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THE HOMOLOGICAL TORSION

OF SL2 OF THE IMAGINARY QUADRATIC INTEGERS

ALEXANDER D. RAHM

Abstract. Denote by Q(
√
−m), with m a square-free positive integer, an imaginary quadratic

number field, and by O−m its ring of integers. The Bianchi groups are the groups SL2(O−m).
We reveal a correspondence between the homological torsion of the Bianchi groups and new

geometric invariants, which are effectively computable thanks to their action on hyperbolic space.
We expose a novel technique, the torsion subcomplex reduction, to obtain these invariants. We
use it to explicitly compute the integral group homology of the Bianchi groups.

Furthermore, this correspondence facilitates the computation of the equivariant K-homology
of the Bianchi groups. By the Baum/Connes conjecture, which is verified by the Bianchi groups,
we obtain the K-theory of their reduced C∗-algebras in terms of isomorphic images of their
equivariant K-homology.

1. Introduction

The Bianchi groups may be considered as a key to the study of a larger class of groups,
the Kleinian groups, which dates back to work of Henri Poincaré [20]. In fact, each non-
cocompact arithmetic Kleinian group is commensurable with some Bianchi group [19]. A wealth
of information on the Bianchi groups can be found in the monographs [11,12,19]. These groups
act in a natural way on hyperbolic three-space, which is isomorphic to the symmetric space
associated to them. The kernel of this action is the centre {±1} of the groups. Thus it is
useful to study the quotient of a Bianchi group by its centre, namely PSL2(O−m), which we
also call a Bianchi group. In 1892, Luigi Bianchi [3] computed fundamental domains for this
action when m = 1, 2, 3, 5, 6, 7, 10, 11, 13, 15 and 19. Such a fundamental domain has the
shape of a hyperbolic polyhedron (up to a missing vertex at certain cusps, which represent the
ideal classes of O−m), so we will call it the Bianchi fundamental polyhedron. The computation
of the Bianchi fundamental polyhedron has been implemented for all Bianchi groups [21] in the
language Pari/GP [1].

The images under SL2(O−m) of the facets of this polyhedron equip hyperbolic three-space
with a cell structure. In order to view clearly the local geometry, we pass to the refined cell
complex, which we obtain by subdiving this cell structure until the cell stabilisers fix the cells
pointwise. We will see how to exploit this cell complex in different ways, in order to see different
aspects of the geometry of these groups.

An essential invariant of groups is their homology (defined for instance in [5]). We can compute
it for the Bianchi groups using the refined cell complex and the equivariant Leray/Serre spectral
sequence which starts from the group homology of the stabilisers of representatives of the cells,
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and converges to the group homology of the Bianchi groups. We will now state the results for
simple integer coefficients in the cases m = 19, 43, 67 and 163, which are the non-Euclidean
principal ideal domain cases. In contrast to these, the Euclidean principal ideal domain cases
are already known from [25]. For some results in class number 2, see [22].

Throughout this article, we will use the “number theorist’s notation” Z/n for the cyclic group
of order n. The virtual cohomological dimension of the Bianchi groups is 2. In degrees strictly
above 2, we express their homology in terms of the following Poincaré series at the primes ℓ = 2
and ℓ = 3:

P ℓ
m(t) :=

∞∑

q = 3

dimFℓ
Hq

(
PSL2

(
O−m

)
; Z/ℓ

)
tq.

These two primes are the only numbers which occur as orders of non-trivial finite elements of
PSL2(O−m). So it has been shown [23] that the integral homology of these groups is, in all the
mentioned degrees, a direct sum of copies of Z/2 and Z/3.

Proposition 1. The integral homology of PSL2(O−m), for m ∈ {19, 43, 67, 163}, is of isomor-

phism type Hq(PSL2(O−m); Z) ∼=
{

Zβ1−1 ⊕ Z/4Z ⊕ Z/2Z⊕ Z/3Z, q = 2,

Zβ1, q = 1,

where m 19 43 67 163

β1 1 2 3 7
gives the Betti number β1, and is in all higher degrees a direct sum

of copies of Z/2Z and Z/3Z, with the number of copies specified by the Poincaré series

P 2
m(t) = −t3(t3−2t2+2t−3)

(t−1)2(t2+t+1)
and P 3

m(t) = −t3(t2−t+2)
(t−1)(t2+1)

.

We remark that in these four cases, the torsion in the integral homology of PSL2(O−m) is of
the same isomorphism type. To understand this, we consider, for a prime ℓ, the subcomplex of
the orbit space consisting of the cells with elements of order ℓ in their stabiliser. We call it the
ℓ–torsion subcomplex. The following statement on how its homeomorphism type determines the
equivariant spectral sequence is proven by the reduction of the torsion subcomplex carried out
in [23]. This technique uses lemma 14 to determine the possible type of stabiliser of a vertex
v with exactly two adjacent edges which have ℓ–torsion in their stabilisers. Then these two
edges, together with v, are replaced by a single edge; and theorem 3 as well as some homological
information about the finite groups in question are used to check that the induced morphisms
on homology produce the same terms on the second page of the equivariant spectral sequence
as before the replacement.

Theorem 2. The ℓ–primary part of the second page of the equivariant spectral sequence con-
verging to the group homology of PSL2(O−m) depends outside the bottom row only on the home-
omorphism type of the ℓ–torsion subcomplex.

We shall give the proof of theorem 2 in section 6. Examples for this theorem are given for
the prime ℓ = 3 and thirty-six Bianchi groups in figure 1 (for ℓ = 2, see [23]). In all the non-
Euclidean principal ideal domain cases, the 2–torsion, and respectively 3–torsion subcomplexes
are homeomorphic, which explains the results in proposition 1. Underlying theorem 2, there is
the following correspondence between the non-trivial cyclic subgroups of the vertex stabilisers
and the geodesic lines around which they effect a rotation, and which we shall call rotation axes.
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Figure 1: Results for the 3–torsion homology, expressed in P ℓ
m(t)

m specifying the Bianchi group
3-torsion subcomplex,
homeomorphism type

P 3
m(t)

2, 5, 6, 10, 11, 15, 22, 29, 34, 35,
46, 51, 58, 87, 95, 115, 123, 155,

159, 187, 191, 235, 267

b
−2t3

t−1

7, 19, 37, 43, 67, 139, 151, 163
b b

−t3(t2−t+2)

(t−1)(t2+1)

13, 91, 403, 427
b b b b

2
“

−t3(t2−t+2)

(t−1)(t2+1)

”

39
b b b

−2t3

t−1
+

−t3(t2−t+2)

(t−1)(t2+1)

Theorem 3. For any vertex v in hyperbolic space, the action of its stabiliser on the set of
rotation axes passing through v, induced by the action of the Bianchi group, is equivalent to the
conjugation action of this stabiliser on its non-trivial cyclic subgroups.

We shall give the proof of theorem 3 in section 2.1.

1.1. Organisation of the paper. We begin with generalities of the action of SL2(C) on the
hyperbolic 3-space. In section 2.1, we describe some particularities which occur when restricting
the action to the subgroup SL2 (O−m). This allows us to prove theorem 3. In section 2.2, we
describe the refined cellular complex: an SL2 (O−m)–invariant cellular structure on hyperbolic
3-space, in which all cell stabilisation is pointwise; and we elaborate a method to check that this
property holds. In section 3, we establish the properties of the action on the refined cell complex
that we will need in section 6 in order to prove theorem 2. In section 4, we join some cusps
to the refined cellular complex, and retract it equivariantly onto the 2-dimensional, co-compact
Flöge cellular complex. In section 5, we recall a spectral sequence which we can compute with
information on this complex, and which converges to the homology of the Bianchi group in
question. In sections 5.1 and 5.2, we give a characterisation of the differentials on the first page
of the spectral sequence. It makes use of some homological statements on the finite subgroups
of the Bianchi groups, which we append in sections 11 and 11.1. We conclude our description of
the spectral sequence with the statement that for q > 3, Hq(PSL2 (O−m) ; Z) is a direct sum of
copies of Z/2 and Z/3. In section 6, we examine the torsion subgraphs and prove theorem 2. In
section 7, we establish the results in proposition 1 and in section 6.2 those in figure 1, and the
corresponding table in 2-torsion. We further explain in section 8 how we check the correctness of
the computed quotient space using the equivariant Euler characteristic. Finally, we give results
for the special linear groups in section 9, and for equivariant K-homology and operator K-theory
in section 10.
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2. The action on hyperbolic space

Consider hyperbolic three-space, for which we will use the upper-half space model H. As a
set,

H = {(z, ζ) ∈ C× R | ζ > 0}.
It is diffeomorphic to the symmetric space of G := SL2(C), and the natural action of G

which we obtain this way on H can be expressed by the following formula of Poincaré. For

γ =
(

a b
c d

)
∈ G, the action of γ on H is given by γ · (z, ζ) = (z′, ζ ′), where

ζ ′ =
|det γ|ζ

|cz − d|2 + ζ2|c|2 ,

z′ =

(
d− cz

)
(az − b)− ζ2c̄a

|cz − d|2 + ζ2|c|2 .

Let us recall Felix Klein’s classification of the elements in SL2(C), which passes to PSL2(C).

Definition 4. An element γ ∈ SL2(C), γ 6= ±1, is called loxodromic if its trace is not a real

number. Else it is called





parabolic, |tr(γ)| = 2,

hyperbolic, |tr(γ)| > 2

elliptic, |tr(γ)| < 2

.

We find the geometric meaning of this classification in the following proposition, which is
mostly known from Felix Klein’s lectures.

Proposition 5 ([11]). Let γ be a non-trivial element of SL2(C). Then the following holds:

• γ is parabolic if and only if γ has exactly one fixed point in ∂H.
• γ is elliptic if and only if it has two fixed points in ∂H and if the points on the geodesic

line in H joining these two points are also left fixed. The action of γ is then a rotation
around this line.
• γ is hyperbolic if and only if it has two fixed points in ∂H and if any circle in ∂H through

these points together with its interior is left invariant. The line in H joining these two
fixed points is then left invariant, but γ has no fixed point in H.
• γ is loxodromic in all other cases. The action of γ has then two fixed points in ∂H and

no fixed point in H. The geodesic joining the two fixed points is the only geodesic in H
which is left invariant.

For instance in [24], it is stated that the parabolic elements do not have a fixed point in the
interior of H. So by excluding the parabolic, hyperbolic and loxodromic cases, we obtain the
following corollary.

Corollary 6. Let γ be a non-trivial element of SL2(C), admitting a fixed point v ∈ H. Then γ
fixes pointwise a geodesic line through v, and performs a rotation around this line.

Proposition 5 and corollary 6 again pass to PSL2(C), because the center {±1} of SL2(C) acts
trivially on H.
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2.1. The action of the Bianchi groups. Let m be a squarefree positive integer and Q(
√
−m )

be an imaginary quadratic number field with ring of integers O−m. We restrict the above
described action to the Bianchi group Γ := SL2(O−m) ⊂ SL2(C).

We will work more closely with the geodesic lines of corollary 6, and define them as objects in
terms of which to express the following four statements on the geometry of the torsion elements
of the Bianchi groups. We will call the matrices 1 and −1 in SL2(C) the trivially acting elements,
because they are the kernel of the action.

Definition 7. We will call a geodesic line passing through the point v ∈ H a Γv–axis, if there
exists a non-trivially acting element of Γ fixing this line pointwise.

We will call a group non-trivially acting if it admits a non-trivially acting element. Denote
by Γv the stabiliser in Γ of the cell v.

Lemma 8. For any vertex v ∈ H, there is a bijection between the Γv–axes and the non-trivially
acting cyclic subgroups of the stabiliser Γv. It is given by associating to a Γv–axis the subgroup
in Γ of rotations around this axis.

Proof. First we show that any Γv–axis is attributed to some non-trivial cyclic subgroup of Γv.
Let l be a Γv–axis, and let Γ̇l be the set of elements of Γ fixing l pointwise. It is a subset of Γv,
because Γ̇l fixes l pointwise and thus fixes v. It is a subgroup because the composites and inverses
must again fix l pointwise. By the definition of the Γv–axes, this subgroup is non-trivially acting.
And it is cyclic because by corollary 6, Γ̇l consists only of rotations around l.
Now we show that any non-trivially acting cyclic subgroup of Γv is attributed to some Γv–axis.
Let γ be the generator of a non-trivially acting cyclic subgroup of Γv. By corollary 6, there is a
geodesic line containing v, around which γ performs a rotation. �

Proof of theorem 3. Let l be a Γv–axis, and γ ∈ Γv. Let Γ̇l be the subgroup of Γ fixing l
pointwise. Then γ · l is again a Γv–axis; and the subgroup of Γ fixing γ · l pointwise is γΓ̇lγ

−1.
Hence by lemma 8, we can transfer the action to Γv-conjugation of the nontrivially acting cyclic
subgroups. �

Lemma 8 and theorem 3 clearly pass from Γ := SL2(O−m) to Γ := PSL2(O−m).
We will make use of the following list of isomorphy types of finite subgroups in the Bianchi

groups, which has been established in [25] and follows directly from the classification in [17].

Lemma 9 (Klein). The finite subgroups in PSL2(O) are exclusively of isomorphism types the
cyclic groups of orders one, two and three, the Klein four-group D2

∼= Z/2× Z/2, the symmetric
group S3 and the alternating group A4.

The stabilisers of the points inside H are finite and hence of the above-listed types.

2.2. A cell complex for the Bianchi groups. The Bianchi/Humbert theory [3, 15] gives a
fundamental domain for the action of Γ on H, which we shall call the Bianchi fundamental
polyhedron. It is a polyhedron in hyperbolic space up to the missing vertex ∞, and up to
a missing vertex for each non-trivial ideal class if O−m is not a principal ideal domain. We
observe the following notion of strictness of the fundamental domain: the interior of the Bianchi
fundamental polyhedron contains no two points which are identified by Γ. Swan [26] proves a
theorem which implies that the boundary of the Bianchi fundamental polyhedron consists of
finitely many cells. Swan further produces a concept for an algorithm to compute the Bianchi
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fundamental polyhedron. Such an algorithm has been implemented by Cremona [9] for the five
cases where O−m is Euclidean, and by his students Whitley [8] for the non-Euclidean principal
ideal domain cases, Bygott [6] for a case of class number 2 and Lingham ([18], used in [7]) for
some cases of class number 3. Another algorithm based on this concept has independently been
detailed in [23] and implemented in [21] for all Bianchi groups, so we can make explicit use of
this cell complex.

We induce a cell structure on H by the images under Γ of the faces, edges and vertices of the
Bianchi fundamental polyhedron.

2.2.1. Pointwise stabilised cells. In order to view clearly the local geometry, we pass to the
refined cell complex, which we obtain by subdiving this cell structure until the cell stabilisers fix
the cells pointwise.

We now give a method for checking effectively if the subdivision is fine enough for the latter
property to hold. First we compute which vertices of the Bianchi fundamental polyhedron
lie on the same Γ-orbit. This can be deduced from the operation formula and has been also
implemented in [21]. Then we perform a check to make sure that no edge of the Bianchi
fundamental polyhedron can be sent onto itself reverting its orientation. The latter is only
possible when origin and end of the edge are identified by some element of Γ. So to avoid it, we
subdivide barycentrically all the edges, origin and end and end of which lie on the same Γ-orbit.

In order to establish an analogous criterion for 2-cells, let us make use of the fact that real
hyperbolic space is non-positively curved – it has the CAT(0) property [4].

Lemma 10. Let σ be a polygon, and G be a group of isometries of an ambient CAT(0) space.
Suppose there are at least three vertices of σ which are the unique representative amongst the
vertices of σ, of their respective G-orbit. Then the stabiliser of σ in G must fix σ pointwise.

Proof. Consider an element g of the stabiliser of σ. The isometry g must preserve the set of
the vertices of σ up to a permutation. Furthermore, a vertex which is not G-equivalent to any
other in this set, must be fixed by g. Under the hypothesis of our lemma, g must hence fix
three vertices of σ. As g is a CAT(0) isometry, it must fix pointwise the whole triangle with
these three vertices as corners. This triangle is contained in the polygon σ and determines the
isometric automorphisms of σ. Thus g must fix σ pointwise. �

Hence the check on our cell structure consists of making sure that each 2-cell has at least three
vertices which are unique as representative of their respective Γ-orbit, amongst the vertices of the
2-cell. Again, we can do this because we already have computed the Γ-equivalences of vertices.

The guarantee that all cells are fixed pointwise, allows us to obtain the stabilisers of the higher
dimensional cells simply by intersection of their vertex stabilisers. Even more, in order to check
the equivalence of two cells σ and σ′, we only need to intersect the sets of elements of Γ which
identify the vertices of σ with the ones of σ′. The following lemma applies to any Γ-cell complex
in hyperbolic space, and to all the cells in the refined cell complex.

Lemma 11. The stabilisers in PSL2(O) of pointwise-fixed

• edges in H, are cyclic groups of orders one, two or three;
• 2–cells and 3–cells in H, are trivial.

Proof. As SL2(C) acts as orientation-preserving isometries on hyperbolic three-space, the sta-
biliser of a pointwise-fixed edge can only perform a rotation, with this edge lying on the rotation
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axis. This is possible because the edges in H are geodesic segments. The group of rotations
around one given axis must be abelian; and it is easy to see that it cannot be of Klein four-group
type. Thus amongst the above-listed types of subgroups of PSL2(O), which fix points in H, the
only non-trivial ones which can fix edges pointwise, are Z/2 and Z/3.
In a pointwise-fixed 2-cell or 3-cell, we can choose two non-aligned pointwise-fixed edges, a
rotation around one of which only fixes the other edge pointwise if it is the trivial rotation. �

3. Rigidity of the action on the refined cell complex

Lemma 12. Each Γv–axis contains two edges of the refined cell complex that are adjacent to v.

Proof. Let l be a Γv–axis for which this is not the case. Then l passes through the interior of a 2-
or 3-cell σ adjacent to v. Let γ be a non-trivial element of Γ fixing l. As the Γ-action preserves
our cell structure, γ must send σ to another cell of its dimension. Since γ fixes the points in the
non-empty intersection of l with the interior of σ, and since the interior of σ intersects trivially
with the interior of any other cell, γ must fix σ. Hence γ is in the stabiliser of σ, and trivial by
lemma 11. But γ has been chosen non-trivial, contradiction. �

Lemma 13. Let e be an edge fixed pointwise by a non-trivially acting element γ ∈ Γ. Let v be
a vertex adjacent to e. Then e lies on a Γv–axis.

Proof. By corollary 6, γ must perform a rotation around an axis passing through v and all the
points of e. This is the Γv–axis containing e. �

The above study allows us to deduce from theorem 3 the following lemma, which is useful in
order to obtain theorem 2. We write S3 for the symmetric group on three letters and A4 for the
alternating group on four letters.

Lemma 14. Let v be a non-singular vertex in the refined cell complex. Then the number n of
orbits of edges in the refined cell complex adjacent to v, with stabiliser in PSL2(O−m) isomorphic
to Z/ℓ, is given as follows for ℓ = 2 and ℓ = 3.

Isomorphism type of the vertex stabiliser {1} Z/2 Z/3 D2 S3 A4

n for ℓ = 2 0 2 0 3 2 1
n for ℓ = 3 0 0 2 0 1 2.

Proof. Due to lemma 13, any edge with the requested properties must lie on some Γv–axis. Thus
the cases where n = 0 follow directly from lemma 8. It remains to distinguish the following
cases.

• Let ℓ = 2 and Γv
∼= A4.

There is only one conjugacy class of order-2-elements in A4, so by theorem 3, there is
just one Γv-orbit of Γv–axes such that an element of order 2 fixes this axis pointwise.
We will see that such an axis is subject to a rotation of angle π around an equivalent
Γv–axis:
We pick two order-2-elements in Γv and denote them by α and β. Denote by l the axis
stabilised pointwise by β. The order-2-elements in A4 commute, so α sends l to itself.
But this cannot be carried out by the identity map, because in that case α would fix two
axes and thus also the hyperbolic plane spanned by them, in contradiction to corollary 6.
Hence, l is non-trivially rotated onto itself by α, with a rotation axis passing through v.
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As α preserves our cell structure, it must permute the two edges adjacent to v, lying on l
due to lemma 12. So, just one Z/2-stabilised edge adjacent to v is in the quotient by Γv.
• Let ℓ = 2 and Γv

∼= D2.
There are exactly three conjugacy classes of order-2-elements in D2, so by corollary 3,
there are three Γv-orbits of Γv–axes. We will see that such an axis is subject to rotations
of angle π around the other two Γv–axes:
We pick two order-2-elements in Γv and denote them by α and β. Denote by l the axis
stabilised pointwise by β. All elements in D2 commute, so α sends l to itself. But this
cannot be carried out by the identity map, because in that case α would fix two axes
and thus also the hyperbolic plane spanned by them, in contradiction to corollary 6.
Hence, l is non-trivially rotated onto itself by α, with a rotation axis passing through v.
As α preserves our cell structure, it must permute the two edges adjacent to v, lying on l
due to lemma 12. So, there are exactly three representatives of non-trivially stabilised
edges adjacent to v, one on each Γv–axis. Their stabilisers are the order-2-subgroups
of Γv, as we see from lemma 8.
• Let ℓ = 2 and Γv

∼= S3.
There is only one conjugacy class of order-2-elements in S3, so by theorem 3, there is
just one Γv-orbit of Γv–axes such that an element of order 2 fixes this axis pointwise.
Denote its representative by l. Denote by γ the generator of the stabiliser of l. As γ is of
order 2, the only elements in Γv

∼= S3 which commute with γ, are γ itself and 1. So by
theorem 3, the only elements of Γv sending l to itself are γ and 1. Denote by (a, v) and
(v, b), the two edges which lie on l by lemma 12. Let δ ∈ Γ be an isometry identifying
these two edges. As γ and 1 both fix l pointwise, by the last conclusion δ cannot be an
element of Γv. Thus δ must send a to v and v to b. Therefore all three vertices a, b and v
are Γ-equivalent, and in particular origin and end of such an edge are identified, which
we have excluded for the refined cell complex. Hence δ does not exist, and the two edges
lie on different orbits.
• Let Γv be a non-trivial cyclic group.

As we see from corollary 6, any vertex with stabiliser a cyclic group lies on a single
rotation axis, around which its stabiliser performs rotations. Hence by lemma 12, there
are two edges in our cell complex adjacent to v which have the same stabiliser as v; and
any other edge adjacent to v has the trivial stabiliser. It remains to see that these two
edges are not identified when passing to the quotient space.
Let γ ∈ Γ be an isometry identifying these two edges. Denote these edges by (a, v) and
(v, b). As the only elements of Γ fixing v, fix the whole rotation axis, γ cannot send a
to b and fix v. Thus γ must send a to v and v to b. Therefore all three vertices a, b
and v are Γ-equivalent, and in particular origin and end of such an edge are identified,
which we have excluded for the refined cell complex.
• Let ℓ = 3 and Γv

∼= S3.
There is only one cyclic subgroup of order 3 in S3. So by lemma 8, there is just one such
Γv–axis. Denote this axis by l. Then by theorem 3, l is invariant under the action of the
elements of order 2 in Γv, because the unique order three subgroup must be preserved
under conjugation. But then l must be rotated by the angle π onto itself by the order
two elements, which else would fix l and their own axis, hence a hyperbolic plane. So
the two edges which lie on l by lemma 12 must be equivalent.
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• Let ℓ = 3 and Γv
∼= A4.

There are four cyclic subgroups of order 3 in A4. They are all conjugate, so just one
Γv–axis is in the quotient by Γv. Denote its representative by l. Denote by γ the
generator of the stabiliser of l. Conjugation with elements of order 2 in A4 permutes
the four order-3-subgroups. The only elements in Γv

∼= A4, the conjugation with which
fixes the cyclic subgroup generated by γ, are γ itself, γ2 and 1. So by theorem 3, the
only elements of Γv sending l to itself are γ, γ2 and 1. Denote by (a, v) and (v, b), the
two edges which lie on l by lemma 12. Let δ ∈ Γ be an isometry identifying these two
edges. As γ, γ2 and 1 all fix l pointwise, by the last conclusion δ cannot be an element
of Γv. Thus δ must send a to v and v to b. Therefore all three vertices a, b and v are
Γ-equivalent, and in particular origin and end of such an edge are identified, which we
have excluded for the refined cell complex. Hence δ does not exist, and the two edges lie
on different orbits.

�

The proof of the following corollary is included in the above proof.

Corollary 15.

• In the case Γv
∼= D2 of theorem 14, the three stabilisers of edge representatives adjacent

to v which are not trivial, are precisely the three order-2-subgroups of Γv.
• Consider the cases of theorem 14 where Γv is a non-trivial cyclic group. Then the two

edges adjacent to v, which have a non-trivial stabiliser, have the same stabiliser as v.

By observing the pre-images of the projection from SL2(O−m) to PSL2(O−m), we further
obtain the following.

Corollary 16. Let v be any vertex in the refined cell complex. Then the number n of orbits of
edges in the refined cell complex adjacent to v, with stabiliser in Γ := SL2(O−m) isomorphic to
Z/2ℓ, is given by the table of theorem 14, if we replace the stabiliser isomorphy types {1}, Z/2,
Z/3, D2, S3 and A4 by their pre-images, which are respectively: Z/2, Z/4, Z/6, the 8-elements
quaternion group, the 12-elements binary dihedral group and the binary tetrahedral group.

4. The Flöge cellular complex

In order to obtain a cell complex with compact quotient space, we proceed in the following way
due to Flöge [14]. The boundary ofH is the Riemann sphere ∂H, which, as a topological space, is
made up of the complex plane C compactified with the cusp∞. The totally geodesic surfaces inH
are the Euclidean vertical planes (we define vertical as orthogonal to the complex plane) and the
Euclidean hemispheres centred on the complex plane. The action of the Bianchi groups extends
continuously to the boundary ∂H. The cellular closure of the refined cell complex in H ∪ ∂H
consists of H and the set of cusps

(
Q(
√−m) ∪ {∞}

)
⊂ (C ∪ {∞}) ∼= ∂H. The SL2(O−m)–orbit

of a cusp λ
µ in

(
Q(
√−m) ∪ {∞}

)
corresponds to the ideal class [(λ, µ)] of O−m. It is well-known

that this does not depend on the choice of the representative λ
µ . We extend the refined cell

complex to a cell complex X̃ by joining to it, in the case that O−m is not a principal ideal
domain, the SL2(O−m)–orbits of the cusps λ

µ for which the ideal (λ, µ) is not principal. At

these cusps, we equip X̃ with the “horoball topology” described in [14]. This simply means that
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the set of cusps, which is discrete in ∂H, is located at the hyperbolic extremities of X̃ : No

neighbourhood of a cusp, except the whole X̃ , contains any other cusp.

We retract X̃ in the following, SL2(O−m)–equivariant, way. On the Bianchi fundamental
polyhedron, the retraction is given by the vertical projection (away from the cusp ∞) onto its
facets which are closed in H∪∂H. The latter are the facets which do not touch the cusp∞, and
are the bottom facets with respect to our vertical direction. The retraction is continued on H
by the group action. It is proven in [13] that this retraction is continuous. We call the retract of

X̃ the Flöge cellular complex and denote it by X. So in the principal ideal domain cases, X is a
retract of the refined cell complex, obtained by contracting the Bianchi fundamental polyhedron
onto its cells which do not touch the boundary of H. In [22], it is checked that the Flöge cellular
complex is contractible.

5. The equivariant spectral sequence to group homology

Let Γ be a Bianchi group. We will use the Flöge cellular complex X to compute the group
homology of Γ with trivial Z–coefficients, as defined in [5]. We proceed following [5, VII] and [25].
Let us consider the homology H∗(Γ;C•(X)) of Γ with coefficients in the cellular chain complex
C•(X) associated to X; and call it the Γ-equivariant homology of X. As X is contractible, the
map X → pt. to the point pt. induces an isomorphism

H∗(Γ; C•(X))→ H∗(Γ; C•(pt.)) ∼= H∗(Γ; Z).

Denote by Xp the set of p-cells of X, and make use of that the stabiliser Γσ in Γ of any p-cell σ
of X fixes σ pointwise. Then from

Cp(X) =
⊕

σ∈Xp

Z ∼=
⊕

σ∈ Γ\Xp

IndΓ
Γσ

Z,

Shapiro’s lemma yields

Hq(Γ; Cp(X)) ∼=
⊕

σ ∈Γ\Xp

Hq(Γσ; Z);

and the equivariant Leray/Serre spectral sequence takes the form

E1
p,q =

⊕

σ ∈ Γ\Xp

Hq(Γσ; Z) =⇒ Hp+q(Γ; C•(X)),

converging to the Γ-equivariant homology of X, which is, as we have already seen, isomorphic
to Hp+q(Γ; Z) with the trivial action on the coefficients Z.

We shall also make extensive use of the description given in [25], of the d1-differential in this
spectral sequence. The technical difference to the cases of trivial class group, treated in [25], is
that the stabilisers of the singular points are free abelian groups of rank two. In particular, the
Γ-action on our complex X• is not a proper action (in the sense that all stabilisers are finite).
As a consequence, the resulting spectral sequence does not degenerate on the E2-level like it
does in Schwermer and Vogtmann’s cases. It is explained in [22] how to handle the non-trivial
d2-differentials in this spectral sequence.

Let us now describe how to compute explicitly the d1-differentials, making use of the knowledge
from lemma 9 about the isomorphy types of the stabilisers, and lemma 44 about their inclusions.
The bottom row of the E1-term, more precisely the chain complex given by the E1

p,0-modules
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and the d1
p,0-maps, is equivalent to the Z-chain complex giving the homology of the quotient

space of our cell complex by the Γ-action.
From lemma 11, we see that for q > 0, the E1

p,q-terms are concentrated in the two columns
p = 0 and p = 1. So for q > 0, we only need to compute the differentials

⊕

σ∈ Γ\X0

Hq(Γσ; Z)
d1
1,q←−−−

⊕

σ∈ Γ\X1

Hq(Γσ; Z).

These differentials arise from the following cell stabiliser inclusions. For any edge in Γ\X1,
we have, because it is fixed pointwise, an inclusion ι of its stabiliser into the stabiliser of its
origin vertex. Choose any matrix g which sends the origin vertex of this edge to its vertex
representative in Γ\X0. The cell stabiliser inclusion associated to the origin of our edge is the
composition of the conjugation by g after the inclusion ι. Up to inner automorphisms of the
origin vertex stabiliser, this conjugation map does not depend on the choice of g, because g is
determined up to multiplication with elements of the origin vertex stabiliser. The cell stabiliser
inclusion associated to the end of an edge is obtained analogously. We see in [5, VII.8] that these
cell stabiliser inclusions induce the differential d1 of the equivariant spectral sequence.

As we see from lemma 11, the inclusions determined by lemma 44 are the only non-trivial
inclusions which occur in our PSL2(O−m)-cell complex. Hence we can decompose the d1

1,q differ-
ential in the associated equivariant spectral sequence, for q > 0, into a 2-primary and a 3-primary
part.

Definition 17. For an abelian group A, the ℓ-primary part is the subgroup consisting of all
elements of A of ℓ-power order.

5.1. The 3-primary part. Denote by (d1
1,q)(ℓ) the ℓ-primary part of our d1

1,q differential. It

suffices to compute (d1
1,1)(3) and (d1

1,3)(3) to get the 3-primary part of our d1
1,q differential, because

of the following.

Corollary 18. The 3-primary part (d1
1,q)(3) is of period 4 in q; and is zero for q > 0 even.

Proof. Lemmata 43 and 44. �

An algorithm for the computation of the rank of the differential matrices (d1
1,1)(3) and (d1

1,3)(3)
has been given in [23].

5.2. The 2-primary part. As by lemma 11, there are only edges with finite cyclic stabilisers,
we see that the d1

1,q differential is zero for q > 0 even. Now for q odd, we want to compute its

2-primary part. Any group monomorphism from edge stabilisers of type Z/2 to vertex stabilisers
of type Z/2 or S3 induces the only possible isomorphism Z/2→ Z/2 on homology.
By lemma 44, for q = 1 the monomorphisms Z/2 → A4 induce zero maps. So, consider the
case q > 1 odd. By lemma 14, the block in a matrix for (d1

1,q)(2), associated to a vertex orbit of
stabiliser type A4, has exactly one non-zero column.

Lemma 19. Let q be odd. Let v be a vertex representative of stabiliser type D2. Then the block
associated to it in a matrix for the (d1

1,q)(2) differential, has exactly three non-zero columns.

There is a basis for (Hq(A4; Z))(2) such that these block columns are (1, 0, . . . , 0)t, (0, . . . , 0, 1)t

and (1, . . . , 1)t (with t the transpose). The latter are linearly independent if and only if q > 3.
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Proof. By lemma 14, there are exactly three Γ-representatives of non-trivially stabilised edges
adjacent to v. Furthermore, the stabilisers of these three edges are precisely the three order-
2-subgroups of the stabiliser of v. We apply the chain map computation of [25], to each of
these three subgroup inclusions, and obtain the claimed three block columns. The length of
these block columns is the Z/2-rank of Hq(D2; Z), namely q+3

2 , so we easily see that these block
columns are linearly independent if and only if q > 3. �

Proposition 20. Let q > 3 odd. Then rank(d1
1,q)(2) = rank(d1

1,3)(2).

Proof. We see from lemma 44 that all inclusions of Z/2 into any vertex stabiliser induce injections
on homology in all degrees q > 3. As the groups Z/2 and S3 have their q-th integral homology
group Z/2 for all odd q, there is just one possibility for induced injections into it; and hence
the matrix block of (d1

1,q)(2) associated to vertex stabilisers of these types is the same for all
odd q. Now for vertex stabilisers of type A4, we know from lemma 14 that there is just one
2-torsion edge representative stabiliser inclusion into them. Thus the associated matrix blocks
(1, 0, . . . , 0)t only grow in the number of their zeroes when q grows, but this does not change
the rank of (d1

1,q)(2). Finally we see from lemma 19 that associated to vertex representative
stabilisers of type D2, there are exactly three matrix sub-blocks, which are linearly independent
for all q > 3. �

Denote by (Ẽ, d̃) the same equivariant spectral sequence, but now with Z/2-coefficients.

Lemma 21. Let q > 3 odd. Then the rank of d1
1,q⊗Z/2 equals the ranks of the differentials d̃1

1,q

and d̃1
1,q+1.

Proof. Lemma 11 tells us that the edges in our cell complex have cyclic stabilisers, and that
only those of type Z/2 can contribute nontrivially to the Z/2–modules Ẽ1

1,q, Ẽ1
1,q+1 and

(
E1

1,q

)
(2)

.

Then we see from lemma 43 that Ẽ1
1,q
∼= Ẽ1

1,q+1
∼=

(
E1

1,q

)
(2)

. Consider matrices for the homomor-

phisms d1
1,q ⊗ Z/2, d̃1

1,q and d̃1
1,q+1. Then applying lemma 44 with both the coefficients M = Z

and M = Z/2, we check entry by entry that these matrices are identical. �

Lemma 22. Let q > 3, ℓ = 2 or ℓ = 3, and O−m any imaginary quadratic ring. Then the
ℓ–primary part of the homology Hq(PSL2 (O−m) ; Z) is the direct sum over the (E∞

p,q−p)(ℓ)–terms,
p running from 0 to q.

Proof. • The rows of the E1-page with q even and q > 2 do not contain any 3-torsion, so
nor does the E∞-page. So the assertion follows for ℓ = 3 knowing that the E1-page is
concentrated in the first two columns for q > 0.
• Lemma 21 implies that Ẽ∞

1,q
∼= Ẽ∞

1,q+1
∼=

(
E∞

1,q

)
(2)

and Ẽ∞
0,q
∼= Ẽ∞

0,q+1
∼=

(
E∞

0,q

)
(2)

. Hence

the only possible solution to the dévissage problem is the trivial solution, so we obtain
the assertion for ℓ = 2.

�

Using the well-known fact that the virtual cohomological dimension (abbreviated vcd, see
[5] for the definition of this) of the Bianchi groups is 2, we immediately obtain the following
statement from this lemma.

Theorem 23. Let q > 3. Then for O−m any imaginary quadratic ring,
Hq(PSL2 (O−m) ; Z) is a direct sum of copies of Z/2 and Z/3.
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6. Torsion subcomplex reduction

Let Z be a Γ-cell complex, and let ℓ be a prime number.

Definition 24. We will call ℓ-torsion subcomplex, the subcomplex of Γ\Z consisting of all the
cells, the stabiliser in Γ of the pre-images of which contains elements of order ℓ.

We immediately see that for Z the refined cellular complex, Γ = PSL2 (O−m) and ℓ one of
the two occuring primes 2 and 3, this subcomplex is a finite graph, because by lemma 11, the
cells of dimension greater than 1 are trivially stabilised in the refined cellular complex.

Lemma 25. Except for the two cases m = 1, ℓ = 2 and m = 3, ℓ = 3, the ℓ–torsion subcomplexes
of the Flöge cellular complex and the refined cellular complex coincide for all the Bianchi groups.

Proof. The only cells which the Flöge cellular complex can admit outside the refined cellular
complex, are the cusps associated to non-trivial ideal classes, of stabiliser type Z2. So the first of
these ℓ–torsion subcomplexes is always contained in the second. On the other hand, the cells of
the Bianchi fundamental polyhedron which are contracted to obtain the Flöge cellular complex,
are the 3–cell filling out the interior of the Bianchi fundamental polyhedron and its vertical
facets, which all touch the cusp ∞. As these cells are stabilised pointwise, their stabilisers can
only contain ℓ–torsion if the stabiliser of the cusp ∞ contains ℓ–torsion. The latter is only the
case for m = 1, ℓ = 2 and m = 3, ℓ = 3. �

The cells which the 2-torsion and the 3-torsion subgraphs have in common, are precisely the
vertices of stabiliser types S3 and A4. For example, we find the 2-torsion subgraph drawn in
dashed lines ( ) and the 3-torsion subgraph drawn in dotted lines ( ) in the fundamental
domain for the Flöge cellular complex in figure 3, where the vertices with matching labels are
to be identified.

Knowing the types of the cell stabilisers which can appear, (the finite groups of lemma 9 and
the cusp stabilisers of type Z2), we immediately see that the ℓ–primary part of the E1

p,q–terms
of the equivariant spectral sequence converging to the integral homology of the Bianchi groups,

(
E1

p,q

)
(ℓ)

=
⊕

σ ∈ Γ\Xp

(Hq(Γσ; Z))(ℓ) ,

depend for q > 1 only on the stabilisers of cells in the ℓ-torsion subcomplex. Similarly for
the ℓ–primary part of the associated differential (d1

1,q)(ℓ) : For q > 1, all cell inclusions which
contribute non-trivially to it, can be found on the ℓ-torsion subcomplex.

Now we use the geometric rigidity statements of section 2 to fuse cells in the torsion subcom-
plexes. Let (a, v) and (v′, b) be adjacent edges in the ℓ-torsion subcomplex. This means, they
are adjacent to a common vertex orbit Γ · v = Γ · v′.

Definition 26. If there are exactly two edges adjacent to the vertex v in the ℓ-torsion subcomplex,
then we define an edge fusion by replacing the edges (a, v) and (v′, b) by the edge (a, b) and
forgetting the vertex v.

Definition 27. We will call a reduced ℓ-torsion subcomplex, a cell complex obtained from the
ℓ-torsion subcomplex of the refined cellular complex by iterating edge fusions as often as this is
permitted by definition 26.
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Lemma 28. In all rows q > 1, the E2-page of the equivariant spectral sequence converging to
Hp+q(PSL2 (O−m) ; Z) is invariant under replacing the ℓ-torsion subcomplex by a reduced ℓ-
torsion subcomplex for the computation of the ℓ-primary part of the differential d1

1,q.

Proof. A vertex representative v which is removed by an edge fusion must have exactly two orbits
of edges of stabiliser type Z/ℓ adjacent to it. Lemma 14 tells us that then, Γv is isomorphic to
Z/2 or S3 in the case ℓ = 2, and to Z/3 or A4 in the case ℓ = 3. Now we see from definition 26
and lemma 43 that every edge fusion decreases each by 1 the Z/ℓ–ranks of the modules E1

1,q and

E1
0,q for odd q, because there is a unique isomorphy type of the ℓ-primary part of the homology

of the stabilisers for vertices with two adjacent edges in the ℓ-torsion subcomplex:

• For the 2-primary part, Hq(S3; Z)(2) ∼= Z/2 ∼= Hq(Z/2; Z)(2), for odd q,
• for the 3-primary part, Hq(A4; Z)(3) ∼= Z/3 ∼= Hq(Z/3; Z)(3), for odd q,

and the above ℓ-primary parts are all zero for q > 0 even.
Let q be odd. We will show that any edge fusion also decreases by 1 the Z/ℓ–rank of (d1

1,q)(ℓ).

Then we can conclude that the E2-page is preserved under each edge fusion.
Let G′ be the graph obtained by an edge fusion from an ℓ-torsion subgraph G. We will show
that passing from G′ to G increases the rank of (d1

1,q)(ℓ) by 1. Denote by (a, b) the fusioned edge.

There is a column associated to it in (d1
1,q)(ℓ) for G′ of the shape

(a, b)

a −1
b 1

in a suitable choice of bases for the ℓ-primary part of the homology groups of the stabilisers.
The remaining entries in this column are zeroes.
In the graph G, we have an additional vertex v; and we replace our edge by the two edges (a, v)
and (v′, b), where v′ is on the same orbit as v. By what we have seen in the beginning of this
proof, Hq(Γv; Z)(ℓ) ∼= Z/ℓ. Furthermore, lemma 44 tells us that the inclusions of the stabilisers

of (a, v) and (v′, b) into Γv induce injections on homology. Hence passing to G, we replace the
above matrix column by two columns of the shape

(a, v) (v′, b)

v 1 −1
a −1 0
b 0 1

(again in a suitable choice of bases, and the rest of these columns are zeroes). As the vertex v has
exactly two edges adjacent to it in the ℓ-torsion subgraph, the remaining entries in the inserted
row associated to the vertex v are zeroes. We further observe that the sum of the two inserted
columns equals the replaced column (prolongated by a zero for the row of v). So the differential
(d1

1,q)(ℓ) for G has the same rank as the matrix

(a, v) (a, v) + (v′, b) and remaining columns

v 1 0
a
other rows

−1
0

(d1
1,q)(ℓ) for G′

Hence the rank of the ℓ-primary part of the differential d1
1,q has increased exactly by 1. �
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The geometrical meaning of a reduced torsion subgraph is the following.

Remark 29. From the proof of lemma 14, we see that for PSL2 (O−m) and the refined cell
complex, any pair of fusioned edges has pre-images that lie on the same rotation axis. On the
other hand, the quotient of any axis for rotations of order ℓ is a chain of fusionable adjacent
edges in the ℓ–torsion subgraph. Hence a reduced ℓ-torsion subgraph contains one edge for every
PSL2 (O−m)–representative of axes for rotations of order ℓ.

6.1. Classifying the reduced torsion subcomplexes. Given an ℓ-torsion subgraph for
PSL2 (O−m), the only difference that can occur between two of its reductions, is the following.
If there is a loop in the graph, then this loop will become a single edge with identical origin and
end vertex. But this vertex can be chosen arbitrarily from the vertices which are originally on
the loop. However, the topology of the reduced graph does not depend on this choice of vertex.
So as a topological space, it is well defined to speak of the reduced ℓ-torsion subgraph.

Now we are ready to give the proof of theorem 2, which states that the ℓ-primary part of the
terms E2

p,q of the equivariant spectral sequence converging to Hp+q(PSL2 (O−m) ; Z), in all rows
q > 1, only depends on the homeomorphism type of the ℓ-torsion subcomplex.

Proof of theorem 2. By lemma 25, for each of the occuring primes ℓ = 2 and ℓ = 3, there is
only one case where the ℓ–torsion subgraph of the Flöge cellular complex does not coincide with
the ℓ–torsion subgraph of the refined cellular complex. In this case, the second subgraph is not
closed, as it has edges reaching out to the cusp∞. So it cannot be homeomorphic to the ℓ–torsion
subgraph G for any other m, because cells are fixed pointwise and hence all vertices of edges of
G not reaching out to cusps are contained in G. So we need only consider the cases where we can
identify the ℓ–torsion subgraph of the Flöge cellular complex and the refined cellular complex.

By lemma 28, we can pass from the ℓ-torsion subgraph to a reduced ℓ–torsion subgraph.
Then on the connected components which contain no loops, only vertices with one or three
edges adjacent to them remain: we have eliminated all vertices with two adjacent edges by
edge fusions; and vertices with no adjacent edges cannot be in the ℓ-torsion subgraph due to
lemma 14.
By the latter theorem, there is a unique stabiliser type of vertices with one adjacent edge in the
ℓ–torsion subgraph. Furthermore, the groupD2 is the unique stabiliser type of vertices with three
adjacent edges in the 2-torsion subgraph; and in the 3-torsion subgraph, there is no vertex with
three adjacent edges at all. We can recognise vertices with one, respectively three adjacent edges
as end points respectively bifurcation points in the reduced ℓ–torsion subgraph considered as a
topological space Y . The end points and bifurcation points are preserved by homeomorphisms.
So, a reduced ℓ-torsion subgraph can be reconstructed from the homeomorphism type of Y , as
well as the associated stabiliser types.
By lemma 19, it is sufficient to know that the bifurcation points come from vertices with stabiliser
type D2 in order to establish the matrix block in the differential matrix. And for the vertices
with just one adjacent edge, it suffices to use lemma 44 to get the associated matrix blocks.
Computing the rank of this differential matrix, gives us the ℓ–primary part of the terms E2

p,q, in
all cases q > 1.
So it only remains to see that the above arguments still work when there are loops in the ℓ–
torsion subgraph. We classify the types of loops by the number n of bifurcation points they
contain. This number can be read off from the homeomorphism type of Y . A loop with n = 0
consists of one edge with identified origin and end point in a reduced ℓ–torsion subgraph. The
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stabiliser of this point is of type Z/2 or S3 in the case ℓ = 2 and of type Z/3 or A4 in the case
ℓ = 3. As stated in the proof of theorem 28, the ℓ–primary part of the homology groups is the
same for both possible stabiliser types, and by lemma 44 the inclusions of Z/ℓ into them induce
always injections, so we do not need to know which is precisely this stabiliser type to reobtain
the original contribution to the E2-page.
Finally, if n > 0, then such a loop contains no more edges with two adjacent vertices in the
reduced ℓ–torsion subgraph, and the arguments of the situtation without loops work. �

For the discussion in the rest of this section, we leave the two special cases m = 1, ℓ = 2 and
m = 3, ℓ = 3 excluded, and treat them in subsection 7.2.

Observation 30. Consider the case ℓ = 3. By lemma 14, there can be no bifurcation point
in the 3-torsion subgraph. Hence, every connected component of a reduced 3–torsion subgraph
consists of a single edge,

• either with two vertices of stabiliser type S3,
• or with identified origin and end point of stabiliser type Z/3 or A4, so this connected

component is a loop.

In the second case, the contribution to the E2-page does not depend on the occurring stabiliser
type, as we see from theorem 2.

Notation 31. Let ℓ be a prime number. Consider the Poincaré series in the dimensions over
the field with ℓ elements, of the homology with Z/ℓ–coefficients of PSL2 (O−m),

P ℓ
m(t) :=

∞∑

q = 3

dimFℓ
Hq

(
PSL2

(
O−m

)
; Z/ℓ

)
tq.

This Poincaré series depends only on the ℓ-primary part of the E2-page because we have cut
off the degrees smaller than or equal to the virtual cohomological dimension of Γ, namely 2.

We observe that we can decompose the 3-torsion Poincaré series P 3
m(t) as a sum over the

series obtained from the connected components of the 3-torsion subgraph, because there can be
no interference in the following sense.

Proposition 32. The matrix for the ℓ-primary part of d1
1,q can be decomposed as a direct sum

of the blocks associated to the connected components of the ℓ-torsion subgraph.

Proof. As there is no adjacency between different connected components, all entries off these
blocks are zero. �

Observation 33. Hence it suffices to compute the 3-torsion Poincaré series P 3,1(t) and P 3,2(t)
associated to the first and the second homeomorphism type appearing in observation 30, and for
any Bianchi group PSL2

(
O−m

)
count the numbers n1 of connected components of first type, n2

of connected components of second type. Then the 3-torsion Poincaré series associated to this
Bianchi group equals

P 3
m(t) = n1P

3,1(t) + n2P
3,2(t).

As P 3,1(t) and P 3,2(t) are linearly independent, the reduced 3-torsion subgraph can be easily
computed from the 3-torsion Poincaré series.

For the connected components in the 2-torsion subgraph, a priori infinitely many homeomor-
phism types may occur. But we still have, by proposition 32, a direct sum decomposition of the
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Figure 2: The results for the Poincaré series P 2
m(t) in 2–torsion

m
reduced

2-torsion subgraph
P 2

m(t)

7, 15, 35, 39, 87, 91, 95,
115, 151, 155, 159, 191, 403

b
−2t3

t−1

46
b b

2
(
−2t3

t−1

)

235, 427
b b b

3
(
−2t3

t−1

)

11, 19, 43, 67, 139, 163
b b −t3(t3−2t2+2t−3)

(t−1)2(t2+t+1)

51, 123, 187, 267
b b b b

2
(
−t3(t3−2t2+2t−3)

(t−1)2(t2+t+1)

)

6, 22
b b b

−2t3

t−1 + −t3(t3−2t2+2t−3)
(t−1)2(t2+t+1)

5 , 10, 13, 29, 58 b

b

−t3(3t−5)
(t−1)2

37 b

b

b b −t3(3t−5)
(t−1)2 + 2

(
−2t3

t−1

)

2
b b −2t3(t3−t2−2)

(t−1)2(t2+t+1)

34
b b b b b b

2−t3(t3−2t2+2t−3)
(t−1)2(t2+t+1)

+ 2−2t3

t−1

2-primary part of the E2-page, for q greater than the virtual cohomological dimension of the
Bianchi group.

6.2. Computations of the homological torsion. The following lemma is useful in order to
transform the Poincaré series of notation 31 into fractions of finite polynomials in t.

Lemma 34. The equation
∞∑

k=0

(ak + b)tik+j = tj(b+ti(a−b))
(1−ti)2

holds for all a, b, i, j ∈ N.
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Proof.

(1− ti)2
∞∑

k=0

(ak + b)tik+j

=
∞∑

k=0

(ak + b)tik+j − 2
∞∑

k=0

(ak + b)ti(k+1)+j +
∞∑

k=0

(ak + b)ti(k+2)+j

=
∞∑

k=0

(ak + b)tik+j − 2
∞∑

k=1

(a(k − 1) + b)tik+j +
∞∑

k=2

(a(k − 2) + b)tik+j

Now the multiplicity in this term of
∞∑

k=2

tik+j is ak + b− 2ak + 2a− 2b + ak− 2a + b = 0, so the

above term equals btj + (a + b)ti+j − 2btj+i = tj(b− bti + ati). �

Observation 35. In figure 2, we see that in the cases of class numbers 1 and 2, and in the cases
where the absolute value of the discriminant is inferior to 200, there are just four homeomorphism

types of connected components in the 2-torsion subgraph,
b

,
b b

, b

b

and
b b

. Their
associated 2-torsion Poincaré series are linearly independent. As a result, within our observed
range of values for m, we are able to decompose a 2–torsion Poincaré series in order to reobtain
the homeomorphy type.

7. The non-Euclidean principal ideal domain cases

We now give the results in the cases m = 19, 43, 67 and 163, which are the non-Euclidean
principal ideal domain cases. The Euclidean principal ideal domain cases are already known from
[25]. We observe that in these four cases, the torsion in the integral homology of PSL2(O−m)
is of the same isomorphy type. This comes from the fact that their 2-torsion and 3-torsion
subgraphs are homeomorphic (see figure 3 below). Theorem 2 then explains this isomorphy.

Proposition 36. For m ∈ {19, 43, 67, 163}, the E2-page of the equivariant spectral sequence is
concentrated in the columns p = 0, p = 1 and p = 2, given as follows.

q = 12n + 14 (Z/2)4n+6

q = 12n + 13 (Z/2)4n+3 Z/3
q = 12n + 12 (Z/2)4n+4

q = 12n + 11 (Z/2)4n+5 ⊕ Z/3
q = 12n + 10 (Z/2)4n+2

q = 12n + 9 (Z/2)4n+3 Z/3
q = 12n + 8 (Z/2)4n+4

q = 12n + 7 (Z/2)4n+1 ⊕ Z/3
q = 12n + 6 (Z/2)4n+2

q = 12n + 5 (Z/2)4n+3 Z/3
q = 12n + 4 (Z/2)4n

q = 12n + 3 (Z/2)4n+1 ⊕ Z/3
q = 2 (Z/2)2

q = 1 0 Z/2 ⊕ Z/3
q = 0 Z Zβ1 Zβ2 ,

p = 0 p = 1 p = 2

where m 19 43 67 163

β1 1 2 3 7
gives the Betti number β1, and β2 = β1 − 1.
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The Betti numbers are related by the vanishing of the naive Euler characteristic [27],
β0 + β1 + β2 = 0.

We observe that the E2
0,1-term vanishes completely. This term is the target of the only d2-arrow

which can for arbitrary m be non-zero, namely d2
2,0. Hence our spectral sequence degenerates

at the E2-level. The only ambiguity in the dévissage concerns H2(PSL2(O−m); Z); the above
E∞-page says that its 2-primary part is either (Z/2)3 or Z/4⊕ Z/2. Computing

dimF2 Hq(PSL2(O−m); Z/2) =





4k + 5, q = 6k + 8,

4k + 3, q = 6k + 7,

4k + 5, q = 6k + 6,

4k + 3, q = 6k + 5,

4k + 1, q = 6k + 4,

4k + 3, q = 6k + 3,

β2 + 2, q = 2,

β1, q = 1,

and comparing with the help of the Universal Coefficient Theorem, we can exclude the first
possibility. We obtain proposition 1.

7.1. Intermediary results. We now give the intermediary results we have used to compute
the above E2-pages, in the case m = 67. Our fundamental domain for the Flöge cellular complex
(which coincides with Mendoza’s spine in the principal ideal domain cases) is drawn in figure 4c.
We denote by (k) the vertex number k in the output files of the program [21], and by Γ(k) its
stabiliser. We do the same for the edges, which we denote by their origin and end point. We will
write (k)′ for the other vertices on the same Γ-orbit as (k). We will use the following notations:

A := ±
(

−ω 16
1 1 + ω

)
, B := ±

(
−ω 8
2 1 + ω

)
,

C := ±
(

5 − ω 10 + 2ω
2 + ω −6 + ω

)
, D := ±

(
13 10 + 10ω
ω −13

)
,

F := ±
(

−ω 4
4 1 + ω

)
, G := ±

(
−2 − ω 4 − ω

3 2 + ω

)
,

H := ±
(

−1 − ω 15 − ω
1 1 + ω

)
, J := ±

(
1

−1

)
,

L := ±
(

−1 − ω 7 − ω
2 2 + ω

)
, N := ±

(
9 − ω 14 + 6ω
2 + ω −10 + ω

)
,

S := ±
(

−1
1 1

)
.
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Figure 3: Fundamental domains for PSL2 (O−m) in the Flöge cellular complex, in the non-
Euclidean principal ideal domain cases. The vertices with matching labels are identified by
PSL2 (O−m), and then the 2-torsion subcomplex is obtained from the dashed edges and the
3-torsion subcomplex from the dotted edges.

(a) m = 19 (b) m = 43 (c) m = 67 (d) m = 163
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We observe the following stabilisers of the vertex representatives.

Γ(36) = Γ(24) = Γ(31) = Γ(28) = 1
Γ(43) = 〈JF | (JF )2 = 1〉 ∼= Z/2
Γ(16) = 〈J | J2 = 1〉 ∼= Z/2
Γ(52) = 〈G |G2 = 1〉 ∼= Z/2
Γ(42) = 〈L, G |L3 = G2 = (LG)3 = 1〉 ∼= A4

Γ(29) = 〈B, N |B3 = N3 = (BN)2 = 1〉 ∼= A4

Γ(45) = 〈D, H |D2 = H2 = (DH)3 = 1〉 ∼= S3

Γ(50) = 〈J, F | J2 = F 3 = (JF )2 = 1〉 ∼= S3

Γ(37) = 〈L |L3 = 1〉 ∼= Z/3
Γ(21) = 〈C |C3 = 1〉 ∼= Z/3
Γ(39) = 〈F |F 3 = 1〉 ∼= Z/3
Γ(19) = Γ(30) = 〈S |S3 = 1〉 ∼= Z/3.

The following edge representatives have stabiliser type Z/2:

Γ(42),(52) = 〈G |G2 = 1〉
Γ(18),(45) = 〈H |H2 = 1〉
Γ(45),(51) = 〈D |D2 = 1〉
Γ(43),(50) = 〈JF | (JF )2 = 1〉
Γ(16),(50) = 〈J | J2 = 1〉
Γ(29),(44) = 〈BN | (BN)2 = 1〉.

In order to compare these with the vertex representative stabilisers, we note that there are
respectively two elements of Γ sending the vertex (18) to (16), (44) to (43) and (51) to (52).

The following edge representatives have stabiliser type Z/3:

Γ(19),(30) = 〈S |S3 = 1〉
Γ(21),(42) = 〈C |C3 = 1〉
Γ(37),(42) = 〈L |L3 = 1〉
Γ(26),(45) = 〈DH | (DH)3 = 1〉
Γ(20),(23) = 〈A |A3 = 1〉
Γ(29),(54) = 〈N |N3 = 1〉
Γ(29),(47) = 〈B |B3 = 1〉
Γ(39),(50) = 〈F |F 3 = 1〉

In order to determine the homomorphisms into the vertex stabilisers, we give a matrix for
each of the following vertex identifications. The whole coset of matrices performing this vertex
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identification is obtained by multiplying the edge stabiliser from the right onto this matrix.

The matrix sends vertex number to vertex number

±
(

7 5 + 5ω
ω −12

)
(26) (21)

±
(

1 ω
1

)
(20) (19)

±
(

8 − 2ω 30 + 7ω
3 + ω −12 + 2ω

)
(23) (37)

±
(

5 3 + 3ω
ω −10

)
(54) (39)

±
(

−3 − ω 6 − ω
5 1 + 2ω

)
(47) (30).

The remaining seventeen edge orbits have trivial stabiliser. There are fifteen orbits of 2-cells.
The above cardinalities sum up to the equivariant Euler characteristic

χΓ(X) = 4 +
3

2
+

2

12
+

2

6
+

5

3
− 17− 6

2
− 8

3
+ 15 = 0,

whence there is a check of our calculations in view of proposition 40.

The d1 differentials in the equivariant spectral sequence.
The 2-primary part (d1

1,1)(2): (Z/2)5 ← (Z/2)6 can be expressed by the matrix

0

B

B

B

B

@

1 0 1 0 0 0
0 1 −1 0 0 0
0 0 0 −1 0 1
0 −1 0 0 −1 0
0 0 0 1 1 0

1

C

C

C

C

A

.

of rank 5. For q > 1 odd, (d1
1,q)(2) has preimage (Z/2)6 and full rank 6, and can be expressed

by the following matrices with 2k zero rows to be inserted. For the differentials (d1
1,6k+3)(2) and

(d1
1,6k+7)(2), with target space (Z/2)7+2k , this is the matrix

0

B

B

B

B

B

B

B

B

@

−1 0 0 0 0 0
1 0 1 0 0 0
0 1 −1 0 0 0
0 0 0 −1 0 1
0 −1 0 0 −1 0
0 0 0 0 0 −1
0 0 0 1 1 0

1

C

C

C

C

C

C

C

C

A

.
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And for the differential (d1
1,6k+5)(2), with target space (Z/2)7+2k+2, we observe the matrix

0

B

B

B

B

B

B

B

B

B

B

B

B

@

−1 0 0 0 0 0
0 0 0 0 0 0
1 0 1 0 0 0
0 1 −1 0 0 0
0 0 0 −1 0 1
0 −1 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

On the 3-primary part, we observe that for q ≡ 1 mod 4,
(d1

1,q)(3): (Z/3)7 ← (Z/3)8 can be expressed by the matrix
0

B

B

B

B

B

B

B

B

@

−1 0 0 0 −1 0 0 0
1 0 0 0 0 0 1 0
0 2 1 0 0 0 0 0
0 −1 0 −1 0 0 0 0
0 0 −2 0 1 0 0 0
0 0 0 0 0 −1 −2 0
0 0 0 0 0 1 0 −1

1

C

C

C

C

C

C

C

C

A

of rank 7; and for q ≡ 3 mod 4, (d1
1,q)(3): (Z/3)9 ← (Z/3)8 can be expressed by the matrix

0

B

B

B

B

B

B

B

B

B

B

B

B

@

−1 0 0 0 −1 0 0 0
1 0 0 0 0 0 1 0
0 2 1 0 0 0 0 0
0 −1 0 −1 0 0 0 0
0 0 −2 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 −1 −2 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

of rank 8. So in both cases the highest possible rank occurs.
These informations yield the E2-page of proposition 36.

7.2. Gaussian and Eisenstein integers. In [23], the computation for the cases of the Gaussian
integers O−1 = Z[

√
−1] and the Eisentein integers O−3 = Z[ω], with

ω = −1
2 + 1

2

√
−3 = e

2πi
3 , has been redone by hand, following step by step the description in [25].

This enables us to clean up some typographical impacts of the publication process (presumably
the recomposition) to the results in the editor’s version of the latter paper. Some of the implied
corrections have already been suggested by Berkove [2].

For the Gaussian integers, the integral homology of PSL2(O−1) is a direct sum of copies of
Z/2 and Z/3, with the number of copies specified by

Hq(PSL2(O−1); Z) ∼=
{

(Z/2)2 ⊕ Z/3, q = 2,

(Z/2)2, q = 1

and the Poincaré series P 2
m(t) = −2t3(2t3−t2−3)

(t−1)2(t2+t+1)
and P 3

m(t) = −t3(t2−t+2)
(t−1)(t2+1)

.

For the Eisentein integers,

Hq(PSL2(O−3); Z) ∼=
{

Z/4⊕ Z/2, q = 2,

Z/3, q = 1
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and Hq(PSL2(O−3); Z) is for q > 3 a direct sum of copies of Z/2 and Z/3 with the number of

copies specified by the Poincaré series P 2
m(t) = −t3(t3−2t2+2t−3)

(t−1)2(t2+t+1)
and P 3

m(t) = −t3(t2+2)
(t−1)(t2+1)

.

8. Equivariant Euler characteristic

We will use the Euler characteristic to check the geometry of the quotient Γ\X. Recall the
following definitions and proposition.

Definition 37 (Euler characteristic). Suppose Γ′ is a torsion-free group. Then we define its
Euler characteristic as

χ(Γ′) =
∑

i

(−1)i dim Hi(Γ
′; Q).

Suppose further that Γ′ is a torsion-free subgroup of finite index in a group Γ. Then we define
the Euler characteristic of Γ as

χ(Γ) =
χ(Γ′)

[Γ : Γ′]
.

The latter formula is well-defined because of [5, IX.6.3].

Definition 38 (Equivariant Euler characteristic). Suppose X is a Γ-complex such that

• every isotropy group Γσ is of finite homological type;
• X has only finitely many cells mod Γ.

Then we define the Γ-equivariant Euler characteristic of X as

χΓ(X) :=
∑

σ

(−1)dimσχ(Γσ),

where σ runs over the orbit representatives of cells of X.

Proposition 39 ([5, IX.7.3 e’]). Suppose X is a Γ-complex such that χΓ(X) is defined. If Γ is
virtually torsion-free, then Γ is of finite homological type and χ(Γ) = χΓ(X).

Let now Γ be PSL2

(
O−m

)
. Then the above proposition applies to X taken to be Flöge’s (or

still, Mendoza’s) Γ-equivariant deformation retract of H.
Using χ(Γσ) = 1

card(Γσ) for Γσ finite, the fact that the singular points have stabiliser Z2, and the

torsion-free Euler characteristic

χ(Z2) =
∑

i

(−1)irankZ(Hi Z2) = 1− 2 + 1 = 0,

we get the formula

χ(Γ) =
∑

σ

(−1)dimσ 1

card(Γσ)
,

where σ runs over the orbit representatives of cells of X with finite stabilisers.

Proposition 40. The Euler characteristic χ(Γ) vanishes for the Bianchi groups.

This is a well-known fact, see for instance [22] for a proof. We obtain a “mass formula”

0 =
∑

σ

(−1)dimσ 1

card(Γσ)
,
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which allows us to check the topology of the computed quotient space. For example, in the case
m = 427, the mass formula takes the expression

184 +
12

2
+

18

3
+

4

6
−

(
441 +

16

2
+

20

3

)
+ 259 = 0,

which comes from 184 trivially stabilised vertices, 12 vertices with stabiliser of order two, 18
vertices with stabiliser of order three, 4 vertices with stabiliser of type S3, 441 trivially stabilised
edges, 16 edges with stabiliser of order two, 20 edges with stabiliser of order three, and 259
two-cells in the quotient cell complex. Tables with the expression in other cases, including all
cases of class number 2, are given in [23].

9. Results for the special linear groups

In order to keep the ℓ–torsion subcomplex low-dimensional, it is important to divide the
arithmetic group by the subgroup generated by all the elements of order ℓ which are in the
kernel of the action. Else, when ℓ occurs as the order of an element in the kernel, the ℓ–torsion
subcomplex is the whole quotient complex. For instance, for SL2(O−m), where O−m is a non-
Euclidean principal ideal domain, we remark that for each 2–cycle in the quotient complex
(which corresponds to a generator of H2(SL2(O−m); Q) ), we have a constant summand Z/2 to
its integral homology in all degrees q > 1.

Proposition 41. The integral homology of SL2(O−m),
for m ∈ {19, 43, 67, 163}, is given as

Hq(SL2(O−m); Z) ∼=





(Z/2)β2 ⊕ Z/2⊕ Z/4⊕ Z/3, q = 6 + 4n,

(Z/2)β2 , q = 5 + 4n,

(Z/2)β2 ⊕ Z/2, q = 4 + 4n,

(Z/2)β2 ⊕ Z/2⊕ Z/8⊕ Z/3, q = 3 + 4n,

Zβ2 ⊕ (Z/2)β2 ⊕ Z/2⊕ Z/4⊕ Z/3, q = 2,

Zβ2+1, q = 1,

where the Betti number β2 is given in proposition 36.

The results of this proposition have been computed with HAP [10] from the cell complex
information computed with [21].

10. K -theory

With the above information about the action of the Bianchi groups, we can further compute
the Bredon homology of the Bianchi groups, from which we can deduce their equivariant K-
homology. The results of the computations [23] are the following.

Theorem 42. Let β2 be the Betti number specified in proposition 36. For O−m principal, the
equivariant K-homology of Γ := PSL2(O−m) is isomorphic to

m = 1 m = 2 m = 3 m = 7 m = 11 m ∈ {19, 43, 67, 163}

KΓ
0 (EΓ) Z6 Z5 ⊕ Z/2Z Z5 ⊕ Z/2Z Z3 Z4 ⊕ Z/2Z Zβ2 ⊕ Z3 ⊕ Z/2Z

KΓ
1 (EΓ) Z Z3 0 Z3 Z3 Z⊕ Zβ2+1.
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The remainder of the equivariant K-homology of Γ is given by Bott 2-periodicity. By the
Baum/Connes conjecture, which holds for the Bianchi groups [16], we obtain the K-theory of
the reduced C∗-algebras of the Bianchi groups as isomorphic images.

11. Appendix: The maps induced on cohomology by finite subgroup inclusions

Concerning the possible finite stabiliser groups of vertices in hyperbolic space, we can establish
their integral homology by elementary means. This has been done in [25], and we obtain their
homology with Z/ℓ–coefficients by the universal coefficient theorem. Then it only remains to
correct a minor typographical error for A4 in order to obtain the following lemma.

Lemma 43 (Schwermer/Vogtmann). The homology with trivial Z– respectively Z/ℓ–coefficients,
for ℓ = 2 or 3, of the finite subgroups of PSL2(O−m) listed in lemma 9 is

Hq(Z/n; Z)∼=

8

>

<

>

:

Z, q = 0,

Z/n, q odd,

0, q even, q > 0;

Hq(Z/n; Z/n)∼= Z/n, for n, q ∈ N ∪ {0};

Hq(D2; Z) ∼=

8

>

>

<

>

>

:

Z, q = 0,

(Z/2)
q+3

2 , q odd,

(Z/2)
q
2 , q even, q > 0;

Hq(D2; Z/2) ∼=(Z/2)q+1 Hq(D2; Z/3)=0, q > 1;

Hq(S3; Z) ∼=

8

>

>

>

>

>

<

>

>

>

>

>

:

Z, q = 0,

Z/2, q ≡ 1 mod 4,

0, q ≡ 2 mod 4,

Z/6, q ≡ 3 mod 4,

0, q ≡ 0 mod 4, q > 0;

Hq(S3; Z/3) ∼=

8

>

>

>

>

>

<

>

>

>

>

>

:

Z/3, q = 0,

0, q ≡ 1 mod 4,

0, q ≡ 2 mod 4,

Z/3, q ≡ 3 mod 4,

Z/3, q ≡ 0 mod 4, q > 0;

Hq(S3; Z/2)∼=Z/2, q ∈ N ∪ {0};

Hq(A4; Z) ∼=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Z, q = 0,

(Z/2)k ⊕ Z/3, q = 6k + 1,

(Z/2)k ⊕ Z/2, q = 6k + 2,

(Z/2)k ⊕ Z/6, q = 6k + 3,

(Z/2)k, q = 6k + 4,

(Z/2)k ⊕ Z/2 ⊕ Z/6, q = 6k + 5,

(Z/2)k+1, q = 6k + 6.

Hq(A4; Z/2) ∼=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Z/2, q = 0,

(Z/2)2k, q = 6k + 1,

(Z/2)2k+1, q = 6k + 2,

(Z/2)2k+2, q = 6k + 3,

(Z/2)2k+1, q = 6k + 4,

(Z/2)2k+2, q = 6k + 5,

(Z/2)2k+3, q = 6k + 6.

Hq(A4; Z/3)∼=Z/3, q ∈ N ∪ {0}.

With the Lyndon/Hochschild/Serre spectral sequence, we can further establish the following.

Lemma 44 (Schwermer/Vogtmann [25]). Let M be Z or Z/2. Consider group homology with
trivial M -coefficients. Then the following holds.

• Any inclusion Z/2→ S3 induces an injection on homology.
• An inclusion Z/3→ S3 induces an injection on homology in degrees congruent to 3 or 0

mod 4, and is otherwise zero.
• Any inclusion Z/2→ D2 induces an injection on homology in all degrees.
• An inclusion Z/3→ A4 induces injections on homology in all degrees.
• An inclusion Z/2→ A4 induces injections on homology in degrees greater than 1, and is

zero on H1.

Schwermer and Vogtmann prove this for M = Z. We will make use of the following statements
to prove it for M = Z/2. As the only automorphism of Z/2 is the identity, Z/2-coefficients are
always trivial coefficients.

Lemma 45. Lemma 44 holds in the case M = Z/2 for the inclusions into D2.

Proof. Consider the Lyndon/Hochschild/Serre spectral sequence with Z/2-coefficients of the
trivial extension 1→ Z/2→ D2 → Z/2→ 1. It takes the form

E2
p,q = Hp (Z/2;Hq(Z/2; Z/2)) ⇒ Hp+q(D2; Z/2).
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As Hq(Z/2; Z/2) ∼= Z/2 for all q ∈ N ∪ {0}, we obtain E2
p,q = Z/2 for all p, q ∈ N ∪ {0}. As

we know from lemma 43 that Hq(D2; Z/2) ∼= (Z/2)q+1, all the differentials must be zero and
E2 = E∞. Hence we obtain the claimed injections on homology. �

Lemma 46. Lemma 44 holds in the case M = Z/2 for the inclusions into S3.

Proof. Consider the Lyndon/Hochschild/Serre spectral sequence with Z/2-coefficients of the
non-trivial extension 1→ Z/3→ S3 → Z/2→ 1. It takes the form

E2
p,q = Hp (Z/2;Hq(Z/3; Z/2)) ⇒ Hp+q(S3; Z/2).

As Hq(Z/3; Z/2) = 0 for q > 0, the E2-page is concentrated in the row q = 0 and equals the
E∞-page. Thus we have isomorphisms Hp (Z/2;H0(Z/3; Z/2)) ∼= Hp(S3; Z/2), from which we
obtain the claimed morphisms on homology. �

Let t be a generator of Z/3. Let F be the periodic resolution of Z over Z[Z/3] given by

. . . t−1
// Z[Z/3]

t2+t+1
// Z[Z/3]

t−1
// Z[Z/3]

augmentation
// Z.

Lemma 47. Let A be an abelian group consisting only of elements of order 2 and the neutral
element. Then F ⊗Z[Z/3] A is exact in degrees greater than zero, regardless of the Z[Z/3]-module
structure attributed to A.

Proof. We will show the two equations

image(t2 + t + 1) = ker(t− 1) and ker(t2 + t + 1) = image(t− 1).

As t3 = 1, the equation (t2 + t + 1)(t− 1) = 0 holds, and yields the inclusions

image(t2 + t + 1) ⊂ ker(t− 1) and ker(t2 + t + 1) ⊃ image(t− 1).

Now we want to show that image(t2 + t+1) ⊃ ker(t−1). Let v ∈ ker(t−1). Then (t−1) ·v = 0,
or equivalently, t · v = v. We apply this three times to obtain (t2 + t + 1) · v = 3v. As 2v = 0 in
A, we have (t2 + t + 1) · v = v and hence the claimed inclusion.
It remains to show that ker(t2 + t + 1) ⊂ image(t− 1). Let v ∈ ker(t2 + t + 1). We will see that
t · v is a preimage of v for the multiplication by t− 1. Namely,
(t− 1) · (t · v) = t2 · v− t · v = −2t · v− v because t2 · v + t · v + v = 0. Using that multiplication
by 2 is zero on A, we obtain the image v and hence the last inclusion. �

Lemma 48. The E2-page of the Lyndon/Hochschild/Serre spectral sequence with Z/2–coefficients
for the extension 1→ D2 → A4 → Z/3→ 1 is concentrated in the column p = 0.

Proof. The E2-page of the Lyndon/Hochschild/Serre spectral sequence with Z/2– coefficients is
given by E2

p,q = Hp (Z/3;Hq(D2; Z/2)).

The action of Z/3 on Hq(D2; Z/2) ∼= (Z/2)q+1 is determined by the non-trivial conjugation action
of Z/3 on D2. But applying lemma 47, we obtain Hp

(
Z/3; (Z/2)q+1

)
= 0 for p > 0 and any

action of Z/3 on (Z/2)q+1. �

We can now do the last remaining step to prove lemma 44 in the case M = Z/2.
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Corollary 49. Lemma 44 holds in the case M = Z/2 for the inclusions into A4.

Proof.

• For an inclusion Z/3→ A4, this follows from the fact that
Hp(Z/3; Z/2) = 0 for all p > 0.
• For an inclusion Z/2 → A4, factorise by an inclusion Z/2 → D2. Lemma 48 gives an

isomorphism Hq(A4; Z/2) ∼= H0 (Z/3;Hq(D2; Z/2)) for q ∈ N ∪ {0}. From lemma 45 and
the low terms of our resolution for A4, we deduce that the induced map on homology is
injective whenever Hq(A4; Z/2) is non-zero. From lemma 43, we see that this is the case
for all q ∈ N ∪ {0} except for q = 1, where we obtain the zero map.

�

11.1. Appendix: The low terms of a free resolution for the alternating group on 4

objects. We will use Wall’s Lemma to construct a free resolution for A4, and compute its three
differentials of lowest degrees explicitly. This resolution will help us determine the maps induced
on homology by inclusions into vertex stabilisers of type A4.

So let us recall Wall’s lemma. Given a group extension 1 → K → G → H → 1, and free
resolutions B for K, and C for H, we construct a free resolution for G in terms of the following
double chain complex. For any s ∈ N ∪ {0}, let Cs be free on αs generators. We define Ds as
the direct sum of αs copies of Z[G]⊗K B. Then we have an augmentation of Ds onto the direct
sum of αs copies of Z[H], which we will identify with Cs, and write εs : Ds → Cs. If Ar,s is
the submodule of Ds which is the direct sum of αs copies of Z[G] ⊗K Br, then Ar,s is a free
G-module, and Ds is the direct sum of the Ar,s.

Lemma 50 (C.T.C. Wall [28]). There exist G-maps dk
r,s : Ar,s → Ar+k−1,s−k for k > 1, s > k

such that

• εs−1 ◦ d1
0,s = dC

s ◦ εs : A0,s → Cs−1 where dC denotes the differential in C,

•
k∑

i=0
dk−i ◦ di = 0, for each k, where dk

r,s is interpreted as zero if r = k = 0, or if

s < k.

Finally, we let A denote the direct sum of the Ar,s graded by dimAr,s = r + s. And let

d :=
∑
k

dk.

Theorem 51 (C.T.C. Wall [28]). (A, d) is acyclic, and so yields a free resolution for G.

Let t be a generator of Z/n. Let F (n) be the periodic resolution of Z over Z[Z/n] given by

. . . t−1
// Z[Z/n]

tn+...+t+1
// Z[Z/n]

t−1
// Z[Z/n]

augmentation
// Z.

We consider the group extension 1 → D2 → A4 → Z/3 → 1, the resolution F (3) for Z/3 and
the resolution F (2)⊗ F (2) for D2. Then, Ar,s = Z[A4]⊗Z[D2] (Z[D2])

r ∼= (Z[A4])
r.

Let us use the cycle notation for the elements in the alternating group on four letters. Then in
low degrees, the differential of F (2)⊗ F (2) becomes

d0
1,s = ((12)(34) − 1, (14)(23) − 1) ,

d0
2,s =

(
(12)(34) + 1 1− (14)(23) 0

0 (12)(34) − 1 (14)(23) + 1

)
,
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d0
3,s =




(12)(34) − 1 (14)(23) − 1 0 0
0 −(12)(34) − 1 (14)(23) + 1 0
0 0 (12)(34) − 1 (14)(23) − 1


 ,

for all s ∈ N. At the same time, we can set d1
0,2k = ((132) + (123) + 1) and

d1
0,2k+1 = ((123) − 1) for all k ∈ N, which satisfies the first condition in Wall’s Lemma. Further,

we set

d1
1,1 =

(
1 (142)

−(123) (134) + 1

)
,

d1
1,2 =

(
−1− (123) + (134) − (124) (234) − (123)

(142) − (132) (142) − 1 + (124) + (143)

)
,

d1
2,1 =



−1 0 −(123)
0 (142) − 1 (243)

(134) 0 −(123) − 1


 .

We sum up, and obtain the low degree terms of a free resolution for A4:

. . . // (Z[A4])
10 d3

// (Z[A4])
6 d2

// (Z[A4])
3 d1

// Z[A4]→ 0,

where d1 = (d1
0,1, d0

1,0) = ((123) − 1, (12)(34) − 1, (14)(23) − 1) ,

d2 =

(
d1
0,2 d0

1,1 0
0 d1

1,1 d0
2,0

)

=




(132) + (123) + 1 (12)(34)− 1 (14)(23)− 1 0 0 0
0 1 (142) (12)(34)− 1 (14)(23)− 1 0
0 −(123) (134) + 1 0 (12)(34)− 1 (14)(23)− 1


 ,

and we assemble analogously d3 =




d1
0,3 d0

1,2 0 0
0 d1

1,2 d0
2,1 0

0 d2
1,2 d1

2,1 d0
3,0


.
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[17] Felix Klein, Ueber binäre Formen mit linearen Transformationen in sich selbst, Math. Ann. 9 (1875), no. 2,
183–208. MR 1509857

[18] Mark Lingham, Modular forms and elliptic curves over imaginary quadratic fields, Ph.D. Thesis, 2005.
[19] Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathe-

matics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957 (2004i:57021)
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Ph.D. Thesis, Institut Fourier, Université de Grenoble et Universität Göttingen, soutenue le 15 octobre 2010.
http://tel.archives-ouvertes.fr/tel-00526976/.

[24] John G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 149,
Springer. MR 2249478 (2007d:57029)

[25] Joachim Schwermer and Karen Vogtmann, The integral homology of SL2 and PSL2 of Euclidean imagi-
nary quadratic integers, Comment. Math. Helv. 58 (1983), no. 4, 573–598. MR 728453 (86d:11046), Zbl
0545.20031

[26] Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971),
1–77. MR 0284516 (44 #1741)

[27] Karen Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), no. 3, 399–419. MR 799670
(87a:22025)

[28] C. Terence C. Wall, Resolutions for extensions of groups, Proc. Cambridge Philos. Soc. 57 (1961), 251–255.
MR 0178046 (31 #2304)

E-mail address: Alexander.Rahm@Weizmann.ac.il

URL: http://www.wisdom.weizmann.ac.il/~rahm/

Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel

http://tel.archives-ouvertes.fr/tel-00526976/
http://tel.archives-ouvertes.fr/tel-00526976/

	1. Introduction
	1.1. Organisation of the paper.

	2. The action on hyperbolic space
	2.1. The action of the Bianchi groups
	2.2. A cell complex for the Bianchi groups

	3. Rigidity of the action on the refined cell complex
	4. The Flöge cellular complex
	5.  The equivariant spectral sequence to group homology
	5.1. The 3-primary part
	5.2. The 2-primary part

	6. Torsion subcomplex reduction
	6.1. Classifying the reduced torsion subcomplexes
	6.2. Computations of the homological torsion

	7. The non-Euclidean principal ideal domain cases
	7.1. Intermediary results
	7.2. Gaussian and Eisenstein integers

	8. Equivariant Euler characteristic
	9. Results for the special linear groups
	10. K-theory
	11. Appendix: The maps induced on cohomology by finite subgroup inclusions
	11.1. Appendix: The low terms of a free resolution for the alternating group on 4 objects

	References

