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Abstract

In this short note we give a new presentation of the entropy theory of

symbolic extensions. Then we deduce from the main results of this theory

some continuity properties of the entropy regarding the smoothness of the

dynamical system. We also prove that generic continuous interval maps

have nowhere continuous entropy function.

1 Background

1.1 Monotone operator on a complete lattice and some

basic dynamical applications

We first recall some elements of set theory. A (partially) ordered set (L,≤) is a
complete lattice if every subset of L has both a supremum and an infimum. A
map T of L into itself is an increasing operator if T f ≤ T g for all f ≤ g. We
recall now an elementary fixed point theorem due to Tarski and Knaster.

Theorem 1 [28] Let L be a complete lattice and let T : L → L be an increasing
operator. Then the set of fixed points of T in L is also a complete lattice. In
particular it is not empty and there is a least fixed point.

The least fixed point of T can be obtained in a inductive way as the sta-
tionary limit of the transfinite sequence (T α0)α where 0 is the least element of
L and T α0 is T (T α−10) for successor ordinals α and T α0 is the least upper
bound of T β0 over β < α for limit ordinals α. By the increasing property of T
any fixed point of T is larger than T α0 for all ordinals α. Then the transfinite
sequence (T α0)α is obviously stationary after any ordinal β with cardinal larger
than the cardinality of L. Let us denote by α(T ) or just α∗ the least ordinal α
such that T α0 = T α+10. This ordinal is called the order of accumulation of T .
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We illustrate this formalism with two basic examples. One naive example
of increasing operator is given by a nondecreasing map f of the unit interval
endowed with the usual order. Then one obtains the least fixed point of f as
the stationary limit of the transfinite sequence (fα(0))α. Clearly the order of
accumulation is countable (indeed for any α < α(f) the interval ]fα(0), fα+1(0)]
is nonempty and thus contains a rational number). Moreover it is not difficult
to construct examples of nondecreasing maps with a given countable ordinal as
order of accumulation.

We present now another context where this formalism applies. By a dynam-
ical system we mean a continuous map T : X → X on a compact metrizable
space X to itself. Recall a point x of X is nonwandering if for every neighbor-
hood U of x there is an integer n ≥ 1 such that T n(U)∩U is nonempty. The set
of all nonwandering points is called the nonwandering set of T , and is denoted
by Ω(T ). The nonwandering set Ω(T ) of a dynamical system (X,T ) differs in
general from the nonwandering set of (Ω(T ), T |Ω(T )). The set of forward in-
variant compact subsets of X ordered with the reverse inclusion ⊃ is clearly
a complete lattice. Then the operator TΩ which associates to any forward in-
variant compact subset K the nonwandering set of T |K is increasing. It is well
known that the least fixed point of TΩ is the closure of the set of the recurrent
points of (X,T ) (Theorem 5.08 of [24]). Moreover by an argument of compacity
the order of accumulation of TΩ is countable and any countable ordinal can be
achieved as the order or accumulation of the operator TΩ associated to some
dynamical system [16].

1.2 Symbolic extensions

We address the question whether a dynamical system can be encoded with a
finite alphabet. More precisely, does a given dynamical system (X,T ) admit a
symbolic extension, that is a subshift (Y, S) of a full shift over a finite alphabet,
along with a continuous surjection π : Y → X such that π ◦ S = T ◦ π? We are
also interested in minimizing the entropy introduced by the code. For example
can we choose these extensions to be principal, i.e. such that they preserve the
entropy of measures? We focus particularly on smooth dynamical systems. In
this case, the answer highly depends on the smoothness of the dynamical system
:

• there exist C1 examples with no symbolic extensions [19],[2],[7];

• there exists Cr examples with r > 1 with no principal symbolic extensions
[19],[7]. However Cr interval maps [13] with r > 1 and C2 surface dif-
feomorphisms [6] always admit symbolic extensions (T.Downarowicz and
S.Newhouse have conjectured the existence of symbolic extensions for any
Cr map with r > 1 on a compact manifold (Conjecture 1.1 of [19]));

• C∞ dynamical systems always admit principal symbolic extensions [5].

The main tool which allows to validate or invalidate the existence of (princi-
pal) symbolic extensions is the powerful Symbolic Extension Entropy Theorem
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[3], due to M.Boyle and T.Downarowicz, which relates the entropy of symbolic
extensions with the emergence of entropy at different small scales. This emer-
gence is captured by the convergence of entropy structures which we present in
the next subsection. First, we recall some notations and definitions.

We denote by M(X,T ) the set of Borel invariant probability measures of the
dynamical system (X,T ) endowed with the weak star topology and we denote
by dist a distance on M(X,T ). Given a symbolic extension π : (Y, S) → (X,T )
we will consider the function hπ

ext : M(X,T ) → R
+ :

∀µ ∈ M(X,T ), hπ
ext(µ) = sup

π∗ν=µ
h(µ)

where h denotes the usual Kolmogorov-Sinai entropy of (X,T ) and π∗ :
M(Y, S) → M(X,T ) is the map induced by π on measures. Finally the symbolic
extension entropy function is the function hsex = infπ h

π
ext, which is related

to the topological entropy of the symbolic extensions (Y, S) of (X,T ) by the
following variational principle (Theorem 8.1 of [3]) :

sup
µ

hsex(µ) = inf
S

htop(S)

1.3 Entropy structure

The entropy structures of a dynamical system (X,T ) are special nondecreasing
sequences (hk)k∈Z+ of nonnegative functions which converge pointwise to the
Kolmogorov-Sinai entropy function. They recover the usual entropy invariants
but also the new ones arising from the entropy theory of symbolic extensions.
Two entropy structures (hk)k and (gk)k satisfy the following property :

∀γ > 0 ∀k ∈ Z
+ ∃l ∈ Z

+, gl > hk − γ and hl > gk − γ (1)

The above relation ensures that the main invariant of the entropy theory of
symbolic extensions whose definition involves an entropy structure, namely the
operator Tsex introduced in the next section, does not depend on the choice of
the entropy structure. Moreover most of the usual appraoches to entropy lead
to an entropy structure [10], so that entropy structures may be considered as a
master entropy invariant unifying the previous theories of entropy. For example
if (Pk)k is a decreasing sequence of partitions whose diameter goes to zero and
with small boundaries, i.e. µ(∂Pk) = 0 for all µ ∈ M(X,T ), then the functions
hk = h(., Pk) define an entropy structure.

We refer to [10] for a complete definition as well as further properties and
examples.
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2 Symbolic Extension Entropy Theorem revis-

ited

A real function f on a compact metric space E is said to be upper semicontinous

if lim supy→x f(y) ≤ f(x) for all x ∈ E. When f is a real function defined on
E we denote by ⌈f⌉ the smallest upper semicontinuous function larger than or
equal to f if f is bounded from above and ⌈f⌉ is the constant function equal to
+∞ if not.

Using the framework of operators on lattices presented in the previous section
we restate the Symbolic Extension Entropy Theorem. Let (X,T ) be a dynami-
cal system. We denote by S(X,T ) the set of nonnegative upper semicontinuous
functions defined on M(X,T ) to which we add the function constant equal to
+∞. The set S(X,T ) endowed with the usual order is a complete lattice : if
F is a family of upper semicontinuous functions then inff f ∈ F is itself upper
semicontinous and then it is the infimum of F in S(X,T ), and

⌈

supf∈F f
⌉

is
clearly the supremum of F in S(X,T ).

Let H = (hk)k be an entropy strucuture, we define the operator Tsex on
S(X,T ) as follows :

Tsex : S(X,T ) → S(X,T )

f 7→ lim
k

⌈f + h− hk⌉

One easily checks from (1) that Tsex does not depend on the choice of the
entropy structure (hk)k. Clearly Tsex is an increasing operator. Moreover, the
functions h − hk being nonnegative, Tsexf ≥ f for all f ∈ S(X,T ). By using
the affine structure of the set of invariant probability measures M.Boyle and
T.Downarowicz proved that the least fixed point of Tsex coincides with the
infimum of the affine fixed points of Tsex. The Symbolic Extension Entropy
Theorem can then be restated as follows :

Theorem 2 (Theorem 5.5 of [3]) The affine fixed points of Tsex are exactly the
functions hπ

ext−h, i.e. f is a nonnegative affine upper semicontinuous function
on M(X,T ) fixed by Tsex if and only if there exists a symbolic extension π such
that f = hπ

ext − h. Moreover hsex − h is the least fixed point of Tsex.

In [3] the authors considered entropy structures (hk)k such that h0 = 0 and
hk+1−hk is upper semicontinuous for all k ∈ Z

+. Then the Symbolic Extension
Entropy Theorem is stated in [3] as follows : a nonnegative affine function f is
equal to hπ

ext − h for some symbolic extension π : (Y, S) → (X,T ) if and only if
f−hk is upper semicontinuous for all k ∈ Z

+. According to Lemma 2.1.6 of [10]
this last condition is equivalent to Tsexf = f . Since Tsex does not depend on
the choice of the entropy structure (hk)k the above Theorem 2 follows at once.

In this setting the transfinite sequence (uα)α and the order of accumulation
of entropy introduced in [3] are respectively the sequence (T α

sex0)α and the or-
dinal α(Tsex). By an easy argument of compacity the order of accumulation is
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a countable ordinal. It was proved in [8] that any countable ordinal is realized
as the order of accumulation of entropy of a dynamical system.

As we already mentioned in Section 1.2 it is not known whether dynami-
cal systems of intermediate smoothness (Cr with 1 < r < +∞) always admit
symbolic extensions. When T is a C1 dynamical system on a compact manifold
M of dimension d let us denote by (χi(x))i=1,...,d the Lyapunov exponents at a
regular point x. The sum of the positive Lyapunov exponents of an invariant
measure µ is then given by

∑

i χ
+
i (µ) :=

∑

i

∫

χ+
i (x)dµ(x) where we use the

notation a+ := max(a, 0) for all real numbers a. It is easily checked that
∑

i χ
+
i

defines an affine upper semicontinuous function on M(X,T ) [6]. We conjecture
that

Conjecture 1 Let T : M → M be a Cr map, with 1 < r, defined on a compact

manifold M of dimension d. Then
d
∑

i χ
+
i

r−1 is a fixed point of Tsex. In particular

it admits a symbolic extension π such that hπ
ext − h =

d
∑

i χ
+
i

r−1 .

It was proved for interval maps [13] and C2 surface diffeomorphisms [6]. We
have already noted that C∞ dynamical systems always admit principal sym-
bolic extensions, i.e. symbolic extensions π : (Y, S) → (X,T ) with hπ

ext = h.
Therefore the above conjecture also holds true in this case.

3 Continuity of the entropy

This last section deals with continuity properties of the entropy function. As
for symbolic extensions the picture highly depends on the smoothness of the
dynamical system :

• there exist (continuous) dynamical systems such that the entropy function
h is nowhere continuous;

• there exist C1 examples such that the restriction of h to some nonempty
compact subset of the set of Borel invariant probability measures is nowhere
continuous;

• there exist Cr examples with r > 1 where h is not upper semicontinuous
[21][26]. However for Cr interval maps and C2 surface diffeomorphisms h
is a difference of upper semicontinuous functions : in particular the set of
continuity points of h is a dense Gδ set;

• h is upper semicontinuous for C∞ dynamical systems [23].

As the last item, concerning the special case of C∞ maps, is a famous result
of S.Newhouse [23] we will not revisit it. We explain in the following how the
three first items follow from previous works on entropy structure and symbolic
extensions.
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3.1 Continuous Examples

The first item follows from the complete characterization of possible entropy
functions of (continuous) dynamical systems due to T.Downarowicz and J.Serafin.
Recall a Choquet simplex K is a compact convex set satisfying the following
property. For any x ∈ K there exists a unique Borel probability measure µx

on K supported by the extremal set such that f(x) =
∫

f(y)dµx(y) for all
affine continuous functions f : K → R. Then a function g : K → R is said
to be harmonic if g(x) =

∫

g(y)dµx(y). The harmonic extension of a Borel
map f : K → R supported on the extremal set of K is the harmonic function
x 7→

∫

K
f(y)dµx(y).

Theorem 3 [12] Let K be a Choquet simplex and f : K → R
+ be a nonnegative

function. Then there exists a dynamical system (X,T ) and a affine homeomor-
phism a : M(X,T ) → K such that f ◦ a is the entropy function of (X,T ) if
and only if f is a pointwise limit of a nondecreasing sequence of nonnegative
harmonic upper semicontinuous functions.

We only need to construct a Choquet simplex K and an increasing sequence
of nonnegative harmonic upper semicontinuous functions fk : K → R whose
limit f is nowhere continuous. Let K be the Choquet simplex M([0, 1]) of the
Borel probability measures on [0, 1] and let fk be the harmonic extension of the
characteristic function of the set of Dirac measures {δa1 , ..., δak

}, where (an)n∈Z+

is a countable enumeration of the rational numbers of [0, 1]. The functions fk
are just given by fk(µ) =

∑k
l=1 µ({ak}) for all µ ∈ M([0, 1]). In particular they

are upper semicontinuous. Moreover by the theorem of monotone convergence
the limit f is just the harmonic extension of the characteristic function of the
Dirac measures at rational numbers. Clearly f is nowhere continuous because
any probability measure on [0, 1] is a weak limit of atomic measures supported
by either rational or irrational numbers.

In fact this phenomenon is generic among continuous interval maps endowed
with the topology of uniform convergence :

Theorem 4 The entropy function of a generic continuous interval map is nowhere
continuous.

We conjecture the above theorem also holds in higher dimensions. We first
begin with the following adaptation of Theorem 3.8 of [9].

Proposition 1 There exists a residual set S of continuous interval maps such
that the periodic measures of any f ∈ S are dense in the set of ergodic measures.

The proof is based on the following elementary perturbative result :

Lemma 1 Let µ be an ergodic measure of an interval map f . Then for every
C0-neighborhood U of f and every neighborhood V of µ in the set of probability
measures with the weak star topology, there exists g ∈ U admitting a periodic
point p such that the associated periodic measure γp belongs to V.
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Proof : Clearly one can assume µ is not periodic for f . By the ergodic theorem
(

1
n

∑n−1
k=0 δfkx

)

n
converges to µ for µ-almost all x. Fix such a point x and let n

be an integer such that 1
n

∑n−1
k=0 δfkx ∈ V . One can also assume x to be recurrent

and then choose fnx close enough to x so that x is a periodic point of period n
of g ∈ U with 1

n

∑n−1
k=0 δgkx ∈ V after a small C0-perturbation of f . �

Given a positive integer n, let Kn denote the set of continuous interval maps
f satisfying the following property :

Each periodic orbit O of period n is transversal, i.e. on any neighborhood U
of p ∈ O there exist x1 < p < x2 in U such that (fn(x1)− x1) (f

n(x2)− x2) < 0.

Lemma 2 K =
⋂

n≥1 Kn is a residual set in the set of continuous interval
maps.

Proof : It is enough to prove that Kn is itself residual for each n. For any
pair of distinct rational numbers (a, b) let Fn(a, b) := {f ∈ C([0, 1]), ∀x ∈
[a, b], fn(x) ≥ x and ∃x0 ∈ [a, b], fn(x0) = x0}∪{f ∈ C([0, 1]), ∀x ∈ [a, b], fn(x) ≤
x and ∃x0 ∈ [a, b], fn(x0) = x0}. The sets Fn(a, b) are closed and have empty
interior because the set of Kupka-Smale maps1 of C1 interval maps is C0-dense
in K [25]. Therefore Kn ⊃ C([0, 1]) \

(
⋃

a<b Fn(a, b)
)

is a residual set.
�

We notice that transversal periodic orbits are persistent in the following
sense. Assume O is a transversal periodic orbit of period n, then for any neigh-
borhood U of p ∈ O there exists a neighborhood U of f such that any g ∈ U
admits a periodic orbit O′ of period n with O′ ∩U 6= ∅ (this last periodic orbit
O′ may be not isolated among g-periodic points of period n, thus O′ is not
transversal in general).

Let X be a subset of C([0, 1]) endowed with the induced topology and let
K(Y ) be the set of compact subsets of a compact metric space Y endowed with
the Hausdorff metric. A map φ : X → K(Y ) is said to be lower semicontinuous
(resp. upper semicontinuous) if for any f in X and for any open set V in Y
with V ∩ φ(f) 6= ∅ (resp. V ⊃ φ(f)) there exists a neighborhood U of f in X
such that V ∩ φ(g) 6= ∅ (resp. V ⊃ φ(g)) for every g ∈ U . The set of continuity
points of such (upper or lower semicontinuous) functions is a residual set of X
[18].

Proof of Proposition 1 : Let Xg be the closure of the periodic measures
of g ∈ K in the set M([0, 1]) of probability measures of [0, 1] endowed with the
weak star topology. Transversal periodic points are persistent so that the map
g 7→ Xg from K to K(M([0, 1])) is lower semicontinuous. Since K is a residual
set it follows that the set S of continuity points of g 7→ Xg is also a residual

1A C1 interval map f is said Kupka-Smale when every periodic point p of f is hyperbolic,

i.e.
∣

∣

∣

(

fP
)

′

(p)
∣

∣

∣
6= 1 where P is the period of p.
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set of C([0, 1]). Let f ∈ S be such a point of continuity and let µ be an ergodic
f -invariant measure. By the previous lemma µ is approximated by a periodic
measure of a continuous map arbitrarily close to f . After another small C0

perturbation one can assume this last map in K. By continuity of g 7→ Xg at f
the measure µ belongs then to the closure of the periodic measures of f .

�

Let f : [0, 1] → [0, 1] be a continuous interval map. We recall that a family
J = (J1, ..., Jp) of closed disjoint intervals is called a p-horseshoe of f if Jk ⊂

f(Ji) for all i, k. Let us denote HJ :=
⋂

n∈Z
fnJ and ({1, ..., p}Z

+

, σ) the one

sided shift with p symbols. The map π : (HJ , f) → ({1, ..., p}Z
+

, σ) defined by
(π(x))k = q iff fk(x) ∈ Jq is a semi-conjugacy. In particular htop(f) ≥ log p. In
fact horseshoes characterize entropy of continuous interval maps [22] : if f is a
continuous interval map with entropy htop(f) > 0 then for all h < htop(f) there
exists a p-horseshoe for fN with entropy log p/N > h.

We show now as in [19] that horseshoes accumulate on periodic orbits for
generic maps. For a given continuous interval map f : [0, 1] → [0, 1] and a
given positive integer n we say that a set S of periodic points of f satisfies the
property (Pn) when :

For each periodic point p in S there exists a horseshoe with entropy log 3
such that any invariant measure supported on this horseshoe lies in the open
1
n
-neighborhood of γp.

We observe that if S satisfies the property (Pn) then the closure of S satisfies
the property (Pn−1). Let Rn denote the set of continuous interval maps f such
that the set of all periodic points satisfies the above property (Pn).

Proposition 2 R =
⋂

n≥1 Rn is residual in the set of continuous interval
maps.

Proof : For any interval map f ∈ K and for any integer m we denote by
Perm(f) the set of periodic points of period less than m. This set is a closed
subset of the interval with empty interior because all the periodic points of f
are transversal. Therefore, if for all positive integers l and m we let Perl,m(f) =
{p ∈ Perm(f), s.t. [p, p + 1

l
[∩Perm(f) = {p} or ]p − 1

l
, p] ∩ Perm(f) = {p}},

the union
⋃

l∈Z+ Perl,m(f) is a dense subset of Perm(f). Let Rn(l,m) be the
subset of K such that the property (Pn) holds for Perl,m(f). Then we have the
following inclusions Rn ⊂

⋂

l,m Rn(l,m) ⊂ Rn−1 so that R =
⋂

l,m,n Rn(l,m).
Therefore we only need to prove Rn(l,m) is an open dense set in K because K
is residual by Lemma 2.

Let us first prove that this set is open in K. Since horseshoes are persis-
tent under small C0 perturbations it is enough to show that f 7→ Perl,m(f)
is upper semicontinuous from K to K([0, 1]). For any f ∈ K there exists a
finite subset {p1 < p2 < ... < pN} of Perm(f) containing Perl,m(f) such
that either

[

|pi − pi+1| <
1
l

]

or
[

|pi − pi+1| ≥
1
l
and ]pi, pi+1[∩Perm(f) 6= ∅

]

for
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i = 0, ..., N with p0 = −1 and pN+1 = 2. In the second case we remark that pi
and pi+1 belong to Perl,m(f) ∪ {p0, pN+1}. Let I =

{

i, |pi − pi+1| <
1
l

}

and
let r > 0 be such that 2r+ |pi−pi+1| <

1
l
for all i ∈ I. The transversal periodic

points p1, ..., pN are persistent so that any g ∈ K close enough to f admits pe-
riodic points q1, ..., qN of period less than m with qi ∈ B(pi, r) for i = 1, ..., N .
We can also assume that [pi+ r, pi+1− r]∩Perm(g) = ∅ for all i /∈ I. Then it is
easily seen that Perl,m(g) is contained in the open r-neighborhood of Perl,m(f).

To prove the density it is enough to approximate any C1 Kupka-Smale maps
by a map in Rn(l,m). To do it one just blows up the finitely many periodic
points of period m in small intervals where we ”put” an interval map of entropy
log 3 (a 3-tent map for example). We refer to [20] for the technical details of
the construction. In doing so we may introduce other periodic points of period
n but they are all 1

n
-close to a horseshoe with entropy log 3 when the inserted

intervals are small enough.
�

Theorem 4 follows immediately from Proposition 1 and Proposition 2. In-
deed ergodic measures of any f ∈ S ∩R are approximated by periodic measures
(with zero entropy) and by ergodic measures with log 3 entropy (which cor-
respond to the measures of maximal entropy of the horseshoes closed to the
periodic points). Therefore any invariant measure is approximated by a convex
combination of ergodic measures with either zero entropy or with log 3 entropy.

Remark 1 By using the robustness of horseshoes it is easily seen that generic
continuous maps on a compact manifold have infinite topological entropy (see
Section 5 of [1]). In particular they do not admit symbolic extensions.

3.2 C1 examples

In [19], examples of C1 surface volume preserving diffeomorphisms (M,T ) with-
out symbolic extensions are built by accumulating horseshoes on periodic points.
These examples 2 satisfy more precisely the following property (see in [19] the
proof of Theorem 1.3 after Lemma 5.1) :

There are a nonempty compact subset E of M(M,T ) and a positive real

number ρ0 > 0 such that :

• the periodic measures are dense in E ;

• ∀µ ∈ E ,
lim sup
ν∈E,ν→µ

h(ν) > ρ0

In particular the entropy function restricted to E is nowhere continuous.
Indeed any invariant measure in E with positive entropy is a limit of periodic
measures in E according to the first item. Then, if µ ∈ E is an invariant measure

2They are generic in the complementary set of the Anosov diffeomorphisms in the set of
C1 volume preserving diffeomorphisms on a surface M .
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with zero entropy, the second item implies that µ is a limit of invariant measures
in E with entropy larger than ρ0 > 0.

3.3 Entropy as a difference of upper semicontinuous func-

tions

A way to estimate how a nonnegative function h defined on a compact metric
space fails to be upper semicontinuous consists in wondering whether it is a
difference of nonnegative upper semicontinuous functions and in determining the
”smallest” writing as a difference of nonnegative upper semicontinuous functions
: what is the smallest upper semicontinuous function f ≥ 0 such that f + h
is upper semicontinuous, which can be written as f = inf{g ≥ 0 : g and g +
h is upper semicontinuous}? To this end we consider the operator Tusc :

Tusc : S(X,T ) → S(X,T )

f 7→

⌈

µ 7→ lim sup
ν→µ

(

(h(ν)− h(µ))
+
+ f(ν)

)

⌉

As Tsex the operator Tusc is increasing and satisfies Tuscf ≥ f for all f ∈
S(X,T ).

Lemma 3 h = g − f with f, g ∈ S(X,T ) if and only if f is a fixed point of
Tusc.

Proof : Assume h+ f is upper semicontinuous. We have

lim sup
ν→µ

(

(h(ν)− h(µ))+ + f(ν)
)

≤ max

(

lim sup
ν→µ

f(ν), lim sup
ν→µ

(h(ν)− h(µ) + f(ν))

)

and then by upper semicontinuity of f and h+ f :

lim sup
ν→µ

(

(h(ν)− h(µ))
+
+ f(ν)

)

≤ f(µ)

Conversely assume Tusc(f) = f . This implies that

lim sup
ν→µ

(h(ν)− h(µ) + f(ν)) ≤ lim sup
ν→µ

(

(h(ν)− h(µ))+ + f(ν)
)

≤ f(µ)

and thus f + h is upper semicontinuous. �

We denote by husc the smallest upper semicontinuous function larger than
h such that husc − h is itself upper semicontinuous. In the previous setting

husc − h is the smallest fixed point, T
α(Tusc)
usc 0, of the monotone operator Tusc.
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Lemma 4 For all f ∈ S(X,T )

Tsexf ≥ Tuscf

In particular the fixed points of Tsex are fixed points of Tusc and hsex ≥ husc.

Proof : Any dynamical system admits an entropy structure (hk)k with upper
semicontinuous functions (hk)k (see for instance the remark following Theorem
7.0.1 of [13]). Consider such an entropy structure (hk)k of (X,T ). Let f ∈
S(X,T ) and µ ∈ M(X,T ). For all k ∈ Z

+ we have by upper semicontinuity of
hk

lim sup
ν→µ

(

(h(ν)− h(µ))+ + f(ν)
)

≤ lim sup
ν→µ

(

(h− hk)(ν) + (hk(ν)− h(µ))+ + f(ν)
)

≤ lim sup
ν→µ

((h− hk)(ν) + f(ν))

and finally by taking the limit in k we get for all µ ∈ M(X,T )

lim sup
ν→µ

(

(h(ν)− h(µ))
+
+ f(ν)

)

≤ Tsexf(µ)

The inclusion of the sets of fixed points follows then immediately from the
inequality Tsexf ≥ f which holds for all f ∈ S(X,T ). �

From this last lemma we deduce easily the following corollary :

Corollary 1 Let (X,T ) be a dynamical system admitting a symbolic extension.
Then the entropy function h is a difference of nonnegative upper semicontinuous
functions. In particular it is the case for Cr interval maps with r > 1 and C2

surface diffeomorphisms; more precisely we have then that h+
d
∑

i χ
+
i

r−1 is upper
semicontinuous.

On the other hand there exist dynamical systems with continuous entropy
function h but without symbolic extension (Example 2.20 of [3]). In particular
hsex 6= husc and there exist fixed points of Tusc which are not fixed points of
Tsex. However recall that when (X,T ) admits symbolic extensions then hsex

and thus husc coincide with h on a dense Gδ set of M(X,T ) (Proposition 3.1
of [3]). When the entropy is a difference of nonnegative upper semicontinuous
function then husc coincides also with h on a residual set for similar reasons.

To compare with the Realization Theorem of Downarowicz and Serafin (The-
orem 3) observe that any difference of nonnegative upper semicontinuous func-
tions is a nondecreasing limit of upper semicontinuous functions. Finally let us
mention that a real function φ defined onM(X,T ) can be written as a difference
of nonnegative upper semicontinuous functions if and only if there exists a se-
quence of continuous functions (φn)n with φ(µ) =

∑

n φn(µ) and
∑

n φn(µ) ≤ C
for all µ ∈ M(X,T ) and for some constant C [14].

As a function of the first Baire class the set of continuity points of any
difference of upper semicontinuous functions is a dense Gδ set. In particular the
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examples of T.Downarowicz and S.Newhouse discussed in Section 3.2 have no
symbolic extensions by Corollary 1 (consider the restriction of h to E). This
gives an alternative proof of Proposition 4.4 of [19]. We recall that for a large
class of dynamical systems the continuity points of the entropy function are
measures of zero entropy. Indeed periodic measures are often dense in the
set of invariant probability measures (which implies also that generic invariant
measures have zero entropy, see Proposition 5.4 of [9]). For example it is the case
of dynamical systems satisfying the so-called specification property (uniformly
hyperbolic dynamical systems [27], continuous piecewise monotone maps [15],...
) and it is also the case of C1 generic diffeomorphisms [9]. Continuity points
are also zero entropy measures for C1+α surface diffeomorphisms because in this
case the invariant measures with positive entropy are approximated by periodic
measures [17].

3.4 Cr examples and related questions

In all the known smooth examples with large symbolic extension entropy [2],[19],[7],
we accumulate horseshoes on periodic measures at infinitely many scales. The
same process gives large lower bounds on husc according to the following lemma.
It follows that these examples are relevant from the point of view of the con-
tinuity properties of the entropy independently of the question of symbolic ex-
tensions.

Lemma 5 Let (X,T ) be a dynamical system and let µ be a T -invariant prob-
ability measure. We assume that for all k ∈ Z

+, there exist periodic points
(p(i1,...,i2k+1))(i1,...,i2k+1)∈Z+2k+1 and invariant probability measures (µ(i1,...,i2k))(i1,...,i2k)∈Z+2k

(we put Z+0
= {∅} and µ∅ = µ) such that :

• for all (i1, ..., i2k) ∈ Z
+2k

, the periodic measures γp(i1,...,i2k+1)
are converg-

ing to µ(i1,...,i2k) when i2k+1 goes to +∞;

• for all (i1, ..., i2k+1) ∈ Z
+2k+1

, the measures µ(i1,...,i2k+2) are converging
to γp(i1,...,i2k+1)

when i2k+2 goes to +∞;

• the limits lim
i1→+∞

(

lim
i2→+∞

...

(

lim
i2k+2→+∞

h(µ(i1,...,i2k+2))

)

...

)

exist;

Then for all n ∈ Z
+ :

T n
usc0(µ) ≥

n
∑

l=1

lim sup
i1→+∞

(

lim
i2→+∞

...

(

lim
i2l→+∞

h(µ(i1,...,i2l))

)

...

)

Proof : The proof is done by induction on n. Assume the lemma is true for
n− 1 and let us prove it for n. By the induction hypothesis we have for every
µi1,i2

T n−1
usc 0(µi1,i2) ≥

n
∑

l=2

lim
i3→+∞

(

lim
i4→+∞

...

(

lim
i2l→+∞

h(µ(i1,...,i2l))

)

...

)

12



Then

T n
usc0(γpi1

) ≥ lim sup
i2

(

h(µi1,i2) + T n−1
usc 0(µi1,i2)

)

≥ lim
i2

h(µi1,i2) +

n
∑

l=2

lim
i2

(

lim
i3

(

lim
i4

...

(

lim
i2l

h(µ(i1,...,i2l))

)

...

))

Then by upper semicontinuity we conclude that

T n
usc0(µ) ≥ lim sup

i1

T n
usc0(γpi1

)

≥
n
∑

l=1

lim
i1

(

lim
i2

...

(

lim
i2l

h(µ(i1,...,i2l))

)

...

)

�

We finally ask three questions :

Question 1 We mentioned examples of (topological) dynamical systems with
hsex = +∞ and husc = h. Do there exist examples of Cr dynamical systems
with 1 ≤ r < +∞ with hsex 6= husc? with hsex = +∞ and husc = h?

Question 2 The entropy function of a (topological) dynamical system may be
continuous and nonzero. What about Cr dynamical systems with 1 ≤ r ≤ +∞?
If T is a Cr dynamical system with 1 ≤ r ≤ +∞, must every continuity point of
the entropy function have zero entropy?

Question 3 We have seen that the existence of symbolic extensions is stronger
than the property of the entropy function to be a difference of nonnegative upper
semicontinuous functions. Regarding Conjecture 1 one can ask directly : Is
the entropy function of any Cr dynamical system with r > 1 a difference of
nonnegative upper semicontinuous functions? Does it characterize the entropy
function of Cr systems with r > 1, i.e. given a Choquet simplex K and a
nonnegative function f : K → R

+ which is a difference of nonnegative upper
semicontinuous functions, does there exist a Cr dynamical system (M,T ) with
r > 1 on a compact manifold M and an affine homeomorphism a : M(M,T ) →
K such that f ◦ a is the entropy function of (M,T )?

Acknowledgements : I would like to thank T.Bousch for a useful discus-
sion about Knaster-Tarski theorem.
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[21] M.Misiurewicz, Diffeomorphism without any measure with maximal en-
tropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21
(1973), 903-910.

[22] M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad.
Polon. Sci. Ser. Sci. Math., 27 (1979), 167-169.

[23] S.Newhouse, Continuity properties of entropy, Annals of Math., 129
(1989), 215-235.

[24] V. Nemyckii, V. Stepanov, Qualitative Theory of Differential Equations,
Princeton University Press, Princeton, NJ, 1960.

[25] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and
Chaos (Studies in Advanced Mathematics), Hardcover, 2nd New ed.,
CRC Press, 1999.

[26] S.Ruette, Mixing Cr maps of the interval without maximal measure,
Israel J. Math., 127 (2002), 253-277.

[27] K. Sigmund, Generic properties of invariant measures for Axiom A-
diffeomorphisms, Invent. Math. 11 (1970), 99-109.

[28] A.Tarski, A lattice-theoretical fixpoint theorem and its applications, Pa-
cific Journal of Mathematics, vol. 5 (1955), pp 285-309

E-mail address : David.Burguet@cmla.ens-cachan.fr

15


