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Closed quantum systems under the influence of a laser field, whose interaction is modeled by a Schrödinger equation with a coupling control operator containing both a linear (dipole) and a quadratic (polarizability) term are analyzed. Discontinuous feedbacks, obtained by a Lyapunov trajectory tracking procedure, have been recently proposed to control these type of systems. The purpose of this paper is to study the asymptotic stability by considering the solutions in the Filippov sense. The analysis is developed by applying a variant of LaSalle invariance principle for differential inclusions. Numerical simulations are included to illustrate the efficiency of the discontinuous control.

Introduction

Control of quantum systems using laser fields has been subject to significant developments in the last two decades ( [START_REF] Assion | Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses[END_REF][START_REF] Brumer | Coherent chemistry: Controlling chemical reactions with lasers[END_REF][START_REF] Judson | Teaching lasers to control molecules[END_REF][START_REF] Levis | Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses[END_REF][START_REF] Weinacht | Controlling the shape of a quantum wavefunction[END_REF] etc.). The increasing interest on this domain is motivated by the effects of the technique: we can create or break chemical bonds, each time with finesse far beyond the usual macroscopic means (temperature, pression, etc.).

Since the first successful laboratory experiments obtained at the beginning of the 90s [START_REF] Assion | Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses[END_REF][START_REF] Judson | Teaching lasers to control molecules[END_REF] many applications of this method have been developed: designing logical gates in future quantum computers, investigations of imaging by nuclear magnetic resonance -NMR, study of protein dynamics, molecular detection, molecular orientation and alignment, construction of ultra-short laser etc.. From the beginning, the complexity of chemical phenomena that arise during the interaction laser-quantum system has required the introduction of theoretical methods as an important step to experimental phase. This type of analysis can reveal the set of objectives that can be achieved, and the nature of the laser pulse that can be used. In this context, we consider the time dependent Schrödinger equation, that models the evolution of Email address: andreea.lachapelle@gmail.com (Andreea Grigoriu).

a quantum system:

i d dt Ψ(t) = H(t)Ψ(t) (1) 
where H(t) is an Hermitian operator, called the Hamiltonian and Ψ a complex function called the wavefunction. When the system is controlled by selecting a convenient laser intensity ǫ(t), the interaction between the laser and the system is described by an operator µ 1 , also called dipole coupling [START_REF] Rabitz | Optimal control of selective vibrational excitation in harmonic linear chain molecules[END_REF]. Thus, we recover a billinear form of the Schrödinger equation, formally written:

i d dt Ψ(t) = (H 0 + ǫ(t)µ 1 )Ψ(t). (2) 
In this case

H(t) = H 0 + ǫ(t)µ 1
, where H 0 is the internal Hamiltonian operator, that characterizes the system when the laser is shut down (ǫ(t) = 0). In the limit of small laser intensities the first order term ǫ(t)µ 1 may be enough to adequately describe the interaction, however, situations exist where the dipole coupling does not have enough influence on the system to reach the control goal; the goal may become accessible only after taking into account terms of higher order in the expansion of H(t), for example a polarizability term ǫ 2 (t)µ 2 (see e.g. [START_REF] Dion | Two-frequency IR laser orientation of polar molecules. Numerical simulations for HCN[END_REF][START_REF] Dion | Laser-induced alignment dynamics of HCN: Roles of the permanent dipole moment and the polarizability[END_REF] and related works).

In the following, we focus on the case where a second order them is added in the expansion of the Hamiltonian:

H(t) = H 0 + ǫ(t)µ 1 + ǫ 2 (t)µ 2 . (3) 
For numerical reasons a finite dimensional setting is considered. The operators will be restrained to a linear space spanned by a N dimensional set D. This set can contain for example the first N eigenvalues of the infinite dimensional internal hamiltonian H 0 . For simplicity we conserve the same notations, i.e. we denote by H 0 , µ 1 and µ 2 , N × N Hermitian matrices with complex coefficients and by Ψ a N dimensional complex vector. One important problem is to determine efficient laser fields to control quantum systems whose Hamiltonian are defined by [START_REF] Brockett | Lie theory and control systems defined on spheres[END_REF]. For this purpose an analysis of the controllability has to be pursued, i.e. ask if any admissible quantum state can be attained with some admissible laser field. This can be studied via the general accessibility criteria [START_REF] Brockett | Lie theory and control systems defined on spheres[END_REF][START_REF] Sussmann | Controllability of nonlinear systems[END_REF] based on Lie brackets; more specific results can be found in [START_REF] Turinici | Beyond bilinear controllability: applications to quantum control[END_REF]. A detailed presentation has been made in [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF].

Even if positive results of controllability for systems, with Hamiltonian defined by (3), have been obtained, finding efficient numerical algorithms to determine the control field remains a very difficult task. A solution is to present the problem as a minimization of a cost functional, that describes the goal to be achieved, and eventually some other constraints. This approach leaded to procedures such as stochastic iterative approaches (e.g., genetic algorithms) [START_REF] Li | Optimal dynamic discrimination of similar molecules through quantum learning control[END_REF], iterative critical point methods (monotonic algorithms) [START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF][START_REF] Tannor | Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds[END_REF][START_REF] Zhu | Uniform rapidly convergent algorithm for quantum optimal control of objectives with a positive semi-definite Hessian matrix[END_REF], trajectory tracking or local control procedures ( [START_REF] Beauchard | Implicit Lyapunov control of finite dimensional Schrödinger equations[END_REF][START_REF] Chen | Competitive tracking of molecular objectives described by quantum mechanics[END_REF][START_REF] Ferrante | Control of quantum systems using model-based feedback strategies[END_REF][START_REF] Grivopoulos | Lyapunov-based control of quantum systems[END_REF][START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF][START_REF] Rabitz | Quantum control design via adaptive tracking[END_REF][START_REF] Sugawara | General formulation of locally designed coherent control theory for quantum systems[END_REF] etc.). One advantage of this class of methods is that we obtain explicit control fields. Another one is that few propagations in time are required to approach the solution of the time-dependent Schrödinger equation (TDSE). This is an important aspect when larger systems are considered.

Lyapunov trajectory tracking techniques have been applied for systems with Hamiltonian (3) in order to determine the control ǫ. A first positive result has been obtained by adapting the analysis presented in [START_REF] Jurdjevic | Controllability and stability[END_REF][START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF], that deals with bilinear quantum systems H 0 + ǫ(t)µ 1 .

The success of the feedback control depends on whether there exists (non-zero) direct coupling, through µ 1 , between the target state and all other eigenstates. When the same property holds for Hamiltonian H(t) = H 0 + ǫ(t)µ 1 +ǫ 2 (t)µ 2 the same type of feedback formulas hold. When some of the (direct) coupling is realized through µ 2 instead of µ 1 , the previous feedback formulas do not hold any more and two alternatives have been proposed (see [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF] for more details): discontinuous feedback and time varying feedback.

Only approximative asymptotic stability results have been proved for this last two situations. This paper focuses on the case of discontinuous feedback obtained for quantum systems with Hamiltonian defined by (3). The goal is to prove stability results, and especially asymptotic stability considering the solutions of the quantum system (1), with Hamiltonian H given by ( 3), in the Filippov sense.

The balance of the paper is as follows: in Section 2 we introduce the main notations, the Lyapunov tracking procedure followed by the construction of the discontinuous feedback. Then, we study the existence of solutions in the Filippov sense. In Section 3 we prove a first stability result followed by an asymptotic stability result. The last two sections are dedicated to numerical simulations and conclusions.

2 Lyapunov trajectory tracking

Lyapunov function

We consider equation ( 1), with Hamiltonian H(t) given by ( 3), that describes the evolution of a N -level quantum system submitted to an external action:

i d dt Ψ(t) = (H 0 + ǫ(t)µ 1 + ǫ 2 (t)µ 2 )Ψ(t). (4) 
The wave function

Ψ = (Ψ j ) N j=1 is a vector in C N , veri- fying N j=1 |Ψ j | 2 = 1, i.e.
Ψ belongs to the unit sphere S N (0, 1) of C N . The function Ψ represents a complete physical description of the state of the quantum system at every instant t.

Recall that two wave functions Ψ 1 and Ψ 2 that differ by a phase θ(t) ∈ R, i.e. Ψ 1 = exp(iθ(t))Ψ 2 , describe the same physical state. To take into account the property we add a fictitious control ω (see also [START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF]). Hence we will replace the evolution equation ( 4) by:

i d dt Ψ(t) = (H 0 + ǫ(t)µ 1 + ǫ 2 µ 2 + ω(t))Ψ(t), (5) 
where ω ∈ R is a new control. We can choose it arbitrarily without changing the physical quantities attached to Ψ. We assume in the sequel that the state space is S N (0, 1) and the dynamics given by ( 5) admits two independent controls ǫ and ω.

In order to obtain an explicit formula for the laser field ǫ(t), we apply a Lyapunov trajectory tracking technique. The method consists in introducing a time varying function V (Ψ(t)):

V (Ψ(t)) = Ψ -φ|Ψ -φ = Ψ -φ 2 , (6) 
with Ψ a smooth solution of (5) and φ an eigenvector of H 0 associated to the eigenvalue λ.

The function V is nonnegative for all t > 0 and all Ψ ∈ S N (0, 1) and vanishes when Ψ = φ. We search for feedback controls such that V is a Lyapunov function. To do that we compute formally the derivative of V along the trajectories of (5):

dV dt = 2ǫIm( µ 1 Ψ(t)|φ ) + 2ǫ 2 Im( µ 2 Ψ(t)|φ ) +2(ω + λ)Im( Ψ(t) | φ ), (7) 
where Im denotes the imaginary part. For convenience we denote:

I 1 = Im( µ 1 Ψ(t)|φ ) and I 2 = Im( µ 2 Ψ(t)|φ ).
Then note that if, for example, one takes

ǫ(I 1 , I 2 ) = -kI 1 /(1 + kI 2 ) ω = -λ -cIm( Ψ(t)|φ), (8) 
with k and c strictly positive parameters, one gets

dV /dt = -2k(I 1 /(1 + kI 2 )) 2 -2c(Im( Ψ(t) | φ )) 2 ≤ 0,
and thus V is nonincreasing. However, even if the feedback is chosen such that is V monotonically decreasing, this does not automatically imply that the minimum value will be reached. A convergence analysis is required.

Discontinuous feedback

The theoretical result (see Theorem 2.1) in [START_REF] Grigoriu | Lyapounov control of Schödinger equations: beyond the dipole approximation[END_REF] shows that tracking to φ works well when all eigenstates of H 0 , φ 2 , ....φ N , other than φ are coupled to φ by µ 1 , i.e. φ j , µ 1 φ = 0, j = 2, . . . , N . For the important case when some of the coupling are realized by µ 2 instead of µ 1 formulas (8) are ineffective. Discontinuous and time varying feedback have been proposed to stabilize the system (see [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF]).

The introduction of discontinuous feedback laws is motivated by the formula of the derivative of V with respect to time. We remark that dV /dt reads as the sum of 2(ω + λ)Im( Ψ(t) | φ) and a function U (ǫ):

dV dt = 2U (ǫ) + 2(ω + λ)Im( Ψ(t) | φ). (9) 
Here U (ǫ) = ǫ 2 I 2 + ǫI 1 is a second order function of ǫ, with coefficients depending on I 1 and I 2 . Consequently, the condition dV /dt 0 depends on the sign of a second order function. Thus, the idea is to divide the space defined by I 1 and I 2 into disjoint regions. To each region we assign different formulas for the control ǫ(I 1 , I 2 ) such that U (ǫ) 0 in any point (I 1 , I 2 ).

To this goal we consider the regions (see Fig. 1):

A = {Ψ| I 2 (Ψ) < -|I 1 |}, B = {Ψ||I 2 (Ψ) > |I 1 |}, C = {Ψ| -|I 1 | I 2 (Ψ) |I 1 |} (10) 
and we define the control as follows:

ǫ(I 1 (Ψ), I 2 (Ψ)) =        k 1 I 2 , in A 0, in B -k 2 I 1 /(1 + k 2 I 2 ), in C ω = -λ -cIm( Ψ(t) | φ ). ( 11 
)
with k 1 , k 2 , c > 0. Remark 2.1 Under some restrictions for k 1 and k 2 that will be introduced later on, the condition U (ǫ) 0 is fulfilled on the region A and C. On region B we have U (ǫ) = 0. Remark 2.2 In order to guarantee 1+k 2 I 2 > 0 in equation [START_REF] Grigoriu | Lyapounov control of Schödinger equations: beyond the dipole approximation[END_REF], one notes that

|I 2 | ≤ | µ 2 Ψ(t)|φ | ≤ µ 2 ; therefore 1 + k 2 I 2 > 0 as soon as k 2 < 1
µ2 . From now on, unless otherwise specified, this condition will be supposed satisfied.

We replace the feedback (11) into equation ( 5) and we obtain a discontinuous right side equation:

i d dt Ψ(t) =                      H 0 + k 1 I 2 µ 1 + (k 1 I 2 ) 2 µ 2 - λ -cIm( Ψ(t)|φ ) Ψ, in A H 0 -λ -cIm( Ψ(t)|φ Ψ, in B H 0 -k 2 I1 1+k2I2 µ 1 + (k 2 I1 1+k2I2 ) 2 µ 2 -λ -cIm( Ψ(t)|φ ) Ψ, in C (12) 
3

Existence of solutions in Filippov sense

Before discussing the stability of the system defined by [START_REF] Grivopoulos | Lyapunov-based control of quantum systems[END_REF] we need to study the existence of solutions. One idea is to consider solutions in the Filippov sense.

Definition 2.1 Let us consider the equation

ẋ(t) = f (x(t)) (13) 
with piecewise discontinuous function f : D → R d , where d is the dimension of the space and D ⊆ R d a compact set. We recall that a solution in the Filippov sense of ( 13) is a locally absolutely continuous map such that:

ẋ ∈ F(x(t)) (14) 
with

F := δ>0 µ(S)=0 conv(f (x + δB) \ N )) ( 15 
)
where µ is the Lebesgue measure, S is a arbitrary set of measure zero, conv(A) is the smallest closed convex set containing A, B is the unit ball of R d and f is a discontinuous function.

In our case a solution in the Filippov sense, Ψ of ( 12) is a locally absolutely continuous map such that:

d dt Ψ ∈ F(Ψ(t)) (16) 
with F defined by [START_REF] Levis | Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses[END_REF] and f given by

f (Ψ) =                      -i H 0 + k 1 I 2 µ 1 + (k 1 I 2 ) 2 µ 2 - λ -cIm( Ψ(t)|φ ) Ψ, in A -i H 0 -λ -cIm( Ψ(t)|φ Ψ, in B -i H 0 -k 2 I1 1+k2I2 µ 1 + (k 2 I1 1+k2I2 ) 2 µ 2 -λ -cIm( Ψ(t)|φ ) Ψ, in C (17) 
The way F (Ψ) is defined implies that it is a nonempty, bounded, closed, convex set. In the same time it is an upper semicontinuous function of Ψ. Thus, we are in the hypothesis of Theorem 1(page 70) in [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF]) and the existence of an absolutely continuous function solution of ( 16) is assured. 

(Ψ(t) -Ψ) = 0. ( 19 
)
We can give now a first stability result:

Theorem 3.1 Consider (12) with Ψ ∈ S N (0, 1) a solution in the Filippov sense and an eigenstate φ ∈ S N (0, 1) of H 0 associated to the eigenvalue λ. Take the constants k 1 > 1, k 2 < 1 µ2 and c > 0. The solution Ψ = φ of the inclusion ( 16) is stable.

Proof 3.1 Up to a shift on ω and H 0 , we can assume that λ = 0. Since the function V (Ψ) is C 1 with respect to Ψ, we can define the upper derivate by:

V * = dV dt * = sup y∈F (Ψ) (∇V • y). ( 20 
)
For almost all t the derivative Ψ exists and satisfies the differential inclusion [START_REF] Li | Optimal dynamic discrimination of similar molecules through quantum learning control[END_REF]. For these t there exists:

V = d dt V (Ψ(t)) = ∇V • Ψ. ( 21 
)
Theorem 1, page 153 in [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF] says that if V * 0 then φ is a stable point. In order to verify the fulfillment of this condition it is sufficient to make sure that dV /dt = ∂V • f 0 only on the domains of continuity of the function f defined by [START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF]. In this domains we have F (Ψ) = f (Ψ).

On the discontinuity points of the function f the set F is defined as the closure of a convex set. This operation does not increase the upper boundary of the expression ∇V • f (see [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF] for more details).

On the interior of the region

B = {Ψ||I 2 (Ψ) > |I 1 |} the control ǫ(t) is zero, this implies dV dt = -2c(Im( Ψ(t)|φ )) 2 0. ( 22 
)
We have the same property on the interior of the region

C = {Ψ| -|I 1 | I 2 (Ψ) |I 1 |}, since the control ǫ(t), is chosen such that: dV dt = 2 -k 2 I 1 1 + kI 2 I 1 + 2 k 2 2 I 2 1 (1 + kI 2 ) 2 I 2 -2c(Im( Ψ(t)|φ )) 2 = -2k 2 I 2 1 (1 + k 2 I 2 ) 2 -2c(Im( Ψ(t)|φ )) 2 0, ( 23 
)
same conclusion on the interior of the region A = {Ψ| I 2 (Ψ) < -|I 1 |} since by hypothesis k 1 > 1. The condition V * 0 is fulfilled, thus we can apply here Theorem 1, page 153 in [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF], and the conclusion follows.

Asymptotic stability analysis

In the following we prove an asymptotic stability result for the system defined by [START_REF] Grivopoulos | Lyapunov-based control of quantum systems[END_REF] around the target φ. We apply a LaSalle type result for differential inclusions introduced in [START_REF] Ryan | An integral invariance principle for differential inclusions with applications in adaptive control[END_REF].

Theorem 3.2 Consider (12) with Ψ ∈ S N (0, 1) a solution in the Filippov sense and an eigenstate φ ∈ S N (0, 1) of H 0 associated to the eigenvalue λ. Take the feedback [START_REF] Grigoriu | Lyapounov control of Schödinger equations: beyond the dipole approximation[END_REF] 

with k 1 > 1, k 2 < 1
µ2 and c > 0. Under the hypothesis:

(1) λ j = λ l for j = l, (2) for any j = 2, .., N : µ 1 φ j |φ = 0 or µ 2 φ j |φ = 0, where φ 1 , . . . , φ N is an orthogonal system of eigenvectors of H 0 corresponding to the eigenvalues (λ i ) i=1,...,N , the ω limit set of Ψ(t) reduces to ±φ.

Proof 3.2 Up to a shift in ω and H 0 , we may assume that λ = 0. Since we consider the solutions of the system (12) in the Filippov sense, the stability analysis will be made for the system defined by (16).

Theorem 2.11 in [START_REF] Ryan | An integral invariance principle for differential inclusions with applications in adaptive control[END_REF] says that the trajectories of the system (16) converge to the largest weekly invariant set contained in

E = {Ψ ∈ S N (0, 1)|0 ∈ V }, where V (Ψ) = {∇V (Ψ) • u, u ∈ F(Ψ)}, with V defined by (6).
Let us first compute the differential inclusion F defined by [START_REF] Levis | Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses[END_REF], associated to the discontinous function f defined by [START_REF] Grivopoulos | Lyapunov-based control of quantum systems[END_REF].

If I 2 (Ψ) > |I 1 | the function f is continuous then: F = -i(H 0 -λI)Ψ. (24) 
If -|I 1 | < I 2 (Ψ) < |I 1 | the function f is continuous thus: F = -i H 0 -k 2 I 1 1 + k 2 I 2 µ 1 + (k 2 I 1 1 + k 2 I 2 ) 2 µ 2 - λ -cIm( Ψ(t)|φ ) Ψ. ( 25 
)
If I 2 (Ψ) < -|I 1 | the function f has the same property and:

F = -i H 0 + k 1 I 2 µ 1 + (k 1 I 2 ) 2 µ 2 -λ -cIm( Ψ(t)|φ ) Ψ. ( 26 
)
On the contrary on the set {Ψ|I 2 (Ψ) = |I 1 (Ψ)|} the function f is discontinuous, hence

F (Ψ) = [b, c 1 ], if b c 1 [c 1 , b], if c 1 b (27)
Same property on the set {Ψ|I 2 (Ψ) = -|I 1 (Ψ)|}:

F (Ψ) = [a, c 1 ], if a c 1 [c 1 , a], if c 1 a, ( 28 
)
where we have denoted:

a = -i H 0 + k 1 I 2 µ 1 + (k 1 I 2 ) 2 µ 2 -λ -cIm( Ψ(t)|φ ) Ψ, b = -i H 0 -λ -cIm( Ψ(t)|φ Ψ c 1 = -i H 0 -k 2 I 1 1 + k 2 I 2 µ 1 + (k 2 I 1 1 + k 2 I 2 ) 2 µ 2 - λ -cIm( Ψ(t)|φ ) Ψ. ( 29 
)
If we take in consideration the computations made in the proof of Theorem 3.1 we have:

V =                  -k 1 I 2 (I 1 + k 1 I 2 2 ) -2c(Im( Ψ(t)|φ )) 2 , if I 2 < -|I 1 | -2k 2 I 2 1 (1+k2I2) 2 -2c(Im( Ψ(t)|φ )) 2 , if -|I 1 | < I 2 < |I 1 | -2c(Im( Ψ(t)|φ )) 2 , if I 2 > |I 1 |
(30) On the contrary on the discontinuity set {Ψ|I 2 (Ψ) = |I 1 (Ψ)|} we use relation [START_REF] Weinacht | Controlling the shape of a quantum wavefunction[END_REF] and we obtain:

V = [f, g], if f g [g, f ], if g f (31)
In the same way, on the set {Ψ|I 2 (Ψ) = -|I 1 (Ψ)|}, considering relation [START_REF] Zhu | Uniform rapidly convergent algorithm for quantum optimal control of objectives with a positive semi-definite Hessian matrix[END_REF] and we have:

V = [g, h], if g h [h, g], if h g, (32) 
where:

f = -k 1 I 2 (I 1 + k 1 I 2 2 ) -2c(Im( Ψ(t)|φ )) 2 , g = -2c(Im( Ψ(t)|φ )) 2 h = -2k 2 I 2 1 (1 + k 2 I 2 ) 2 -2c(Im( Ψ(t)|φ )) 2 . ( 33 
)
Since (I 1 + k 1 I 2 2 ) > 0, it follows that the limit set is characterized by:

I 1 = 0, I 2 = 0, Im( Ψ(t)|φ ) = 0, ( 34 
)
and therefore ǫ = 0. This implies that the set E consists in fact of trajectories of the uncontrolled system:

i d dt Ψ = H 0 Ψ. ( 35 
)
with solutions of the form:

Ψ = N j=1 b j e -iλj t φ j . (36) 
We substitute (36) in (34) and we obtain:

Im( Ψ(t)|φ ) = Im(b 1 ) φ, φ + N j=2
Im(b j φ j , φ e -iλj t ) = 0. (37)

I 1 (Ψ) = Im(b 1 ) µ 1 φ, φ + j∈J1 Im(b j µ 1 φ j , φ e -iλj t ) = 0. ( 38 
) I 2 (Ψ) = Im(b 1 ) µ 2 φ, φ + j∈J2 Im(b j µ 2 φ j , φ e -iλj t ) = 0. ( 39 
)
Without loss of generality we take φ = φ 1 . From equation (34) and (37), together with φ j , φ = 0 for all j = 2, ..., N we obtain Im(b 1 ) = 0. Since along the trajectories Ψ in Ω(Ψ), I 1 (Ψ) ≡ 0, we have j∈J1 Im(b j µ 1 φ j , φ e -iλj t ) = j∈J1 B ′ j sin(λ j t + θ j ) = 0. The functions sin(λ j t + θ j ) are linearly independent as λ j are all different, hence the sum can only vanish if all coefficients B ′ j vanish. Observe now that B ′ j = 0, j ∈ J 1 if and only if b j = 0, j ∈ J 1 . Using Im(b 1 ) = 0 we have:

I 2 (Ψ) = j∈J2 Im(b j µ 2 φ j , φ e -iλj t ) = j∈J2 B j sin(λ j t + θ j ). ( 40 
)
Since I 2 (Ψ) = 0 following the same arguments as above b j = 0 for j = 2, ..., N . Together with equality (36) this leaves only Ψ = b 1 e -iλt φ = b 1 φ (we assumed λ = 0). Since Im(b 1 ) = 0 the only case remained is Ψ = ±φ. This concludes the proof of Theorem 3.2.

Numerical simulations

We consider next the five-dimensional system (see [START_REF] Tersigni | On using shaped light pulses to control the selectivity of product formation in a chemical reaction: An application to a multiple level system[END_REF]) defined by:

H 0 =         1.0 0 0 0 0 0 1.2 0 0 0 0 0 1.3 0 0 0 0 0 1.4 0 0 0 0 0 2.15         , µ 1 =         0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0         , µ 2 =         0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0         . (41) 
In Fig. 2 simulations describe the evolution of the population of the trajectory Ψ = (Ψ 1 , Ψ 2 , ..., Ψ 5 ), for the initial state Ψ(t = 0) = (0, 1/ √ 4, 1/ √ 4, 1/ √ 4, 1/ √ 4). We take k 1 = 1.1, k 2 = c = 0.8. We remark that the discontinuous laser field [START_REF] Grigoriu | Lyapounov control of Schödinger equations: beyond the dipole approximation[END_REF] is efficient to reach the first eigenstate φ = (1, 0, 0, 0, 0, 0) of energy λ = 1, at the final time T . Note that here µ 2 = 1. The Fig. 3 describes the evolution of the Lyapunov function defined by [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF].

Conclusions

We study in this paper the control of Schrödinger equation. The particularity of the problem is that the interaction between the system and the laser is not described just by a first order term ǫ(t)µ 1 , but also by a second order, polarizability term ǫ 2 (t)µ 2 . In a previous work discontinuous feedback with memory terms were introduced in order to exploit the polarizability coupling. The present paper studies this discontinuous case and focuses on obtaining an asymptotic stability result. Related numerical simulations are also presented. ; system defined by (41) with feedback [START_REF] Grigoriu | Lyapounov control of Schödinger equations: beyond the dipole approximation[END_REF]. We take k1 = 1.1, k2 = c = 0.8.

Fig. 1 .

 1 Fig. 1. Schematic view of the regions A, B,C. We consider arbitrary units for I1 and I2.

Fig. 2 . 4

 24 Fig. 2. The population of the system (41) with trajectory Ψ = (Ψ1, Ψ2, ..., Ψ5); initial condition:Ψ(t = 0) = (0, 1/ √ 4, 1/ √ 4, 1/ √ 4, 1/ √ 4); the feedback is defined by[START_REF] Grigoriu | Lyapounov control of Schödinger equations: beyond the dipole approximation[END_REF], with k1 = 1.1, k2 = c = 0.8.
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