

Generation of recombinant pestiviruses using a full-genome amplification strategy

Thomas Bruun Rasmussen, Ilona Reimann, Åse Uttenthal, Immanuel Leifer,

Klaus Depner, Horst Schirrmeier, Martin Beer

▶ To cite this version:

Thomas Bruun Rasmussen, Ilona Reimann, Åse Uttenthal, Immanuel Leifer, Klaus Depner, et al.. Generation of recombinant pestiviruses using a full-genome amplification strategy. Veterinary Microbiology, 2010, 142 (1-2), pp.13. 10.1016/j.vetmic.2009.09.037 . hal-00578396

HAL Id: hal-00578396 https://hal.science/hal-00578396

Submitted on 20 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Generation of recombinant pestiviruses using a full-genome amplification strategy

Authors: Thomas Bruun Rasmussen, Ilona Reimann, Åse Uttenthal, Immanuel Leifer, Klaus Depner, Horst Schirrmeier, Martin Beer

To appear in: VETMIC

Please cite this article as: Rasmussen, T.B., Reimann, I., Uttenthal, Å., Leifer, I., Depner, K., Schirrmeier, H., Beer, M., Generation of recombinant pestiviruses using a full-genome amplification strategy, *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2009.09.037

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

- **1** Generation of recombinant pestiviruses using a full-genome amplification
- 2 strategy
- 3
- 4 Thomas Bruun Rasmussen^{1*}, Ilona Reimann², Åse Uttenthal¹, Immanuel Leifer²,
- 5 Klaus Depner², Horst Schirrmeier² and Martin Beer²
- 6
- ⁷ ¹DTU National Veterinary Institute, Technical University of Denmark, Lindholm,
- 8 DK-4771 Kalvehave, Denmark
- 9 ²Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, D-17493 Greifswald-
- 10 Insel Riems, Germany
- 11
- 12 *Corresponding author
- 13 Thomas Bruun Rasmussen
- 14 DTU National Veterinary Institute (DTU Vet)
- 15 Technical University of Denmark
- 16 Lindholm
- 17 DK-4771 Kalvehave
- 18 Phone : +45 35887850
- 19 Fax : +45 35887901
- 20 Email : tbrur@vet.dtu.dk

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

22 Abstract

23	Complete genome amplification of viral RNA provides a new tool for the
24	generation of modified viruses. We have recently reported a full-genome
25	amplification strategy for recovery of pestiviruses (Rasmussen et al., 2008). A
26	full-length cDNA amplicon corresponding to the Border disease virus-Gifhorn
27	genome was generated by long RT-PCR and then RNA transcripts derived from
28	this amplicon were used to rescue infectious virus. Here, we have now used this
29	full-genome amplification strategy for efficient and robust amplification of three
30	additional pestivirus strains: the vaccine strain C and the virulent Paderborn
31	strain of Classical swine fever virus plus the CP7 strain of Bovine viral diarrhoea
32	virus. The amplicons were cloned directly into a stable single-copy bacterial
33	artificial chromosome generating full-length pestivirus DNAs from which
34	infectious RNA transcripts could be also derived.
35	

- 36 Keywords: *Pestivirus*, *Flaviviridae*, long RT-PCR, full-genome amplicon,
- 37 infectious clone, pBeloBAC11

S

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

39 Introduction

40 The genus *Pestivirus* is part of the family *Flaviviridae* and contains economically 41 important animal viruses such as Classical swine fever virus (CSFV), Bovine 42 viral diarrhoea virus (BVDV) and Border disease virus (BDV). Pestivirus virions 43 are enveloped and contain a positive-stranded RNA genome of about 12.3 kb 44 which has a single long open reading frame flanked by non-translated regions 45 (5'NTR and 3'NTR), which are important for viral replication. Generation of 46 pestivirus cDNA clones is a general prerequisite for genetic manipulation of 47 their genomes, a process that can be both lengthy and laborious. Several 48 infectious cDNA clones containing complete pestivirus genomes have been 49 described (Meyers et al., 1996; Moormann et al., 1996; Ruggli et al., 1996; 50 Vassilev et al., 1997; Fan and Bird, 2008). These cDNA clones have provided 51 new options for directed genetic manipulations of pestiviruses. However, 52 construction of these infectious cDNA clones has been hampered due to the 53 relatively large size of the viral RNA genome and because of genetic instability 54 of the cloned cDNA in combination with the plasmid vectors in the bacterial 55 host. Therefore, new strategies are needed to facilitate construction of stable 56 infectious cDNA clones from a wider range of strains. 57 Generation of infectious cDNA clones can be facilitated by using 58 long RT-PCR for full-genome amplification. This approach has been applied

59 with success to a number of RNA viruses from the *Flaviviridae* (Tellier et al.,

60 1996; Gritsun and Gould, 1998; Zhang et al., 2001). For pestiviruses, the

61 methodology has been used to obtain the entire open reading frame for

62 sequencing studies (Jones et al., 2006) as well as for virus rescue (Rasmussen

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

- 63 et al., 2008). Full-length genome amplification facilitates, in addition to virus
- rescue, direct full-length sequence analysis and the amplicons can also be
- 65 directly inserted into suitable cloning vectors.
- 66 In the present study, we developed an optimized, efficient and 67 streamlined method for the robust amplification of full-length cDNAs of four 68 strains (BVDV-CP7, BDV-Gifhorn, CSFV-C and CSFV-Paderborn). This 69 procedure was followed by the insertion of the BDV and CSFV amplicons into 70 the stable single-copy vector pBeloBAC11 (Wang et al., 1997). This bacterial 71 artificial chromosome (BAC) has been shown to successfully maintain the full-72 length cDNAs of Japanese encephalitis virus (Yun et al., 2003) and BVDV-SD1 73 (Fan and Bird, 2008). Using this procedure, we have generated new full-length 74 cDNA clones of BDV and CSFV, which enlarges the range of cloned pestivirus 75 genomes that can be manipulated.
- 76

77 Materials & Methods

78	The different viruses used in this study were; BVDV-CP7 from bovine KOP-R
79	cells (10^6 TCID ₅₀ /mI); CSFV-Paderborn from porcine PK15 cells (10^7 TCID ₅₀ /mI;
80	vaccine strain CSFV-C from porcine PK15 cells ($10^{4.75}$ TCID ₅₀ /mI); and BDV-
81	Gifhorn from ovine SFT cells (10^6 TCID ₅₀ /ml). Infected cells were grown in
82	Dulbecco's Modified Eagle Medium supplemented with 10% BVDV-free foetal
83	bovine serum at 37° C in a humidified atmosphere containing 5% CO ₂ . The total
84	RNA was extracted from the cells using a combined Trizol/RNeasy protocol.
85	This protocol was used to obtain high-quality full-length genomic RNA. Briefly,
86	total RNA was extracted from 1 ml cell supernatant or cell lysate with 3 ml Trizol

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

87	LS reagent (Invitrogen) and 0.8 ml chloroform. After phase separation the
88	aqueous phase was mixed with an equal volume of 75% ethanol and 0.7 ml of
89	the resulting mix was transferred sequentially to the same RNeasy column
90	(Qiagen). The column was washed according to the manufacturer's protocol.
91	Total RNA was eluted from the column with 4 times 30 μI nuclease free water
92	and stored at -80°C until use. Pestivirus genomes were amplified from total
93	RNA preparations using long RT-PCR. It was found that the third RNA eluate
94	empirically performed the best in long RT-PCR, presumable due to a higher
95	proportion of full-length genomic RNA in this fraction.
96	The total RNA was reverse transcribed at 50°C for 90 minutes
97	using SuperScript III reverse transcriptase kit (Invitrogen) and specific cDNA
98	primers (Table 1). For improved long RT-PCR efficiency, the resulting cDNA
99	was subsequently treated with RNAse H to remove the RNA template. Full-
100	length PCR amplification was performed using primers specific for the 5'NTR
101	and the 3'NTR of each strain (Table 1) with the Accuprime High Fidelity kit
102	(Invitrogen) which consists of a mixture of <i>Taq</i> and proofreading <i>Pyrococcus</i>
103	GB-D DNA polymerases. Reactions containing 2 μ l cDNA were then amplified
104	in a final volume of 50 μl using 94°C for 30 seconds followed by 35 cycles of
105	94°C for 15 seconds, 65°C for 30 seconds and 68°C for 12 minutes. Samples
106	(1-10 $\mu l)$ of each PCR reaction were analysed on a 1 % agarose gel in TBE
107	buffer alongside a 1kb DNA ladder (Fermentas).
108	Standard techniques were used for cloning of the full-length
109	amplicons into pBeloBAC11 (Invitrogen). Briefly, pBeloBAC11 (7507 bp) was

110 digested with *Not*I and afterwards treated with Antarctic phosphatase (NEB).

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

111	The full-length amplicons of about 12.3 kb were also digested with Notl and
112	purified using the Nucleotide removal kit (Qiagen). Equal amounts of vector and
113	amplicons were mixed and ligated in 25 μl reactions overnight at 16°C using
114	DNA ligase for long fragments (Takara Bio) according to the manufacturer's
115	recommendations. The products (1 μ l) were electroporated into
116	electrocompetent DH10B T1 phage resistant <i>E.coli</i> (Invitrogen) and
117	transformants harbouring the cloned amplicons were isolated from selective LB
118	plates containing 12.5 $\mu\text{g/ml}$ chloramphenicol. Small scale preparations of DNA
119	from selected transformants were obtained using the BAC miniprep protocol
120	previously described (Warming et al., 2005) and the presence of the full-length
121	pestivirus cDNA was determined following restriction analysis using Notl.
122	Selected BAC DNAs were digested with Notl, in vitro transcribed using T7 RNA
123	polymerase and the RNA transcripts were tested for infectivity as previously
124	described (Reimann et al., 2004; Rasmussen et al., 2007). Immunostaining of
125	electroporated porcine SK6 cells (CCLV RIE262) was performed with the pan-
126	pestivirus antibody (C16) targeting the non-structural NS3 proteins (Reimann et
127	al., 2004).
128	

128

129 Results

- 130 Full-length cDNAs corresponding to four different pestivirus strains were
- 131 successfully amplified in single long RT-PCRs using an optimized version of the
- 132 full-genome amplification strategy described by Rasmussen et al. (2008). The
- 133 original protocol was modified by substituting the Elongase enzyme mix with the
- 134 Accuprime High Fidelity kit. This polymerase mix, in combination with the

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

135	Superscript III reverse transcriptase, efficiently produced, from each of the
136	different viral RNAs, amplicons of approximately 12.3 kb, corresponding to the
137	full-length genomes (Fig. 1). The Accuprime High Fidelity polymerase mix
138	increased the specificity and efficiency of the long RT-PCR compared to the
139	Elongase enzyme mix and produced distinct products of the expected size
140	without smears and aberrant amplification products (Fig. 1). High yields (several
141	micrograms) of DNA were obtained in each long RT-PCR. For amplification of
142	complete genomes in a single RT-PCR, specific primers were designed based
143	on nucleotide sequences of the terminal 5'NTR- and 3'NTR- genomic ends
144	(Table 1). The primers for amplification of BDV-Gifhorn were described in
145	Rasmussen et al. (2008). The primers for BVDV-CP7 (Meyers et al., 1996,
146	Accession number BVU63479), and for the CSFV-C (Accession number
147	AY259122) were based on published sequences. Similarly, the 5'NTR primer
148	for CSFV-Paderborn was designed from Accession number AY072924
149	(Oleksiewicz et al., 2003) but this sequence lacks approximately 75 nucleotides
150	from the terminus of the 3'NTR. Therefore, the 3'Paderborn reverse primer was
151	designed using a nucleotide alignment of known full-genome CSFV sequences.
152	Generally, knowledge of less than 50 nucleotides of the terminal sequences
153	from each of the strains was needed for successful amplification of the whole
154	genome.
155	By incorporating unique Notl restriction sites within the primers
156	(Table 1), the amplicons were designed for subsequent insertion into
157	pBeloBAC11. Full-length amplicons of the two strains CSFV-C and CSFV-
158	Paderborn, and also the BDV-Gifhorn were obtained using the respective Notl

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

159	primers (Fig. 2). Amplification and cloning of BVDV-CP7 was not attempted by
160	this strategy due to an internal <i>Not</i> I site in the cDNA sequence.
161	The amplified genomes were digested with Notl and ligated directly
162	into the Notl site in pBeloBAC11. Electroporation of DH10B E.coli cells with the
163	ligated products yielded small and large bacterial colonies (from a few to
164	several hundreds) after incubation for 24 hours at 37°C. Both small and large
165	colonies were tested for the presence of full-genome amplicons. Generally, two
166	thirds of the tested transformants carried a BAC containing an insert of the
167	expected size of approximately 12.3 kb (Fig. 3). One third of the transformants
168	either carried BACs with smaller inserts, empty BACs or no visible BAC vector.
169	There was no correlation between the size of the BAC inserts and the size of
170	the bacterial colonies.
171	Testing of the BAC clones for their ability to generate virus
172	infectivity in cells is ongoing in our laboratories. The preliminary results of this
173	evaluation show that infectious pestiviruses can be rescued from the DNAs
173 174	evaluation show that infectious pestiviruses can be rescued from the DNAs generated by direct insertion of full-length genomes into the BAC vector. For
173 174 175	evaluation show that infectious pestiviruses can be rescued from the DNAs generated by direct insertion of full-length genomes into the BAC vector. For example, selected BAC clones harbouring the CSFV-Paderborn full-length
173 174 175 176	evaluation show that infectious pestiviruses can be rescued from the DNAs generated by direct insertion of full-length genomes into the BAC vector. For example, selected BAC clones harbouring the CSFV-Paderborn full-length cDNA were <i>Not</i> l digested, <i>in vitro</i> transcribed and the RNA transcripts were
173 174 175 176 177	evaluation show that infectious pestiviruses can be rescued from the DNAs generated by direct insertion of full-length genomes into the BAC vector. For example, selected BAC clones harbouring the CSFV-Paderborn full-length cDNA were <i>Not</i> l digested, <i>in vitro</i> transcribed and the RNA transcripts were tested for infectivity by electroporation into porcine cells. RNA derived from one
173 174 175 176 177 178	evaluation show that infectious pestiviruses can be rescued from the DNAs generated by direct insertion of full-length genomes into the BAC vector. For example, selected BAC clones harbouring the CSFV-Paderborn full-length cDNA were <i>Not</i> l digested, <i>in vitro</i> transcribed and the RNA transcripts were tested for infectivity by electroporation into porcine cells. RNA derived from one out of two tested BAC clones (pBeloPader10) was shown to efficiently replicate
173 174 175 176 177 178 179	evaluation show that infectious pestiviruses can be rescued from the DNAs generated by direct insertion of full-length genomes into the BAC vector. For example, selected BAC clones harbouring the CSFV-Paderborn full-length cDNA were <i>Not</i> l digested, <i>in vitro</i> transcribed and the RNA transcripts were tested for infectivity by electroporation into porcine cells. RNA derived from one out of two tested BAC clones (pBeloPader10) was shown to efficiently replicate in porcine cells. The cells electroporated with RNA transcripts from
 173 174 175 176 177 178 179 180 	evaluation show that infectious pestiviruses can be rescued from the DNAs generated by direct insertion of full-length genomes into the BAC vector. For example, selected BAC clones harbouring the CSFV-Paderborn full-length cDNA were <i>Not</i> l digested, <i>in vitro</i> transcribed and the RNA transcripts were tested for infectivity by electroporation into porcine cells. RNA derived from one out of two tested BAC clones (pBeloPader10) was shown to efficiently replicate in porcine cells. The cells electroporated with RNA transcripts from pBeloPader10 showed a high number of NS3-positive cells (as judged by
 173 174 175 176 177 178 179 180 181 	evaluation show that infectious pestiviruses can be rescued from the DNAs generated by direct insertion of full-length genomes into the BAC vector. For example, selected BAC clones harbouring the CSFV-Paderborn full-length cDNA were <i>Not</i> l digested, <i>in vitro</i> transcribed and the RNA transcripts were tested for infectivity by electroporation into porcine cells. RNA derived from one out of two tested BAC clones (pBeloPader10) was shown to efficiently replicate in porcine cells. The cells electroporated with RNA transcripts from pBeloPader10 showed a high number of NS3-positive cells (as judged by immunofluorescence, Fig. 4) 24 hours later and infectious virus could be

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

183	from three BAC clones harbouring BDV-Gifhorn full-length cDNA have been
184	tested for infectivity in ovine cells. Following electroporation, viral RNA derived
185	from each of these three BAC clones was found to be replicating in the cells
186	(data not shown). However, only rather few cells were scored as positive after
187	the 1 st cell passage indicating a possible growth defect in these constructs.
188	
189	Discussion
190	The use of the full-length genome amplification strategy for amplification of
191	pestivirus genomes has several advantages; (i) the same optimized protocol
192	can be used for amplification of a wide selection of strains; (ii) only limited
193	terminal nucleotide sequence information of a given strain is needed for
194	amplification of the whole genome; (iii) multiple cloning steps can be
195	circumvented since full-length amplicons can be directly in vitro transcribed or
196	inserted into plasmid vectors; and (iv) construction of genetically modified
197	viruses can be facilitated using stable cDNA clones.
198	In the present study, four different pestiviruses representing each of
199	three main types (CSFV, BVDV and BDV) were amplified by long RT-PCR. This
200	demonstrates that the recently described full-length genome amplification
201	strategy (Rasmussen et al., 2008) is of a generic nature since it can be utilized
202	for amplification of diverse pestivirus strains. Furthermore, the direct cloning of
203	the amplified genomes into the stable single-copy BAC vector, pBeloBAC11,
204	shows that we have created an efficient, streamlined strategy for direct
205	preparation of new pestivirus cDNA clones. Full-length cDNAs corresponding to
206	other members of the Flaviviridae, cloned in pBeloBAC11, have previously been

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

207 shown to be stable after multiple generations in *E.coli* cells (Yun et al., 2003; 208 Fan and Bird, 2008) and we anticipate that our constructs will display similar 209 stability in the bacterial host but this does need to be determined. 210 Our new strategy allows construction of stable infectious BAC 211 DNAs from a single full-length PCR product, which gives an increased flexibility 212 in the design of new genetically modified pestiviruses. Since long RT-PCR 213 preserves the genetic variants present in a virus population (Chumakov, 1996) many independent full-length cDNA clones can be obtained and tested which 214 215 increases the probability of finding infectious constructs. For targeted design of 216 genetically modified pestiviruses, the efforts can now be expedited and focused 217 on, in principal, any pestiviral strain and is hence not limited by the availability of 218 existing infectious cDNAs. Furthermore, our full-genome amplification protocol 219 obviates the time-consuming and costly process of construction and screening 220 of infectious clones by traditional methods. Therefore, the full-genome 221 amplification strategy significantly simplifies and streamlines the workflow for 222 the generation of new recombinant pestiviruses and also facilitates direct full-223 length sequence analysis.

224

225 Acknowledgements

We are grateful to Gabriela Adam and Doreen Reichelt for technical assistance.

227 We thank Dr. Donata Kalthoff for her valuable advice regarding cloning in BAC

228 vectors. This work was supported by the EU Network of Excellence, EPIZONE

229 (FOOD-CT-2006-016236) and by the Danish Research Council for Technology

and Production Sciences (DRCTPS grant 274-07-0198).

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

- 231 Conflict of interest statement
- 232 None
- 233
- 234 **References**
- 235 Chumakov, K.M., 1996. PCR engineering of viral quasispecies: a new method
- to preserve and manipulate genetic diversity of RNA virus populations. J. Virol.
- 237 70, 7331-7334.
- 238 Fan, Z.C., Bird, R.C., 2008. An improved reverse genetics system for
- 239 generation of bovine viral diarrhea virus as a BAC cDNA. J Virol Methods 149,
- **309-315**.
- 241 Gritsun, T.S., Gould, E.A., 1998. Development and analysis of a tick-borne
- 242 encephalitis virus infectious clone using a novel and rapid strategy. J. Virol.
- 243 Methods 76, 109-120.
- Jones, L.R., Zandomeni, R.O., Weber, E.L., 2006. A long distance RT-PCR
- able to amplify the Pestivirus genome. J. Virol. Methods 134, 197-204.
- 246 Meyers, G., Tautz, N., Becher, P., Thiel, H.J., Kummerer, B.M., 1996. Recovery
- of cytopathogenic and noncytopathogenic bovine viral diarrhea viruses from
- 248 cDNA constructs. J. Virol. 70, 8606-8613.
- 249 Moormann, R.J., van Gennip, H.G., Miedema, G.K., Hulst, M.M., van Rijn, P.A.,
- 250 1996. Infectious RNA transcribed from an engineered full-length cDNA template
- of the genome of a pestivirus. J. Virol. 70, 763-770.

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

- 252 Oleksiewicz, M.B., Rasmussen, T.B., Normann, P., Uttenthal, A., 2003.
- 253 Determination of the sequence of the complete open reading frame and the
- 254 5'NTR of the Paderborn isolate of classical swine fever virus. Vet. Microbiol. 92,
- 255 **311-325**.
- 256 Rasmussen, T.B., Reimann, I., Hoffmann, B., Depner, K., Uttenthal, A., Beer,
- 257 M., 2008. Direct recovery of infectious pestivirus from a full-length RT-PCR
- amplicon. J Virol Methods 149, 330-333.
- 259 Rasmussen, T.B., Uttenthal, A., Reimann, I., Nielsen, J., Depner, K., Beer, M.,
- 260 2007. Virulence, immunogenicity and vaccine properties of a novel chimeric
- 261 pestivirus. J Gen Virol 88, 481-486.
- Reimann, I., Depner, K., Trapp, S., Beer, M., 2004. An avirulent chimeric
- 263 Pestivirus with altered cell tropism protects pigs against lethal infection with
- 264 classical swine fever virus. Virology 322, 143-157.
- 265 Ruggli, N., Tratschin, J.D., Mittelholzer, C., Hofmann, M.A., 1996. Nucleotide
- sequence of classical swine fever virus strain Alfort/187 and transcription of
- infectious RNA from stably cloned full-length cDNA. J. Virol. 70, 3478-3487.
- 268 Tellier, R., Bukh, J., Emerson, S.U., Miller, R.H., Purcell, R.H., 1996. Long PCR
- and its application to hepatitis viruses: amplification of hepatitis A, hepatitis B,
- and hepatitis C virus genomes. J. Clin. Microbiol. 34, 3085-3091.
- 271 Vassilev, V.B., Collett, M.S., Donis, R.O., 1997. Authentic and chimeric full-
- 272 length genomic cDNA clones of bovine viral diarrhea virus that yield infectious
- 273 transcripts. J. Virol. 71, 471-478.

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

- Wang, K., Boysen, C., Shizuya, H., Simon, M.I., Hood, L., 1997. Complete
- 275 nucleotide sequence of two generations of a bacterial artificial chromosome
- cloning vector. Biotechniques 23, 992-994.
- 277 Warming, S., Costantino, N., Court DL, Jenkins, N.A., Copeland, N.G., 2005.
- 278 Simple and highly efficient BAC recombineering using galK selection. Nucleic
- 279 Acids Res. 33, e36.
- 280 Yun, S.I., Kim, S.Y., Rice, C.M., Lee, Y.M., 2003. Development and application
- of a reverse genetics system for Japanese encephalitis virus. J Virol 77, 6450-
- **282 6465**.
- Zhang, F., Huang, Q., Ma, W., Jiang, S., Fan, Y., Zhang, H., 2001. Amplification
- and cloning of the full-length genome of Japanese encephalitis virus by a novel
- long RT-PCR protocol in a cosmid vector. J. Virol. Methods 96, 171-182.
- 286

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

288 Table 1: Primers used for long RT-PCR^a

289	Primers for CSFV-C and CSFV-Paderborn		
290	5'Paderborn_T7 (forward)	TAATACGACTCACTATAGTATACGAGGTTAGCTCGTCCTCGTGTACAACATT	
291	5'Paderborn_T7_NotI (forward)	ATATGCGGCCGCTAATACGACTCACTATAGTATACGAGGTTAGCTCGTCCTCGTGTACAACATT	
292	3'Paderborn (reverse)	GGGCCGTTAGGAAATTACCTTAGTCCAACTGTGGA	
293	3'Paderborn-Notl (reverse)	ATATGCGGCCGC GGGCCGTTAGGAAATTACCTTAGTCCAACTGTGGA	
294	3'Paderborn_cDNA (reverse)	GGGCCGTTAGGAAATTACCTTAGT	
295	5'C-strain_T7 (forward)	TAATACGACTCACTATAGTATACGAGGTTAGTTCATTCTCGTATACACGATTGGACAAATC	
296	5'C-strain_T7_Notl (forward)	ATATGCGGCCGCTAATACGACTCACTATAGTATACGAGGTTAGTTCATTCTCGTATACACGATTGGACAAATC	
297			
298	Primers for BVDV-CP7		
299	5'BVDV CP7_T7 (forward)	TAATACGACTCACTATAGTATACGAGAATTAGAAAAGGCAC	
300	3'BVDV CP7 (reverse) ^b	GGGTGACGTCGGGTGTACCCTCATAC	
301			
302	Primers for BDV-Gifhorn		
303	5'T7Gif-Notl (forward)	ATAT <i>GCGGCCGC<u>TAATACGACTCACTATA</u>GTATACGAGAGTAGTTCAGGCTCGTATGCAAAATTGGGTGTTTC</i>	
304	3'Gif-Notl (forward)	ATATGCGGCCGCGGGGCTGTTAGGGTTTTTCCTTAATCCAACTATGGACTTCAG	
305	^a T7 promoter is underlined, and <i>Not</i> l sites are s	shown in italics.	
306	^b Same primer was also used as cDNA primer.		

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

- 307 Fig. 1. Full-genome amplification of pestiviruses by long RT-PCR using T7-
- 308 5'NTR and 3'NTR primers. The pictures show agarose gel electrophoresis of
- 309 the full-length amplicons of BDV-Gifhorn (A, 1 μl), BVDV-CP7 (B, 1 μl), CSFV-C
- 310 (C, 10 μ l) and CSFV-Paderborn (D, 10 μ l).
- 311
- 312 Fig. 2. Full-genome amplification of pestiviruses by long RT-PCR using T7-
- 313 5'NTR and 3'NTR primers containing *Not*l restrictions sites. The picture shows
- agarose gel electrophoresis of the full-length amplicons of BDV-Gifhorn (A, 10
- μ l), CSFV-C (B, 10 μ l) and CSFV-Paderborn (C, 10 μ l). The non-specific bands
- 316 in A and C are most likely caused by the increased complexity of the primers
- 317 (extra *Not*l sites).
- 318

319 Fig. 3. Notl digestion of BAC transformants. DNA preparations from BAC

- 320 transformants were digested with Notl and analysed by agarose gel
- 321 electrophoresis. Four have the correct size insert (A-C, E), whereas one (D) has

322 a smaller insert, and another (F) contained no detectable BAC vector.

323

Fig. 4. Recovery of infectious CSFV-Paderborn derived from *in vitro* transcribed pBeloPader10 RNA electroporated into porcine SK6 cells. The pictures show immunofluorescence (IF) staining of cells expressing the NS3 proteins after the 1st (Panel A) and 2nd (Panel B) cell culture passage. Panels C and D are control cells electroporated without any RNA transcripts.

329

330

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

332 Figure 1.

333

334

335

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

337 Figure 2.

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

341 Figure 3.

342

343

Formatted for Veterinary Microbiology (special ESVV Pestivirus issue)

345 Figure 4.

