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Implicit Lyapunov control for Schrödinger equations with dipole and polarizability term

We analyze in this paper finite dimensional closed quantum systems in interaction with a laser field. The characteristic of the problem is that the interaction laser-system is modeled by a first order term (dipole coupling) and a second order term (polarisability coupling), that appear in the Hamiltonian of the Schrödinger equation. In order to determine the control, an implicit Lyapunov trajectory tracking procedure is applied when there is no direct coupling between the target state and the eigenvectors of the internal hamiltonian. The method is applied for the difficult case of degenerate systems too. The controlled Lyapunov function is defined by an implicit equation and its existence is shown by a fix point theorem. The convergence is analysed using the LaSalle invariance principle. The performance of the feedbacks is illustrated by numerical simulations.

I. INTRODUCTION

The control of molecules dynamics at the quantum level is a core issue for numerous applications. This is why quantum control constitutes today a very active research field, both from the theoretical and experimental point of view ( [START_REF] Assion | Control of chemical reactions by feedbackoptimized phase-shaped femtosecond laser pulses[END_REF], [START_REF] Brumer | Coherent chemistry: Controlling chemical reactions with lasers[END_REF], [START_REF] Levis | Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses[END_REF], [START_REF] Weinacht | Controlling the shape of a quantum wavefunction[END_REF] etc.). Before presenting the issues addressed in this paper, we first introduce the time-dependent Schrödinger equation, which models the time-evolution of a finite dimensional closed quantum system under the influence of a laser field:

i d dt Ψ(t) = (H 0 + ǫ(t)µ 1 + ǫ 2 (t)µ 2 )Ψ(t), (1) 
where H 0 , µ 1 and µ 2 are N × N Hermitian matrices with complex entries. The wavefunction Ψ is a vector in C N , satisfying N j=1 |Ψ j | 2 = 1, thus it lives on the unit sphere S N (0, 1) of C N and ǫ(t) ∈ R is the control (for example the laser intensity).

The term H(t) = H 0 +ǫ(t)µ 1 +ǫ 2 (t)µ 2 is the Hamiltonian of the system and H 0 is the internal Hamiltonian. This last one characterizes the system in the absence of the laser. The matrices µ 1 and µ 2 describe the interaction of the quantum system with the laser field. This type of model is used when the first order term, ǫ(t)µ 1 , also called dipole coupling [START_REF] Rabitz | Optimal control of selective vibrational excitation in harmonic linear chain molecules[END_REF] does not have enough influence on the system to reach the control goal; the goal may become accessible only after adding the polarizability term ǫ 2 (t)µ 2 (see e.g. [START_REF] Dion | Two-frequency IR laser orientation of polar molecules. Numerical simulations for HCN[END_REF], [START_REF] Dion | Laser-induced alignment dynamics of HCN: Roles of the permanent dipole moment and the polarizability[END_REF] and related works).

One of the problems that must be clarified for the nonlinear control equation [START_REF] Altafini | Controllability of quantum mechanical systems by root space decomposition of su(n)[END_REF] is to find if a final time T and a laser pulse ǫ(t) exist such that ǫ(t) is able to steer the system from an initial state Ψ 0 to some arbitrary predefined target Ψ(t = T ) = Ψ target . If the answer to this question is positive the systems is called controllable. Positive results of controllability are obtained by applying the Lie algebra criteria [START_REF] Brockett | Lie theory and control systems defined on spheres[END_REF], [START_REF] Sussmann | Controllability of nonlinear systems[END_REF] and especially the specific result in [START_REF] Turinici | Beyond bilinear controllability: applications to quantum control[END_REF]. This study is detailed in [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF].

The theoretical results of controllability do not offer automatically a method to determine the laser field. Very often this task is formulated as a cost functional to be minimized. Several techniques have been developed in this direction: iterative critical point methods (e.g. monotonic algorithms [START_REF] Lapert | Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field[END_REF], [START_REF] Ohtsuki | Monotonically convergent algorithms for solving quantum optimal control problems of a dynamical system nonlinearly interacting with a control[END_REF], [START_REF] Ohtsuki | Monotonically convergent algorithms for solving quantum optimal control problems described by an integrodifferential equation of motion[END_REF], [START_REF] Ohtsuki | Generalized monotonically convergent algorithms for solving quantum optimal control problems[END_REF], [START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF], [START_REF] Tannor | Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds[END_REF], [START_REF] Salomon | A monotonic method for solving nonlinear optimal control problems[END_REF], [START_REF] Schirmer | Efficient algorithm for optimal control of mixed-state quantum systems[END_REF], [START_REF] Zhu | A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator[END_REF] ), iterative stochastic techniques (e.g., genetic algorithms [START_REF] Turinici | Eficient algorithms for the laboratory discovery of optimal quantum controls[END_REF]), trajectory tracking methods or local control procedures [START_REF] Chen | Competitive tracking of molecular objectives described by quantum mechanics[END_REF], [START_REF] Gross | Inverse quantum-mechanical control: A means for design and a test of intuition[END_REF], [START_REF] Kosloff | Wavepacket dancing: Achieving chemical selectivity by shaping light pulses[END_REF], [START_REF] Lu | Unified formulation for control and inversion of molecular dynamics[END_REF], [START_REF] Sugawara | General formulation of locally designed coherent control theory for quantum systems[END_REF], [START_REF] Ohtsuki | Quantum control of nuclear wave packets by locally designed optimal pulses[END_REF], [START_REF] Sugawara | Control of quantum dynamics by a locally optimized laser eld. application to ring puckering isomerization[END_REF], [START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF], [START_REF] Beauchard | Implicit Lyapunov control of finite dimensional Schrödinger equations[END_REF], [START_REF] Mirrahimi | Trajectory tracking for quantum systems: a Lyapounov approach[END_REF].

For control quantum systems evolving according to equation (1), Lyapunov trajectory tracking techniques [START_REF] Altafini | Controllability of quantum mechanical systems by root space decomposition of su(n)[END_REF], [START_REF] Constantinescu | Parametrizing quantum states and channels[END_REF], [START_REF] Ramakrishna | Control of a coupled two-spin system without hard pulses[END_REF] have been applied. One of the advantages of these approaches is that an explicit formula for the laser field is obtained. The method consists in defining a function V , which is nonnegative and vanishes when Ψ = Ψ target :

V (Ψ, t) = Ψ -Ψ target |Ψ -Ψ target = Ψ -Ψ target 2 , (2) 
where .|. denotes the Hermitian product and Ψ target a reference trajectory of (1). Imposing the condition dV /dt 0, V has the properties of a Lyapunov function and we obtain an explicit formula for the control.

In order to make sure that the target Ψ target will be reached using the laser thus obtained a convergence analysis must be provided. An initial positive result of asymptotic stability has been proved in [START_REF] Grigoriu | Lyapounov control of Schödinger equations: beyond the dipole approximation[END_REF] under the hypothesis:

H 1 : H 0 is non degenerate i.e.: λ i = λ j , ∀ i, j ∈ {1, ..., N } with i = j; (λ i ) i=1,2,...,N
are the eigenvalues of H 0 H 2 : direct coupling, through µ 1 , between the target state φ (first eigenvector of H 0 associated to the eigenvalue λ ∈ R; H 0 φ = λφ) and all other eigenvectors i.e.: µ 1 φ j |φ = 0, for every j ∈ {2, .., N }; φ, φ 2 , ..., φ N form an orthonormal system of eigenvectors of H 0 , corresponding to the eigenvalues (λ i ) i=1,2,...,N The explicit formula for the control, that proves to be efficient for the above cases is

ǫ = -kI 1 /(1 + kI 2 ) (3) 
with k a constant that belongs to ]0, 1 µ2 [, I 1 = Im µ 1 Ψ|φ and I 2 = Im µ 2 Ψ|φ (see [START_REF] Grigoriu | Lyapounov control of Schödinger equations: beyond the dipole approximation[END_REF], [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF]). When some of the (direct) coupling is realized by µ 2 instead of µ 1 i.e: H 3 : µ 1 φ j |φ = 0 or µ 2 φ j |φ = 0, for every j ∈ {2, .., N } the previous feedback (3) is not efficient anymore. Numerical tests in [START_REF] Grigoriu | Lyapounov control of Schödinger equations: beyond the dipole approximation[END_REF], [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF] show that the target it is not reached, the systems gets trapped into an unknown state. In order to take into consideration the problems that appear, two alternatives have been proposed: discontinuous feedback and time varying feedback (see [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF] for more details). These allow to approximately asymptotically stabilize the system around the target φ.

There are systems for which the target φ is not directly connected by µ 1 or µ 2 with all the other eigenvectors and we are not longer in the hypothesis H 2 or H 3 . An example is provided by the following 5-level quantum system [START_REF] Tersigni | On using shaped light pulses to control the selectivity of product formation in a chemical reaction: An application to a multiple level system[END_REF] with the matrices H 0 , µ 1 and µ 2 defined by:

H 0 =    1.0 0 0 0 0 0 1.2 0 0 0 0 0 1.3 0 0 0 0 0 1.4 0 0 0 0 0 2.15    , µ 1 =    0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0    , µ 2 =    0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0   . (4) 
In Fig. 1, we represent the diagram of the coupling achieved by µ 1 and µ 2 between the eigenvectors of the internal Hamiltonian H 0 of the system (4). One can note that the first eigenvector φ 1 = φ = (1, 0, ..., 0) is directly coupled only with φ 4 and φ 5 ( µ 1 φ|φ 4 = 0, µ 1 φ|φ 5 = 0). There is no direct coupling by µ 1 or µ 2 with φ 2 and φ 3 . In this case the target is φ = (1, 0, 0, 0, 0). Another category of systems is the one with degenerate internal Hamiltonian (hypothesis H 1 is not fulfilled). The common characteristic of all these systems is that there are still controllable and this constitutes a very strong motivation to their study. In this context the main goal of this paper is to introduce a Lyapunov trajectory tracking technique that permits to determine efficient laser fields for this cases too. To this end we will adapt the implicit Lyapunov method introduced in [START_REF] Beauchard | Implicit Lyapunov control of finite dimensional Schrödinger equations[END_REF] for bilinear cases

H(t) = H 0 + ǫ(t)µ 1 .
The general idea is to track a mobile target φ β , instead of a fixed target φ, where β implicitly depends on the state of the system Ψ. As we impose a slow convergence of φ β to φ, we stabilize faster the state of the system around the vector φ β applying a Lyapunov method as the one described by relation [START_REF] Assion | Control of chemical reactions by feedbackoptimized phase-shaped femtosecond laser pulses[END_REF]. This should guarantee that the system is stabilized around φ (see Fig. 2) and it does not get trapped into another unknown state. The balance of the paper is as follows: in section II, we present the implicit Lyapunov technique. An existence result for the implicit Lyapunov function is proved followed by the convergence of the stabilization technique. Section III addresses the case of a degenerate target state. Finally, in section IV , we perform some numerical simulations for a five-dimensional test case followed by conclusions.

II. IMPLICIT LYAPUNOV TRAJECTORY TRACKING

A. Lyapunov function

Recall that two wave functions Ψ 1 and Ψ 2 that differ by a phase θ(t) ∈ R, i.e. Ψ 1 = exp(iθ(t))Ψ 2 , describe the same physical state. To take into account the property we add a fictitiouss control ω (see also [START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF]). Hence we replace the evolution equation (1) by:

i d dt Ψ(t) = (H 0 + ǫ(t)µ 1 + ǫ 2 (t)µ 2 + ω(t))Ψ(t), (5) 
where ω ∈ R is a new control . We can choose it arbitrarily without changing the physical quantities attached to Ψ.

In the following, for a given β ∈ R, we denote by (λ j β ) 1 j N the eigenvalues of the matrix H(β) = H 0 + βµ 1 + β 2 µ 2 , and by (φ j β ) 1 j N the associated normalized eigenvectors:

(H 0 + βµ 1 + β 2 µ 2 )φ j β = λ j β φ j β . (6) 
For simplicity we denote

φ β = φ 1 β and λ β = λ 1 β
We introduce the function V (Ψ) defined by (2) with

Ψ target = φ β(Ψ) : V (Ψ, t) = Ψ -φ β(Ψ) |Ψ -φ β(Ψ) = Ψ -φ β(Ψ) 2 (7)
where the function Ψ → β(Ψ) is implicitly defined as below:

β(Ψ) = Γ( Ψ -φ β(Ψ) 2 ). (8) 
The properties of the function Γ are formulated in the following lemma in order to assure the existence of function β. Lemma 2.1: Suppose that hypothesis H 1 holds and consider a continuously differentiable function Γ : R + → [0, β * ] satisfying :

Γ(0) = 0, Γ(s) > 0 for every s > 0 Γ ′ ∞ < 1 8C , (9) 
with

C = 1 + max dφ β dβ β=β0 ; β 0 ∈ [0, β * ] , (10) 
where φ β is the first eigenvector of the matrix H(β) and

dφ β dβ β=β0
is the derivative of φ β at the point β = β 0 .

Then there exists a unique map β ∈ C ∞ (S N (0, 1); [0, β * ]), such that for every Ψ ∈ S N (0, 1) :

β(Ψ) = Γ( Ψ -φ β(Ψ)
2 ) with β(φ) = 0.

(11) Proof: The proof follows the ideas of [START_REF] Beauchard | Implicit Lyapunov control of finite dimensional Schrödinger equations[END_REF] but needs a minor adaptation to take into account the second order control term ǫ 2 (t)µ 2 and the different definition of the Lyapunov function [START_REF] Assion | Control of chemical reactions by feedbackoptimized phase-shaped femtosecond laser pulses[END_REF]. For completeness we give however the full proof below.

Since we made the assumption that all the eigenvalues of the internal Hamiltonian H 0 are different, we are in the settings of Theorem XII.1 and Theorem XII.4 of [START_REF] Reed | Methods of Modern Mathematical Physics IV: Analysis of Operators[END_REF]. This implies that the eigenvalue and the eigenvectors of the matrix H(β) are analytic functions of β and This implies:

C = 1 + max dφ β dβ β=β0 , β 0 ∈ [0, β * ] < ∞. ( 13 
)
• Uniqueness of function β. In order to prove the uniqueness of the function β let us consider the function Γ defined by:

β -→ Γ( Ψ -φ β(Ψ) 2 )
with β ∈ [0, β * ]. For every β 1 and β 2 from [0, β * ], there exists β ∈]β 1 , β 2 [ such that:

Γ( Ψ -φ β1(Ψ) 2 ) -Γ( Ψ -φ β2(Ψ) 2 ) = d dβ Γ( Ψ -φ β(Ψ) 2 ) β=β β 1 -β 2 . ( 14 
) Since d dβ Γ( Ψ -φ β(Ψ) 2 ) = -2Γ ′ ( Ψ -φ β1(Ψ) 2 )Re dφ β dβ |Ψ -φ β (15) 
and |Re(

dφ β dβ |Ψ )| ≤ | dφ β dβ |Ψ | ≤ ( dφ β dβ )| β=β0 , together with Γ ′ < 1
8C we obtain that the function Γ( Ψ-φ β(Ψ)

2 ) is contracting for fixed Ψ ∈ S N (0, 1). Thus, for any fixed Ψ ∈ S N (0, 1) there exists a unique β(Ψ) ∈ [0, β * ] that verifies [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF].

• Existence of function β.

In order to prove the existence of β, let us consider:

F (Ψ, β) = β -Γ( Ψ -φ β(Ψ) 2 ). ( 16 
)
This application is C ∞ with respect to Ψ and β, and for fixed Ψ ∈ S N (0, 1) we have:

F (Ψ, β(Ψ)) = 0. (17) 
Moreover from relation [START_REF] Kosloff | Wavepacket dancing: Achieving chemical selectivity by shaping light pulses[END_REF] we have:

d dβ F (β, Ψ) = 1 + 2Γ ′ ( Ψ -φ β(Ψ) 2 )Re dφ β dβ |Ψ -φ β , (18) 
which is non zero since Γ ′ < 1 8C , with C defined by (10) on the interval [0, β * ]. We are in the hypothesis of the implicit function theorem, this implies the existence of the application Ψ → β(Ψ) that belongs to C ∞ (S N (0, 1); [0, β * ]). Now, we can focus on finding feedback controls such that V is a Lyapunov function. To this end we compute the derivative of V along trajectories of (5) and impose the condition dV /dt ≤ 0. We have:

dV dt = 2(ǫ -β)Im( µ 1 Ψ(t)|φ β ) + 2(ǫ 2 -β 2 )Im( µ 2 Ψ(t)|φ β ) + 2(ω + λ β )Im( Ψ(t)|φ β ) - 2 βRe dφ β dβ |Ψ -φ β , (19) 
where Im denotes the imaginary part and Re the real part. For convenience we denote:

I β 1 = Im( µ 1 Ψ(t)|φ β ) and I β 2 = Im( µ 2 Ψ(t)|φ β ).
A simple computation leads to:

β = Γ ′ (V ) 2(ǫ -β)I β 1 + 2(ǫ 2 -β 2 )I β 2 + 2(ω + λ β )Im( Ψ(t)|φ β ) - 2 βRe dφ β dβ |Ψ -φ β . ( 20 
)
It follows that:

β = Γ ′ (V )((ǫ -β)I β 1 + (ǫ 2 -β 2 )I β 2 1 + 2Γ ′ (V )Re dφ β dβ |Ψ -φ β + 2(ω + λ β )Im( Ψ(t)|φ β )) 1 + 2Γ ′ (V )Re dφ β dβ |Ψ -φ β . ( 21 
)
Remark 2.1: Since Γ ′ (V ) < 1/(8C * ) with C * defined by (10) we have:

1 + 2Γ ′ (V )Re dφ β dβ |Ψ -φ β = 0, (22) 
moreover

2Γ ′ (V )Re dφ β dβ |Ψ -φ β < 1 2 . ( 23 
)
If we replace relation [START_REF] Mirrahimi | Trajectory tracking for quantum systems: a Lyapounov approach[END_REF] in [START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF] we obtain:

dV dt = 2((ǫ -β)I β 1 + (ǫ 2 -β 2 )I β 2 + 2(ω + λ β )Im( Ψ(t)|φ β )) × 1 - g(t) 1 + g(t) (24) 
with

g(t) = 2Γ ′ (V )Re dφ β dβ |Ψ -φ β . (25) 
From Remark 2.1 we have 1 -g(t)

1+g(t)
0. If we denote v = ǫβ and we take:

v = -k(I β 1 + 2βI β 2 )/(1 + kI β 2 ) ω = -λ β -cIm( Ψ(t) | φ β ), (26) 
with k and c strictly positive parameters, one gets dV /dt ≤ 0, i.e. V is nonincreasing. Thus we obtain the following feedback control:

ǫ = β -k(I β 1 + 2βI β 2 )/(1 + kI β 2 ) ω = -λ β -cIm( Ψ(t) | φ β ). ( 27 
)
Remark 2.2: To guarantee that the denominator 1+kI

β 2 > 0, one notes that |I β 2 | ≤ | µ 2 Ψ(t)|Ψ β | ≤ µ 2 ; therefore 1 + kI β
2 > 0 as soon as k < 1 µ2 . From now on, unless otherwise specified, this condition will be assumed.

B. Convergence analysis

In the following we prove the convergence of the trajectories Ψ of the system (5) toward the target φ. The idea is to use that the feedback presented previously [START_REF] Ramakrishna | Control of a coupled two-spin system without hard pulses[END_REF] for Hamiltonian H(t) = H 0 + βµ 1 + β 2 µ 2 assures the convergence towards the set Z β = {φ β } for every β ∈ ]0, β * ]. So we let β tending to zero and by construction the convergence towards Z β must be faster than the of β towards zero.

Theorem 2.1: Assume that the hypothesis H 1 and H 5 hold, where

H 5 : denote J 1 = {j j = 1, µ 1 φ j β |φ β ) = 0} and J 2 = {j j = 1, µ 2 φ j β |φ β ) = 0}, J 1 ∪ J 2 = {2, 3, . . . , n} and J 1 ∩ J 2 = ∅ on [0, β * ].
Consider [START_REF] Brumer | Coherent chemistry: Controlling chemical reactions with lasers[END_REF] with Ψ ∈ S N (0, 1) and an eigenvector φ ∈ S N (0, 1) of H 0 associated to the eigenvalue λ. If we take the feedback [START_REF] Ramakrishna | Control of a coupled two-spin system without hard pulses[END_REF] with k < 1 µ2 and c > 0, then the limit set of Ψ(t) is reduced to ±φ.

Proof: Up to a shift on ω and H 0 , we may assume that λ = 0. Since hypothesis H 1 holds we can apply Theorem XII.1 of [START_REF] Reed | Methods of Modern Mathematical Physics IV: Analysis of Operators[END_REF]. This implies that hypothesis H 5 is fulfilled.

LaSalle's principle (see, e.g., [START_REF] Khalil | Nonlinear Systems[END_REF]Theorem 3.4, page 115]) guarantees that the trajectories of the system (5) converge to the largest invariant set contained in dV /dt = 0, this implies

that V is constant, i.e. V (Ψ) = V . Since by definition β = Γ(V ), β(Ψ) is constant i.e. β = β c .
The equation dV /dt = 0 means that:

I β 1 + 2β c I β 2 = 0, Im( Ψ(t)|φ βc ) = 0, (28) 
Since the Ω-limit set is also invariant under the flow generated by (5) it follows, taking into account [START_REF] Reed | Methods of Modern Mathematical Physics IV: Analysis of Operators[END_REF], that this set consists in fact of trajectories of the system:

i d dt Ψ = (H 0 + β c µ 1 + β 2 c µ 2 )Ψ. (29) 
The solutions of (29) have the form:

Ψ = N j=1
b j e -itλ j βc φ j βc .

The eigenvectors

(φ j βc ) j∈{1,...,N } of H(β c ) = H 0 + β c µ 1 + β 2
c µ 2 can be chosen to form an orthonormal basis. Moreover, the orthonormal eigenvectors are holomorphic functions of β c (see [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], page 121).

If β c = 0 we have Γ( V ) = 0 which implies V = 0. In this case the limit set of Ψ only contains φ.

If β c = 0, on the contrary we substitute relation (30) into relation [START_REF] Reed | Methods of Modern Mathematical Physics IV: Analysis of Operators[END_REF] and we obtain:

Im( Ψ(t)|φ βc ) = Im(b 1 ) φ βc , φ βc + N j=2 Im(b j φ j βc , φ βc e -itλ j βc ). = 0. (31) 
and

I β 1 + 2β c I β 2 = Im(b 1 ) µ 1 φ βc , φ βc + j∈J1 Im(b j µ 1 φ j βc , φ βc e -itλ j βc ) +2β c Im(b 1 ) µ 2 φ βc , φ βc + k∈J2 Im(b j µ 2 φ j βc , φ βc e -itλ j βc ) = 0. (32) 
From equation (31), together with φ j βc , φ βc = 0 for all j = 2, ..., N we obtain that Im(b 1 ) = 0. Moreover, equation (32) becomes:

I β 1 + 2β c I β 2 = j∈J1 Im(b j µ 1 φ j βc , φ βc e -itλ j βc ), +2β c k∈J2 Im(b j µ 2 φ j βc , φ βc e -itλ j βc ) = 0. (33) 
We use hypothesis H 5 together with β c = 0 and we obtain b j = 0 for every j ∈ J (see [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF] for more details ). This implies that the limit set only contains ±φ βc . We let β c tend to zero and conclusion follows.

III. DEGENERATE CASES

For systems with degenerate internal Hamiltonian positive numerical tests have been performed using discontinuous and time varying controls obtained by applying "explicit" Lyapunov tracking techniques (see [START_REF] Coron | Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[END_REF]). Under more restrictive hypothesis than for non degenerate cases convergence might be obtained. The advantage of applying an implicit Lyapunov technique is that adding a small perturbation of the form βµ 1 + β 2 µ 2 , with β ∈ [0, β * ] the degeneracy of H 0 is withdrawn and a asymptotic stability result as the one in Theorem 2.1 is obtained. Moreover we conserve the same type of hypothesis as in the non-degenerate case.

Theorem 3.1: Assume that the hypothesis H 4 and H 5 hold. Consider [START_REF] Brumer | Coherent chemistry: Controlling chemical reactions with lasers[END_REF] with Ψ ∈ S N (0, 1) and an eigenvector φ ∈ S N (0, 1) of H 0 associated to the eigenvalue λ. If we take the feedback [START_REF] Ramakrishna | Control of a coupled two-spin system without hard pulses[END_REF] with k < 1 µ2 and c > 0, then the limit set of Ψ(t) reduces ±φ.

Proof: It follows the same steps as in Theorem 2.1. Before being able to apply Theorem 3.1, some details have to be discussed. In the above section the space generated by any eigenvector of the internal Hamiltonian H 0 is always of dimension one. Therefore we were tracking without loss of generality the first eigenvector φ of H 0 . This is no longer the case for a degenerate situation. We may try to stabilize the system around an arbitrary eigenvector φ k , which can generate a space of dimension larger than 1. As a consequence, first we need to recall a result from the perturbation theory for finite dimensional Hermitian operators ( [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], page 121).

Lemma 3.1: Let us consider the N × N dimensional complex matrices H 0 , µ 1 , µ 2 and let us take

H(β) = H 0 + βµ 1 + β 2 µ 2 . ( 34 
)
For each real β, there exists an orthonormal basis (φ n (β)) n∈{1,...,N } of C N consisting of eigenvectors of H(β). Moreover, the orthonormal eigenvectors can be chosen as holomorphic functions of β.

In order to track any eigenvector φ k of a degenerate matrix H 0 it is enough to consider Ψ target = φ k β in definition (2) of the function V , where φ k β is defined in the above lemma. Since φ k β is continuously differentiable its derivative dφ k β /dβ is bounded on the interval [0, β * ] and the existence and uniqueness of β(Ψ) is guaranteed.

IV. NUMERICAL SIMULATIONS

We consider next the five-dimensional system (see [START_REF] Tersigni | On using shaped light pulses to control the selectivity of product formation in a chemical reaction: An application to a multiple level system[END_REF]) defined by (4). We use the Lyapunov control [START_REF] Ramakrishna | Control of a coupled two-spin system without hard pulses[END_REF] in order to reach the first eigenvector φ = (1, 0, 0, 0, 0, 0) of energy λ = 1, at the final time T . Note that µ 2 = 1. The function β is defined by (8) with Γ(x) = 0.75x. Even if Γ(x) doesn't satisfy the hypothesis Γ ′ ∞ < 1 8C of lemma 2.1, the convergence of β towards zero takes place (see Fig. 4, right image ). This happens because the condition is much stronger than the one required by the numerical simulations. Simulations of Figure 3 describe the evolution of the population of the trajectory Ψ = (Ψ 1 , Ψ 2 , ..., Ψ 5 ), for the initial state Ψ(t = 0) = (1, 1, 1, 1, 1)/ √ 5. We take c = 0.8. 

Simulations of

V. CONCLUSIONS

In this paper we study implicit Lyapunov trajectory tracking procedures for closed quantum systems submitted to an external interaction, a laser field. The interaction between the system and the laser is described by a first order term ǫ(t)µ 1 and a second order term consisting in a polarizability term ǫ 2 (t)µ 2 . More precisely the hamiltonian of the Schrodinger equation that models the evolution is equal to H 0 + ǫµ 1 + µ 2 ǫ 2 , with H 0 the internal Hamiltonian.

The goal is to determine efficient controls for two types of controllable systems. For the first type there is not direct coupling between the target state and all the eigenvectors on the internal hamiltonian H 0 This corresponds in the bilinear setting H 0 +ǫµ 1 with the non controllability of the linearized system. The second one is characterized by non degenerate internal Hamiltonian. A description of the method, a convergence result together with numerical simulations are presented.
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 1 Fig. 1.Schematic view of the coupling realized by the matrices µ 1 and µ 2 defined by (4) between the first eigenvector φ of the internal Hamiltonian H 0 and all the other eigenvectors φ 2 , ..., φ 5 . The eigenvectors are represented by circles and next to each of them the corresponding energy level (H 0 ) ii , i = 1, ..., 5 are written. The coupling are represented by edges, each of them being labelled with the corresponding matrix that achieves the coupling.

Fig. 2 .

 2 Fig. 2. Schematic view of the slow convergence of φ β toward the target φ and a faster convergence of Ψ towards the mobile target φ β .

H 4 :

 4 λ j β = λ l β for j = l, j, l = 1, ..., N. (12) in the interval [0, β * ]. Since φ β is analytic the derivative dφ β dβ exists for every point β 0 ∈ [0, β * ], and is bounded on [0, β * ].
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 4354 Fig.3.The populations corresponding to system (4) with trajectoryΨ = (Ψ 1 , Ψ 2 , ..., Ψ 5 ); initial condition: Ψ(t = 0) = (1, 1, 1, 1, 1)√ 5; the feedback is defined by (27)( c = 0.8, k = 0.02)

Fig. 5 . 5 ;

 55 Fig. 5. Evolution of control ǫ ; initial condition: Ψ(t = 0) = (1, 1, 1, 1, 1) √ 5; system defined by (4) with feedback (27)( c = 0.8,k = 0.02).
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