

Epidemiology and Control of BVD in the U.S.

Hana van Campen

▶ To cite this version:

Hana van Campen. Epidemiology and Control of BVD in the U.S.. Veterinary Microbiology, 2010, 142 (1-2), pp.94. 10.1016/j.vetmic.2009.09.049. hal-00578405

HAL Id: hal-00578405 https://hal.science/hal-00578405

Submitted on 20 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Epidemiology and Control of BVD in the U.S.

Author: Hana Van Campen

 PII:
 S0378-1135(09)00466-0

 DOI:
 doi:10.1016/j.vetmic.2009.09.049

 Reference:
 VETMIC 4606

To appear in: VETMIC

Please cite this article as: Van Campen, H., Epidemiology and Control of BVD in the U.S., *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2009.09.049

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	PROCEEDINGS FOR ESVV PESTIVIRUS 2008
2	
3	Title: Epidemiology and Control of BVD in the U.S.
4	Author: Hana Van Campen
5	Affiliation: Department of Microbiology, Immunology and Pathology, Colorado State
6	University, Fort Collins, CO 80523-1644, USA
7	Telephone: 970-297-1287
8	FAX: 970-297-0320
9	Email: <u>hvancamp@lamar.colostate.edu</u>
10	
11	Correspondence should be addressed to:
12	Hana Van Campen
13	Colorado State University Diagnostic Medical Center
14	300 West Drake Rd.
15	Fort Collins, CO 80523-1644
16	Telephone: 970-297-1287
17	FAX: 970-297-0320
18	Email: <u>hvancamp@lamar.colostate.edu</u>
19	
20	
21	Key Words: Bovine viral diarrhea, epidemiology, U.S.
22 23	
24	

25 <u>Abstract:</u>

26 The apparent prevalence of bovine viral diarrhea virus (BVDV) persistently 27 infected cattle has been found to be low in U.S. dairies, beef herds and feedlots. Current 28 management practices within U.S. cattle industries that impact the epidemiology of 29 BVDV infections include purchasing untested cattle, lack of biosecurity procedures, large 30 herd sizes, mixing cattle from multiple sources, high cattle densities in dairy and feedlot 31 operations, synchronous breeding of beef herds, communal grazing and widespread 32 vaccination. Evidence for BVDV infection has been found in farmed and free-ranging 33 wildlife in North America; however the risk of BVDV transmission from wildlife to 34 cattle is not known. The perception of a low prevalence of BVDV herd infections, the 35 unrestricted sale of PI cattle, lack of economic data, intensive marketing of vaccines, reluctance to accept federal regulations, and a "gambler's" attitude among producers are 36 37 impediments to implementation of a national systematic BVD control program. Since 38 2004, voluntary BVDV control programs have been organized in nine states reflecting 39 the recognition of BVD as an important and preventable problem in the U.S.

40

41 <u>The Epidemiology of Bovine Viral Diarrhea Virus in the U.S.:</u>

There are 104.3 million cattle in the U.S. distributed over 1 million farms,
ranches, feedlots and other premises covering a broad spectrum of environments and
diverse cattle production systems (NASS, 2008). While bovine viral diarrhea virus
(BVDV) transmission and associated diseases are the same as found elsewhere,
differences in cattle management practices in the U.S. result in clinical manifestations at

47 the herd level that are different from those observed in Europe, and which present

48 challenges to controlling the viral infection.

49

50 <u>Prevalence of BVDV infections in U.S. cattle</u>.

51 An important difference between European cattle prior to the institution of bovine 52 viral diarrhea (BVD) eradication programs, and the U.S. is the low prevalence of BVDV 53 persistent infection in U.S. cattle. Data collected from recent surveys of beef cattle 54 indicate that the prevalence of persistently infected (PI) animals in the U.S. cattle 55 population is low, $\leq 0.3\%$ in surveys of beef herds (Wittum et al., 2001; O'Connor et al., 56 2007), feedlots (Loneragan et al., 2005, Fulton et al., 2006), and dairies (Houe et al., 57 1995; Munoz-Zanzi et al., 2003). The prevalence of BVDV-infected beef herds, as 58 defined by PI animal detection within herds, is 4% for beef cattle (Wittum et al., 2001; 59 O'Connor et al., 2007). The prevalence of BVDV-infected dairy herds is 15% based on 60 PI cattle detected in Michigan herds (Houe et al., 1995), and 1.7% in a national survey 61 based on detecting BVDV by RT-PCR in bulk milk samples (USDA 2007). In the latter 62 report, the percent of BVDV RT PCR positive dairy herds ranged from 0% in herds with 63 less than 100 cows to 12.8% in herds with \geq 500 cows.

64

The apparently low prevalence of BVDV-infected beef herds based on PI animal detection is likely to be an underestimate of true herd prevalence. Some BVDV-infected beef herds may be misclassified as uninfected herds if there is no PI animal alive at the time of testing. Test methods that are currently available do not detect PI fetuses, and the infection at the herd level continues when these calves are born. Surveying dairy herds

70	by reverse transcriptase-polymerase chain reaction (RT-PCR) assays of bulk milk
71	samples may result in the misclassification of herds as uninfected if there are no PI
72	animals in the lactating cow herd. This testing strategy underestimates the prevalence of
73	infected herds as the young stock, which is not surveyed by this method, is more likely to
74	include PI animals than older cattle.
75	
76	Accurately determining the prevalence of BVDV infection in individual cattle or
77	herds in the U.S. is problematic for a number of reasons. Herd sizes are relatively large
78	and testing every individual animal is neither logistically or economically feasible.
79	Although testing strategies for pooled samples have been developed, they do not replace
80	the need to obtain samples from each animal (Kennedy et al., 2006). An estimated 80%
81	of cattle in the U.S. are vaccinated with either inactivated or modified live viral vaccines
82	containing BVDV (USDA 1995; USDA 2007); consequently, BVDV seroprevalence is
83	high, and the serologic tests are unable to distinguish between vaccinated and naturally
84	infected cattle (Paisley et al., 1996). The testing strategies used in Europe to identify
85	BVDV-infected herds based on serology are not useful in this situation as they would
86	misclassify vaccinated-uninfected herds as being BVDV-infected. Thus, testing U.S.
87	herds is a challenge for any rigorous BVD control program.
88	
89	If the prevalence of BVDV-infected herds in the U.S. is truly low, then one could
90	surmise that control of BVDV-associated diseases by eradication could be easily
91	accomplished. The low prevalence, however, also means that a large proportion of U.S.

92 herds are susceptible to the introduction of BVDV infections. As the sale of PI animals is

93	not prohibited, epidemics of BVDV-associated diseases occur each year as the viruses are
94	introduced into these herds through the purchase of PI cattle or cows bearing PI fetuses.
95	BVDV-associated diseases are not reportable and the diseases may be misdiagnosed;
96	therefore, there is no data enumerating BVDV-associated cases. Occurrences of diseases
97	are only captured in a few case reports.
98	
99	Cattle management in the U.S. that impact BVDV infections:
100	The trend in U.S. dairies has been towards fewer farms and larger herd sizes. The
101	rapid growth of large dairies has increased the demand for bred replacement heifers.
102	Risk factors for herds with positive BVDV RT-PCR bulk milk tank samples include large
103	herd size (>500 cows) and purchasing animals (USDA 2007). To meet the demand,
104	heifers are raised and bred in commercial facilities where thousands of cattle from
105	multiple origins are co-mingled. Contact with PI animals in these facilities during the
106	breeding period generates PI fetuses. When these heifers return to dairies, they give birth
107	to PI calves which then are a source of BVDV infection for the rest of the herd. Dairy
108	herd expansion may occur more rapidly than optimal for the facilities and personnel
109	resulting in crowding and insufficient attention to biosecurity and sanitation measures.
110	Inadequate separation of pregnant cows from young stock including PI calves leads to
111	additional fetal infections. In registered herds where the genetic value of individual
112	animals is emphasized, PI cattle may be retained in the herd despite poor health and
113	phenotype. (Rauff et al., 1996; Rush et al., 2001). Infertility as judged by the percent of
114	cows >150 days open is higher (18.2%) for BVDV-infected operations compared to
115	noninfected dairies (USDA 2007), and supports the finding that infertility in heifers has

116 been linked to congenital BVDV infection (Munoz-Zanzi et al., 2004). As infertility is 117 an important factor in culling decisions made on dairies, a cycle of culling infertile cows 118 necessitating increased purchases of at-risk heifers. BVDV RT-PCR positive dairies are more likely to use BVDV-containing vaccines than non-infected operations suggesting 119 120 that vaccines are being used in response to problems perceived to be due to BVDV 121 infections (USDA 2007). An important difference between dairy and beef herds with 122 respect to the epidemiology of BVD is that breeding in dairy herds occurs over the entire 123 year. Exposure of the cows to a PI animal results in the infection of fetuses whose ages 124 cover the entire gestational period. Calves with congenital defects resulting from BVDV 125 infection are more likely to be born into dairy herds which aids in recognition of herd 126 infection.

127

128 Beef herds engage in similar high risk practices as dairy herds including the 129 purchase of untested cattle. The purchase of pregnant heifers and utilization of heifer 130 development feedlots has become common in the beef industry and like the dairies, 131 generate PI fetuses which then serve as the source of infection for the cow herd when the 132 heifers return and calve. In addition, ranchers share summer pastures where cows in their 133 first trimester of pregnancy may contact PI calves from other herds (Sanderson et al., 134 2000). The practice of synchronous, seasonal breeding in beef cattle has a marked impact 135 on the manner in which BVDV-associated reproductive losses present. Contact with a 136 single PI calf can infect a large proportion of cows during the first trimester of pregnancy. 137 In this scenario, the first observation is a distinct rise in infertility cases determined at 138 pregnancy examination. Typically, this is followed by explosive abortion "storm"

beginning one month prior to the planned calving interval and followed by increased
stillbirths, the birth of stunted calves and weak, non-viable calves. In some cases, BVDV
epidemics result in losses of 50% of the calf crop. In contrast to diary herds, classic
congenital defects such as cerebellar hypoplasia are infrequently observed in beef herds
due to the early gestational age of fetuses at the time of exposure of cow-calf herds to PI
calves.

145

146 There are two possible outcomes following the epidemic year of BVDV infection. 147 If a PI calf is not born or does not survive into the breeding season, then BVDV infection 148 of the herd will not be sustained and the herd will be uninfected. Detection of BVDV 149 antibodies in the cow herd at this point would falsely classify the herd as infected (Van 150 Campen et al., 1998). Secondly, the herd can enter an endemic state of infection if a PI 151 calf survives into the breeding season. In endemically infected beef herds, approximately 152 50% of the calves will have become infected by the time they are weaned due to contact 153 with PI calves present in the same cohort (Cleveland et al., 2004). Calfhood infections 154 may be clinically inapparent during the period that the calf is protected by maternal 155 antibodies, but manifest as diarrhea and pneumonia when maternal antibodies wane. The 156 rest of the calf crop may be impacted by BVDV in more subtle ways such as lower 157 weaning weights and rate of gain (Waldner and Kennedy, 2008). In either scenario, 158 cows rendered immune by the initial infection will protect subsequent pregnancies from antigenically similar BVD viruses for the rest of their life. Their offspring will not be PI 159 160 or suffer other consequences of congenital infection; however, their offspring will be 161 susceptible to infection. If susceptible heifers are retained in the herd and remain

unexposed, e.g., by virtue of being raised separately from the cow herd, they serve as the
source of additional PI animals following exposure to PI calves when they enter the cow
herd and are bred.

165

166 On average, 10,000,000 head of cattle are on feed in the U.S. in just under 167 1,000,000 premises. Approximately one-third of the inventory is fed in feedlots with 168 over 1,000 head of cattle (NAAS 2008). By necessity, maintaining this inventory 169 requires purchasing cattle from multiple sources and co-mingling animals at high animal 170 densities. In addition, calves pass through several sales facilities prior to entry into the 171 yard which represents another opportunity for exposure to pathogens. The percentage of 172 PI cattle entering feedlots is low; however, cattle in adjacent pens as well as with the 173 home pen are subject to infection. In some cases, the immunosuppressive effects of 174 BVDV likely play a role in increased risk of morbidity and mortality due to respiratory 175 disease (Loneragan et al. 2005). However, other surveys of beef cattle failed to find any 176 significant effect of PI calves on herd health (O'Connor et al., 2007). In terms of 177 transmission, the feedlot is an endpoint for the viruses, and would not impact their 178 maintenance in the breeding cattle population. The economic impact on feeder calves is 179 more easily apparent which explains the interest in BVDV control from this segment of 180 the cattle industry.

181

182 <u>Wildlife and other sources of BVDV:</u>

183 The U.S. enjoys ample populations of wild species of ruminants which share184 range and forage with domestic cattle. Serologic surveys have indicated that these

185 animals become infected with BVDV and other pestiviruses (reviewed by Van Campen et 186 al., 2001a). Evidence for PI white-tailed and mule deer have been found in several states 187 (Chase et al., 2008; Duncan et al., 2008b; Pogranichniy, et al., 2008; Van Campen et al., 188 2001b), and PI white-tailed fawns have been generated experimentally by the inoculation 189 of pregnant does (Duncan et al., 2008a). Clearly, free-ranging wildlife species are a 190 potential source of infection for cattle; however, transmission from wildlife to cattle has 191 not been demonstrated to have occurred in nature and the risks of infection from this 192 source have not been examined. Recently, the persistent infection of alpacas with a 193 noncytopathic type 1b BVDV was reported (Carman et al., 2005). The monetary value 194 placed on individual alpacas, the aggressiveness with which breed associations pursued 195 PI testing and the small number of PI crias identified makes this species an unlikely 196 source of infection for cattle. Few surveys of Pestivirus infections have been conducted 197 in domestic sheep and goats in the U.S. that might indicate the extent of these infections 198 or whether these populations pose a risk to cattle.

199

200 BVDV Control and Eradication Programs in the U.S.:

201 Prior to 2004, BVDV control largely rested on the use of inactivated and modified 202 live BVDV vaccines. For decades, BVDV vaccines included either the Singer or NADL 203 cytopathic type 1a BVD viruses. These vaccines were used to prevent both fetal 204 infections with accompanying reproductive losses as well as to prevent diseases due to 205 acute infections. The recognition of type 2 BVDV associated with severe disease and 206 occurrence of fetal losses in vaccinated cows (Van Campen et al., 2000) led to the 207 inclusion of a cytopathic type 2 BVDV in many vaccines. Since then experimental

208	challenge of vaccinated cows has established the superiority of MLV BVDV vaccines in
209	providing fetal protections; however, concerns about safety and subtle effects of live viral
210	vaccines on health remain a factor in their use (Ellsworth et al., 2006; Grooms et al.,
211	2007; Schnackel et al., 2007). A significant consequence of the widespread use of
212	BVDV vaccines is the inability to use serologic techniques for the diagnosis of BVD herd
213	infections and for surveillance purposes in U.S. cattle. As important is the perception by
214	producers that BVDV vaccines will prevent the introduction of BVDV into their herds.
215	Given this mindset, biosecurity measures to prevent the introduction of BVDV and other
216	pathogens are often ignored.
217	
218	In 2003, the Academy of Veterinary Consultants published a position statement
219	promoting the control and eventual eradication of BVD from the U.S. (http://www.avc-
220	beef.org/links/BVDLinks.asp). This announcement was followed in Jan. 2004 by
221	development of a voluntary BVD control program offered in conjunction with Colorado
222	State University
223	(http://www.dlab.colostate.edu/BVDControlProgram/bvdcontrolprog_main.cfm). Since
224	then, the number of BVD prevention and control programs has expanded to include
225	Alabama (http://www.aces.edu/counties/Marion/files/bvd.pdf), Georgia, Mississippi
226	(http://www.mbah.state.ms.us/disease_programs/bvd/MS_PI_BVD_Program.pdf),
227	Montana (http://www.mtbqa.org/news/2007%20Montana%20BVD-
228	PI%20Herd%20Screening%20Project.doc), Oregon
229	(http://ans.oregonstate.edu/bvd/index.html) and Washington
230	(http://www.vetmed.wsu.edu/bvdcep/) with a focus on beef herds. New York has a BVD

231	control module offered through their extension service that is tailored to dairy farms	
232	(http://nyschap.vet.cornell.edu/module/bvd/bvd.asp). An exciting addition to this list is	
233	the BVD eradication program	
234	(http://www.msue.msu.edu/workspaces/one.cfm?workspace_id=28413&object_id=45518	
235	$\underline{1}$) offered to beef and dairy herds in the Upper Peninsula of Michigan through the	
236	extension service of Michigan State University.	
237		
238	All programs are voluntary, associated with a university and organized in	
239	conjunction with other beef or dairy quality assurance programs. Program elements	
240	include: 1) education about BVDV transmission and diseases, 2) required testing	
241	procedures, 3) documentation of biosecurity practices to prevent the re-introduction of	
242	BVDV, and 4) verified use of a vaccination schedule. A wide range of resources are	
243	available to veterinarians, diagnosticians and producers seeking information about the	
244	control and prevention of BVDV infections. These subjects have continued to receive	
245	extensive coverage in magazines and the websites of veterinary medical and producer	
246	organizations, by university extension personnel and vaccine companies. Consultation on	
247	BVD control is provided at no cost to the producer by extension personnel, clinical	
248	faculty at veterinary teaching hospitals and by diagnostic laboratories. Two BVD	
249	control programs have funding for to partially cover the costs of testing and limited	
250	funding for indemnification of owner's of PI animals. The biosecurity requirement in	
251	some programs means the development of a written biosecurity plan by each producer,	
252	and the systematic element of follow-up testing in subsequent years is encouraged.	
253	Funding the existing programs is a constant challenge. To date, BVD control programs	

- have relied on grants from producer organizations, state departments of agriculture,
- 255 vaccine and pharmaceutical companies, and university resources.

256 Currently mandatory, systematic BVD control programs similar those in several European countries do not exist in the U.S. (Lindberg et al., 2006). The concept of BVD 257 258 control by eradication has been slow to find acceptance in the U.S. Impediments include 259 reluctance to institute a government-regulated control program. Available data indicating 260 a low prevalence of BVDV infection in beef and dairy herds and uncertainty on the part 261 of individual producers about the economic benefits of BVDV control. The lack of a 262 clear danger is compounded by the "Gambler's" mentality among individual cattle 263 producers. The low herd prevalence validates the general belief that the application of 264 BVDV vaccines is a "cure-all" rather than an aid in prevention of BVDV infections. 265 However, producers and veterinarians who have experienced losses due to BVDV-266 associated diseases are more motivated to adopt preventive measures. Producer and 267 veterinarians' awareness of the potential impact is the impetus behind the BVDV testing 268 recently adopted by bull sales, purebred stock sales, livestock shows and specific 269 feedlots. The proliferation of BVD control and eradication programs in the U.S. is 270 encouraging and highlights recognition of BVDV's importance to cattle health. 271 272

- 273 <u>References:</u>
- 274

275	Carman, S., Carr, N., DeLay, J., Baxi, M., Deregt, D., Hazlett, M. 2005. Bovine viral	
276	diarrhea virus in alpaca: abortion and persistent infection. J Vet Diagn Invest 17, 589-	
277	593.	
278		
279	Chase, C.L.C., Braun, L.J., Leslie-Steen, P., Graham, T., Miskimins, D., Ridpath, J.F.	
280	2008. Bovine viral diarrhea virus multiorgan infection in two white-tailed deer in	
281	southeastern South Dakota. J. Wildl. Dis. 44, 753-759.	
282		
283	Cleveland, S. M., Cleveland, M. A., Salman, M. D., Mortimer, R. G., Van Campen, H.	
284	2004. Removal of bovine viral diarrhea virus persistently infected animals from an	
285	endemically infected beef herd: effect on PI animal prevalence and BVDV	
286	seroprevalence. Bovine Practitioner 38(2), 155-160	
287		
288	Duncan C, Ridpath J, Palmer MV, Driskell E, Spraker T. 2008a. Histopathologic and	
289	immunohistochemical findings in two white-tailed deer fawns persistently infected with	
290	Bovine viral diarrhea virus. J Vet Diagn Invest. 20, 289-96.	
291		
292	Duncan, C., Van Campen, H., Soto, S, LeVan, I.K., Baeten, L.A., Miller, M.W. 2008b.	
293	Persistent bovine viral diarrhea virus infection in wild cervids of Colorado. J Vet Diagn	
294	Invest 20, 650-653.	
295		
296	Ellsworth, M.A., Fairbanks, K.K., Behan, S., Jackson, J.A., Goodyear, M., Oien, N.A.,	

297 Meinert, T.R., Leyh, R.D. 2006. Fetal protection following exposure to calves

298	persistently infected with bovine viral diarrhea virus type 2 sixteen months after primary
299	vaccination of the dams. Vet Ther. 7, 295-304.
300	
301	Fulton, R.W., Hessman, B., Johnson, B.J., Ridpath, J.F., Saliki, J.T., Burge, L.J.,
302	Sjeklocha, D., Confer, A.W., Funk, R.A. Payton, M.E. 2006. Evaluation of diagnostic
303	tesets used for detection of bovine viral diarrhea virus and prevalence of subtypes 1a, 1b,
304	and 2a in persistently infected cattle entering a feedlot. JAVMA 228, 578-584.
305 306 307	Grooms, D. L., Bolin, S. R., Coe, P.H., Borges, R.J., Coutu, C. E. 2007. Fetal protection
308	against continual exposure to bovine viral diarrhea virus following administration of a
309	vaccine containing an inactivated bovine viral diarrhea virus fraction to cattle. Am J Vet
310	Res 68: 1417-1422.
311	
312	Houe, H., Baker, J.C., Maes, R.K., Wyryastuti, H., Wasito, R., Ruegg, P.L. Lloyd, J.W.
313	1995. Prevalence of cattle persistently infected with bovine viral diarrhea virus in 20
314	dairy herds in tow counties in central Michigan and comparison of prevalence of
315	antibody-positive cattle among herds with different infection and vaccination status. J Vet
316	Diagn Invest 7, 321-326.
317	
318	Kennedy, J.A., Mortimer, R.G., Powers, B. 2006. Reverse transcription-polymerase chain
319	reaction on pooled samples to detect bovine viral diarrhea virus by using fresh ear-notch-
320	sample supernatants. J Vet Diagn Invest 18, 89-93.
321	

322	Lindberg, A., Brownlie J, Gunn GJ, Houe H, Moennig V, Saatkamp HW, Sandvik T,
323	Valle PS. 2006. The control of bovine viral diarrhoea virus in Europe: today and in the
324	future. Rev Sci Tech. 25, 961-79.
325	
326	Loneragan, G. H., Thomson, D. U., Montgomery, D.L., Mason, G. L., Larson, R.L. 2005.
327	Prevalence, outcome, and health consequences associated with persistent infection with
328	bovine viral diarrhea virus in feedlot cattle. JAVMA 226(4), 595-601.
329	
330	Munoz-Zanzi, C. A., Hietala, S. K., Thurmond, M. C., Johnson, W.O. 2003.
331	Quantification, risk factors and health impact of natural congenital infection with bovine
332	viral diarrhea virus in dairy calves. Am J Vet Res 64(3), 358-365.
333	
334	Munoz-Zanzi, C. A., Hietala, S. K., Thurmond, M. C., Johnson, W.O. 2004. Effect of
335	bovine viral diarrhea virus infection on fertility of dairy heifers. Theriogenology 61(6),
336	1085-1099.
337	
338	National Agricultural Statistics Service, Agricultures Statistics Board, USDA.
339	http://www.nass.usda.gov/index.asp
340	
341	O'Connor, A.M., Reed, M. C., Denagamage, T. N., Yoon, KJ., Sorden, S.D. 2007.
342	Prevalence of calves persistently infected with bovine viral diarrhea virus in beef cow-
343	calf herds enrolled in a voluntary screening project. JAVMA 230(11), 1691-1696.
344	

345	Paisley, L. G., Wells, S., Schmitt, B.J. 1996. Prevalence of bovine viral diarrhea
346	antibodies in 256 U.S. cow-calf operations: a survey. Theriogenology 46, 1313-1323.
347	
348	Pogranichniy RM, Raizman E, Thacker HL, Stevenson GW. 2008. Prevalence and
349	characterization of bovine viral diarrhea virus in the white-tailed deer population in
350	Indiana. J Vet Diagn Invest. 20,71-74.
351	
352	Rauff, Y., Moore, D. A., Sischo, W.M. 1996. Evaluation of the results of a survey of
353	dairy producers on dairy herd biosecurity and vaccination against bovine viral diarrhea
354	JAVMA 210, 1618-1622.
355	
356	Rush, D.M., Thurmond, M.C., Munoz-Zanzi, C.A., Hietala, S.K. 2001. Descriptive
357	epidemiology of postnatal bovine viral diarrhea virus infection in intensively managed
358	dairy heifers. JAVMA 219, 1426-1431.
359	

- Sanderson, M. W., Dargatz, D. A., Garry, F.B. 2000. Biosecurity practices of beef cowcalf producers. JAVMA 217, 185-189.
- 362
- 363 Schnackel, J. Van Campen, H., van Olphen, A. 2007. Modified-live bovine viral diarrhea
- 364 virus (BVDV) type 1a vaccine provides protection against fetal infection after challenge
- 365 with either type 1b or type 2 BVDV. The Bovine Practitioner 41, 1-8.
- 366
- 367 USDA. 1995. Vaccination practices for respiratory pathogens in U.S. Feedlots. USDA-
- 368 APHIS–VS, CEAH. Fort Collins, CO #N176.0295

\mathbf{a}	10
	ьu
2	\mathbf{v}

370	USDA. 2007. Dairy 2007, Part III: Reference of Dairy Cattle Health and Management
371	Practices in the United States, 2007. USDA-APHIS-VS, CEAH. Fort Collins, CO
372	#N482.0608, http://www.aphis.usda.gov/vs/ceah/ncahs/nahms/dairy/index.htm
373	
374	Van Campen, H., Huzurbazar, S., Edwards, J., Cavender, J. 1998. Distribution of
375	antibody titers to bovine viral diarrhea virus in infected, exposed and uninfected beef
376	cattle. J Vet Diagn Invest 10, 183-186.
377	
378	Van Campen, H., Vorpahl, P., Huzurbazar, S., Edwards, J., Cavender, J. 2000. A case
379	report: Evidence for BVDV type 2-associated disease in beef herds vaccinated with a
380	MLV-BVDV Type 1 vaccine. J Vet Diagn Invest 12, 263-265.
381	
382	Van Campen, H., Frolich, K., M. Hofmann. 2001a. Pestivirus infections. In: Infectious
383	Diseases of Wild Mammals, 3rd Ed., Williams, E.S. and I.K. Barker, (eds). Iowa State
384	Univ. Press, Ames, IA.
385	
386 387	Van Campen, H., Ridpath, J., Williams, E., Cavender, J., Edwards, J., Smith, S., Sawyer,
388	H.H. 2001b. Isolation of bovine viral diarrhea virus from a free-ranging mule deer
389	(Odocoileus hemionus). Journal of Wildlife Diseases 37, 306-311.
390	
391	Van Campen, H, Vorpahl, P, Huzurbazar, S. Edwards, J., Cavender, J. 2001c. A case
392	report: Evidence for type 2 bovine viral diarrhea virus (BVDV)-associated disease in

- beef herds vaccinated with a modified-live type 1 BVDV vaccine. J Vet Diagn Invest 12,
 263-265.
- 395
- 396 Waldner, C. L., Kennedy, R.I. 2008. Associations between health and productivity in
- 397 cow-calf beef herds and persistent infection with bovine viral diarrhea virus, antibodies
- 398 against bovine viral diarrhea virus, or antibodies against infectious bovine rhinotracheitis
- 399 virus in calves. AJVR 69, 916-927.
- 400
- 401 Wittum, T. E., Grotelueschen, D. M., Brock, K. V., Kvasnicka, W. G., Floyd, J. G.,
- 402 Kelling, C. L., Odde, K.G. 2001. Persistent bovine viral diarrhea virus infection in US
- 403 beef herds. Prev Vet Med 49, 83-94.
- 404
- 405 <u>Acknowledgements:</u> The author would like to thank the organizers of the 7th ESVV
- 406 Pestivirus Symposium for their invitation and encouragement.
- 407
- 408 <u>Conflict of interest statement:</u> The author is employed by Colorado State University and
- 409 works in the Veterinary Diagnostic Laboratory, Ft. Collins, CO. She collaborates with
- 410 investigators with grants funded by USDA, NRI and Pfizer Animal Health.