Z,Ξ), (Z̃, Ξ̃)
)

=
〈

Z, Z̃
〉

Rn
+
〈

Ξ⊥, Ξ̃⊥

〉

Rn
,

where Ξ⊥, Ξ̃⊥ are the orthogonal projections of Ξ, Ξ̃ ∈ Rn on (TzΓ ⊕ Rξ)⊥ = Tξ(NzΓ ∩ NEΓ).
We denote by σNEΓ the canonical measure on NEΓ given by g, and assume that

σNEΓ

({

(z, ξ) ∈ NEΓ : ∃t > 0, φt(z, ξ) ∈ NEΓ
})

= 0. (7.3)
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Theorem 7.1. Let fh be given by (7.1) and uh be the outgoing solution for the Helmholtz
equation (1.1). Let assumptions (1.5), (7.2) and (7.3) be fulfilled.

(i) There exists a non-negative Radon measure µ on R
2n such that

∀q ∈ C∞
0 (R2n), 〈Opwh (q)uh, uh〉 −−−→

h→0

∫

R2n

q dµ. (7.4)

(ii) This measure is characterized by the following three properties:
a. µ is supported in p−1({E}).
b. For any σ ∈]0, 1[ there exists R > 0 such that µ = 0 in the incoming region Z−(R, 0,−σ).
c. µ is solution of the Liouville equation

{p, µ}+ 2V2µ = π(2π)d−n |A(z)|2 |ξ|−1 ∣
∣Ŝ(ξ)

∣

∣

2
σNEΓ, (7.5)

(iii) These three properties imply that for q ∈ C∞
0 (R2n) we have

∫

R2n

q dµ =

∫ +∞

0

∫

NEΓ

π(2π)d−n |A(z)|2 |ξ|−1 ∣
∣Ŝ(ξ)

∣

∣

2
q(φt(z, ξ))e−2

∫
t
0
V2(x(s,z,ξ)) ds dσNEΓ(z, ξ) dt.

(7.6)

Note that as in [Bon09] we can let E depend on h : Eh = E0 + hE1 + o(h) ∈ C+, where
E0 > 0 satisfies assumption (1.5) and ImEh > 0. Then V2 has to be replaced by V2 + ImE1 in
(7.5) and (7.6).

We recall the sketch of the proof, discuss differences with the dissipative case and refer to
[Bon09, Roy10b] for details. We first remark that the limit (7.4) is zero when q ∈ C∞

0 (R2n) is
supported outside p−1({E}). Then the idea is to replace the resolvent which defines uh by the
integral over finite times of the propagator. More precisely, for T > 0 and h ∈]0, 1] we set

uTh =
i

h

∫ ∞

0

χT (t)e
− it

h
(Hh−E)fh,

where χT (t) = χ(t − T ) and χ ∈ C∞(R, [0, 1]) is equal to 1 in a neighborhood of ] − ∞, 0]
and equal to 0 on [τ0,+∞[ for some τ0 > 0 small enough (see [Roy10b]). Then we can study
separately the contribution of different times. For small times we proceed exactly as in the
dissipative case. For intermediate times, and then to prove that uTh is in some sense a good ap-
proximation of uh for large T and small h, we need a non-selfadjoint version of Egorov’s Theorem.

According to (3.3) and Hille-Yosida’s Theorem (see for instance Theorem II.3.5 in [EN06]) we
know that Hh generates a continuous semi-group, which we denote by Uh(t), and

∀t > 0, ‖Uh(t)‖L(L2(Rn)) 6 etm−

(we recall that m− = − inf V2). Let W2, W̃2 ∈ C∞
b (Rn,R), W =W2 + W̃2 and, for t ∈ R:

Uh2 (t) = e−
it
h
(Hh

1 −ihW2) and Ũh2 (t) = e−
it
h
(Hh

1 −ihW̃2).

The Egorov’s Theorem extends without modification to the non-dissipative case:

Theorem 7.2. Let a ∈ C∞
b (R2n). There exist a family of symbols αj(t) for j ∈ N and t ∈ R

such that:

(i) For all t ∈ R, N ∈ N and h ∈]0, 1] we have

Uh2 (t)
∗Opwh (a)Ũ

h
2 (t) =

N
∑

j=0

hjOpwh (αj(t)) + hN+1RN (t, h),

where RN (t, h) is bounded on L2(Rn) uniformly in h ∈]0, 1] and t ∈ [0, T ] for any T > 0.
(ii) We have

α0(t) = (a ◦ φt)e−
∫

t

0
W◦φs ds.

(iii) For t ∈ R and j ∈ N we have

suppαj(t) ⊂ φ−t(supp a).
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Let w ∈ R
2n, T > 0 and 0 < tw,1 < · · · < tw,KT

w
6 T + τ0 be the times between 0 and T + τ0

for which φ−tw,k(w) ∈ NEΓ0 = NEΓ ∩ (suppA × Rn). For τw > 0 small enough we consider
χw ∈ C∞

0 (]0, 2τw[) equal to 1 in a neighborhood of τw. For k ∈ J1,KT
wK we prove that in L2(Rn)

i

h

∫ ∞

0

χT (t)χw(t− tw,k + τw)e
− it

h
(Hh−E)fh = BTw,k(h) + O

h→0

(
√
h
)

,

where BTw,k(h) is a lagrangian distribution of lagrangian submanifold

ΛTw,k = {φt(z, ξ), (z, ξ) ∈ NEΓ, t ∈]tw,k − τw, tw,k + τw [}.
This means that there exist N ∈ N, bTw,k ∈ C∞

0 (Rn+N ) and a non-degenerate phase function

ψ ∈ C∞
b (Rn+N ,R) (if ∇θψ(x, θ) = 0 for some (x, θ) ∈ Rn+N , then the N linear forms d(x,θ)∂θiψ :

Rn+N → R, 1 6 i 6 N , are linearly independant) such that

BTw,k(h) =
1

(2πh)
N
2

∫

RN

e
i
h
ψ(x,θ)b(x, θ) dθ,

and
{

(x,∇xψ(x, θ)) for (x, θ) ∈ R
n+N such that ∇θψ(x, θ) = 0

}

⊂ ΛTw,k

(this replaces what is said in [Roy10b]). This is proved by direct computations when tw,k is
replaced by τw (and N = 0 in this case), and then we use the fact that for any t > 0 the
propagator Uh(t) can be seen as a Fourier Integral Operator and maps a lagrangian distribution
of submanifold Λ to some lagrangian distribution of submanifold φt(Λ). We know that for such a
lagrangian distribution there exists a smooth and non-negative function νTw,k on ΛTw,k such that

∀q ∈ C∞
0 (R2n),

〈

Opwh (q)B
T
w,k(h), B

T
w,k(h)

〉

−−−→
h→0

∫

ΛT
w,k

q(w̃)ν(w̃)dσΛT
w,k

(w̃),

where σΛT
w,k

is the Lebesgue measure on ΛTw,k. According to Egorov’s Theorem, times far from

0 and tTw,k (k ∈ J1,KT
wK) do not give any contribution around w at the limit h → 0, so we can

prove that (7.4) holds for some measure µT if uh is replaced by uTh .

It remains to study the contribution of large times. In [Roy10b, Prop. 2.3] we used the fact

that the damping factor exp
(

−
∫ t

0 V2 ◦φs ds
)

is a non-increasing function of t, which is no longer
the case. We use Proposition 2.5 instead:

Proposition 7.3. Let J be a neighborhood of E such that assumption (1.5) holds for all λ ∈ J .
Let K1 and K2 be compact subsets of p−1(J). Let ε > 0. Then there exists T0 > 0 such that for
q1, q2 ∈ C∞

0 (R2n) respectively supported in K1 and K2 we have

∀T > T0, lim sup
h→0

‖Opwh (q1)Uh(T )Opwh (q2)‖L(L2(Rn)) 6 ε ‖q1‖∞ ‖q2‖∞ .

Proof. Let q1, q2 ∈ C∞
0 (R2n) be respectively supported in K1 and K2. Let t 7→ Uh1 (t) denote the

unitary group generated by the self-adjoint part Hh
1 of Hh. According to Egorov’s Theorem we

have for all T > 0:

‖Opwh (q1)Uh(T )Opwh (q2)‖L(L2(Rn)) =
∥

∥Uh1 (T )
∗Opwh (q1)Uh(T )Opwh (q2)

∥

∥

L(L2(Rn))

=
∥

∥

∥Opwh

(

q2(q1 ◦ φT )e−
∫

T
0
V2◦φ

s ds
)∥

∥

∥

L(L2(Rn))
+ O
h→0

(h)

6 C sup
w∈R2n

∣

∣

∣q2(w)q1
(

φT (w)
)

e−
∫

T
0
V2(x(s,w)) ds

∣

∣

∣+ O
h→0

(
√
h
)

,

where the size of the rest depends on T , q1 and q2. The constant C only depends on the dimension
n. According to Proposition 2.5 there exists T0 such that for T > T0 and w ∈ K2 we have

Ce−
∫

T
0
V2(x(s,w)) ds 6 ε or φT (w) /∈ K1.

Therefore we have for all T > T0:

‖Opwh (q1)Uh(T )Opwh (q2)‖L(L2(Rn)) 6 ε ‖q1‖∞ ‖q2‖∞ + O
h→0

(
√
h
)

.

It only remains to take the limit h→ 0 for fixed T , q1 and q2 to conclude. �
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For the rest of the proof we proceed as in the dissipative case. We only have to be careful
for the proof of Lemma 5.4 in [Roy10b] since the resolvent (Hh − z)−1 cannot be written as the
integral of the propagator over positive times for all z ∈ C+. However, for h > 0 small enough
and z ∈ C+ close to E, (Hh − z)−1fh is well-defined and belongs to H2(Rn). Therefore we can
write

Opwh (q)(Hh − z)−1fh −Opwh (q)e
− iT

h
(Hh−z)(Hh − z)−1fh

= −
∫ T

0

Opwh (q)
d

dt
e−

it
h
(Hh−z)(Hh − z)−1fh dt

=
i

h

∫ ∞

0

χT (t)Opwh (q)e
− it

h
(Hh−z)fh dt−

i

h

∫ ∞

0

χ(t)Opwh (q)e
− iT

h
(Hh−z)e−

it
h
(Hh−z)fh dt.

Note also that since Uh(T ) is no longer estimated uniformly by 1, some rests depends on T in
the proof of this lemma. This is not a real problem since we take the limit h → 0 for fixed T .
We finally obtain that for any compact subset K of p−1(J) and ε > 0 there exists T0 such that
for q ∈ C∞

0 (R2n) supported in K we have

∀T > T0, lim sup
h→0

∣

∣〈Opwh (q)uh, uh〉 −
〈

Opwh (q)u
T
h , u

T
h

〉∣

∣ 6 ε ‖q‖∞ .

With this estimate we can check that for all q ∈ C∞
0 (R2n) the function T 7→

∫

q dµT has a
limit when T → +∞, that this limit defines a non-negative measure µ on R2n, and finally that
(7.4) holds for this measure. All the properties of µ stated in Theorem 7.1 are proved as in the
dissipative case (in particular we use Theorem 4.1 to prove (ii) b.).

Appendix A. Construction of an escape function

In this appendix we prove Proposition 5.1. A similar result (with an inequality) is proved in
[Jec04]. The purpose was to give a proof which could be extended for matrix-valued operators.
The version we give here is more convenient in our context.

Let J =
]

E
2 , 2E

[

, σ ∈
]

0, 12
[

and R given by Proposition 2.1. We set

ZJ,± = Z± (R, 0,∓σ) ∩ p−1(J).

Proposition A.1. If R is chosen large enough, then for α, β ∈ Nn such that |α|+ |β| > 1 there
exists cα,β such that for t > 0 and (x, ξ) ∈ ZJ,± we have

∣

∣

∣∂αx ∂
β
ξ φ

±t(x, ξ)
∣

∣

∣ 6 cα,β 〈t〉 . (A.1)

We know (see for instance Lemma IV.9 in [Rob87]) that the derivatives of the flow φt are
uniformly bounded as long as t stays in a bounded subset of R, but may grow exponentially fast
with time. The purpose of this proposition is to check that if we only look at the flow far from
the origin (where it is “almost free”) then we recover a growth of size O(t) as in the free case
(x, ξ) 7→ (x+ 2tξ, ξ).

Proof. 1. We prove the proposition for (x, ξ) ∈ ZJ,+, the case (x, ξ) ∈ ZJ,− being analogous.
Let

A(t, x, ξ) =

(

Jxx(t, x, ξ) Jξx(t, x, ξ)

Jxξ(t, x, ξ) Jξξ(t, x, ξ)

)

∈M2n(R),

where for instance Jξx denotes the partial jacobian matrix of x with respect to ξ. Suppose that

lim sup
t→+∞

‖A(t)‖L∞(ZJ,+,M2n(R))

t
= +∞.

Differentiating the system (1.3) with respect to x and then to ξ, we see that

∂tA(t, x, ξ) = B(t, x, ξ) · A(t, x, ξ)
where

B(t, x, ξ) =

(

0 2 In
−HessV1(x(t, x, ξ)) 0

)

∈M2n(R),

and hence:

∂2tA(t, x, ξ) = ∂tB(t, x, ξ) ·A(t, x, ξ) +B(t, x, ξ)2 ·A(t, x, ξ) =: C(t, x, ξ) ·A(t, x, ξ)
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According to Proposition 2.1, there exists c0 > 0 such that for (x, ξ) ∈ ZJ,+ and t > 0 we have
|x(t, x, ξ)| > c0(|x|+ t), so

‖C(t, x, ξ)‖ 6 ‖∂tB(t, x, ξ)‖ +
∥

∥B(t, x, ξ)2
∥

∥ 6 c(|x|+ t)−2−ρ,

where c depends neither on (x, ξ) ∈ ZJ,+, nor on t > 0. For m ∈ N let

tm = inf
{

t > 1 : ‖A(t, x, ξ)‖L∞(ZJ,+,M2n(R))
> mt

}

.

Since the derivatives of φt are in L∞(R2n) uniformly for t in a compact subset of R, we have
tm → +∞. According to Taylor’s formula we have

‖A(tm)‖L∞(ZJ,+,M2n(R))

tm
6

‖A(0)‖L∞(ZJ,+,M2n(R))

tm
+ ‖∂tA(0)‖L∞(ZJ,+,M2n(R))

+
1

tm

∫ tm

0

(tm − s)c(R+ s)−2−ρ ‖A(s)‖L∞(ZJ,+,M2n(R))
ds

6 c+ c

∫ tm

0

tm − s

tm
(R+ s)−2−ρ smds

6 c+ cm

∫ tm

0

(R+ s)−1−ρ ds

6 c+ cmR−ρ,

where c depends neither on m ∈ N nor on the choice of R. If R was chosen so large that
cR−ρ 6 1

4 , then the right-hand side is less than m/2 for large m, which gives a contradiction.
The case |α|+ |β| = 1 is proved.

2. We now proceed by induction on |α| + |β|. Let α, β ∈ N
n such that |α| + |β| > 2 and

assume that the result is proved for any derivative of order less than |α| + |β|. For j ∈ J1, nK,

the differential operator ∂αx ∂
β
ξ applied to (1.3) gives

{

∂t∂
α
x ∂

β
ξ xj(t, x, ξ) = 2∂αx ∂

β
ξ ξj(t, x, ξ)

∂t∂
α
x ∂

β
ξ ξj(t, x, ξ) = −∑n

l=1(∂xj
∂xl

V1)(x(t, x, ξ)) ∂
α
x ∂

β
ξ xl(t, x, ξ) + bα,β,j(t, x, ξ),

where bα,β,j is a sum of terms of the form

−(∂xj
∂νV1)(x(t, x, ξ))

|ν|
∏

k=1

∂αk
x ∂βk

ξ xjk (t, x, ξ)

where |ν| > 2,
∑|ν|

k=1 αk = α,
∑|ν|
k=1 βk = β and for k ∈ J1, |ν|K: jk ∈ J1, nK and |αk|+ |βk| > 1.

In particular for all k we have |αk|+ |βk| < |α|+ |β|, so each term is estimated by
∣

∣

∣

∣

∣

∣

(∂xj
∂νV1)(x(t, x, ξ))

|ν|
∏

k=1

∂αk
x ∂βk

ξ xjk (t, x, ξ)

∣

∣

∣

∣

∣

∣

6 c(|x|+ t)−1−ρ−|ν| 〈t〉ν 6 c(|x|+ t)−1−ρ

where c depends neither on t > 0 nor on (x, ξ) ∈ ZJ,+, and hence

|bα,β,j(t, x, ξ)| 6 c(|x|+ t)−1−ρ.

We also have
|∂tbα,β,j(t, x, ξ)| 6 c(|x|+ t)−1−ρ.

If we set

Aα,β(t, x, ξ) =























∂αx ∂
β
ξ x1(t, x, ξ)

...

∂αx ∂
β
ξ xn(t, x, ξ)

∂αx ∂
β
ξ ξ1(t, x, ξ)

...

∂αx ∂
β
ξ ξn(t, x, ξ)























∈ R
2n and Dα,β(t, x, ξ) =





















0
...
0

bα,β,1(t, x, ξ)
...

bα,β,n(t, x, ξ)





















∈ R
2n,

we have
∂tAα,β(t, x, ξ) = B(t, x, ξ) · Aα,β(t, x, ξ) +Dα,β(t, x, ξ)
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and

∂2tAα,β(t, x, ξ) = C(t, x, ξ) · Aα,β(t, x, ξ) +B(t, x, ξ) ·Dα,β(t, x, ξ) + ∂tDα,β(t, x, ξ).

Then we can conclude as above. Note that the matrix C is the same, and hence the choice of R
does not depend on (α, β). �

The estimate of size O(t) for x is what was expected since this is indeed what we have in the
free case, but we can improve the result for ξ:

Corollary A.2. For any α, β ∈ Nn there exists cα,β > 0 such that for t > 0 and (x, ξ) ∈ ZJ,±
we have

∣

∣

∣∂αx ∂
β
ξ ξ(±t, x, ξ)

∣

∣

∣ 6 cα,β .

Proof. Let α, β ∈ Nn. We have proved that

∂t∂
α
x ∂

β
ξ ξj(±t, x, ξ) = ∓

n
∑

l=1

(∂xj
∂xl

V1)(x(±t, x, ξ)) ∂αx ∂βξ xl(±t, x, ξ) + O
t→+∞

(t−1−ρ),

where the rest is uniform in (x, ξ) ∈ ZJ,±. With the estimates we now have on the derivatives
of x this means that there exists cα,β > 0 such that for all (x, ξ) ∈ ZJ,± and t > 0 we have

∣

∣

∣∂t∂
α
x ∂

β
ξ ξj(±t, x, ξ)

∣

∣

∣ 6 cα,β 〈t〉−1−ρ
.

It only remains to integrate in time to conclude. �

Corollary A.3. For any α, β ∈ Nn there exists cα,β > 0 such that for t > 0 and (x, ξ) ∈ ZJ,±
we have

∣

∣

∣

∣

∣

∂αx ∂
β
ξ

x(±t, x, ξ) · ξ(±t, x, ξ)
|x(±t, x, ξ)|

∣

∣ξ(±t, x, ξ)
∣

∣

∣

∣

∣

∣

∣

6 cα,β.

Corollary A.4. Let δ > 1
2 . Then for any α, β ∈ Nn there exists cα,β > 0 such that for all t > 0

and (x, ξ) ∈ ZJ,± we have
∣

∣

∣∂αx ∂
β
ξ 〈x(±t, x, ξ)〉−2δ

∣

∣

∣ 6 cα,β(|x|+ t)−2δ.

Proof. Let α, β ∈ Nn. We remark that ∂αx ∂
β
ξ 〈x(±t, x, ξ)〉−2δ

is a sum of terms of the form

cK(x(±t, x, ξ)) 〈x(±t, x, ξ)〉−2δ−K
K
∏

k=1

∂αk
x ∂βk

ξ x(±t, x, ξ)

where K ∈ J1, |α| + |β|K, cK(x) = 〈x〉2δ+K dK

dxK 〈x〉−2δ
is bounded, α =

∑K
k=1 αk and β =

∑K
k=1 βk. �

Now we can prove Proposition 5.1 :

Proof. Let χ̃ ∈ C∞
0 (R) be supported in J and equal to 1 in a neighborhood of E. Let χ+, χ− ∈

C∞(R) such that suppχ+ ⊂] − σ,+∞[, suppχ− ⊂] − ∞, σ[ and χ+ + χ− = 1 on R. Let
χ ∈ C∞

0 (Rn, [0, 1]) be equal to 1 on BR+1. Let

g± : (x, ξ) 7→ χ±

(

x · ξ
|x| |ξ|

)

(1− χ(x))χ̃
(

p(x, ξ)
)

〈x〉−2δ

and, for w ∈ R2n:

f±(w) = ±
∫ +∞

0

g±(φ
∓t(w)) dt.

Let w = (x, ξ) ∈ R2n. There exists Tw > 0 such that φ±(ZJ,±) ∩ Bx(2 |x|) = ∅ for all t > Tw
and hence

∀v ∈ Bx(2 |x|), ∀t > Tw, g±
(

φ∓t(v)
)

= 0.

According to the regularity theorems under the integral sign the functions f+ and f− are smooth
around w. And hence on R2n. Moreover their derivatives along the flow φt are given by

{p, f±} = ±
∫ +∞

0

{p, g± ◦ φ∓t} dt = g±.
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We now check that all the derivatives of f± are bounded. For α, β ∈ N
n there exists cα,β > 0

such that for (x, ξ) ∈ ZJ,± and t > 0 we have
∣

∣

∣∂αx ∂
β
ξ (g± ◦ φ±t)(x, ξ)

∣

∣

∣ 6 cα,β(|x|+ t)−2δ.

Let w ∈ R2n such that φ∓t(w) ∈ ZJ,± for some t > 0 (otherwise the derivatives of f± vanishes
at w). Let t0 denotes the maximum of such times t. We have

∣

∣

∣∂αx ∂
β
ξ f±(w)

∣

∣

∣ 6
∫ t0

0

∣

∣

∣∂αx ∂
β
ξ

(

g± ◦ φ∓t
)

(w)
∣

∣

∣ dt =

∫ t0

0

∣

∣

∣∂αx ∂
β
ξ

(

g± ◦ φ±t
)(

φ∓t0(w)
)

∣

∣

∣ dt

6 cα,β

∫ +∞

0

(R+ t)−2δ dt.

This means that f+ and f− belong to C∞
b (R2n,R). It only remains to set f = f+ + f− to

conclude. �
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portée. C.R. Acad. Sciences, 306:121–123, 1988.

[IK85] H. Isozaki and H. Kitada. Modified wave operators with time-independant modifiers. J. Fac. Sci.

Tokio, 32:77–104, 1985.
[IS72] T. Ikebe and Y. Saito. Limiting absoption method and absolute continuity for the Schrödinger oper-

ator. J. Math. Kyoto Univ., 12(3):513–542, 1972.
[Jec04] Th. Jecko. From classical to semiclassical non-trapping behaviour. C. R., Math., Acad. Sci. Paris,

338(7):545–548, 2004.
[Jec05] Th. Jecko. Non-trapping condition for semiclassical Schrödinger operators with matrix-valued poten-

tials. Math. Phys. Electronic Journal, 11(2), 2005.
[Leb96] G. Lebeau. Equation des ondes amorties. in : A. Boutet de Monvel and V. Marchenko (editors),

Algebraic and geometric methods in mathematical physics, 73-109. Kluwer Academic Publishers, 1996.
[Mou81] E. Mourre. Absence of singular continuous spectrum for certain self-adjoint operators. Comm. Math.

Phys., 78:391–408, 1981.
[Rob87] D. Robert. Autour de l’appoximation semi-classique, volume 68 of Progress in Mathematics.
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