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Motivated by recent interest in polarization encoding, we propose and analyze a dual 

encryption/decryption scheme. Compared to standard optical encryption methods which are 

based on phase and amplitude manipulation, this encryption procedure relying on Mueller-

Stokes formalism provides a large flexibility in the key encryption design. The effectiveness 

of our algorithm is discussed thanks to a numerical simulation of the polarization 

encryption/decryption procedure of a 256 gray-level image. Of additional special interest is 

the immunity of this encryption algorithm to brute force attacks. 
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The development of advanced coding methods is an extremely active research area of great 

visibility and importance (see for a recent review [1]). In particular, much effort has been 

devoted to searching for new types of encryption methods which can be implemented in an 

optical setup [2-5]. These efforts are aimed at combining the excellent control possible with 

spatial light modulators, with the miniaturization, parallelism, and integrability of optical 

devices. Despite their efficiency, many processing techniques remain uneasy to be 

implemented using optical techniques, can lead to complex-valued encoded images, and can 

be potentially insecure against attacks. 

On the other hand, the interplay between encryption and polarization has piqued the 

interest of optical physicists for several decades [6-11]. Since the early work of Dolfuss and 

co-workers [6] dealing with polarization imaging, several polarization encryption methods 

were considered (see [3-4,8-9] and references therein). 

In this Letter, we propose an alternative scheme. The method is based on Mueller-

Stokes formalism and serves as a good starting point toward ultimate understanding of secure 

transmission of optical images using polarization encoding. The Letter is organized as 

follows: the principle of the polarization algorithm is first described. Next, we shall illustrate 

the effectiveness of this approach by working out an example of a 256 gray-level image. We 

further test the strength of this encryption algorithm against unauthorized decryption.  

 Some preliminary notation is in order. Let us consider a narrow band stochastic field 

which can be represented by an ensemble of realizations, which we shall assume to be 

statistically stationary, at least in the wide sense. Each realization of the fluctuating electric 

field vector is represented by a complex analytic signal. The four Stokes parameters, Sj, 

defined as the covariances of the analytic signal components, are the observables of the field 

vector at optical frequencies [12-13]. Let ( )0 1 2 3

T
S S S S=S , where T means the transpose, 

denote the Stokes vector and M  is the Mueller matrix of a polarization element. Let the input 
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and the output states of polarization parametrized by the Stokes vector S and S’. We assume 

that the matrix M acts on the input state S by matrix multiplication to give the output state 

' =S MS , where M is a 4× 4 matrix with real elements mij that characterize the interaction of 

the light with the optical element. To illustrate these formulas, let us consider the problem of 

characterizing the state of polarization at the output of the cascaded polarization elements-

linear polarizer, wave plate retarder- displayed in Fig. 1. It is convenient for us to define the 

product of the Mueller matrix of a linear polarizer ( )pol ϕM  and that of a retarder ( )ret θM , 

where ϕ  is a polarization angle and θ  is a phase shift  
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We find for the right-hand side of Eq. (1): 
2

1
00 =
pr

m , 

( ) ( ) ( ) ( ) ( )( )θθϕθϕ 2sin2cos2sin2cos2cos
2

1 2
01 +=pr

m , 033231303 ==== prprprpr
mmmm , etc.  The state of 

polarization of the output signal is completely determined by the nominal values of θ  and ϕ . 

This optical system functions as a polarization encoder, encoding the pixels of the signal 

(image) by θ  and ϕ . 

 The basis of the experiment is depicted schematically in Fig. 2. The concept is first 

demonstrated quantitatively using the Mueller-Stokes formalism. Consider first the partially 
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polarized wave ( )0 1 2 3

T

I I I I IS S S S=S  incident on the object to be encrypted (target image 

I). The state of polarization is determined by the configuration of the polarization elements 

shown in Fig. 1. Using Eq. (1), one finds that the output Stokes vector is 
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 .               (2) 

 

Analogously, an encryption wave is sent to a key image k ( )0 1 2 3

T

k k k k kS S S S=S . A gray-

level image with 256×256 pixels randomly distributed in the range [ ]2550 −  will be 

considered next for illustrative purpose. Then, the wave is passed through the similar set of 

polarization elements shown in Fig. 1. The output signal (image) is '
kS . For the current 

discussion we will consider only the simplest situation of unpolarized signals, i.e. 

( )0 0 0 0
T

I IS=S , ( )0 0 0 0
T

k kS=S . A more comprehensive treatment would consider 

nonzero values of the other Stokes parameters. We set 021 ==ϕϕ  and 221 πθθ == , where 

1ϕ  and 2ϕ  denote the polarization angles of Pol(1) and Pol(2), and 1θ  and 2θ  are the phase 

shifts of Ret(1) and Ret(2), respectively. Hence ( ) ( )' ' ' ' '
0 1 2 3 0 0

1
0 0

2

T T

I I I I I I IS S S S S S= =S  

and ( ) ( )' ' ' ' '
0 1 2 3 0 0

1
0 0

2

T T

k k k k k k kS S S S S S= =S . Fig. 2 shows that the two output signals 

are multiplexed using a beam-splitter. Accordingly, the resulting signal is 

( )' ' '
0 0 0 0

1
0 0

2

T

R I k I k I kS S S S= + = + +S S S . Fig. 2 shows also the transformation of this image 

to a new polarization state via a matrix of linear polarizers (Pol(3); each of them is 

characterized by angle the randomly chosen angle rand randϕ = π  in the range [-π,π]. 

Consequently, each pixel of the encrypted image is given by ),('
jiIC   
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The measured intensity of the encrypted image, stored with a CCD camera (Fig. 2), in this 

case is given by 

( )( )[ ]' ,

0 0 0

1
( , ) ( , ) 1 cos 2 ( , ) ( , )

4

i j

C C rand I kI i j I i j S i j S i jϕ= = + + .  (4) 

 

Two important points should be considered when interpreting the images. First, we remark 

that only real numbers, i.e. Eq. (4), are considered since we used the Mueller matrix 

formalism. This is at odds with the standard encoding methods, e.g. the double-random phase 

encryption technique, which transform the input image into a complex-amplitude stationary 

white noise [2]. Second, the decryption method is a two-step process. On the one hand, the 

encrypted signal is passed through a linear polarizer Poldecry(4) whose polarization angle is 

oriented such that the term ( )( )ji
rand
,2cos1 ϕ+  in Eq. (4) vanishes. At the output of Poldecry(4) the 

Stokes vector is 
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From Eq. (5) it is clear that the image, )(
'
_0 decrypS , is still encrypted. The decryption process 

can be implemented by extracting one particular component of the relevant Stokes vector, Eq. 

(5). Here, ( ) ( )( )[ ]{ }' , ,

1_ 0 0

1
cos 2 1 cos 2 ( , ) ( , )

8

i j i j

decryp decry rand I kS S i j S i jϕ ϕ= + + was used, and the 

decryption polarization angles ji
decry
,ϕ  are designed such that the polarization angles of the 

encryption polarizer Pol3 satisfy ( ) 12cos1
1

, <+
−

ji

randϕ , i.e. ji
rand
,ϕ  must be chosen between 4−π  

and 4π , such that ( ) ( )( ), ,cos 2 1 cos 2 1i j i j

decry randϕ ϕ+ = . Lastly, the encryption key 0kS  is 

removed to return to the primary image.  

The encryption procedure described above is quite general and can be implemented 

both optically and numerically. In order to test our method, we simulated numerically the 

different steps of this procedure with a 256 gray-level original image (Fig. 3(a)). The results 

of the simulation for the encrypted (resp. decrypted) images in the aforesaid steps are depicted 

in Fig. 3 (c) (resp. Fig. 3 (d)). The key image (Fig. 3(b)) is also completely depolarized. It can 

be seen that the target image is not recognizable. Based on the above described decryption 

procedure and the knowledge of the two encryption keys (key image and angles of the 

encrypting polarizers Pol(3)), the target image is clearly observed in Fig 3 (d).  



 7

 The value of a general and reliable image encryption/decryption algorithm depends on 

a clear understanding and control of all possible attacks, i.e. plain-text, ciphertext, statistical, 

and brute force attacks. Here, we argue that our system show an excellent resistance against a 

specific type of brute force attack. A more extensive analysis will be reported elsewhere. A 

first example where our results are applicable occurs where the target image has a spatially 

uniform intensity. From the above derivation, we get 

( )( )[ ],

0

1
( , ) 1 cos 2 1 ( , )

4

i j

C rand k
I i j S i jϕ= + + , where the ),(0 jiSk  elements contain the 

information on the key image and ji
rand
,ϕ  denote the angles of the encrypting polarizers Pol(3). 

Hence, it is impossible for the attacker to have access either in the key image and in the set of 

angles of Pol(3).   

In a second case, we assume that the attacker has the ability to trick a legitimate user 

of the system into encrypting images ((s)he knows the key image), has a priori knowledge of 

the principle of the polarization algorithm, and know the nominal values of the polarization 

angles of Pol(1) and Pol(2) and also the phase shifts of Ret(1) and Ret(2). For the evaluation 

of the decryption quality, the mean square error (MSE) was used which can be calculated by 

( ) ( )∑∑ −
×

= −

N

i

N

j

Idecryp jiSjiS
NN

MSE
2

0
'
1 ,,

1
. Here i, j label the pixels; '

1 decrypS −  characterizes the 

output decrypted image (Eq. (5)), and 0IS denotes the intensity of the unpolarized input 

image, respectively. As can be seen from Figs. 3 (e)-(f) we find no significant variation in the 

magnitude of the MSE. This result leads to the conclusion that the attacker is unable to find 

the target image even after more than 5 10
5
 trials. 

In summary, the numerical results demonstrated that the proposed 

encryption/decryption procedure of images based on Mueller-Stokes formalism has several 

interesting features. First of all, it was demonstrated that the polarization algorithm based on a 

dual encryption scheme is very general. Secondly, we showed that our encryption scheme 
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remains robust under brute force attacks. All aspects of this scheme can be optically 

implemented using current state-of-the art technology. We note that, in a real optical 

implementation, the difficulty to manipulate and measure the involved polarimetric quantities 

adds some challenges to the attacker. Because these ideas have a broad significance they are 

also expected to impact related areas demanding secure data. 

 

This work was supported by Lab-STICC which is Unité Mixte de Recherche CNRS 3192.  
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Figure captions 

FIG. 1: Schematic of an optical system that encodes a signal in the polarization domain. An 

input signal (image) is transformed to a gray level value. 

 

FIG. 2: Experimental setup of polarization-encoded encryption system: Target: object to be 

encrypted; Key: random encrypting key; Ret(1), Ret(2): wave plate retarder; Pol(1), Pol(2), 

Pol(3): linear polarizers; BS: beamsplitter; M: mirror; CCD: CCD camera. 

 

FIG. 3: Comparison of the different encrypted and decrypted images of the illustrative 

example chosen to validate our algorithm. (a) The image to be encrypted, (b) the key image, 

(c) the encrypted image, (d) the decrypted image encrypted with the procedure displayed in 

Fig. 2, (e) the ciphered image after 500 000 trials, (f) the mean square error (MSE) error as a 

function of the trial number. 
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