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Stability analysis of discontinousquantumcontrol systems

withdipole andpolarizability coupling

Andreea Grigoriu a

a Princeton University, Department of Chemistry, Princeton, 08540, USA

Abstract

Closed quantum systems under the influence of a laser field, whose interaction is modeled by a Schrödinger equation with a
coupling control operator containing both a linear (dipole) and a quadratic (polarizability) term are analyzed. Discontinuous
feedbacks, obtained by a Lyapunov trajectory tracking procedure, have been recently proposed to control these type of systems.
The purpose of this paper is to study the asymptotic stability by considering the solutions in the Filippov sense. The analysis
is developed by applying a variant of LaSalle invariance principle for differential inclusions. Numerical simulations are included
to illustrate the efficiency of the discontinuous control.

Key words: Quantum systems, Stabilization, Control Lyapunov function, Tracking, Differential inclusions

1 Introduction

Control of quantum systems using laser fields has been
subject to significant developments in the last two
decades ( [1,5,14,16,18,33] etc.). The increasing interest
on this domain is motivated by the effects of the tech-
nique: we can create or break chemical bonds, each time
with finesse far beyond the usual macroscopic means
(temperature, pression, etc.).

Since the first successful laboratory experiments ob-
tained at the beginning of the 90s [1,14] many appli-
cations of this method have been developed: designing
logical gates in future quantum computers, investi-
gations of imaging by nuclear magnetic resonance -
NMR, study of protein dynamics, molecular detection,
molecular orientation and alignment, construction of
ultra-short laser etc..

From the beginning, the complexity of chemical phenom-
ena that arise during the interaction laser-quantum sys-
tem has required the introduction of theoretical meth-
ods as an important step to experimental phase. This
type of analysis can reveal the set of objectives that can
be achieved, and the nature of the laser pulse that can
be used. In this context, we consider the time depen-
dent Schrödinger equation, that models the evolution of
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a quantum system:

i
d

dt
Ψ(t) = H(t)Ψ(t) (1)

where H(t) is an Hermitian operator, called the Hamil-
tonian and Ψ a complex function called the wavefunc-
tion. When the system is controlled by selecting a con-
venient laser intensity ǫ(t), the interaction between the
laser and the system is described by an operator µ1, also
called dipole coupling [23]. Thus, we recover a billinear
form of the Schrödinger equation, formally written:

i
d

dt
Ψ(t) = (H0 + ǫ(t)µ1)Ψ(t). (2)

In this case H(t) = H0 + ǫ(t)µ1, where H0 is the inter-
nal Hamiltonian operator, that characterizes the system
when the laser is shut down (ǫ(t) = 0). In the limit of
small laser intensities the first order term ǫ(t)µ1 may be
enough to adequately describe the interaction, however,
situations exist where the dipole coupling does not have
enough influence on the system to reach the control goal;
the goal may become accessible only after taking into
account terms of higher order in the expansion of H(t),
for example a polarizability term ǫ2(t)µ2 (see e.g. [8,9]
and related works).

In the following, we focus on the case where a second
order them is added in the expansion of the Hamiltonian:

H(t) = H0 + ǫ(t)µ1 + ǫ2(t)µ2. (3)



For numerical reasons a finite dimensional setting is con-
sidered. The operators will be restrained to a linear space
spanned by a N dimensional set D. This set can con-
tain for example the first N eigenvalues of the infinite
dimensional internal hamiltonian H0. For simplicity we
conserve the same notations, i.e. we denote by H0, µ1

and µ2, N × N Hermitian matrices with complex coef-
ficients and by Ψ a N dimensional complex vector.
One important problem is to determine efficient laser
fields to control quantum systems whose Hamiltonian
are defined by (3). For this purpose an analysis of the
controllability has to be pursued, i.e. ask if any admissi-
ble quantum state can be attained with some admissible
laser field. This can be studied via the general accessi-
bility criteria [4,28] based on Lie brackets; more specific
results can be found in [31]. A detailed presentation has
been made in [7].

Even if positive results of controllability of systems (4)
have been obtained, finding efficient numerical algo-
rithms to determine the control field remains a very
difficult task. A solution is to present the problem as a
minimization of a cost functional, that describes the goal
to be achieved, and eventually some other constraints.
This approach leaded to procedures such as stochastic
iterative approaches (e.g., genetic algorithms) [19], it-
erative critical point methods (monotonic algorithms)
[20,25,29,34], trajectory tracking or local control pro-
cedures [3,6,10,13,17,21,22,24,27,32]. One advantage of
this class of methods is that we obtain explicit control
fields. Another one is that few propagations in time are
required to approach the solution of the time-dependent
Schrödinger equation (TDSE). This is an important
aspect when larger systems are considered.

Lyapunov trajectory tracking techniques have been ap-
plied for systems with Hamiltonian (3) in order to de-
termine the control ǫ. A first positive result has been
obtained by adapting the analysis presented in [15,21],
that deals with bilinear quantum systems H0 + ǫ(t)µ1.
The success of the feedback control depends on whether
there exists (non-zero) direct coupling, through µ1, be-
tween the target state and all other eigenstates. When
the same property holds for Hamiltonian H(t) = H0 +
ǫ(t)µ1+ǫ2(t)µ2 the same type of feedback formulas hold.
When some of the (direct) coupling is realized through
µ2 instead of µ1, the previous feedback formulas do not
hold any more and two alternatives have been proposed
(see [7] for more details): discontinuous feedback and
time varying feedback.

Only approximative asymptotic stability results have
been proved for this last two situations. This paper fo-
cuses on the case of discontinuous feedback obtained for
Hamiltonian (3). The goal is to prove stability results,
and especially asymptotic stability considering the solu-
tions of the quantum system (1), with Hamiltonian H
given by (3), in the Filippov sense.

The balance of the paper is as follows: in Section 2 we in-
troduce the main notations, the Lyapunov tracking pro-
cedure followed by the presentation of the discontinuous
feedback. Then, we study the existence of solutions in
the Filippov sense. In Section 3 we analyze the stability.
More precisely we prove a LaSalle invariance principle
for differential inclusions and an asymptotic stability re-
sult for our problem. The last two sections are dedicated
to numerical simulations and conclusions.

2 Lyapunov trajectory tracking

2.1 Lyapunov function

We consider equation (1), introduced in the above sec-
tion, describing the evolution of a N -level quantum sys-
tem submitted to an external action, with Hamiltonian
H(t) given by (3):

i
d

dt
Ψ(t) = (H0 + ǫ(t)µ1 + ǫ2(t)µ2)Ψ(t), (4)

where the wave function Ψ = (Ψj)
n
j=1 is a vector in

Cn, verifying
∑N

j=1 |Ψj|2 = 1, i.e. Ψ belongs to the unit

sphere SN (0, 1) of C
n. The function Ψ represents a com-

plete physical description of the state of the quantum
system at every instant t.

Recall that two wave functions Ψ1 and Ψ2 that differ by
a phase θ(t) ∈ R, i.e. Ψ1 = exp(iθ(t))Ψ2, describe the
same physical state. To take into account the property
we add a fictitious control ω (see also [21]). Hence we
will replace the evolution equation (4) by:

i
d

dt
Ψ(t) = (H0 + ǫ(t)µ1 + u2µ2 + ω(t))Ψ(t), (5)

where ω ∈ R is a new control. We can choose it arbitrar-
ily without changing the physical quantities attached
to Ψ. We assume in the sequel that the state space is
SN (0, 1) and the dynamic given by (5) admit two inde-
pendent controls u and ω.

In order to obtain an explicit formula for the laser field
ǫ(t), we apply a Lyapunov trajectory tracking technique.
The method consists in introducing a time varying func-
tion V (Ψ(t)):

V (Ψ(t)) = 〈Ψ − φ|Ψ − φ〉 = ‖Ψ − φ‖2, (6)

with Ψ a smooth solution of (5) and φ an eigenvector of
H0 associated to the eigenvalue λ.

The function V is nonnegative for all t > 0 and all
Ψ ∈ SN (0, 1) and vanishes when Ψ = φ. We search for
feedback controls such that V is a Lyapunov function. To
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do that we compute formally the derivative of V along
trajectories of (5).

dV

dt
= 2uIm(〈µ1Ψ(t)|φ〉) + 2u2Im(〈µ2Ψ(t)|φ〉)

+2(ω + λ)Im(〈Ψ(t) | φ〉), (7)

where Im denotes the imaginary part. For conve-
nience we denote: I1 = Im(〈µ1Ψ(t)|φ〉) and I2 =
Im(〈µ2Ψ(t)|φ〉).

Then note that if, for example, one takes

{

ǫ(I1, I2) = −kI1/(1 + kI2)

ω = −λ − cIm(〈Ψ(t)|φ), (8)

with k and c strictly positive parameters, one gets

dV/dt = −2k(I1/(1 + kI2))
2 − 2c(Im(〈Ψ(t) | φ〉))2 ≤ 0,

and thus V is nonincreasing.

However, even if the feedback is chosen such that is V
monotonically decreasing, this does not automatically
imply that the minimum value, that coincides with our
target φ, will be reached. A convergence analysis is re-
quired.

2.2 Discontinuous feedback

It has been proved that the use of controls defined by (8)
is efficient for a particular type of systems. The theore-
tical result (see Theorem 2.1 in [12]) shows that tracking
to φ works well when all eigenstates of H0, φ2, ....φn,
other than φ are coupled to φ by µ1, i.e. 〈φk, µ1φ〉 6=
0, k = 2, . . . , n. For the important case when some of
the coupling are realized by µ2 instead and formulas (8)
are ineffective. Discontinuous and time varying feedback
have been proposed to stabilize the system (see [7]).

The introduction of discontinuous feedback laws is mo-
tivated by the formula of the derivative of V with re-
spect to time. We remark that dV/dt reads as the sum
of 2(ω + λ)Im(〈Ψ(t) | φ) and a function U(ǫ):

dV

dt
= 2U(ǫ) + 2(ω + λ)Im(〈Ψ(t) | φ), (9)

Here U(ǫ) = ǫ2I2 + ǫI1 is a second order function of ǫ,
with coefficients depending on I1 and I2. Consequently,
the condition dV/dt 6 0 depends on the sign of a second
order function. Thus, the idea is to divide the space de-
fined by I1 and I2 into disjoint regions. To each region
we assign different formulas for the control ǫ(I1, I2) so
that in any point (I1, I2) we have U(ǫ) 6 0.

To this goal we consider the regions (see Fig. 1):

A = {Ψ| I2(Ψ) < −
√

|I1|},
B = {Ψ||I2(Ψ) >

√

|I1|},
C = {Ψ| −

√

|I1| 6 I2(Ψ) 6
√

|I1|} (10)

and for k1, k2, c, δ > 0 we define the control as follows:

ǫ(I1(Ψ), I2(Ψ)) =















k1I2, in A

0, in B

−k2I1/(1 + k2I2), in C

ω = −λ − cIm(〈Ψ(t) | φ〉).

(11)

Fig. 1. Schematic view of the regions A, B,C. We consider
arbitrary units for I1 and I2.

Remark 2.1 Under some restrictions for k1 and k2 that
will be introduced later one, the condition U(ǫ) 6 0 is
fulfilled on the region A and C. On region B we have
U(ǫ) = 0.

Remark 2.2 In order to guarantee 1 + k2I2 > 0 in
Eqn. (11), one notes that |I2| ≤ |〈µ2Ψ(t)|Ψr〉| ≤ ‖µ2‖;
therefore 1 + k2I2 > 0 as soon as k2 < 1

‖µ2‖
. From now

on, unless otherwise specified, this condition will be sup-
posed satisfied.

We replace the feedback (11) into equation (5) and we
obtain a discontinuous right side equation:
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i d
dt

Ψ(t) =







































(

H0 + k1I2µ1 + (k1I2)
2µ2−

λ − cIm(〈Ψ(t)|φ〉)
)

Ψ, in A

(H0 − λI)Ψ, in B
(

H0 − k2
I1

1+k2I2
µ1 + (k2

I1
1+k2I2

)2µ2

−λ − cIm(〈Ψ(t)|φ〉)
)

Ψ, in C

(12)

2.3 Existence of solutions in Filippov sense

For this type of cases before we can discuss the stability
we have to study the existence of solutions of the equa-
tion (12). One idea is to consider solution in the Filippov
sense.

Definition 2.1 Let us consider the equation

ẋ(t) = f(x(t)) (13)

with piecewise discontinuous function f : D → Rd, where
d is the dimension of the space and D ⊆ Rd a compact
set. We recall that a solution in the Filippov sense of (13)
is an locally absolutely continuous map such that:

ẋ ∈ F(x(t)) (14)

with
F :=

⋂

δ>0

⋂

µ(S)=0

conv(f(x + δB) \ N)) (15)

where µ is the Lebesgue measure, S is a arbitrary set
of measure zero, conv(A) is the smallest closed convex
set containing A, B is the unit ball of Rd and f is a
discontinuous function.

In our case a solution in the Filippov sense, Ψ of (12) is
locally absolutely continuous map such that:

d

dt
Ψ ∈ F(Ψ(t)) (16)

with F defined by (15) and f given by

f(Ψ) =







































−i
(

H0 + k1I2µ1 + (k1I2)
2µ2−

λ − cIm(〈Ψ(t)|φ〉)
)

Ψ, in A

−i(H0 − λI)Ψ, in B

−i
(

H0 − k2
I1

1+k2I2
µ1 + (k2

I1
1+k2I2

)2µ2

−λ − cIm(〈Ψ(t)|φ〉)
)

Ψ, in C

(17)

The way F(Ψ) is defined implies that is a nonempty,
bounded, closed, convex set and an upper semicontinu-
ous in Ψ as a function. Thus, we are in the hypothesis of
Theorem 1(page 70) in [11]) and the existence of an ab-
solutely continuous function solution of (16) is assured.

3 Stability analysis

3.1 A first stability result

Before we can analyze the stability, it is necessary to
define several notions:

Definition 3.1 A solution Ψ of the differential inclu-
sion (16) is stable if for each ǫ > 0, there is δ = δ(ǫ) such
that if |Ψ(0) − Ψ| < δ then

|Ψ(t) − Ψ| < δ, for every t > 0. (18)

Definition 3.2 A solution Ψ of the differential inclu-
sion (16) is asymptotically stable if is stable and δ can be
chosen such that if |Ψ(0) − Ψ| < δ then

lim
t→∞

(Ψ(t) − Ψ) = 0. (19)

We can give now a first stability result:

Theorem 3.1 Consider (12) with Ψ ∈ SN (0, 1) a solu-
tion in the Filippov sense and an eigenstate φ ∈ SN (0, 1)
of H0 associated to the eigenvalue λ. Take the constants
k1 > 1, k2 < 1

‖µ2‖
and c > 0. The solution Ψ = φ of the

inclusion (16) is stable.

Proof 3.1 Up to a shift on ω and H0, we can assume
that λ = 0. Since the function V (Ψ) is C1 with respect
to Ψ, we can define the upper derivate by:

V̇ ∗ =
(dV

dt

)∗

= sup
y∈F (Ψ)

(∇V · y). (20)

For almost all t the derivative Ψ̇ exists and satisfies the
differential inclusion (16). For these t there exists:

V̇ =
d

dt
V (Ψ(t)) = ∇V · Ψ̇. (21)

Theorem 1, page 153 in [11] says that if the condition

V̇ ∗ 6 0 is fulfilled then φ is a stable point. In order to
check the fulfillment of the conditions of the theorem it
suffices to make sure that dV/dt = ∂V · f 6 0 only
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on the domains of continuity of the function f . In this
domainsF(Ψ) = f(Ψ). On the discontinuity points of the
function f the set F is defined as the closure of a convex
set. This operation does not increase the upper boundary
of the expression ∇V · f (see [11] for more details). On

the interior of the region B = {Ψ||I2(Ψ) >
√

|I1|} the
control ǫ(t) is zero, this implies

dV

dt
= −2c(Im(〈Ψ(t)|φ〉))2 6 0. (22)

We have the same property on the interior of the region
C = {Ψ| −

√

|I1| 6 I2(Ψ) 6
√

|I1|}, since the control
ǫ(t), is chosen such that:

dV

dt
= 2

−k2I1

1 + kI2
I1 + 2

k2
2I

2
1

(1 + kI2)2
I2 − 2c(Im(〈Ψ(t)|φ〉))2

= −2k2
I2
1

(1 + k2I2)2
− 2c(Im(〈Ψ(t)|φ〉))2 6 0, (23)

same conclusion on the interior of the region A =
{Ψ| I2(Ψ) < −

√

|I1|} since by hypothesis k1 > 1:

dV

dt
= k1I2I1 + k2

1I
2
2I2 < −k1I1

√

|I1| − k1I
2
2

√

|I1|

= −k1

√

|I1|(I1 + k1I
2
2 ) 6 0 (24)

The condition V̇ ∗ 6 0 is fulfilled, thus we can apply here
Theorem 1, page 153 in [11], and the conclusion follows.

3.2 Asymptotic stability analysis

In the following in order to prove an asymptotic sta-
bility result around the target φ we need to introduce
first a LaSalle theorem for differential inclusions (14) de-
fined on closed bounded domain D ⊆ Rd. This result
is largely inspired by the ones in [2,26]. In [26] Shevitz
and Paden prove a LaSalle invariance principe for a class
of nonsmooth Lipschitz continuous Lyapunov functions,
under the main hypothesis that the solutions of the dif-
ferential inclusion are uniques. The result in [2] of Ba-
ciotti and Ceragioli is introduced for locally Lipschitz
continous Lyapunov functions V : Rd → R. The state-
ment of the theorem is more general since no assumption
about the uniqueness of solutions is required, instead
they suppose that the connected component Ll of level
sets {x ∈ Rd : V (x) 6 l}, such that 0 ∈ Ll, is bounded.
Since our differential inclusion is defined on compact do-
mains and the Lyapunov function is continuously differ-
entiable, some of the above hypothesis can be eliminated
and we can state a theorem adapted to our context.

Before we can analyze the asymptotic stability, it is nec-
essary to define several notions. Let x be a solution of
(14). A point p is called ω limit of x(t) if there exist

a sequence tn converging to ∞ as n → ∞, such that
x(tn) → p as n → ∞. The set of all w−limit points
of a solution x of the differential inclusion 14 is called
w−limit set of x and is denoted by Ω(x).

Definition 3.3 A set M is weekly invariant if though
each point x0 ∈ M passes a trajectory x(t) of (14) con-
tained in M .

Lemma 3.1 If the set F(x) is nonempty, bounded,
closed, convex and the function F is upper semicon-
tinuous in x, then the ω-limit set Ω(x) is nonempty,
closed,convex and weekly invariant. Moreover if x(t) is
contained in a bounded domain Ω(x) is bounded and
dist(x, Ω(x)) converges to zero as t → ∞.

Proof 3.2 see [11] page 129.

Now we can give a proof of LaSalle theorem for differen-
tial inclusions defined on a compact domain D ⊆ Rd.

Theorem 3.2 We consider the differential inclusion
(14) on a compact domain D ⊆ Rd, where the set F(x)
is nonempty, bounded,closed, convex and the function F
is upper semicontinuous in x. Let us take V : D → R a
continuously differentiable function such that v 6 0 for

all v ∈ V̇ , where V̇ (x) = {∇V (x) · u, u ∈ F(x)}, a set

E = {x ∈ D|0 ∈ V̇ } and M be the largest weekly invari-
ant set in E. Then every solution of (14) approaches M
as t → ∞ (in the sense of Lemma 3.1).

Proof 3.3 The proof follows the same steps as in The-
orem 3.2 and Theorem 3 in [26,2] with a small adapta-
tion, but for convenience we present the whole proof. The
properties of F imply the existence of a absolutely con-
tinuos functions x, solutions of equation (14). Since V
is absolutely continuous, d

dt
V (x(t)) exists almost every-

where and d
dt

V (x(t)) ∈ V̇ (x) almost everywhere Let us
consider Ω(x) the ω−limit set of x.

Let us first prove that V is constant on Ω(x). Since the

function V (x(t)) is absolutely continuous, V̇ is bounded
from below and V is bounded above zero, V (x) tend to a
constant c, as t → ∞. Let us take p ∈ Ω, a ω- limit point
of x(t), then there exists a sequence tn tending to ∞ as
n → ∞, such that x(tn) → p as n → ∞. By continuity
of V we have V (p) = c.

Let us take now p ∈ Ω(x) and ϕ a solution of (14) lying
in Ω(x) such that ϕ(0) = p. Since V (ϕ(t)) = c for all t,
d
dt

V (ϕ) = 0. Therefore 0 ∈ V̇ almost everywhere, namely
p ∈ E almost everywhere.

Let {ti}, ti → 0 be a sequence such that ϕ(ti) ∈ E for all i.
The function ϕ is continuous, therefore limi→∞ ϕ(ti) =
ϕ(0) = p ∈ E.
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Moreover, since x(t) is contained in a bounded domain
we are in the hypothesis of the Lemma (3.1) this implies
that Ω(x) is weekly invariant and dist(x, Ω(x)) → 0, thus
Ω(x) is included in M , and every solution approaches M
as t → ∞.

Example 3.1 Let us consider the differential equation
(13), with f : [−10, 10] → R defined by (see Fig. 2):

f(x) =

{

1, if x ∈ [−10, 0]

−1, if x ∈]0, 10] (25)

We want to apply Theorem 3.2 to prove that x = 0 is an
asymptotically stable point for (13) with f given by (25).
Let us consider the solutions in the Filippov sense, i.e.
construct the differential inclusion (14) with F defined
by (15) By simple computations we obtain an explicit
formula for F (see Fig. 3):

F(x) =















1, if x ∈ [−10, 0[

[−1, 1], if x = 0

−1, if x ∈]0, 10]
(26)

We consider the function V : [−10, 10] → R with V (x) =
x2. For this example we have:

V̇ (x) =















−x, if x ∈ (0, 10]

[−x, x], if x = 0

x, if x ∈ [−10, 0]
(27)

We can easily conclude that the set E = {x ∈
[−10, 10]|0 ∈ V̇ } contains only x = 0, therefore x = 0 is
asymptotically stable.

Fig. 2. The function f defined by (25).

Fig. 3. The inclusion F defined by (15) associated to the
differential equation (14), with f defined by (25)

Remark 3.1 In order to use the previous Lemma (3.1)
for the asymptotic stability analysis for the system defined
by (12), we need to consider Ψ = ΨR + iΨI, where ΨR is
the real part and ΨI the imaginary part of Ψ. Therefore

in the following by Ψ we understand Ψ =

(

ΨR

ΨI

)

.

Theorem 3.3 Consider (12) with Ψ ∈ SN (0, 1) a solu-
tion in the Filippov sense and an eigenstate φ ∈ Sn(0, 1)
of H0 associated to the eigenvalue λ. Take the feedback
(11) with k1 > 1, k2 < 1

‖µ2‖
and c > 0. Under the hy-

pothesis:

(1) λj 6= λl for j 6= l,
(2) for any j = 2, .., N : 〈µ1φj |φ〉 6= 0 or 〈µ2φj |φ〉 6= 0,

where φ1, . . . , φN is an orthogonal system of eigen-
vectors of H0 corresponding to the eigenvalues
(λi)i=1,...,N ,

the ω limit set of Ψ(t) reduces to ±φ.

Proof 3.4 Up to a shift in ω and H0, we may assume
that λ = 0. Theorem (3.2) says that the trajectories of the
system (16) converge to the largest weekly invariant set

contained in E = {Ψ ∈ D|0 ∈ V̇ }, with V defined by (6).

Let us first compute the differential inclusion F defined
by (15) for the discontinous function f defined by (12):

if I2(Ψ) >
√

|I1| the function f is continuos then

F = −i(H0 − λI)Ψ. (28)

if −
√

|I1| < I2(Ψ) <
√

|I1| the function f is continuos
thus

F =−i
(

H0 − k2
I1

1 + k2I2
µ1 + (k2

I1

1 + k2I2
)2µ2 −

λ − cIm(〈Ψ(t)|φ〉)
)

Ψ. (29)

if I2(Ψ) < −
√

|I1| the function f is continuos this im-
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plies

F =−i
(

H0 + k1I2µ1 + (k1I2)
2µ2 − λ − cIm(〈Ψ(t)|φ〉)

)

Ψ.

(30)

On the contrary on the set {Ψ|I2(Ψ) =
√

|I1(Ψ)|} the
function f is discontinuous, hence

F(Ψ) =

{

[b, c], if b 6 c

[c, b], if c 6 b (31)

Same property on the set {Ψ|I2(Ψ) = −
√

|I1(Ψ)|}:

F(Ψ) =

{

[a, c], if a 6 c

[c, a], if c 6 a, (32)

where we have denoted:

a =−i
(

H0 + k1I2µ1 + (k1I2)
2µ2 − λ − cIm(〈Ψ(t)|φ〉)

)

Ψ,

b =−i(H0 − λI)Ψ]

c =−i
(

H0 − k2
I1

1 + k2I2
µ1 + (k2

I1

1 + k2I2
)2µ2 −

λ − cIm(〈Ψ(t)|φ〉)
)

Ψ. (33)

If we take in consideration the computations in the proof
of Theorem 3.1 we have:

V̇ =



























−k1I2(I1 + k1I
2
2 ), if I2 < −

√

|I1|
−2k2

I2

1

(1+k2I2)2 − 2c(Im(〈Ψ(t)|φ〉))2,
if −

√

|I1| < I2 <
√

|I1|
−2c(Im(〈Ψ(t)|φ〉))2, if I2 >

√

|I1|

(34)
On the contrary on the discontinuity set {Ψ|I2(Ψ) =
√

|I1(Ψ)|} we use relation (31) and we obtain:

V̇ =

{

[e, g], if e 6 g

[g, e], if g 6 e (35)

In the same way, on the set {Ψ|I2(Ψ) = −
√

|I1(Ψ)|},

considering relation (32) and we have:

V̇ =

{

[f, g], if f 6 g

[g, f ], if g 6 f, (36)

where:

e =−k1I2(I1 + k1I
2
2 ),

f =−2c(Im(〈Ψ(t)|φ〉))2

g =−2k2
I2
1

(1 + k2I2)2
− 2c(Im(〈Ψ(t)|φ〉))2. (37)

Since (I1 + k1I
2
2 ) > 0, it follows that the limit set is

characterized by:

I1 = 0, I2 = 0, Im(〈Ψ(t)|φ〉) = 0, (38)

and therefore ǫ = 0.

This implies that the set E consists in fact of trajectories
of the uncontrolled system:

i
d

dt
Ψ = H0Ψ. (39)

with solutions having the form:

Ψ =

n
∑

j=1

bje
−iλjtφj . (40)

We substitute (40) in (38) and we obtain:

Im(〈Ψ(t)|φ〉) = Im(b1)〈φ, φ〉 +

n
∑

j=2

Im(bj〈φj , φ〉e−iλj t)

= 0. (41)

I1(Ψ) = Im(b1)〈µ1φ, φ〉 +
∑

j∈J1

Im(bj〈µ1φj , φ〉e−iλj t)

= 0. (42)

I2(Ψ) = Im(b1)〈µ2φ, φ〉 +
∑

k∈J2

Im(bj〈µ2φj , φ〉e−iλj t)

= 0. (43)

Without loss of generality we take φ = φ1. From
equation (38) and (41), together with 〈φj , φ〉 = 0 for
all j = 2, ..., n we obtain Im(b1) = 0. Since along
the trajectories Ψ in Ω(Ψ), I1(Ψ) ≡ 0, we have
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∑

j∈J1
Im(bj〈µ1φj , φ〉e−iλj t) =

∑

j∈J1
B

′

j sin(λjt +

θj) = 0. The functions sin(λjt + θj) are linearly inde-
pendent as the λj are all different, hence the sum can

only vanish if all coefficients B
′

j vanish. Observe now

that B
′

j = 0, j ∈ J1 if and only if bj = 0, j ∈ J1. Using
Im(b1) = 0 we have:

I2(Ψ) =
∑

j∈J2

Im(bj〈µ2φj , φ〉e−iλj t)

=
∑

j∈J2

Bj sin(λjt + θj). (44)

Since I2(Ψ) = 0, for every t, it follows from the same
arguments as above that bj = 0 for j = 2, ..., n. Now
considering the form of the limit trajectories (40) this
leaves only Ψ = b1e

−iλtφ = b1φ (we assumed λ = 0).
Since Im(b1) = 0 the only case remained is Ψ = ±φ.
This concludes the proof of Theorem 3.3.

4 Numerical simulations

We consider next the five-dimensional system (see [30])
defined by:

H0 =

















1.0 0 0 0 0

0 1.2 0 0 0

0 0 1.3 0 0

0 0 0 1.4 0

0 0 0 0 2.15

















,

µ1 =

















0 0 1 1 1

0 0 1 1 1

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0

















, µ2 =

















0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















. (45)

In Fig. 4 simulations describe the evolution of the popu-
lation of the trajectory Ψ = (Ψ1, Ψ2, ..., Ψ5), for the ini-

tial state Ψ(t = 0) = (0, 1/
√

4, 1/
√

4, 1/
√

4, 1/
√

4). We
take k1 = 1.1, k2 = c = 0.8. We remark that the dis-
continuous laser field (11) is efficient to reach the first
eigenstate φ = (1, 0, 0, 0, 0, 0) of energy λ = 1, at the fi-
nal time T . Note that here ‖µ2‖ = 1.
The Fig. 5 describe the evolution of the Lyapunov func-
tion defined by (6).

5 Conclusions

We study in this paper the control of Schrödinger equa-
tion. The particularity of the problem is that the inter-
action between the system and the laser is not described

0 500 1000 1500 2000 2500
0

0.5

1

|ψ
1
|2

0 500 1000 1500 2000 2500
0

0.5

1

|ψ
2
|2

0 500 1000 1500 2000 2500
0

0.5

|ψ
3
|2

0 500 1000 1500 2000 2500
0

0.2

0.4

|ψ
4
|2

0 500 1000 1500 2000 2500
0

0.02

0.04

|ψ
5
|2

Time (arbitrary units)

Fig. 4. The population of the system (45) with
trajectory Ψ = (Ψ1, Ψ2, ..., Ψ5); initial condition:

Ψ(t = 0) = (0, 1/
√

4, 1/
√

4, 1/
√

4, 1/
√

4); the feedback is de-
fined by (11), with k1 = 1.1, k2 = c = 0.8.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

V

 

 
V

Fig. 5. Evolution of the Lyapunov func-
tion V (Ψ) defined by (6); initial condition:

Ψ(t = 0) = (0, 1/
√

4, 1/
√

4, 1/
√

4, 1/
√

4); system defined by
(45) with feedback (11). We take k1 = 1.1, k2 = c = 0.8.

just by a first order term ǫ(t)µ1, but also by a second
order, polarizability term ǫ2(t)µ2. In a previous work, in
order to find a control field that exploits the polarizabil-
ity coupling, two different solutions have been proposed.
The first one is to use a discontinuous feedback with
memory terms, the other is to use time-dependent (peri-
odic) forcing. For both cases only approximative stabil-
ity results have been proved. The present paper studies
the discontinuous case and focuses on obtaining asymp-
totic stability. To this end solutions in the Filippov sense
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are considered and a LaSalle type result is introduced for
differential inclusions on closed, bounded sets. Related
numerically simulations are also presented.
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