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Abstract We hereby study the stability of a massless probe orbiting around an oblate

central body (planet or planetary satellite) perturbed by a third body, assumed to lay

in the equatorial plane (Sun or Jupiter for example) using a Hamiltonian formalism.

We are able to determine, in the parameters space, the location of the frozen orbits,

namely orbits whose orbital elements remain constant on average, to characterize their

stability/unstability and to compute the periods of the equilibria.

The proposed theory is general enough, to be applied to a wide range of probes

around planet or natural planetary satellites.

The BepiColombo mission is used to motivate our analysis and to provide specific

numerical data to check our analytical results.

Finally, we also bring to the light that the coefficient J2 is able to protect against

the increasing of the eccentricity due to the Kozai-Lidov effect and the coefficient J3

determines a shift of the equilibria.

Keywords Methods: analytical study · Stability · Long-term evolution · Kozai

resonances · Frozen Orbit equilibria

1 Introduction

BepiColombo (MPO and MMO orbiters) is a joint European and Japanese space agen-

cies mission aimed at studying the planet Mercury. The dynamics of the rotation of

Mercury has been analyzed, for example, in D’Hoedt and Lemâıtre (2008); D’Hoedt

et al. (2010); Dufey et al. (2009) . . . The MPO (Mercury Planetary Orbiter) will be

brought into a polar elliptical orbit around Mercury with an inclination of 88–90◦, an

eccentricity of 0.1632 and a semi-major axis of 3 394 km. The MMO (Mercury Magne-

tospheric Orbiter) will also be brought into a polar elliptical orbit with an eccentricity

of 0.6679 and a semi-major axis of 8 552 km.
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Actually polar orbits are very interesting for scientific missions to planetary satel-

lites (with near polar low-altitude) or to planet (with high-eccentric high-altitude).

The orbital dynamics of such space probes is governed by the oblateness (J2 effect) of

the central body around which the space probe is orbiting and the gravity field from

the third body. A well-known effect of the third-body perturbation is the change in

the stability of circular orbits related to orbit inclination. This effect is a natural con-

sequence of the Kozai-Lidov resonance (Kozai 1962; Lidov 1962). Generally the final

fate of such a satellite is the collision with the central body. However if the radius of

the central body is small, large cyclic variations in eccentricity are possible without

collision; for examples see Russell and Brinckerhoff (2009). Therefore the control of the

orbital eccentricity leads to the control of the satellite lifetime.

Scheeres et al. (2001) studied near-circular orbits in a model that included both the

third body’s gravity and J2. In addition San-Juan et al. (2006) studied orbit dynamics

about oblate planetary satellites using a rigorous averaging method. Paskowitz and

Scheeres (2006) added the effect of the coefficient J3. These authors mainly focused

their attention to an orbiter around planetary satellites especially for Europa. So they

did not take into account the eccentricity of the third body and they detailed the near-

circular orbits. Recently Lara et al. (2010) studied the planar elliptic restricted three-

body problem including the J2 and J3 coefficients, using Deprit’s perturbation method

allowing to build a doubly averaged Hamiltonian and to provide the transformation

between osculating and mean initial conditions. However they were not able to provide

either the new stable horizontal equilibrium induced by the J2 term, or the analytical

formulation of the position of the equilibria and their periods.

Our purpose is to build an easy method to find a simplified Hamiltonian model,

as simple as possible, which will reproduce the motion of probes orbiting an oblate

central body also taking into account the third body effect with a non-null third body

eccentricity. Especially we are looking for the conditions that give rise to frozen orbits.

Frozen orbits are orbits that have orbital elements constant on average. These particular

orbits are able to keep constant the eccentricity. Therefore in a neighbourhood of these

orbits there is a stability area where even a limited control could be used to avoid the

crash with the central body. Here we are interested in determining all generic frozen

orbits, not only the circular equilibria. Notice that also periodic orbits can be used

to find high fidelity orbits including the first order gravity effects and arbitrary order

gravity field terms (Lara and Russell 2007; Russell and Lara 2007).

Besides the oblateness (J2 gravity term) of the central body and the gravity effect

of the third body, our averaged model takes also into account the eccentricity of the

orbit of the third body. Moreover let us observe that our results are given in closed form

with respect to the eccentricity and inclination of the probe, namely we do not perform

any power series expansion; therefore, our theory applies for arbitrary eccentricities and

inclinations of the space probe, and is not limited to almost-circular orbits. We can

thus conclude that the theory is general enough to be applied to a wide range of probes

around a planet or around a natural planetary satellite and, can be formulated and

presented in a general way that allows extension of the results to other cases.

The Mercury orbiter mission (BepiColombo) is used to motivate our analysis and

to provide specific numerical data to check our analytical results.

We are able to provide the location of all frozen orbits and study their stability as

a function of the involved parameters, using implicit equations and graphics. Finally

we give the analytical expressions of the periods at the stable equilibria.
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The analytical results are verified and confirmed using dedicated numerical simu-

lations of the complete model.

To conclude, we discuss the effect of protection of J2 on the increase of the eccen-

tricity due to Kozai-Lidov effect and the apparition of an asymmetry caused by the

addition of the coefficient J3.

These equilibria and their periods can be modified by including higher order terms

of the gravity field. Except for resonant relations between the frequencies of the satellite

and the central body, they will not change drastically the behavior of our phase space.

Henceforth, the frozen orbits presented here provide good initial conditions to find

periodic or frozen orbits of the full model.

2 Motivation: numerical exploration

For the purpose of our study, we consider the modeling of a space probe subjected

to the influence of Mercury’s gravity field (in the following sections Mercury will be

denoted by “central body”) and the gravitational perturbations of the Sun (noted

“third body”) as well as to the direct solar radiation pressure without shadowing effect.

As a consequence the system of differential equations describing the probe motion is

given by

r̈ = r̈pot + r̈⊙ + r̈rp , (1)

where r̈pot is the acceleration induced by the Mercury’s gravity field which can be

expressed as the gradient of the following potential

Upot(r, λ, φ) = −µ

r
+
µ

r

∞X
n=2

nX
m=0

�
Rp

r

�n

Pm
n (sinφ)(Cnm cos mλ+Snm sin mλ) , (2)

where the quantities Cnm and Snm are the spherical harmonics coefficients of the

hermeopotential. µ and Rp are respectively the gravitational constant and equatorial

radius of Mercury. The quantities (r, λ, φ) are the hermeocentric spherical coordinates

of the space probes. Pm
n are the associated Legendre polynomials.

The acceleration r̈⊙ results from the gravity interaction with the Sun and can be

expressed with respect to Mercury’s centre of mass:

r̈⊙ = −µ⊙

�
r − r⊙

‖r − r⊙‖3
+

r⊙

‖r⊙‖3

�
, (3)

where r and r⊙ are the hermeocentric coordinates of the space probe and of the Sun

respectively. The quantity µ⊙ is the gravitational constant of the Sun. This acceleration

can also be expressed as the gradient of the following potential:

U⊙ = µ⊙

�
1

‖r − r⊙‖ − r · r⊙

‖r⊙‖3

�
. (4)

Regarding the direct solar radiation pressure, we assume an hypothetically spherical

space probe with optical properties defined by a single scalar coefficient. The albedo of

Mercury is ignored and Mercury’s shadowing effects are not taken into account either.

Similarly, the acceleration induced by the direct solar radiation pressure is modeled by

r̈rp = Cr Pr

�
a⊙

‖r − r⊙‖

�2
A

m

r − r⊙

‖r − r⊙‖ , (5)
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where Cr is the adimensional reflectivity coefficient (fixed to 1 in the rest of the paper)

which depends on the optical properties of the space object surface; Pr = 4.56 ×
10−6 N/m2 is the radiation pressure for an object located at the distance of 1 AU from

the Sun; a⊙ is a constant parameter equal to the mean distance between the Sun and

Mercury. The coefficient A/m is the area-to-mass ratio of the space object and will be

fixed to 0.01m2/kg.

It is worth noting that we model the gravity potential of the central body only using

the J2, C22 and J3 coefficients. In our implementation, we choose the highly accurate

Solar System ephemeris given by the Jet Propulsion Laboratory (JPL) to provide the

positions of the Sun and Mercury (Standish 1998). We adopt the variable step size

Bulirsch-Stoer algorithm (see e.g. Stoer and Bulirsch 1980) to numerically integrate

the differential equation (1). Let us note that, for the purpose of validation, we also

use a second numerical integrator DOP853 (an explicit Runge-Kutta method of order

8(5,3) with stepsize control due to Dormand & Prince (Hairer et al. 1993)).

In Figure 1 we report the results of a numerical integration of the system of equa-

tions (1) for a set of 19 600 orbits, propagated over a 200 year time span with a

entry-level step size of 300 seconds. We consider a set of initial conditions defined

by an eccentricity grid of 0.005 and a semi-major axis grid of 35 km, spanning the

[2600, 7600] km range. The other fixed initial conditions are i0 = 90◦ for the inclina-

tion, Ω0 = 67.7◦ ω0 = −2◦ for the longitude of the ascending node and the argument

of periherm, respectively; the mean anomaly at epoch is fixed to M0 = 36.4◦ on 14

September 2019. The area-to-mass ratio A/m = 0.01m2/kg. These values have been

fixed by the initial conditions of BepiColombo mission found in Garcia et al. (2007).

Fig. 1 The eccentricity computed as a function of the initial eccentricity e0 and the initial
semi-major axis a0. The equations of motion include the central body attraction, the harmonics
J2, C22, J3, the solar interaction as well as the perturbing effects of the solar radiation pressure
(A/m = 0.01m2/kg). The eccentricity step is 0.005 and the semi-major axis step is 35 km.
The initial conditions are i0 = 90◦, Ω0 = 67.7◦, ω0 = −2◦ and M0 = 36.4◦. The integration
time is 200 years from epoch fixed at 14 September 2019. The patterns have been obtained by
plotting the amplitude of variation of the eccentricity in left panel and the logarithm of the

second derivative, log | ∂
2
ν

∂k ∂h
|, of the fundamental frequency of the eccentricity vector evolution

in right panel.
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We show the amplitude of the eccentricity (that is the difference between the max-

imum and minimum eccentricity reached during the integration) of each orbit in the

left panel of Figure 1. For each orbit, using the Numerical Analysis of Fundamental

Frequencies, for short NAFF (Laskar 1988, 2005), we also calculate the fundamental fre-

quency (noted ν) of the evolution of the eccentricity vector (k = e cosω, h = e sinω).

We plot the logarithm of the second derivative (noted log | ∂2ν
∂k ∂h |) of this frequency

in the right panel of Figure 1, namely an indicator of the diffusion in the frequency

space, hence also of the regularity of the orbit when it assumes small values. For more

details concerning this use of frequency analysis, see Lemâıtre et al. (2009) where the

frequency analysis has been used to study resonances in Geostationary Earth Orbits.

First, let us observe that the white zone in Figure 1 corresponds to orbits that crash

onto central body’s surface. Second we distinguish a curve where the variation of the

eccentricity amplitude is null (dashed black line). On the right panel we plot log | ∂2ν
∂k ∂h |

(where ν is the fundamental frequency of the signal (k, h)) and we also distinguish on

the left of the dashed black line (null-variation of eccentricity) a larger value of the log

of the derivative that could correspond to a separatrix.

These structures will be analyzed and explained using a simplified model, that

takes into account the central body attraction with the J2 harmonic coefficient and

the third body gravitational effect. We observed that the solar radiation pressure (for

further details on the effect of direct solar radiation onto BepiColombo, we refer to

Garcia et al. (2007) and Lucchesi and Iafolla (2006)) and the C22 coefficient do not

play any role in these structures, hence these effects will be absent in the simplified

model.

3 The Hamiltonian Formalism

The aim of this section is to introduce the Hamiltonian (11) already found in Tremaine

et al (2009). Kepler’s Hamiltonian describing the motion of a test particule orbiting an

isolated point mass M is

HK =
1

2
v2 − GM

r
= −GM

2 a
(6)

where G is the gravitational constant, r is the planetocentric position of the particule,

v = ṙ, r = |r| and a is the semi-major axis of the particule.

To expand our potential, we use a vectorial method developed by Tremaine et al

(2009) and used, for example, by Farago and Laskar (2010).

The quadrupole potential arising from an oblate planet (“central body”) is (Eq. 2

with n = 2)

ΦJ2(r) =
GMJ2R

2
p

r3
P2(sinφ) =

GMJ2R
2
p

r3
P2

�
cos
�π
2

−φ
��

=
GMJ2R

2
p

2r5

h
3(r ·np)2−r2

i
(7)

where np is the unit vector oriented to the central body’s spin axis (see Figure 2). M ,

Rp and J2 are respectively the mass, the radius and the oblateness coefficient of the

central body (planet or natural satellite).

We assume that r ≪ a3b (where the subscript 3b is related to the third body), then

the potential (4) can be formulated in terms of the Legendre polynomials (where Ψ is
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the planetocentric angle between the third body and the particule):

U3b =
GM3b

r3b

∞X
n≥2

�
r

r3b

�n

Pn(cosΨ) (8)

Now, we only keep the second order Legendre polynomial (n = 2) and we average over

the third body orbital period. So, we obtain the quadrupole in terms of the third body

gravitational effect

Φ3b(r) =
GM3b

4a3
3b

(1 − e2
3b

)3/2

h
3(r · n3b)

2 − r2
i

(9)

where n3b is the normal to the central body orbit. M3b , a3b and e3b are respectively the

mass, the semi-major axis and the eccentricity of the third body. This quadrupole term

takes into account the eccentricity (e3b) of the third body (e.g. Sun or Jupiter) around

the central body (planet or natural satellite). Let us stress the fact that Paskowitz

and Scheeres (2004); San-Juan et al. (2006); Scheeres et al. (2001) do not include this

eccentricity factor in their formulation, while for a Sun-Mercury-orbiter application,

this will be an important contribution.

We then average over the Keplerian orbit of the test particule described by the

following elements: a semi-major axis a, an eccentricity e, and an orientation specified

by the unit vectors n along the angular momentum vector, u toward the pericenter

and v = n × u. We have (Brouwer and Clemence 1961)

< r2 > = a2
�
1 + 3

2e
2
�
,

�
1

r3

�
=

1

a3(1 − e2)3/2
,

< (r · u)2 > = a2
�

1
2 + 2e2

�
, < (r · v)2 > = a2

�
1
2 − 1

2e
2
�
,�

(r · u)2

r5

�
=

�
(r · v)2

r5

�
=

1

2a3(1 − e2)3/2
.

(10)

where < > denotes the average over M , the mean anomaly of the orbit.

Let j ≡
p

1 − e2 n , e = eu, τ =

r
GM

a3
t, εJ2 =

J2R
2
p

a2
and ε3b =

M3ba
3

Ma3
3b

(1 − e2
3b

)3/2

where e is the eccentricity vector and εJ2 ≥ 0, ε3b ≥ 0. We finally define a dimensionless

(divided by GM/a) Hamiltonian

K′ = −1

2
+

εJ2

4(1 − e2)5/2

h
1−e2 −3(j ·np)2

i
+

3ε3b

8

h
5(e ·n3b)

2 −(j ·n3b)
2 −2e2

i
, (11)

That describes the secular equations of motion of a test particule around an oblate

central body perturbed by the third body gravitational effect. Let us summarize the

used assumptions:

1. the precession rate of the central body spin due to third body gravity is negligible;

2. the satellite is a massless test particule;

3. the third body is far enough from the central body such that the third body gravity

can be approximated by a quadrupole;

4. the satellite is far enough from the central body so that the potential from the

central body can be approximated as a monopole plus a quadrupole;

5. the perturbing forces (ΦJ2 +Φ3b) are weak enough so that the secular equations of

motion can be used to describe the orbital motion;
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6. there are not resonant relations in mean motions between the frequencies of the

satellite and the frequencies of the central body.

Let us remark that San-Juan et al. (2006) already studied the orbit dynamics about

planetary satellites using an extensive averaging method based on the Lie transforms

to obtain averaged equations involving higher orders whose result is the introduction of

an asymmetry for direct and retrograde satellite. Our simplified model will not be able

to capture this asymmetry because the resulting Hamiltonian (13) will be symmetric

in the satellite inclination; thus direct and retrograde satellites will have the same

behavior.

Let us now make some assumptions suitable in the case of a non-inclined central

body orbit (e.g. Sun-Mercury-orbiter system or Jupiter-Europa-orbiter system). We

hereby consider an equatorial third body, thus np = n3b . We also set G =
√

1 − e2

and H = G cos ı where j · np =
√

1 − e2 cos ı. To eliminate an extra parameter, we

divide the Hamiltonian by the coefficient εJ2 and we introduce the coefficient γ

γ =
ε3b

εJ2

=
M3b

Ma3
3b

(1 − e2
3b

)3/2

a5

J2R
2
p
. (12)

In Figure 2, we represent the geometry for the general problem (on the left) and for

our simplified one (on the right).
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n

Sa
te

lli
te

 o
rb

ita
l p

la
ne

n   j

e

n

p

3b

Third body orbital plane
n

Sa
te

lli
te

 o
rb

ita
l p

la
ne

n   j

e

n

p

3b

Third body orbital plane
Equatorial plane

Fig. 2 Reference planes, for the general theory on the left and for our particular case on the
right.

The averaged Hamiltonian is then8>>>><>>>>: K′ =
εJ2

4G3

�
1 − 3

H2

G2

�
+

3ε3b

8

�
5(1 −G2)

�
1 − H2

G2

�
sin2 ω −H2 − 2 + 2G2

�
K

′/ε
J2

noted
by K⇐⇒ K =

1

4G3

�
1 − 3

H2

G2

�
+

3γ

8

�
5(1 −G2)

�
1 − H2

G2

�
sin2 ω −H2 − 2 + 2G2

�
.

(13)

This one degree of freedom Hamiltonian is independent of the ascending node Ω. If we

take an inclined third body, this ascending node takes place in the Hamiltonian and we
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obtain a two degree of freedom problem which is non integrable. If we take γ = 0 (ε3b =

0, namely we only take into account the oblateness effect), we have the well-known

circular dynamics of the eccentricity vector due to the J2 coefficient with an elliptical

fixed point in the semi-equinoctial elements (k, h) = (
√

1 −G2 cosω,
√

1 −G2 sinω). If

we take γ → ∞ (εJ2 = 0 i.e. only the third body contribution does matter), we find

the Kozai-Lidov Hamiltonian which can be found in a similar formalism in Paskowitz

and Scheeres (2004) (with e3b = 0). The Hamiltonian (13) (with e3b = 0) can also be

found in Scheeres et al. (2001).

Table 1 Connection between the semi-major axis (km) of the probe around the central body
and the coefficient γ. The rows “Min.”, “Missions” and “Hill” give the values of γ with respect
to the semi-major axis respectively equal to the radius of the central body, to one space mission
and to the radius of Hill’s sphere. In the last columns, we take two particular values of γ (1/7
and 0.5) that will play a relevant role in the next sections. For Europa the minimum value of
γ is 1.153, so this cell is empty.

Min. Missions Hill Particular values

Mercury
a (km) 2 439.990

Messenger
175 295 4 350 5 577

10 136.2
γ 0.008 9.9136 1.533 × 107 1/7 0.5

Venus
a (km) 6 051.8

Venus Express
1 004 270 9 350 12 010

39 176.8
γ 0.008 184.485 2.042 × 109 1/7 0.5

Earth
a (km) 6 378.137

Meteosat
1 471 506 36 350 46 670

42 164.14
γ 2.38 × 10−5 0.30107 1.559 × 107 1/7 0.5

Mars
a (km) 3 396.190

Mars Express
982 748 26 150 33 580

9 311.95
γ 5.288 × 10−6 8.195 × 10−4 1.073 × 107 1/7 0.5

Europa
a (km) 1 565.0

EJSM/JEO
13 529

3 222
γ 1.153 42.646 5.568 × 104
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Fig. 3 Relation between γ and the semi-major axis of a test particule orbiting the central
body (terrestrial planets or Europa). The third body are respectively the Sun and Jupiter.

For illustration, we show in Table 1 and draw in Figure 3 the value of the coefficient

γ with respect to the semi-major axis for a probe around a terrestrial planet and around
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Europa. This coefficient can be related to other parameters used in the literature. For

example, it can be linked to the coefficient β in San-Juan et al. (2006), to the coefficient

ǫ used in Scheeres et al. (2001) or to the coefficient J̃2 in Lara et al. (2010).

4 Secular Equations of Motion

From the doubly averaged Hamiltonian (13), we obtain the equations of motion:

Ω̇ = −H
(

3

2G5
+

3γ

8

�
10

G2
(1 −G2) sin2 ω + 2

�)
(14)

Ḣ = 0 (15)

ω̇ =
3γ

4

�
5

�
H2

G3
−G

�
sin2 ω + 2G

�
+

3

4G4

�
5
H2

G2
− 1

�
(16)

Ġ = −15γ

4
(1 −G2)

�
1 − H2

G2

�
sinω cosω . (17)

Developing these equations in eccentricity up to second order, we can obtain the equa-

tions of Scheeres et al. (2001). In the following, we will adopt a complementary ap-

proach, keeping functions of eccentricity and inclination, without power series develop-

ments, in such a way that our results hold for arbitrary eccentricities and inclinations.

From the previous set of equations, we observe that H2 = G2 cos2 ı is a constant of

motion as in the Kozai-Lidov effect (Kozai 1962; Lidov 1962). Besides, let us remark

that 0 ≤ G ≤ 1, thus 0 ≤ H ≤ G ≤ 1 and moreover γ > 0. The first equation (14) is

equal to zero only for H = 0 corresponding to exact polar inclination. Moreover the

ascending node does not affect any of the other orbital elements. The last equation

(17) equals to zero for G = 1, ω = kπ/2, k ∈ N or H = G, namely ı = 0◦, that is the

planar case. The third equation (16) could equal to zero for ω = 0, π or ω = ±π/2. We

analyze these equations in next section to find the equilibria.

5 Frozen Orbit Solutions

A frozen orbit is characterized by no secular change in orbital eccentricity and argument

of pericenter. It has constant values of e, ı and ω on average, this results in fixed

geometrical size and locations, apart from short period oscillations.

We have already observed that equilibria appear when G = 1 or ω = 0, π or

ω = ±π/2. We separatly deal with these three different cases. For each of them, we

give the number of equilibria, the conditions of existence and we calculate their stability.

We do not deal with the singularity G = 0 (⇔ e = 1) because it corresponds to

an escape of the orbiter. We will show that the equilibrium G = 1 always exists. So to

begin, we deal with the non-circular case G 6= 1 (eccentricity 6= 0).
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5.1 Non-circular case G 6= 1 (eccentricity 6= 0)

5.1.1 Vertical equilibria – Kozai-Lidov equilibria: cosω = 0 ⇔ ω = ±π/2

The conditions to simultaneously equal to zero the equations (16) and (17) is:8<: H2 =
G2

5

1 + 3G5γ

1 +G3γ
cosω = 0

(18)

Because 0 ≤ G < 1 then the first equation of (18) implies that

H2 <
1 + 3γ

5γ + 5
. (19)

Let us observe that this is also the value of H2 for which one real root does exist. If

this condition is violated then no real root exists.

Actually we determine1 a region2 given by the implicit equation8>><>>: 864 000H16γ6 +
�
2 963 520H12 − 1 024H10

�
γ4

+
�
1 512 630H8 − 13 965H6 − 22 235 661H10

�
γ2 + 12 = 0

and H2 ≤ 1
3087

(20)

where it is possible to find three real roots. We will show that these three reals roots

appear for eccentricities larger than 0.996 59. Being a case close to an escape of the

orbiter, we will leave to section 7.3.3 a discussion of this “local deformation”.

If the oblateness term is neglected (εJ2 ≃ 0 ⇔ γ → ∞), the existence condi-

tion becomes independent of the physical parameter and reduces to sin2 ı < 2
5 or

arccos
q

3
5 ≃ 39.23◦ ≤ ı ≤ 144.77◦ which corresponds to Kozai-Lidov critical inclina-

tion.

We also analyze the stability of these equilibria (18). The Jacobian of the Hamil-

tonian (13) evaluated at the equilibrium (18) (noted by |Eq.(18) or Gkl being the value

of G at the Kozai-Lidov equilibrium) is given by:8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
∂2K
∂G2

����
Eq.(18)

=
3

2G5

�
2 − 15

H2

G2

�
− 9γ

4

�
1 + 5

H2

G4

�����
Eq.(18)

=
3

4G5
kl

1

1 + γG3
kl

�
− 2 + γG3

kl − 21γG5
kl − 12γ2G8

kl

�
∂2K
∂ω2

����
Eq.(18)

= −15

4
γ(1 −G2)

�
1 − H2

G2

�����
Eq.(18)

= −3

2
γ(1 −G2

kl)

 
2 −G5

klγ

1 +G3
klγ

!
∂2K
∂G ∂ω

����
Eq.(18)

=
∂2K
∂ω ∂G

����
Eq.(18)

= 0.

(21)

1 This can be done calculating the discriminant of the polynomial given by the first eq. 18
to find the roots (G).

2 This region is the (G) zone in Figure 13.
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In the equations (21), the term ∂2K
∂ω2

���
Eq.(18)

is always strictly negative (if G < 1). Then

the equilibrium is a stable point if

1

G5

�
2 − 15

H2

G2

�
− 3γ

2

�
1 + 5

H2

G4

�����
Eq.(18)

< 0 ⇐⇒ −2 − 21γG5
kl + 15γGklH

2 < 0 .

(22)

This equation (22) is always satisfied for all γ > 0, H2 < 1+3γ
5γ+5 and Gkl < 1 (ekl > 0).

Therefore, for these conditions, we have two opposite stable points at ω = ±π/2 and

G such that H2 = G2

5
1+3G5γ
1+G3γ

.

For the inclination ı = 90◦ (H2 = 0) the equilibrium exists for the particular value

of G = 0 (e = 1). This case is only theoretical and should not be considered, because

it would correspond to an escape of the orbiter. In Figure 4 we give the location of the

equilibria G (18) in the parameter space (γ,H2).

Fig. 4 Values of G at Kozai-Lidov stable (Eqs. 18 and 19) equilibria (vertical equilibria:
ω = ±π/2) computed as a function of H2 and γ. These equilibria are always stable. The color
code indicates the value of G at the equilibrium.

5.1.2 Horizontal equilibria: sinω = 0 ⇔ ω = 0, π

The conditions to simultaneously equal to zero the equations (16) and (17) are:8<: H2 =
G2

5
(1 − 2G5γ)

sinω = 0.
(23)

Using “Le théorème d’algèbre de Sturm” (Sturm 1835) we calculate the number of roots

(G) in the range 0 ≤ G < 1 of the equation (23) as a function of the parameters γ and

H2. For γ > 0 this equation has

• one real root, equal to 0 if H2 = 0 and γ < 1/2.

• three real roots (one equal to 0 and the other two opposite) if H2 = 0 and γ ≥ 1/2.



12

• three real roots (one equal to 1 and the other two opposite) if 0 < H2 < 1−2γ
5 ;

• five real roots (one equal to 1 and the other ones opposite two by two) if γ ≥ 1/7

and 1−2γ
5 < H2 <

(7γ)−2/5

7 ;

• one real root equal to 1 otherwise.

In Figure 5, we give the location of the equilibria G (23) in the space (γ,H2). The

particular case G = 1 will be treated in the next section. We can also analyze the

stability of these equilibria (23). The Jacobian of the Hamiltonian (13) evaluated at

the equilibrium (23) (noted by |Eq.(23) or Ghor, being Ghor the value of G at the

equilibrium) is given by:8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
∂2K
∂G2

����
Eq.(23)

=
3

2G5

�
2 − 15

H2

G2

�
+

3γ

2

����
Eq.(23)

=
3

2G5
hor

�
− 1 + 7γG5

hor

�
∂2K
∂ω2

����
Eq.(23)

=
15

4
γ(1 −G2)

�
1 − H2

G2

�����
Eq.(23)

=
3

2
γ(1 −G2

hor)(2 +G5
horγ)

∂2K
∂G ∂ω

����
Eq.(23)

=
∂2K
∂ω ∂G

����
Eq.(23)

= 0.

(24)

In the equations (24), the term ∂2K
∂ω2

���
Eq.(23)

is always strictly positive (if G < 1). Then

the equilibrium is a stable point if

γ >
1

G5

�
15
H2

G2
− 2

�
⇐⇒ G5

hor >
1

7γ
. (25)

Using this equation at the equilibrium (23), we obtain conditions for stability of the

stable point (G 6= 1 ⇔ e 6= 0)8>><>>: 1 − 2γ

5
< H2 <

1

7

�
1

7γ

�2/5

and
1

7
≤ γ .

(26)

So the condition to have an unstable equilibrium is given by

γ <
1

7
or H2 <

1 − 2γ

5
or H2 >

1

7

�
1

7γ

�2/5

. (27)

In the Figure 5, we notice that when both unstable and stable equilibrium exist,

the unstable equilibrium always appears for a value of G lower than that of the stable

point (i.e. for a value of e greater than the one for the stable point).
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Fig. 5 Value of G at stable (on the left) (Eqs. 24 and condition 26) equilibrium and unstable
(on the right) (Eqs. 24 and condition 27) equilibrium, computed as a function of H2 and γ.
The color code indicates the value of G at the equilibrium (horizontal equilibria: ω = 0, π).
The inset on the left panel shows the same plot of left panel but using a wider color code.

5.2 Circular case G = 1 (eccentricity e = 0)

For the case G = 1, we can use a canonical transformation to cartesian coordinates

x =
p

1 −G2 sinω y =
p

1 −G2 cosω (28)

The new Hamiltonian is therefore

K =
1

4

�
1

(1 − x2 − y2)3/2
− 3H2

(1 − x2 − y2)5/2

�
(29)

+
3γ

8

�
5x2

�
1 − H2

1 − x2 − y2

�
−H2 − 2x2 − 2y2

�
for which it is obvious that (0, 0) is always an equilibrium point whose stability can be

studied computing the second derivatives and evaluate them at this equilibrium:8>>>>>>>><>>>>>>>>: ∂2K
∂x2

���
x=0=y

=
3

4
(1 − 5H2) +

3γ

4
(3 − 5H2)

∂2K
∂y2

���
x=0=y

=
3

4
(1 − 5H2) − 3γ

2

∂2K
∂x ∂y

���
x=0=y

=
∂2K
∂y ∂x

���
x=0=y

= 0 .

(30)

So, the condition to have a stability point at x = 0 = y is

H2 <
1 − 2γ

5
or H2 >

1 + 3γ

5γ + 5
; (31)

and thus the condition to have an unstable point at x = 0 = y is

1 − 2γ

5
< H2 <

1 + 3γ

5γ + 5
. (32)
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5.3 Summary of the phase space

In this section we summarize the topology of the various possible phase spaces as a

function of the parameters. We draw (Fig. 6) the bifurcation lines (conditions 19, 26

and 31) in the parameter space (γ,H2). This bifurcation diagram is equivalent to the

upper part of the bifurcation diagram in San-Juan et al. (2006) but here we draw the

bifurcation lines in the general (not linked to a particular central body) space (γ,H2).

Let us observe that the bifurcation diagram presented in figure 3 of Lara et al. (2010)

shows only the conditions (31) because authors were only interested in circular orbits

(when J3 = 0).

The H2 = (7γ)−2/5/7 line stops at the limit γ = 1/7. For this value, this curve

coincides with the H2 = (1 − 2γ)/5 condition. For the Jupiter-Europa-orbiter system,

the minimum value of γ is 1.153 (Tab. 1). Therefore the phase spaces (A) and (E’) do

not exist.

Fig. 6 Bifurcation lines and regions in the parameter space (γ,H2). In the regions (B) and
(C) we have the same number and the same stability of the equilibria but the phase space
is topologically different. These regions are separated by the dashed line implicitily given by
equation (33). For each region there are stable and/or unstable point(s). To visualize these
points, see Fig. 7.

The region (E’) and (F) in magenta color correspond to exact polar orbits (ı = 90◦

thus H2 = 0).

For each region, we attribute a letter and we draw (Fig. 7) a generic contour plot

of the Hamiltonian (13) in the (k, h, ı) physical space. We recall that the motion of

the inclination ı is given by the conservation of the first integral H = G cos ı. We

also draw the projection of these phase spaces in the semi-equinoctial elements space

(k, h) = (
√

1 −G2 cosω,
√

1 −G2 sinω). In this phase space, it is easier to bring to the

fore the stable (green point) and unstable (red cross) equilibria. The (E’) phase space

is trivial, containing only concentric circles in the ı = 90◦ plane, so we do not repoduce

it.

In the Figure (7), we notice that the maximum inclination is always reached at

e = 0. This is explained by the relation H2 =
√

1 − e2 cos ı. This last relation also

gives a maximum bound onto the eccentricity: e ≤
√

1 −H2. Therefore there are some

values of H for which the phase space is visibly restricted in eccentricity. Beyond this

eccentricity, the motion is physically impossible.
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Fig. 7 Examples of some generic contour plots of the Hamiltonian (13) in (k, h, ı) space for
each region of Fig. 6. The inclination ı is given in degrees and the semi-equinoctial elements
(k, h) are given by (k, h) = (

√
1 − G2 cos ω,

√
1 − G2 sin ω). The green point and red cross are

respectively the stable and unstable points. In the polar projection, the radius is the eccentricity
e and the angle is the pericenter ω in degrees.
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Let us observe that the region near the stable equilibria allows designers to control

the variation of the eccentricity even for high eccentricity. We also remark that there

are “dangerous” portions of phase space such as the region around the γ = H2 = 1/7

or near of the (B)-(C) transition. In these regions the dynamics (in a full model) could

strongly change for a small variation of (H2, γ) or (e, ω).

The transition between (B) and (C) phase spaces arises when the energy of the

separatrix at the (0, 0) equilibrium is equal to the energy of the unstable exterior

horizontal equilibrium. This condition gives a new “fictitious” bifurcation line (dashed

line in Figure 6) in the parameter space (γ,H2). To find this line, we evaluate the

Hamiltonian (13) at the unstable equilibrium H2 = G2

5 (1−2G5γ) (Eq.23 and condition

27) and we denote this value by K1. Afterward, we evaluate the Hamiltonian (29) at

the unstable equilibrium (0, 0) (condition 32) and denote the result by K2. We now

assume these two equilibria have the same value of Hamiltonian K and of H2. Then

we can replace H2 by G2

5 (1 − 2G5γ) in K2 and we impose the equality between K1

and K2. Therefore we obtain the condition

γ =
2 + 5G3

hor + 3G5
hor

6G10
hor + 15G3

hor − 21G5
hor

where H2 =
G2

hor

5
(1 − 2G5

horγ) (33)

where Ghor is the unstable horizontal equilibrium i.e. H2 =
G2

hor

5
(1 − 2G5

horγ). We

plot this implicit condition (33) in Figure 6 with a dashed black line. This line joins

the “(1 − 2γ)/5” and “(7γ)−2/5/7” lines at the (γ = 1/7, H2 = 1/7) point.

For the particular case γ → 0 (J2 effect only), we obtain, for all H2, a phase

space with circular motion of the eccentricity. We see that near to value H2 = 1/2

(corresponding to the Molniya3 critical inclination equal to 63.43◦ with G = 1; for more

informations about critical inclination for a massive satellite refer to Breiter and Elipe

2006), the phase spaces (A), (D) and (E) always exist until γ becomes exactly equal to

0. In the opposite case, γ → ∞ (third body effect only), the curve H2 = (7γ)−2/5/7

converges to 0 and the curve H2 = (1 + 3γ)/(5γ + 5) converges to 3/5 (corresponding

to the Kozai-Lidov critical inclination equal to 39.23◦ with G = 1). Then only the

following phase spaces are realizable: (E) (for H2 > 3/5), (D) (for 0 < H2 < 3/5) and

(F) (for H2 = 0) with (F) that degenerates to an unstable point at the center. These

three phase spaces will be shown in Figure 12.

In Figure 8, we show how the stable and unstable equilibria evolve, appear and

disappear in each region and during the transition between the regions. We take a

vertical section in Figure 6 at γ = 0.4. This section crosses the regions (A), (C), (B),

(D) and (E). We draw the value of the eccentricity at the stable (solid color lines) and

unstable (dashed color lines) equilibria with respect to H2. The vertical dashed black

lines mark the boundary of the regions. The numbers give the number of equilibria

with this value of e. For example, 2 in magenta dashed line means that there are two

unstable equilibria with the same value of e, respectively for ω = 0 and ω = π.

At the transition between (A) and (C), the central (e = 0) stable point bifurcates

in two horizontal stable points (e 6= 0 and ω = 0, π) and one unstable point (e = 0).

At the transition between (B) and (D), the two unstable and the two stable horizontal

(ω = 0, π) equilibria converge to the same value of e and cancel out. At the transition

3 At this inclination, due to J2 effect, the argument of perigee remains nearly constant for
a long period of time. Molniya orbits are named after a series of Soviet/Russian Molniya
communications satellites which have been using this type of orbit since the mid 1960s.
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Fig. 8 For a vertical section (γ = 0.4) in the Figure 6, value of the eccentricity at unstable
(dashed color lines) and stable (solid color lines) equilibria with respect to H2. The numbers
give the number of equilibria for each curve.

between (D) and (E), the two stable Kozai-Lidov equilibria (ω = ±π/2) come close

to 0 and cancel out with the central unstable equilibrium to give one central stable

equilibrium. We remark that the transition between (C) and (B) is not characterized

by a change of the equilibria.

5.4 Period at the equilibrium

We are now interested in the period of the eccentricity vector at the equilibrium. This

will be done by linearizing in a neighborhood of the equilibrium. Then the Hamil-

tonian close to the equilibrium is given by (the subscript eq. means “evaluated at the

equilibrium”):

K = Keq. +
∂K
∂G

���
eq.| {z }

=0

(G−Geq.) +
∂K
∂ω

���
eq.| {z }

=0

(ω − ωeq.) (34)

+
1

2

∂2K
∂G2

���
eq.| {z }

not.
= a

(G−Geq.| {z }
not.
= X

)2 +
∂2K
∂G ∂ω

���
eq.| {z }

=0

(G−Geq.)(ω − ωeq.) +
1

2

∂2K
∂ω2

���
eq.| {z }

not.
= b

(ω − ωeq.| {z }
not.
= Y

)2

K = Keq. + aX2 + bY 2 . (35)

This is an harmonic oscillator that can be expressed in action-angle variables (ψ, J)

defined as (at a stable equilibrium, we have ab > 0):

X =
4

r
b

a

√
2J cosψ and Y = 4

r
a

b

√
2J sinψ . (36)

Then the frequency at the equilibrium is given by

ψ̇ =
∂K
∂J

= 2
√
ab =

s
∂2K
∂G2

���
eq.

∂2K
∂ω2

���
eq.

. (37)

Using the equation (37), the periods (τ) at the stable equilibria are given by:
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– for horizontal equilibria: G such as Equation (23) and condition of stability (26)

τ =
4π

3

r
5
2

h
ε
J2

G5

�
2 − 15H2

G2

�
+ ε3b

i
ε3b(1 −G2)

�
1 − H2

G2

� ; (38)

– for vertical (Kozai-Lidov) equilibria: G such as Equation (18) and condition of

stability (19)

τ =
4π

3

r
− 5

2

h
ε
J2

G5

�
2 − 15H2

G2

�
− 3ε

3b
2

�
1 + 5H2

G4

�i
ε3b(1 −G2)

�
1 − H2

G2

� ; (39)

– for central equilibrium (e = 0): G = 1 with condition of stability (31)

τ =
8π

3

rh
εJ2(1 − 5H2) + ε3b(3 − 5H2)

ih
εJ2(1 − 5H2) − 2ε3b

i . (40)

We remind that γ = ε3b/εJ2 and that the equations are dimensionless. Then the periods

at the equilibria are given by Teq. =
q

a3

GM τeq..

For example, we apply these formula to a Mercury orbiter. The values for Mercury

are a3b = 57 909 176.0 km, e3b = 0.205 630 69, J2 = 6.0 × 10−5 (Anderson et al. 1987)

and Rp = 2439.7 km (Seidelmann et al. 2007). In Figure 9 we plot the periods at the

equilibria respectively for the three cases:

– on the left panel, the periods at the stable equilibrium with respect to the values

of γ and H2. The color code indicates the period of the fundamental frequency at

the equilibrium;

– on the right panel, the location of the stable equilibrium in the phase space (a, e, ı)

with the period in the color scale.

The color code is the same for the left and right panels and it is truncated at the value

of 100 years. For a larger period, we use the black color. We notice that the time of

space missions is very short compared with those periods. However these long periods

are interesting because they allow to keep constant eccentricity during the mission

time.

6 Comparison of analytical and numerical solutions

6.1 Comparison for all inclinations

The analytical results of the simplified model described above are checked using a

precise numerical integration of the complete set of equations of motion (1). For our

test, we use Mercury’s orbiter mission profile, which nominally puts the spacecraft into

a high eccentric polar orbit. Numerical integrations were performed with the Bulirsch-

Stoer (Stoer and Bulirsch 1980) integrator. We reproduce hereby a few characteristic

plots of the numerical simulations to confirm our analytical theory (see Figure 10).

Similar results have been obtained for a wide range of initial frozen orbit conditions.

Figure 10 shows a very good agreement between analytical results and numerical

simulations over a large time span (180 years).
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Fig. 9 Plot of the periods at the stable horizontal equilibrium (Eq. 23 with conditions 26),
vertical equilibrium (Eq. 18 with condition 19) and (0, 0) equilibrium (with conditions 31)
respectively in the upper, center and lower panels. The color code indicates the period (trun-
cated to 100 years) of the fundamental frequency at the equilibrium. On the left panels, the
period with respect to the parameters (γ, H2). On the right panels, the location of the stable
equilibrium in the physical space (a, e, ı) with its period. For the equilibrium (0, 0), e is always
equal to 0.
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Fig. 10 Comparison between analytical and numerical results. For the left and right panel, the
initial conditions are a0 = 6 407 km (γ = 1.000296), Ω0 = M0 = 0◦. In the left panel, for the
lower orbit, we take e0 = 0.545055 (G = 0.8384), ı0 = 76.646989◦ (H2 = 3.7492 × 10−2) and
ω0 = 180◦; for the upper orbit, we take e0 = 0.6 (G = 0.8), ı0 = 78.221768◦ (H2 = 0.26666666)
and ω0 = 0◦. For the right panel, the initial conditions are e0 = 0.01 (G = 0.99995), ı0 =
69.73104◦ (H2 = 0.1199999) and ω0 = 0◦. For the middle panels, the initial conditions are,
for the lower panel a0 = 4650 km (γ = 0.17096), e0 = 0.3 (G = 0.9539392), ı0 = 77.89775◦

(H2 = 0.04) and Ω0 = M0 = ω0 = 0◦; for the upper panel, we take the MMO initial
conditions: a0 = 3394 km (γ = 0.0417), e0 = 0.163229 (G = 0.986), ı0 = 90◦ (H2 = 0) and
Ω0 = 67.7◦, ω0 = 16◦, M0 = 0◦. The numerical model takes into account the contribution of
J2 and C22 and the solar gravitational effect, with starting epoch fixed at 14 September 2019.
The analytical model is based on Equations (14, 16, 17). We plot the numerical integrations
with continued lines and the analytical results with dashed lines. The time of the integrations
is equal to 180 years. In the right panel, the numerical integration leads to a crash onto the
planet after 40 years.

6.2 Comparison for polar inclination and explanation of the preliminary numerical

results

In the Figure 11, we present a graphical comparison between numerical integration and

analytical results (contour plots of the Hamiltonian (13)) for an exact polar inclination.

We see that the analytical theory is very close to the numerical integration for all
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Fig. 11 Comparison between analytical and numerical results for exact polar orbiter. The
initial conditions are a0 = 6000 km (γ ≃ 0.72), ı0 = 90◦ , Ω0 = 67.7◦, ω0 = −2◦, M = 36.4◦.
The numerical and analytical model are the same of Figure 10. In dashed line the analytical
result and in continued line the numerical integration. On the right a blow-up of the center of
libration.
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initial eccentricities. We also notice that the addition of C22 does not modify much

the motion. Then the initial conditions of frozen orbits found by our method give good

initial conditions to find frozen orbits in a full model.

In the right panel, we show two solutions close to the libration point and we see

that, the closer the motion is to the libration equilibrium, the more the numerical

integrations show a discrepancy with respect to the analytical results for the periherm

libration: the frozen orbit of the analytical model shows no changes in eccentricity

and argument of pericenter. On the contrary, the numerical orbit has short period

oscillations but constant mean values of e and ω. For indication, the analytical and

numerically calculated periods at this equilibrium are given in Table 2.

Figure 11 allows us to explain the behaviors already seen in our preliminary nu-

merical exploration (Fig. 1). In Figure 11, we take different orbits with a semi-major

axis equal to 6 000 km corresponding to a vertical section in Figure 1. Then, on this

section, we take some values of the eccentricity such that:

– for e near to 0, in Fig. 1, we see a large value of the amplitude of variation of the

eccentricity approximatively equal to 0.5 and a high value of the second derivative.

In Fig. 11, for e equal to 0, we are on the separatrix. Therefore the eccentricity

increases (roughly until 0.5) and a little shift of the initial eccentricity causes a high

difference of the frequency. Thus the second derivative of the frequency is large;

– for e close to 0.37, in Fig. 1, we see that the amplitude of variation of the eccentricity

decreases until 0.

In Fig. 11, at e = 0.37, we find the stable point where the eccentricity is equal to

a constant;

– when emoves away from 0.37 to 0.5, in Fig. 1, we see that the amplitude of variation

of the eccentricity increases from 0 to 0.5 and for e = 0.5, the amplitude of variation

of the eccentricity is maximal and the value of the second derivative is large.

In Fig. 11, moving away from the equilibrium (e = 0.37) toward the separatrix

(e ≃ 0.5) we encounter larger and larger variations in e;

– for e near to 0.55, in Fig. 1, we see that the amplitude of variation of the eccentricity

is smaller than for e ≃ 0.5.

In Fig. 11, for e ≃ 0.55, the pericenter circulates and the maximum of the amplitude

of variation of the eccentricity is roughly equal to 0.55 − 0.11 = 0.44.

– in Fig. 1, moving along the line e = 0, we pass from the region (F) to the region

(E’) at 5 577 km (Tab.1). For semi-major axis smaller than a = 5577 km, we do

not cross any separatrix and the amplitude of variation of the eccentricity is small.

6.3 Frequency comparison

To obtain a second independent validation of our analytical model, we numerically

compute, using the NAFF algorithm (Laskar 1988, 2005), the period of the numerical

solutions of the full system (1) obtained through numerical integration, and we compare

it with the period of the equilibrium points of the simplified model.

Table 2 provides a summary of these comparisons. We can observe a very good

agreement between the two methods. Some small differences can be explained as fol-

lows:

– the exact equilibrium in the doubly averaged system is not the exact equilibrium

in the full numerical model;
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Table 2 Comparison between the period of the equilibria determined in the analytical model
and the period numerically obtained using NAFF. The Horiz.⋆ corresponds to the equilibrium
in the blow-up of Fig. 11

Initial condition Period [year] Error

Which a e ı Analytical Numerical relative

equi. [km] [degree] %

Kozai 5 750 0.4731 58.37 29.30 29.25 0.17

Horiz. 8 083 0.4922 77.68 35.67 35.61 0.17

Horiz. 5 818 0.5418 71.93 42.17 42.26 0.21

Horiz.⋆ 6 000 0.369 90.00 44.576 44.528 0.11

(0,0) 3 429 0.0 47.64 9.127 9.135 0.08

(0,0) 4 731 0.0 77.01 56.594 55.274 2.38

– the full numerical model contains short period terms which disturb the long period

dynamics.

The closeness of the periods found analytically as well as numerically shows also that

our method can provide a very good approximation of periods and location of frozen

orbits even in the full osculating model.

7 Discussions

7.1 J2: the protector

The aim of this section is to describe the protection mechanism of the coefficient J2 on

the increase of the eccentricity. We recall that our Hamiltonian (13), once we set the

coefficient εJ2 = 0, reduces to the Kozai-Lidov Hamiltonian:

Kkl =
3 ε3b

8

�
5(1 −G2)

�
1 − H2

G2

�
sin2 ω −H2 − 2 + 2G2

�
. (41)

In the upper panels of Figure 12, we draw the possible phase spaces of this Hamiltonian.

For comparison, we plot in the lower panels analogous phase spaces with Mercury’s

J2 = 6 × 10−5.

In the right panels (H2 > 3/5) we have a similar behavior of our (E) case (Fig. 7).

For the exact polar orbits (H2 = 0 in the left panel of the Fig. 12), in the Kozai-Lidov

Hamiltonian (top left panel in Fig. 12), all the probes are ejected: the eccentricity

always grows up to 1. Instead, with the addition of the coefficient J2 we have (Fig. 7)

the phase space (E’) or (F) (in bottom left of Fig. 12 we have the E’) where it is

possible that the eccentricity does not increase or that it remains at a fixed value.

In the middle case (0 < H2 < 3/5) we see that for an initial pericenter close to 0,

the eccentricity increases (top center panel in Fig. 12). Instead, in our case (J2 6= 0),

the phase spaces (A), (B), (C) and (E) (Fig. 7) show that it is possible to find initial

condition (other than ω ≃ ±π/2) where the increasing of the eccentricity is naturally

controlled. Nevertheless, with the addition of the coefficient J2, we can keep the vertical

eight-shape (phase space (D) in Fig. 7 or in bottom center in Fig. 12) but with a lower

increase of eccentricity.
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The J2 acts as a protection mechanism against the increase of the eccentricity due to

the Kozai-Lidov effect. This mechanism also appears for planets in tight binary systems

(Saleh and Rasio 2009), where the general relativistic effects become dominant and can

cause the periastron to precess on very short timescales. Therefore this precession can

lead to the suppression of Kozai oscillations.

Fig. 12 In the upper panels, all possible phase spaces for Kozai-Lidov Hamiltonian (41) with
respect to the values of H2. For comparison, in the lower panels analogous phase spaces with
J2 = 6 × 10−5 adapted to the case of Mercury.

7.2 Local deformation of the Kozai-Lidov equilibrium

We have seen that the condition to get the Kozai-Lidov equilibrium is (Eq. 19)

H2 <
1 + 3γ

5γ + 5
. (42)

Actually there is a region, where it is possible to find three real roots for G, as a

function of H2 and γ. The conditions to have these three real roots are given by:

KL3 ≡

8>><>>: 864 000H16γ6 +
�
2 963 520H12 − 1 024H10

�
γ4

+
�
1 512 630H8 − 13 965H6 − 22 235 661H10

�
γ2 + 12 = 0

and H2 ≤ 1
3087

(43)

We draw the solutions of this equation, denoted by KL3, that demarcates the region

denoted (G), on the left panel of the Figure 13. Let us observe that this condition
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is verified for large values of γ (γ ≥ 7203
√

3/2) and for very small values of H2

(H2 ≤ 1/3087). An example of the phase space is plot in Figure 13 in the middle panels.

In this region, the vertical Kozai-Lidov stable equilibrium bifurcates in two stable and

one unstable vertical Kozai-Lidov equilibria producing thus a local deformation of the

Kozai-Lidov equilibrium. We show an example of these three equilibria in the right

panels of the Figure 13. Initial conditions close to these equilibria (external orbit in

the right panels of Fig. 13) give rise to orbit librating around this set of three equilibria.

It is possible to find that this bifurcation appears, in the (G) region, for a value

of G smaller than
√

3/21 ≃ 0.082 478 6 corresponding to a value of the eccentricity

e larger than
√

438/21 ≃ 0.996 59. Recalling the formula H = G cos ı, we obtain a

minimal inclination of 87.27◦. Nevertheless for the Sun-Mercury-orbiter application

these conditions lead orbiters to crash onto Mercury.
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Fig. 13 Local deformation of the Kozail-Lidov equilibrium. The bifurcation lines in the left
panel with the new region (G) demarcated by the two curves KL3. Example of generic contour
(for (G) region) of the Hamiltonian (13) in (k, h, ı) space in the middle panels. A zoom of the
local deformation in the right panels.

7.3 J3 discussion

In Paskowitz and Scheeres (2006) and Lara et al. (2010) the authors included the J3

(the “pear shape”) of the central body in their system. Paskowitz and Scheeres (2006)

noticed that the coefficient J3 caused an asymmetry between the solutions of the frozen

orbits for ω = ±π/2 but they did not explain the reasons of this beavior. Lara et al.

(2010) gived the values of the pericenter at the “horizontal” equilibria and a region

(e,H) where frozen orbits may exist with ω 6= ±π/2.
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The potential arising from a central body with a J3 6= 0 is given by

ΦJ3(r) =
GMJ3R

3
p

2r7
(r · np)

h
5(r · np)2 − 3r2

i
. (44)

The averaged Hamiltonian is then

3 GMJ3R
3
p

2 a4(1 − e2)5/2
e sinω sin ı

�
1 − 5

4
sin2 ı

�
. (45)

It is easy to understand that the north-south asymmetrical form of J3 induces an ad-

ditional term proportional to sin(ı) (which is not an even function) in the Hamiltonian

(45). The odd powers of (r · np) are responsible for emergence (after average) of the

(sinω sin ı) coefficient.

Using our variables G =
√

1 − e2, H = G cos ı, we can define the dimensionless

(divided by GM/a) potential that we can add to the Hamiltonian (13):

J3R
3
p

a3| {z }
not.
= ε

J3

3

8G8

p
1 −G2 sinω

p
G2 −H2 (5H2 −G2). (46)

Introducing the coefficient δ =
εJ3

εJ2

=
J3Rp

J2a
, the equations of motion (17 and 16) can

be rewritten in compact form as follows:�
Ġ = F1(G,H, γ) sinω cosω + F2(G,H, δ) cosω

ω̇ = F3(G,H, γ) + F4(G,H, γ) sin2 ω + F5(G,H, δ) sinω
(47)

where the functions F1, F3 and F4 can be easily identified in equations (16) and (17).

The functions F2 and F5 come from the J3 effect and they are proportional to δ.

7.3.1 Vertical equilibria – Kozai-Lidov equilibria: cosω = 0 ⇔ ω = ±π/2

Let us observe that the addition of J3 causes an asymmetry in the frozen orbit solutions

not present before. Indeed, for ω = π/2 the condition of equilibrium is given by

F3(G,H, γ) + F4(G,H, γ) + F5(G,H, δ) = 0 (48)

whereas for ω = −π/2 the condition of equilibrium is given by

F3(G,H, γ) + F4(G,H, γ) − F5(G,H, δ) = 0. (49)

Then, for a small coefficient δ, the asymmetry is not important. However for a large

value of this coefficient, the asymmetry could be important until the elimination of one

of two equilibria.
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7.3.2 Horizontal equilibria.

For horizontal equilibria, the condition of equilibrium (Ġ = 0) becomes:

F1(G,H, γ) sinω + F2(G,H, δ) = 0 ⇐⇒ sinω = −F2/F1
not.
= −ǫ. (50)

Then the “horizontal” equilibria appear for non-zero values of the pericenter ω = −ǫ
and ω = π + ǫ. The condition to obtain ω̇ = 0 becomes:

F3(G,H, γ) + F4(G,H, γ)ǫ
2 − F5(G,H, δ)ǫ = 0, (51)

that induces a shift in the equilibrium in G and ω variables with respect to the case

“J2 + third body”. It is possible, in a similar way as before for J2, to calculate the

new values of the pericenter at the equilibria by solving the first equation (47). Then

Ġ vanishes for ω = ±π/2 (see previous section) or for

ω = arcsin

�
− δ

γ

5H2 −G2

10G6
√

1 −G2
√
G2 −H2

�
(52)

with an existence condition on ω ∈ R bounded by

H2 =
G2

5

�
1 − 2G5γ

h
5G5γ(1 −G2) ± 2

q
5 (1 −G2) (5G10γ2(1 −G2) + 4δ2)

i�
.

(53)

These solutions are equivalent to the equation (44) in Lara et al. (2010). If we insert

this solution in the second equation (47), ω̇ vanishes for

H2 = −

�
10G7γ − 6δ2 ±

p
100G14γ2 + 20G7γδ2 + δ4 − 280γ2G12δ2

�
G2

35δ2
. (54)

Consequently with the method described in section 5.4 we can as well calculate the

stability and the period of these equilibria.

7.3.3 Modifications of the phase space

For illustration, in Figure 14, we draw the contour plots of the new Hamiltonian for

different values of J3 (or for different values of δ). We see that when the δ coefficient

increases (in absolute value), the vertical equilibrium goes down while the horizontal

equilibrium goes below the “line sinω = 0”. We point out that, from some values of δ,

the equilibrium ω = −π/2 disappears (Fig. 14 right panel).

7.3.4 BepiColombo and other missions

At present time, the semi-major axis of the two orbiters (MPO & MMO) of the Bepi-

Colombo mission are respectively equal to 3 394 km and 8 552 km. The MPO altitude

corresponds to our (E’) phase space where the eccentricity vector has a circular concen-

tric motion. The MMO initial conditions, without thrust correction, leads to a crash

onto the Mercury surface after 3 years. Based on our theory (and the underlying as-

sumptions), we can choose another initial condition a = 7 355 km and e = 0.652, that

avoids forever the crash on Mercury and whose eccentricity vector is fixed.



27

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

k=e cos ω

h
=

e
 s

in
 ω

J
3
 = 0 

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

k=e cos ω

J
3
 = − J

2
/10

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

J3 = −J
2
 / 2

k=e cos ω

h
=

e
 s

in
 ω

Fig. 14 Distortion of the phase space (for a Mercury’s orbiter) due to J3 effect. The initial
conditions are a = 5 900 km (γ ≃ 0.66) and H2 = 0.06. J3 (respectively δ) is equal to 0 (0),
−J2/10 (−0.041356) and −J2/2 (−0.20678) in left, center and right panels.

8 Conclusions

The orbit dynamics of a space probe orbiting a planet or a natural planetary satellite

has been investigated. The proposed model includes the effects of J2 for the central

body and the perturbation of the third body. We have developed a doubly averaged

Hamiltonian and studied the location of the stable and unstable frozen orbits. Our

method allows to have an analytical global approach to search all these equilibria and

to compute the periods of the free librations at the equilibria. The analytical results

have been checked and validated numerically by performing numerical integrations of

the complete systems. Our theory is able to explain the behavior of our preliminary

numerical investigations where the variation of the amplitude of the eccentricity is null

and a separatrix is detected. The theory is general enough to be applied to a wide

range of probes around any planet or any natural planetary satellite, provided that

they respect the hypotheses used to obtain our Hamiltonian model.

We have shown the protection mechanism of the coefficient J2 on the increasing of

the eccentricity due to Kozai-Lidov effect. This mechanism is therefore able to produce

a larger number of frozen orbits than those found in the only Kozai-Lidov problem. We

have also explained the asymmetry of the frozen equilibria caused by the addition of the

coefficient J3. We have also brought to the light a local deformation of the Kozai-Lidov

equilibria that appears at high eccentricity, high inclination and large value of γ.

These equilibria and their periods can be modified by including higher order terms

of gravity field. However they will not change drastically the behavior of our phase

space. Henceforth, the frozen orbits presented here provide good initial conditions to

find periodic or frozen orbits in a osculating full model.

This theory provides analytical results to justify the choice of the intial semi-major

axis and eccentricity of an orbiter for future missions around planets or planetray

satellites.

Interested (separated) improvements would be to include the C22 coefficient of the

central body or the inclination of the third body. In these cases the ascending node of
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the probe would take place in the Hamiltonian leading to an extra degree of freedom

i.e. 4D phase plots.
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