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Whittle estimation of EGARCH and other
exponential volatility models 1

Paolo Zaffaroni
Imperial College Business School

Imperial College London

This draft: 24th November 2008

Abstract

The strong consistency and asymptotic normality of the Whittle
estimate of the parameters in a class of exponential volatility pro-
cesses are established. Our main focus here are the EGARCH model
of Nelson (1991) and other one-shock models such as the GJR model
of Glosten, Jaganathan, and Runkle (1993), but two-shock models,
such as the SV model of Taylor (1986), are also comprised by our
assumptions. The variable of interest might not have finite fractional
moment of any order and so, in particular, finite variance is not im-
posed. We allow for a wide range of degrees of persistence of shocks
to conditional variance, allowing for both short and long memory.

Key words and phrases. EGARCH, GJR, Stochastic Volatility, Whittle
estimation, asymptotics.

1 Introduction

Consider an observable satisfying

xt = zt e
0.5 ht , t ∈ Z, (1)

ht = ω0 +
∞∑

k=0

ψ0kεt−k−1 almost surely (a.s.),
∞∑

j=0

ψ2
0j < ∞, (2)

1Acknowledgment: I thank two anonymous referees and the Associate Editor (Miguel
A. Delgado) for their comments that led to a considerably improved version of the paper.
I also thank Claudia Miani for remarkable research assistance.
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where Z = {t : t = 0, ±1, ...}. The {zt, εt} form a sequence of independently

identically distributed (i.i.d.) unobservable bivariate random variable, al-

though we allow zt and εs to be cross-correlated for t = s. We require, at

minimum, Eε0 = 0, 0 < Eε2
0 < ∞ and Elogz2

0 < ∞ although existence of

the moments of the zt is not required.

When zt and εt are mutually independent and normally distributed, model

(1)-(2) becomes the well-known exponential stochastic volatility (SV) model

of Taylor (1986). Simple yet successful estimation of such SV models can be

carried out by noting that

logx2
t = logz2

t + ht, (3)

represents an example of a linear signal-plus-noise model. For parameter-

izations of the ψ0j that ensure Markovianity, the Kalman filter could be

successfully applied to SV models (see Nelson (1988) and Harvey, Ruiz, and

Shephard (1994)), where (3) represents the measurement equation and ht is

the state unobserved variable. An alternative estimation approach for (3) is

the Whittle estimator, obtained maximizing the frequency domain approx-

imation of the Gaussian likelihood, so-called Whittle function (see Whittle

(1962)).

This paper is prompted by considering that another popular class of ex-

ponential volatility models, where εt = ε(zt) for some instantaneous trans-

formation ε(·), also belongs to the class (1)-(2). Such one-shock models, the

most important case of which is the exponential generalized autoregressive

conditional heteroskedasticity (EGARCH) model of Nelson (1991), can be

seen a SV models for which a singularity occurs with respect to the joint

distribution of the zt and εt. For instance EGARCH requires that

εt = ε(zt) = θ0(zt − µz) + δ0(| zt | −µ|z|), (4)

for constant parameters θ0, δ0 with θ0δ0 6= 0 where µy = Ey for any random

variable y with finite first moment. Another one-shock model, popular among

practitioners, is the so-called GJR volatility of Glosten, Jaganathan, and
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Runkle (1993) for which

εt = ε(zt) = θ0(zt − µz) + δ0(zt1(zt<0) − µz1(z<0)
), (5)

where 1(·) denotes the indicator function. Note that ε(·) is an odd function in

both (4) and (5) yielding asymmetric models. Since (1)-(2) holds, the signal-

plus-noise representation (3) can be obtained for one-shock models although

now the signal ht and the noise logz2
s are correlated for some t, s.

It turns out that all the statistical literature of Whittle estimation of linear

signal-plus-noise models requires uncorrelated components (see in particular

Hosoya (1974), Dunsmuir (1979) and Hosoya and Taniguchi (1982)) and,

indeed, the Whittle estimator has bee successfully applied to estimation of

SV models by Harvey (1998), Breidt, Crato, and deLima (1998) and Deo,

Hurvich, and Lu (2006). However, for one-shock exponential models such as

the EGARCH or the GJR, one cannot use these results since, by (4) or (5),

log z2
t and hs could be correlated for some t, s. The difficulty in estimating

the signal-plus-noise model (3) is due to the fact that, despite linearity, the

spectral density of the observable logx2
t is not easily factored meaning that

it cannot be expressed as m2
0/(2π) | 1 +

∑∞
k=1 n0ke

ikλ |2 with m0 and the

n0k, k = 0, 1, ... being respectively function of two disjoint sets of the model

parameters (see Hannan (1973)). An alternative approach to this problem

is proposed in Robinson (1978), who presents various cases where the model

spectral density is not easily factored, other than the signal-plus-noise model.

Linearity is nowhere assumed but long memory, except for a mild form, is

ruled out and, due to its generality, some assumptions appear un-primitive.

The appeal of the exponential model (1)-(2) is based on the fact that

it solves many of the drawbacks characterizing the structure of the ARCH

model of Engle (1982). In particular, one needs not to impose non-negativity

of the ω0, ψ0k (k ≥ 0). Second, asymmetric effects, whereby volatility tends

to rise in response to ‘bad’ news and to fall in response to ‘bad news’, are

easy to parameterize. Third, there is no ambiguity on the interpretation of

the persistence of shocks to conditional variance. These were in fact the chief
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motivations that led in fact Nelson (1991) to introduce the EGARCH model.

Fourth, as the model is observed at a finer and finer time interval, it has a

diffusion limit which belongs to the class of continuous time processes fre-

quently used in continuous time mathematical finance. This property holds

for both one and two-shock models (see Ghysels, Harvey, and Renault (1995,

Section 4.1 and 4.3)). Not surprisingly, EGARCH models are attracting a

constantly increasing attention in theoretical (see Duan, Gauthier, Sasseville,

and Simonato (2006)) and empirical finance (see Brandt and Jones (2006)

among many others).

The main contributions of this paper can be synthesized as follows:

First, we extend the statistical theory of Whittle estimation to cover cor-

related signal-plus-noise models, providing a formal asymptotic distribution

theory specifically tailored for parameter estimation of the exponential model

(1)-(2), both for the two-shock as well as for the one-shock version. This

is relevant since, with the exception of the low-order EGARCH result of

Straumann (2005), for general EGARCH, GJR and any other exponential

one-shock model, no other estimation approach exists for which we have a

complete, formal, understanding of its asymptotic statistical properties.

Second, our theory covers both cases of summable and non-summable | ψ0j |.
Important examples of the latter case, which implies long memory in ht, is the

fractionally integrated EGARCH (FIEGARCH) of Bollerlsev and Mikkelsen

(1996), when considering one-shock models, and the long memory SV of

Harvey (1998) and Breidt, Crato, and deLima (1998), when considering two-

shock models. Note that the statistical literature does cover the case of

linear-plus-signal model with long memory (see Hosoya (1997)) but, again,

the case of correlated signal and noise is ruled out.

Third, our asymptotic results are based on a set of regularity conditions,

easily verifiable with respect to any given choice of the ψ0k. Our result covers

the situation of uncorrelated signal and noise, as a special case. Therefore,

even for the case of SV models, one could use our results. This is highly
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desirable since the statistical literature of Whittle estimation typically defines

regularity conditions in terms of smoothness of the model spectral density

and their higher-order mixed derivatives, and checking such conditions can

become an arduous task. (See for instance Assumptions C and D of Hosoya

(1997).)

Fourth, we present a unified theory which depends on a set of regularity

conditions designed to apply to both one and two-shock models that applies

to a class of models wider than EGARCH and SV. Meddahi and Renault

(2004) firstly pointed out that for many purposes the difference between one-

shock GARCH-type and two-shock SV-type models is only apparent rather

than substantial. Our results provide a case where this analogy holds with

respect to Whittle estimation.

Practical estimation of the exponential model (1)-(2) requires to finite-

parameterize the ψ0k = ψk(ζ0) for a known set of functions ψk(·) and unknown

p × 1 parameter ζ0, where p < ∞. Next, let α0 = α(φ0) = var(log z2
0), β0 =

β(φ0) = var(ε0), γ0 = γ(φ0) = cov(log z2
0 , ε0) for known functions α(·), β(·), γ(·)

of a q × 1 unknown vector φ0 with q < ∞. This includes both the case of

a known parametric specification for the joint distribution of the {zt, εt},

depending on the unknown φ0, as well as the case of an unspecified distri-

bution in which case φ0 = (α0, β0, γ0)
′ with q = 3. We wish to estimate the

(p+ q) × 1 vector ϑ0 = (ζ ′
0, φ

′
0)

′, on the basis of a sample (x1, ..., xT ) of obser-

vations. Denote by ϑ = (ζ ′, φ′)′ any admissible value to which corresponds

the function

f(λ; ϑ) =
α(φ)

2π
+

β(φ)

2π

∣∣ψ(eiλ; ζ)
∣∣2 +

γ(φ)

2π

(
eiλψ(eiλ; ζ) + e−iλψ(e−iλ; ζ)

)
,

−π ≤ λ < π (6)

with

ψ(z; ζ) =
∞∑

j=0

ψj(ζ)zj, | z |≤ 1. (7)

Note that no truncation of the transfer function ψ(z; ζ) is needed here. It

can be easily seen that f(λ) = f(λ; ϑ0) is the spectrum of the log x2
t and,
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thus, f(λ; ϑ) denotes the model-spectrum. Let Θ be a prescribed compact

subset of Rp+q. The Whittle estimator of ϑ0 is

ϑ̂T = arg min
ϑ∈Θ

QT (ϑ),

where the discrete Whittle function is

QT (ϑ) =
1

T

T −1∑

t=1

(
log( f(λt; ϑ))+

IT (λt)

f(λt; ϑ)

)
, λt =

2πt

T
. (8)

Hereafter IT (λ) = (2πT )−1
∣∣∣
∑T

t=1 log x2
t e

iλt
∣∣∣
2

, −π ≤ λ < π, is the peri-

odogram based on T consecutive observations of the log x2
t where we can

avoid mean correction since IT (λ) is evaluated at the Fourier frequencies.

The following section lists our assumptions, with discussion. Section 3

presents the main results, namely strong consistency and asymptotic normal-

ity of ϑ̂T under conditions that cover a wide variety of parametric specifica-

tions, comprising both exponentially and hyperbolically decaying coefficients

ψj(ζ). Section 4 illustrates how the main results apply to EGARCH and clar-

ifies the advantages and disadvantages of the Whittle estimation approach

with respect to other methods. A number of extensions are introduced in

Section 5 such as nonstationary logx2
t , arising from non square-summability

of the ψ0j, and filtering and forecasting. Concluding remarks make Section 6.

The proofs are reported in the final appendix.

2 Assumptions

Denote by K a generic finite constant, not always the same. Let k1 ≥ 0, k2 ∈
{0, 1} and l a non-negative integer. Let ∼ denote asymptotic equivalence:

a(x) ∼ b(x) as x → x0 when a(x)/b(x) → 1.

Assumption A(k1). The {zt, εt} are i.i.d. variates with Eε0 = 0 and

E | log z2
0 |k1< ∞, E | ε0 |k1< ∞.

6
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Assumption B. Θ = Z × Φ where Z is a compact subspace of Rp and Φ is

a compact subspace of Rq with s = p + q < ∞. ϑ0 is an interior point of Θ.

Assumption C(k2, l). For any ϑ ∈ Θ, | ψk(ζ) |≤ K | ψj(ζ) | for 1 ≤
j ≤ k, all k ≥ 1, and ψj(ζ) has continuous lth derivative such that for

boundedly differentiable functions d(ζ) ∈ (−∞, 1/2) and e(ζ) ∈ (−1, 1), both

not function of l,

∂rψj(ζ)

∂ζi1 ...∂ζir

∼ k2 Er(j; ζ) ej(ζ) + (1 − k2) Dr(j; ζ) jd(ζ)−1 as j → ∞

for all ih = 1, ..., p, h = 1..., r, r = 0, ..., l, where |Er(j; ζ)| ≤ K jr and

Dr(j; ζ) is measurable slowly varying at infinity: Dr(tx; ζ)/Dr(x; ζ) → 1 as

x → ∞ for any t > 0 (see Yong (1974, Def. I-7)).

Assumption D(k2, l). For any ϑ ∈ Θ, α(φ), β(φ), γ(φ) and all the ψj(ζ)

have continuous lth derivative and
∣∣∣∣

∂rψj(ζ)

∂ζi1 ...∂ζir

− ∂rψj+1(ζ)

∂ζi1 ...∂ζir

∣∣∣∣ ≤ K
(
k2+ | 1 − k2 | j−1

) ∣∣∣∣
∂rψj(ζ)

∂ζi1 ...∂ζir

∣∣∣∣ for any j > J,

for some constant J < ∞ and all ih = 1, ..., s, h = 1..., r, r = 0, ..., l.

Assumption E. For any ϑ ∈ Θ, α(φ), β(φ), γ(φ) and all the ψj(ζ) are

continuously differentiable and there exist integers ji(ϑ), i = 2, ..., s, such that

1 ≤ j2(ϑ) < ... < js(ϑ) < ∞ and the s × s matrix

(
∂

∂ϑ
c0(ϑ),

∂

∂ϑ
cj2(ϑ), . . . ,

∂

∂ϑ
cjs(ϑ)

)′
(9)

has full rank, setting

cu(ϑ) = 1(u=0) α(φ)+β(φ)
∞∑

j=0

ψj(ζ)ψj+u(ζ)+1(u 6=0)γ(φ)ψ|u|−1(ζ), u = 0, ±1, ...

(10)

Assumption F . For any ϑ ∈ Θ, | γ(φ) |< (α(φ) β(φ))
1
2 < ∞.

7
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Remarks.

(i). We require Ass. A(2) for consistency and A(4) for asymptotic normality

of ϑ̂T . For two-shock models the conditional expectation E(x2δ
t | Ft−1),

δ > 0, might not be bounded, where Ft−1 defines the sigma-algebra induced

by the {zs, εs; s ≤ t − 1}. Instead, for one-shock model a stronger moment

condition for the zt is implied, since E(x2
t | Ft−1) < ∞ when (4) holds.

However, the unconditional moment E | xt |δ need not to be bounded for any

δ > 0. Important examples of this case are when the zt have a Student-

t distribution with ν > 2 degrees of freedom or a generalized exponential

distribution (henceforth GED) with tail thickness parameter ν ≤ 1. See

Nelson (1991, p.453).

(ii). The xt are strictly stationary and ergodic under Ass. A(2) and square

summability of the ψ0j whereas | log x2
t |= ∞ a.s. when the ψ0j are not

square summable .

(iii). Ass. B implies that there exist constant 0 < αL < αU < ∞, 0 <

βL < βU < ∞, −1 < eL < eU < 1 and −∞ < dL < dU < 1/2 such that

αL ≤ α(φ) ≤ αU , βL ≤ β(φ) ≤ βU and eL ≤ e(ζ) ≤ eU , dL ≤ d(ζ) ≤ dU for

any ϑ ∈ Θ.

(iv). The parameter ω0 is not identified by the Whittle function, since enters

linearly in logx2
t and it disappears when calculating the empirical autoco-

variances of the log x2
t . Nevertheless alternative estimation methods do exist

and will be discussed in the sequel.

(v). We are concerned here with two cases: exponentially decaying (case k2 =

1) and hyperbolically decaying (case k2 =0) coefficients ψj(ζ). The functions

Er(·), Dr(·) arise as a result of differentiation in most cases of interest. For

example, typically |Dr(j; ζ)|< K(log(j + 1))r. When d(ζ) = 0 one has to

distinguish the two cases of summable and non-summable | Dr(j; ζ) | j−1. In

the latter case the model spectral density is still unbounded at zero frequency,

although it diverges very slowly as the zero frequency is approached. In the

former case we allow for the possibility that Dr(j; ζ) = 0 when d(ζ) = 0.

8
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(vi). Ass. B and C(k2, 0) imply that for any ϑ ∈ Θ

sup
ϑ∈Θ

ψj(ζ) ≤ K jdU −1, j ≥ 1, (11)

and thus supϑ∈Θ

∑∞
j=0 ψ2

j (ζ) ≤ ∑∞
j=0 supϑ∈Θ ψ2

j (ζ) < ∞.

(vii). Ass. D(k2, l) implies that the ψj(ζ) and its derivatives converge toward

zero in a sufficiently smooth manner, implying quasi monotonic convergence

toward zero and pure bounded variation (see Yong (1974, Definitions I-2 and

I-4)). As we will see, these, together with the exact rate condition of Ass.

C(k2, l), define unambiguously the behaviour near the origin of the model

spectral density and its derivatives, as well as a form of uniform continuity

away from zero frequency. When k2 = 1 this is already implied by Ass.

C(1, l), which imparts absolute summability of ψj(ζ) and of their derivatives.

(viii). Ass. E is a rank identification assumption. It is easy to see that

cu = cu(ϑ0), u = 0, ±1, ... defines the autocovariance function of the log x2
t .

By simple calculations, the left hand side of (9) can be expressed



e1
∂α(φ)

∂φ′ +




∆0(ζ)
∆j2(ζ)

...
∆js(ζ)




∂β(φ)

∂φ′ +




0
ψj2−1(ζ)

...
ψjs−1(ζ)




∂γ(φ)

∂φ′

...

...

...

...

e1Φ
′
0(ϑ)+e2Φ

′
j2

(ϑ) + . . . esΦ
′
js

(ϑ)




(12)

setting ∆u(ζ) =
∑∞

j=0 ψj(ζ)ψj+u(ζ) u = 0, ±1, ..., Φ0(ϑ) = β(φ)∂∆0(ζ)
∂ζ

, Φj(ϑ) =(
β(φ)

∂∆j(ζ)

∂ζ
+ γ(φ)

∂ψj−1(ζ)

∂ζ

)
j ≥ 1, and ej is the s × 1 vector with all zeros

but 1 in the jth entry. Simple inspection of (12) shows that a necessary order

condition for identification is q ≤ 3. Moreover, when q = 3 the identification

condition must include ∂c0(ζ)/∂ϑ′ for otherwise φ is not identified.

(ix). Ass. F is a sufficient condition for strict positivity of the model spectral

density at all frequencies. This is required for asymptotic normality of ϑ̂T

although not for consistency. When {zt, εt} have a parametric distribution

depending on φ0, then we can assume that for any ϑ ∈ Θ, there exists a

9
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collection of i.i.d. bivariate stochastic processes {zt(φ), εt(φ)}, indexed by φ,

such that

α(φ) = var(logz2
0(φ)), β(φ) = var(ε0(φ)), γ(φ) = cov(logz0(φ), ε0(φ)). (13)

Ass. F is violated whenever the Schwarz inequality holds with the equality

sign: either perfectly collinear log z2
t (φ) and εt(φ) or, alternatively, degenerate

log z2
t (φ) or εt(φ). For instance, perfect collinearity arises for a version of the

EGARCH model where (4) is substituted by εt = ε(zt) = θ0(logz2
t − µlogz2)

where δ0 = 0.

3 Main Results

We present the asymptotic results for the Whittle estimator ϑ̂T .

Theorem 1 Under Assumptions A(2), B, C(k2, 0), D(k2, 0), E, F , as T →
∞,

ϑ̂T →a.s. ϑ0.

Theorem 2 Under Assumptions A(4), B, C(k2, 2), D(k2, 2), E, F ,as T → ∞,

T
1
2 (ϑ̂T − ϑ0) →d Np+q

(
0,M −1V M −1

)
,

where

M(ϑ) =
1

2π

∫ π

−π

N(λ; ϑ)N(λ; ϑ)′dλ,M = M(ϑ0), N(λ; ϑ) =
∂ ln f(λ; ϑ)

∂ϑ
,N(λ) = N(λ; ϑ0),

and

V =
1

π

∫ π

−π

N(ω)N ′(ω)dω

+
1

2π

∫ π

−π

∫ π

−π

N(ω1)

f(ω1)

N(ω2)
′

f(ω2)
Q(−ω1, ω2, −ω2)dω1dω2 , (14)

10
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Q(ω1, ω2, ω3) denoting the trispectrum of the log x2
t (the Fourier transform of

the fourth-order cumulants of the log x2
t ).

Under Assumptions A(4), B, C(k2, 3), D(k2, 3), F as T → ∞, MT (ϑ̂T ), VT (ϑ̂T ),

defined respectively in (31) and (32), are consistent estimates of M,V .

Remarks.

(i) Both the rate of convergence and asymptotic normality do not depend on

whether d(ζ) is zero or not. This result represents one of the finest feature

of the Whittle estimator, due to the automatic compensation, characterizing

the Whittle function, for possible lack of square integrability of the model

spectral density, occurring when 1/4 ≤ d(ζ) < 1/2. On the other hand, obvi-

ously, the asymptotic covariance matrix depends on the assumed parametric

choice made for ψj(ζ). But the Whittle estimator displays other advan-

tages. For one, the discrete Whittle function does not require estimation

of the mean which might otherwise affects the small sample performance of

the Whittle estimator (see Diebold and Cheung (1994)). Second, the Whit-

tle function does not require any truncation, such as substituting log x2
t by

logz2
t + ω0 +

∑t−2
k=0 ψ0kεt−k−1. This is because the spectral density (6) is a

function of all the ψ0k, k = 0, 1, ..., through the transfer function (15). This

contrasts with the maximum likelihood estimator (henceforth MLE) where

typically one needs to distinguish the observable pseudo log likelihood, func-

tion of a sample (x1, x2, ..., xT ), from the unobservable pseudo log likelihood,

function of all {xs; t = ..., −1, 0, 1, .., T }. Such truncation is usually asymp-

totically negligible but might not be so for long memory parameterizations,

and can induce an asymptotic bias, such as for the pseudo MLE (henceforth

PMLE) of ARCH(∞), as shown by Robinson and Zaffaroni (2006).

(ii) The mean parameter ω0 is not identifiable by the autocorrelation func-

tion, and thus it cannot be estimated by the Whittle estimator. A simple

estimate is based on the sample mean l̂og x2
T = 1/T

∑T
t=1 log x2

t , which is

a consistent estimate of Elog x2
0 = ω0 + Elogz2

0 under Ass. A(2). Thus, a√
T -consistent estimate of ω0 is obtained by subtracting the Whittle estimate

11
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of Elog z2
0 , which depends on φ̂T , from l̂og x2

T .

(iii) For practical use of the asymptotic distribution result, a consistent esti-

mate of asymptotic covariance matrix is required. Here we prove consistency

of plug-in estimators of M and V , respectively in Lemma 8 and 9. Alter-

natively, for V one can use Taniguchi (1982), although it is unclear whether

Taniguchi’s result extends to case d(ζ) ∈ (0, 1/2).

4 Implications for EGARCH

We first check that the regularity conditions requested by Theorem 1 and 2

are satisfied by EGARCH. For the same model, we discuss how the properties

of the Whittle estimator relates to the ones of the MLE.

Define the generating function

ψ(z; ζ) =
∞∑

j=0

ψj(ζ)zj, | z |≤ 1, (15)

and consider the class of functions

ψ(z; ζ) =
a(z; ζ)

b(z; ζ)
(1 − z)−d(ζ) (16)

where d(ζ) < 1/2 is a known function of ζ, and a(z; ζ) and b(z; ζ) are poly-

nomials in z of known degrees m and n respectively, whose coefficients are

known functions of ζ, which have no zeros in common:

a(z; ζ) = 1 +
m∑

j=1

ζjz
j for m ≥ 0, a(z; ζ) 6= 0, |z| ≤ 1, (17)

b(z; ζ) = 1 −
n∑

j=1

ζj+mzj for n ≥ 0, b(z; ζ) 6= 0, |z| ≤ 1, (18)

setting
∑n

j=1 cj = 0 when n < 1 and with ζi denoting the ith element of ζ.

Hereafter assume that E(z0) = 0, var(z0) = 1. Then, the EGARCH(m,n)

model is defined by (4) and (16)-(17)-(18) with d(ζ) ≡ 0. The differentiability

12
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and the rate of convergence of the ψj(ζ) follow since the former are well-

known analytic functions of the roots of the polynomials a(z; ζ), b(z; ζ) (see

Brockwell and Davis (1987, section 3.6)). Ass. C(1, l) and D(1, l) are then

satisfied with e(ζ) equal to the maximum of the inverse modulus of the roots

of b(z; ζ). The function Er(j; ζ) could either be monotonically non decreasing

as well as a trigonometric function, the latter case arising in case of dominant

complex conjugates roots. Concerning the parameter φ, (4) implies that the

distribution of the zt can at most depend on one parameter φ03 due to Ass.

E, since q ≤ 3, and imposing Ez0 = 0 and var(z0) = 1 one gets

α(φ0) = var(logz2
0), β(φ0) = φ01 + φ2

02(1 − µ2
|z|), γ(φ0) = φ02cov(logz2

0 , | z0 |),

where φ01 = θ2
0, φ02 = δ0. The sign of θ0 is not identifiable through the

(univariate) model spectral density although it will be using a bivariate ex-

tension of the Whittle estimator, as discussed below. Identification requires

that φ03 = var(logz2
0) only can be left as a free parameter, and one must

then set ‘a priori’ both µ|z| and cov(logz2
0 , | z0 |) in such a way that Ass. F

is satisfied. This represents the most general (semi-parametric) specification

of the EGARCH model, in terms of the distribution of the zt. Considering

parametric specifications, meaning that the distribution of the zt depends

on an unknown parameter φ03, then var(logz2
0), µ|z| and cov(logz2

0 , | z0 |) are

jointly determined. Ass. F will be automatically satisfied, whenever the zt

have a non-degenerate (parametric) distribution. For instance, when zt are

i.i.d GED with tail thickness parameter 0 < φ03 ≤ ∞

α0 = (
2

φ03

)2Ψ(
1

φ03

), β0 = φ01+φ2
02(1−µ2

|z|), γ0 =
2φ02

φ03

µ|z|

(
ψ(

2

φ03

) − ψ(
1

φ03

)

)
,

(19)

with µ|z| = Γ(2/φ03)/(
√

Γ(3/φ03)Γ(1/φ03)) where ψ(z) is the digamma func-

tion (the derivative of logΓ(z) with Γ(z) being the Gamma function) and

Ψ(z) is the trigamma function (the derivative of ψ(z)); see Gradshteyn and

Ryzhik (1994, sections 6.3 and 6.4). A distribution with fatter tails than

the normal is obtained whenever φ03 < 2 and with thinner tails whenever

13
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φ03 > 2 (see Nelson (1991, p.353)). The GED nests the normal distribution,

for φ03 = 2, and the uniform distribution, for φ03 → ∞. Let us discuss now

Ass. E more in depth. Consider first the left hand side sub matrix of (12),

made up of the first q columns. It is evident that linear independence of the

columns of this sub matrix requires ∂α(φ)/∂φ, ∂β(φ)/∂φ,

∂γ(φ)/∂φ to be linearly independent. Since for EGARCH ∂α(φ)/∂φ1 =

∂α(φ)/∂φ2 = ∂γ(φ)/∂φ1 = 0 it is easy to see that this is achieved when

∂α(φ)

∂φ3

∂β(φ)

∂φ1

∂γ(φ)

∂φ2

6= 0. (20)

For the normal case (20) is not satisfied since α(φ) is independent from φ

and, indeed, we can identify only φ′
01 = φ01φ03 and φ′

02 = φ02

√
φ03, implying

q = 2. However, both for the GED and Students’t case (20) is satisfied.

Under this circumstance, full rank of the left hand side sub matrix of (12)

is then guaranteed if also ∆0(ζ) ∆ja(ζ) 6= 0 for at least one ja, a ∈ {2, ..., s}.

Let us now consider the right hand sub matrix made up by the last p columns

of (12), and consider for sake of simplicity the EGARCH(1, 1) case, yielding

p = 2 and ζ = (ζ1, ζ2)
′. It is well known that for this case ψ0 = 1, ∆0(ζ) =

(1 + ζ2
1 + 2ζ1ζ2)/(1 − ζ2

2 ) and ψu = ζu−1
2 (ζ1 + ζ2), ∆u(ζ) = ζu−1

2 (ζ1 + ζ2)(1 +

ζ1ζ2)/(1 − ζ2
2 ), u ≥ 1. Simple yet tedious calculations yield

Φ0(ϑ) = 2β(φ)
ζ1 + ζ2

1 − ζ2
2




1

1+ζ1ζ2
1−ζ2

2


 , Φ1(ϑ) =

β(φ)

1 − ζ2
2




1 + 2ζ1ζ2 + ζ2
2

(1+ζ1ζ2)2+(ζ1+ζ2)2

1−ζ2
2




Φu(ϑ) = ζu−2
2

(
β(φ) ζ2

∂∆1(ζ)

∂ζ
+ γ(φ)

∂ψ1(ζ)

∂ζ

)

+ζu−3
2

(
0

(u − 1) ζ2 β(φ)∆1(ζ) + (u − 2) γ(φ)ψ1(ζ)

)
, u ≥ 2,

which form a nonsingular basis in R2 whenever | ζ1 |< 1, | ζ2 |< 1, ζ1+ζ2 6= 0.

Under the same conditions, full rank of matrix (12) follows since each of the

first q column vector is linearly independent from the last p column vectors.

The asymptotic covariance matrix of ϑ̂T involve the trispectrum Q(ω1, ω2, ω3),

defined in (33), which in turn depends on various mixed fourth-order cu-

14
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mulants for the logz2
t , εt. Since cum(a, b, c, d) = E(abcd) − E(ab)E(cd) −

E(ac)E(bd)−E(ad)E(bc), assuming symmetric zt, for EGARCH one gets:

κlogz2logz2logz2ε = δ0

(
E(((logz2

0)
3 | z0 |) − 3µ(logz2)2Elogz2

0 | z0 |)
)
,

κlogz2logz2εε = (θ2
0 + δ2

0)E(logz2
0)

2z2
0 − (θ2

0 + δ2
0)µ(logz2)2 − 2δ2

0(Elogz2
0 | z0 |)2,

κlogz2εεε = (δ3
0 + 3θ2

0δ0)Elogz2
0 | z0 |3 −3δ0(θ

2
0 + δ2

0)Elogz2
0 | z0 |,

κεεεε = (θ4
0 + δ4

0 + 6θ2
0δ

2
0)µz4 − 3(θ2

0 + δ2
0)

2.

We now discuss the analogies of our results with respect to the MLE

of EGARCH. Nelson (1991, p.93) proposed estimation of the EGARCH by

ML based on the GED with tail thickness parameter ν, but its asymptotic

properties remain unknown even when ν is assumed known (ν = 2 yields

the Gaussian likelihood). ML estimation requires invertibility of the model,

that is the possibility to express zt as a convergent (in some norm) function

of all the xs (s ≤ t). Invertibility is necessary for the ‘observed’ likelihood,

function of a sample (x1, ..., xT ) of size T , to be well-behaved asymptotically

without exploding nor converging toward zero for any admissible parameter

value. Establishing invertibility is typically a formidable task to be achieved

for nonlinear moving average models (see Granger and Andersen (1978)).

Recently Straumann and Mikosch (2006, eq.(3.18) and Remark 3.13) provide

a sufficient condition for invertibility of EGARCH(0, 1) but also suggest that

such condition is practically infeasible, except when ζ01 = 0, that is for the

EGARCH(0, 0) which, in turn, implies ψ00 = 1, ψ0j = 0, j ≥ 1. This means,

for instance, that ht is i.i.d. and xt is independent of xt−j for all j > 1. Based

on this invertibility condition, the asymptotics properties of the MLE of the

EGARCH(0, 0) are then established (see Straumann (2005, Theorem 5.7.9).

However, it is easy to establish the central limit theorem (CLT) for the

first derivative of the log likelihood function evaluated at the true parameter

value for a general EGARCH(m,n). This represents a necessary step to

establish the asymptotic distribution of the PMLE which, however, does not

require invertibility of the model. It turns out that Ez2
0 + E | z0 |2ν< ∞

is required, when adopting a GED log likelihood for zt, with tail thickness

15
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parameter 0 < ν < ∞. (Obviously, when zt is truly GED distributed then

all its moments exist.) Since ν > 1 is likely to be required (see Nelson (1991,

last paragraph of p.106)), this simplifies to E | z0 |2ν< ∞, which equals

Ez4
0 < ∞ when adopting a Gaussian likelihood. Concerning the Whittle

estimator, Theorem 2 simply requires Ez4
0 < ∞ and E(log z2

0)
2 < ∞ .(The

latter is implied by the forme for most distributions of interest.) Therefore,

our moment condition equals the one required by Gaussian PMLE and will

only be slightly stronger for GED PMLE with ν < 2. This contrasts with

estimation of ARCH(∞) model whereas Whittle estimation requires Ex8
0 <

∞ (see Giraitis and Robinson (2001)). Conditions required for asymptotic

normality of Gaussian PMLE of ARCH(∞) are instead much weaker, since

finite variance of the xt is not even required (see Robinson and Zaffaroni

(2006)). Linton and Mammen (2005) consider semiparametric estimation of

a class of asymmetric ARCH(∞), with a nonparametric specification of the

effect of past squares on the conditional variance. Their asymptotic results

require E|x0|δ< ∞, δ > 4. Zaffaroni (2003) considers Whittle estimation of

a class of nonlinear moving average processes, which however does not admit

a signal-plus-noise representation, treating x2
t as the observable. A bounded

fourth moment condition is postulated.

5 Extensions

We now present a number of relevant extensions, the additional proofs of

which follow by suitably adapting the corresponding proofs of Theorem 1

and 2, and are not reported for sake of simplicity. Further extensions that

lead to efficiency improvements and applicability to high-frequency return

and duration data are discussed in Zaffaroni (2008).

5.1 Non-stationarity

The very first empirical application of EGARCH, based on the value-weighted

market index from the CRSP tapes, indicates a great deal of persistence, with
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the largest estimated autoregressive roots approximately equal to 0.99962,

yielding a t statistic for testing the unit root hypothesis of −0.448 Nelson

(1991, Table 5.2 and p.99). As another example, Bollerlsev and Mikkelsen

(1996, Table 5) report the results of an empirical application of FIEGARCH,

based on the Standard & Poor’s 500 composite stock index, yielding a point

estimate of the long memory parameter d0 = d(ζ0) equal approximately to

0.633. The t statistic for testing the hypothesis d = 0.5 is 2.111. Both

examples suggest that condition
∑∞

k=0 ψ2
0k < ∞ might be too strong in

certain circumstances. Let us consider for instance the case where ψ0j ∼
c jd0−1 as j → ∞, for 1/2 ≤ d < 3/2. Then square summability of the

ψ0j clearly fails but
∑∞

k=1(ψ0k − ψ0k−1)
2 < ∞. Several approaches can be

considered in such circumstance. First, one can adapt the idea of using

data tapering used by Velasco and Robinson (2000) for parametric Whittle

estimation of nonstationary linear time models. Second, one can simply dif-

ferentiate logx2
t in order to achieve stationarity. For the case just described,

this implies considering as observable the series

x̃t =
xt

xt−1

=
zt

zt−1

e0.5(ht−ht−1) = z̃te
0.5(ht−ht−1),

setting z̃t = zt/zt−1, and then consider Whittle estimation based on the

log x̃2
t . The differenced process will satisfy the conditions listed in Section

2, and the corresponding spectral density will be |1 − eiλ |2f(λ) where f(λ)

is the (pseudo) spectral density of the log x2
t . The Whittle estimator of

the model parameters will then be strongly consistent and asymptotically

normal but the limit covariance matrix will have a different form from the

un-differenced case reported in Theorem 2, since a different model spectral

density is considered. Moreover, an efficiency loss is likely to occur. In fact,

logx̃2
t = logz̃2

t + (ht − ht−1), and the noise term logz̃2
t has a larger variance,

in fact double, than logz2
t . Note that logz̃2

t is autocorrelated and moreover

correlated with ht − ht−1, except for the simple case of mutually uncorrelated

log z2
t , εt.

For Gaussian zt, the z̃t will be Cauchy distributed so the first moment
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does not exist and the first absolute moment is unbounded. This suggests

that applying the same idea to PMLE could be problematic, stressing instead

the great flexibility enhanced by the Whittle estimator. The log-difference

transformation mainly affects the proof of the CLT (cf. Lemma 7 in the

appendix), which nevertheless could be generalized to the case where the ob-

servable is the log-square of
(∏m−1

j=0 z
cj

t−j

)
e0.5(ω0+

P∞
k=0 ψ0kεt−k−1), with known

cj = 0, ±1, ... and square summable ψ0j. This implies that any finite number

of log-square differenciations is permitted in order to achieve stationarity.

By differencing one might obtain that the spectral density of the differenced

series is O(| λ |δ), λ → 0 for some δ > 0. This affects the proof of asymp-

totic normality, unless δ < 1, but not of consistency. Therefore, in order

to construct confidence intervals, two estimations are required with the first

one aiming at finding the suitable degree of differentiation to possibly ensure

δ < 1.

5.2 Filtering and forecasting

Consider one-shock models such as the EGARCH and the GJR models. If

the (nonlinear) autoregressive representation of xt was available, it could

be used for both forecasting hT+s,s ≥ 0, based on a sample of x1, ..., xT −1

or, alternatively, to back out the within-sample (yet unobserved) volatility

hs, 1 ≤ s ≤ T − 1. Establishing the existence of such representation is

analog to establish invertibility of the xt, which appears a formidable task

to be achieved, as discussed before. However, the frequency domain set up

allows us to make use of the Wiener-Kolgomorov (WK) theory of forecasting

and signal extraction for linear models (see Whittle (1983)). Harvey (1998)

proposed to use the WK filter for long memory SV models when γ0 = 0.

It is relatively less known, though, that the WK theory naturally allows for

correlated signal and noise and it can then be applied to one-shock models,

once a consistent parameters estimate is available. Therefore, in what follows,

we simply describe how to implement the WK theory within our framework,

when correlation between signal and noise is allowed for.
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Assume for sake of simplicity that Elogx2
0 = Elogz2

0 + ω0 = 0. In the

more realistic case of non-zero mean, a consistent estimate of the mean (see

Remark (ii) of Section 3) will be subtracted from the data prior to filtering

and forecasting yielding asymptotically equivalent results.

For forecasting purposes, the minimum mean-square linear forecast of

logx2
T+h,h = 0, 1, ... based on the infinite past of the series {logx2

T −j, j = 1, ..}
is

l̂ogx
2

T+h = −
h∑

j=1

aj l̂ogx
2

T+h−j −
∞∑

j=1

aj+hlogx2
T −j, h = 0, 1, ... (21)

Forecast of hT+h−1 easily follow by (3). The coefficients aj are obtained

by means of the canonical factorization of f(λ) (see Whittle (1983, p.26))

which exists by Lemma 4, part (ii). A consistent estimate of the aj is âu =

(2N)−1
∑N

j=−N+1 Âje
iuµj , u = 0, 1, .., N −1, where Âu = exp

{
− ∑N −1

j=1 ĉje
−ijµu

}
=

¯̂
A−u, ĉu = 1

N

∑N −1
k=1 log(f(µk; ϑ̂T )) cos(uµk) for µn = πn/N, n = 0, ±1, ..., ±N ,

N = [T
1
2 /4], [·] is the integer part of its argument and ā is the conjugate of the

complex number a. Computation of the âu implies that (21) is replaced by

the finite sum l̂ogx
2∗
T+h = − ∑h

j=1 âj l̂ogx
2∗
T+h−j − ∑N −h−1

j=1 âj+hlogx2∗
T −j, h =

0, 1, .... Hereafter {x∗
t−j, j = 1, 2, ..., N − 1} represents a sample of the xt not

used in the estimation of ϑ0.

Signal extraction of hs, 1 ≤ s ≤ T − 1 based on the infinite sequence

log x2
t , t = 0, ±1, ... can be carried out evaluating the best linear predictor

ĥt =
∞∑

j=−∞
gj logx2

t−j (22)

where the gj = (2π)−1
∫ π

−π
e−ijλf −1(λ) (fhh(λ) + fhlogz2(λ)) dλ and fhh(λ) =

β0/(2π)
∑∞

u=−∞ ∆|u|eiuλ, fhlogz2(λ) = γ0/(2π)
∑∞

u=1 ψ0u−1e
iuλ, −π ≤ λ < π,

setting ∆u = ∆u(ζ0) =
∑∞

j=0 ψ0jψ0j+u. Similarly to before, a consistent esti-

mate of gj is ĝj = 1
2N

∑N −1
p=−N+1 f −1(µp; ϑ̂T )

(
fhh(µp; ϑ̂T ) + fhlogz2(µp; ϑ̂T )

)
e−ijµp , j =

0, ±1, ... Truncating suitably (22) and plugging in the ĝj yields ĥ∗
t =

∑t−1
j=t−T ĝj logx2∗

t−j, t =

1, ..., T . Theoretical justification for l̂ogx
2∗
T+h and ĥ∗

t , as T → ∞, can be ob-

tained adapting Hidalgo and Yajima (2002) and Bhansali (1974).
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6 Final remarks

We have established the asymptotic distribution theory of the Whittle es-

timate of a class of exponential volatility models (1)-(2) the most notable

element of which is the EGARCH model of Nelson (1991) and the FIE-

GARCH of Harvey (1998) and Breidt, Crato, and deLima (1998). Perez and

Zaffaroni (2008) present a finite-sample comparison of the Whittle estima-

tor with MLE for EGARCH and FIEGARCH models. We have discussed

generalizations, in particular when dealing with nonstationarity as well as

with filtering and forecasting. Other generalizations are of interest. The

frequency domain set-up easily allows to estimate seasonality effects with

various degrees dependence. Second, we focused on estimation of the condi-

tional variance parameters by assuming martingale difference observations,

but one can consider simultaneous estimation of both conditional mean and

conditional variance parameters. Third, multivariate extensions of the ex-

ponential model, along the lines of Harvey, Ruiz, and Shephard (1994) but

also considering one-shock models, can be developed and estimated based

on a multivariate version of the Whittle estimator. Fourth, the exponential

model can be generalized by leaving the news impact curve ε(zt) unspecified,

similarly to the semiparametric ARCH(∞) model of Linton and Mammen

(2005). Similarly to them, the estimation procedure of this semiparametric

exponential model will then combine aspects of parametric and nonparamet-

ric estimation.

Appendix: mathematical proofs
K defines a non zero constant, not always the same, and K0 a constant

that could be eventually zero. →a.s., →d define a.s. convergence and con-

vergence in distribution respectively. For any ih = 1, ..., p, h = 0, ..., l, let

Ui1,i2,..,il(λ; ζ) = ∂l

∂ζi1
...∂ζil

∣∣ψ(eiλ; ζ)
∣∣2,Vi1,i2,..,il(λ; ζ) = ∂l

∂ζi1
...∂ζil

(
eiλψ(eiλ; ζ) + e−iλψ(e−iλ; ζ)

)

and for any jh = 1, ..., s, h = 0, ..., l, let fj1,j2,..,jl
(λ; ϑ) = ∂l

∂ϑj1
...∂ϑjl

f(λ; ϑ), any

−π ≤ λ < π and ϑ ∈ Θ. When l = 0 we mean that no differentiation occurs.
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Lemma 1 Under Assumptions C(0, l) and D(0, l):

(i) As λ → 0+

Vi1,i2,..,ir(λ; ζ) ∼





K Dr(λ
−1; ζ) λ−d(ζ), d(ζ) ∈ (0, 1/2),

K D′
r(λ

−1; ζ), d(ζ) = 0 and non summable | Dr(j; ζ) | j−1,
K0, d(ζ) = 0 and summable | Dr(j; ζ) | j−1,
K0, d(ζ) < 0,

Ui1,i2,..,ir(λ; ζ) ∼





K D′′
r (λ

−1; ζ) λ−2d(ζ), d(ζ) ∈ (0, 1/2),
K D′′′

r (λ−1; ζ), d(ζ) = 0 and non summable | Dr(j; ζ) | j−1,
K0, d(ζ) = 0 and summable | Dr(j; ζ) | j−1,
K0, d(ζ) < 0,

for all ih = 1, ..., s, h = 1..., r, r ≤ l where D′
r(x; ζ), D′′

r (x; ζ), D′′′
r (x; ζ) are

slowly varying functions.

(ii) For all ϑ and λ 6= 0 Ui1,i2,..,ir(λ; ζ) and Vi1,i2,..,ir(λ; ζ) satisfy an approxi-

mate Lipschitz continuous conditions Lip(δ) with δ ≥ min[1, 1 − 2d(ζ)] (see

Zygmund (1977, Section 3)).

Proof. (i) Consider case l = 0 and U(λ; ζ). Case l > 0 easily follows. When

d(ζ) < 0 the ψj(ζ) are summable implying that the cj(ϑ) are summable.

Hence f(λ; ϑ) is continuous for all λ ∈ [−π, π) including λ = 0. The same

applies when d(ζ) = 0 with summable | D0(j; ζ) | j−1.

We discuss case d(ζ) ∈ [(0, 1/2) with non summable | D0(j; ζ) | j−1. It is

easy to see that our assumptions imply

| ∆u(ζ) − ∆u+1(ζ) ≤| K
| ∆u(ζ) |

u
as u → ∞. (23)

This implies that the cu(ϑ) are quasi-monotonically convergent to zero and

also satisfy the pure-bounded variation condition:
∑∞

k=u |∆k(ζ) − ∆k+1(ζ)|=
O(| ∆u(ζ) |) as u → ∞. See, for example, Robinson (1994, Lemma 11) when

d ∈ (0, 1/2). Moreover ∆u(ζ) =
∑u

j=0 ψj(ζ)ψj+u(ζ)+
∑∞

j=u+1 ψj(ζ)ψj+u(ζ) ∼
ψu

∑u
j=0 ψj +

∑∞
j=u+1 ψ2

j (ζ) ∼ D′′
0(j; ζ)u2d(ζ)−1, as u → ∞, setting D′′

0(j; ζ) =

D2
0(j; ζ), where the last ∼ relationship follows by Yong (1974, Lemma I-11,

(1-32’) and (1-32”) and Lemma I-16). It easily follows that same proper-

ties apply to the cu(ϑ). When d(ζ) = 0, ∆u(ζ) =
∑u

j=0 ψj(ζ)ψj+u(ζ) +
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∑∞
j=u+1 ψj(ζ)ψj+u(ζ) ∼ ψu

∑u
j=0 ψj+

∑∞
j=u+1 ψ2

j (ζ) ∼ D0(u; ζ) u−1
∫ u

1
D0(t; ζ) t−1dt+

D2
0(u; ζ) u−1 ∼ D′′′

0 (u; ζ) u−1 as u → ∞, by Yong (1974, Lemma III-7, (i),

(ii) and (iii)) where D′′′
0 (·; ζ) = D0(u; ζ)

∫ u

1
D0(t; ζ) t−1dt is slowly varying.

Note that the latter always dominates D2
0(·; ζ) in all cases. By the same

arguments (23) follows. Therefore, the proof is completed using Yong (1974,

Lemma III-12) when d(ζ) ∈ (0, 1/2) and Yong (1974, Lemma III-22, (i))

when d(ζ) = 0 with non summable | D0(j; ζ) | j−1. The proof for V (λ; ζ)

follows directly.

(ii) The result follows by Robinson (1994, Lemma 8). ¥

Lemma 2 Under Assumptions C(0, a), D(0, a) for any im = 1, ..., q and

jn = q + 1, ..., q + p with 0 ≤ m ≤ b ≤ a, 0 ≤ n ≤ c ≤ a,

fi1,...,ib,j1,..,jc(λ; ϑ) =
αi1,..,ib(φ)

2π
+

βi1,..,ia(φ)

2π
Uj1,...,jc(λ; ζ)+

γi1,..,ib(φ)

2π
Vj1,...,jc(λ; ζ).

Proof. Straightforward. ¥

Lemma 3 Under Assumptions C(k2, a), D(k2, a), for any im = 1, ..., q, 0 ≤
m ≤ b ≤ a and jn = q + 1, ..., q + p, 0 ≤ n ≤ c ≤ a, fi1,...,ib,j1,..,jc(λ; ϑ) is

continuous for all ϑ ∈ Θ and λ 6= 0 ( mod. 2π).

Proof. When the cu(ϑ) are absolutely summable then continuity holds for

any ϑ ∈ Θ and any λ ∈ (−π, π]. Summability holds for k2 = 1, k2 =

0, d(ζ) < 0 and k2 = 0, d(ζ) = 0,
∑∞

j=1 j−1 | Da(j; ζ) |< ∞. When k2 =

0, d(ζ) ∈ (0, 1/2) and k2 = 0, d(ζ) = 0, non summable j−1 | Da(j; ζ) | then

Robinson (1994, Lemma 8) applies, in the second case also using Lemma 1

together with Yong (1974, Lemma III-7, (i), (ii) and (iii)) and Yong (1974,

Lemma III-22, (i)). ¥

Lemma 4

(i) Under Assumption E, f(λ; ϑ) 6= f(λ; ϑ0) for all ϑ 6= ϑ0, ϑ ∈ Θ.

(ii) Under Assumption F , f(λ; ϑ) ≥ K > 0 for all ϑ ∈ Θ and −π ≤ λ < π.
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Proof. (i) We proceed by contradiction. Let us assume that there exist

ϑ ∈ Θ such that ϑ 6= ϑ0 and f(λ; ϑ) = f(λ; ϑ0) = f(λ) for −π ≤ λ < π.

However, since f(λ; ϑ) is uniquely identified by its Fourier transform, it also

follows that cu(ϑ) = cu(ϑ0), u = 0, ±1, .... By Assumption E and the mean

value theorem



c0(ϑ)
cj2(ϑ)

...
cjs(ϑ)


 =




c0(ϑ0)
cj2(ϑ0)

...
cjs(ϑ0)


 +




∂
∂ϑ′ c0(ϑ̃)
∂

∂ϑ′ cj2(ϑ̃)
...

∂
∂ϑ′ cjs(ϑ̃)


 (ϑ − ϑ0),

where ‖ϑ̃ − ϑ‖ ≤ ‖ϑ0 − ϑ‖ and ‖ · ‖ is the Euclidian norm. But this implies

ϑ = ϑ0 since the s × s matrix of derivatives is full rank.

(ii) By Assumption F we can always find a sufficiently small δ(φ) > 0 such

that | γ(φ) |< (α′(φ))
1
2 (β(φ))

1
2 with α′(φ) = α(φ) − δ(φ). Then

f(λ; ϑ) =
δ(φ)

2π
+

(
α′(φ)

2π
+

β(φ)

2π

∣∣ψ(eiλ; ζ)
∣∣2 +

γ(φ)

2π

(
eiλψ(eiλ; ζ) + e−iλψ(e−iλ; ζ)

))
,

and the term in brackets on the right hand side is nonnegative for any −π ≤
λ < π, since it represents a well-defined model spectral density. When (13)

holds, one can take δ(φ) = var(log z2
0(φ) − E(log z2

0(φ) | ε0(φ))). Finally take

K = infϑ∈Θ δ(φ)/(2π). ¥

Lemma 5 Under Assumption A(2) and (2) the xt satisfy | xt |< ∞ a.s. and

are ergodic and strictly stationary.

Proof. Almost sure boundedness, ergodicity and strict stationarity follow

easily adapting Nelson (1991, Theorem 2.1). ¥

Lemma 6

(i) Under Assumptions A(2), C(k2, 0), D(k2, 0), F ,

QT (ϑ) →a.s. Q(ϑ) as T → ∞,

uniformly in ϑ ∈ Θ, where Q(ϑ) = 1
2π

∫ π

−π
log(f(λ; ϑ))dλ+ 1

2π

∫ π

−π
f(λ)f −1(λ; ϑ)dλ.

(ii) Under Assumption E, F , Q(ϑ) ≥ Q(ϑ0) for any ϑ ∈ Θ.
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Proof. (i) All the convergences below hold as T → ∞. Uniform convergence

of 1/T
∑T −1

t=1 IT (λt)/f(λt; ϑ) is obtained by Hannan (1973, Lemma 1). Let

us consider the non random term 1/T
∑T −1

t=1 log( f(λt; ϑ)). When f(λ; ϑ) is

continuous for all λ ∈ [−π, π) then uniform convergence also follows adapting

Hannan (1973, Lemma 1) since, uniformly on Θ, |log( f(λ; ϑ)) − gM(λ; ϑ)| <

δ, for some arbitrary δ > 0 taking large enough M , where gM(λ; ϑ) is the

M -terms Cesaro sum of the Fourier series of log( f(λ; ϑ)). When f(λ; ϑ)

is not continuous at zero frequency the result follows by adapting Zaffa-

roni (2003, Lemma 10) bearing in mind that supϑ∈Θ f(λ; ϑ) ≤ K | λ |−2dU

, infϑ∈Θ f(λ; ϑ) ≥ K > 0, λ ∈ [−π, π), with dU < 1/2.

(ii) By Assumption F one gets f(λ)/f(λ; ϑ) − 1 ≥ −log(f(λ; ϑ)/f(λ)), equal-

ity holding only for ϑ = ϑ0 by Lemma 4-(i). ¥

Lemma 7 Under Assumptions A(4), B, C(k2, 1), D(k2, 1), F,

T
1
2

(∫ π

−π

g(λ)(IT (λ) − EIT (λ))dλ

)
→d N(0, Ṽ ), as T → ∞, (24)

where g(λ) = g(λ; ϑ0), g(λ; ϑ) = ∂
∂ϑ

f −1(λ; ϑ), −π ≤ λ < π, and Ṽ defines

an s × s positive semi definite matrix.

Proof. At first we characterize the local behaviour of g(λ; ϑ) near the zero

frequency. As λ → 0+ by Lemma 1

f −2(λ; ϑ)
∂f(λ; ϑ)

∂φi

∼





K
βφi

D
′′
0 (λ−1;ζ)

λ2d(ζ), d(ζ) ∈ (0, 1/2),

K
βφi

D
′′′
0 (λ−1;ζ)

, d(ζ) = 0 and non summable | D0(j; ζ) | j−1,

K0, d(ζ) = 0 and summable | D0(j; ζ) | j−1,
K0, d(ζ) < 0,

for i = 1, ..., q, and

f −2(λ; ϑ)
∂f(λ; ϑ)

∂ζj

∼





K
D

′′
1 (λ−1;ζ)

D
′′ 2
0 (λ−1;ζ)

λ2d(ζ), d(ζ) ∈ (0, 1/2),

K
D

′′′
1 (λ−1;ζ)

D
′′′ 2
0 (λ−1;ζ)

, d(ζ) = 0 and non summable | D1(j; ζ) | j−1,

K0, d(ζ) = 0 and summable | D1(j; ζ) | j−1,
K0, d(ζ) < 0,
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for j = 1, ..., p. Just considering the first case d(ζ) > 0, it easily follows since

f 2(λ; ϑ) ∼ KD
′′2
0 (λ−1; ζ)λ−4d(ζ) and ∂

∂φi
f(λ; ϑ) ∼ K βφi

D
′′
0 (λ−1; ζ)λ−2d(ζ).

The other cases can be obtained in the same manner, noting that the terms

that involve V (λ, ζ) are dominated by terms in U(λ, ζ).

All the convergences below hold as T → ∞. Let hu(ϑ) = (2π)−1
∫ π

−π
g(λ; ϑ)eiuλdλ, u =

0, ±1, ±2, ... be the Fourier coefficients of g(λ; ϑ) and write hu(ϑ) =

(hu φ1(ϑ), ..., hu φq(ϑ), hu ζ1(ϑ), ..., hu ζp(ϑ))′. Set hu = hu(ϑ0), hu ϑi
= hu ϑi

(ϑ0), i =

1, ..., s and yt = log x2
t − µlog x2 , where µlog x2 = ω0 + µlog z2 . We follow

the approach put forward by Giraitis and Surgailis (1990) and approxi-

mate
∫ π

−π
g(λ)IT (λ)dλ = 1

4π2T

∑T
t,s=1 h|t−s|(log x2

t −µ̂logx2)(log x2
s −µ̂logx2) (here

µ̂logx2 =
∑T

t=1 log x2
t /T ) by another quadratic form, which shares the same

asymptotic distribution but is nevertheless much easier to handle. First note

that by Fox and Taqqu (1987, Lemma 8.1) no change in the asymptotic dis-

tribution of the previous quadratic form occurs when substituting µ̂log x2 with

the population mean µlog x2 . Next, set

PT =
T∑

t,s=1

h|t−s|ytys, PT (N) =
T∑

t,s=1

h|t−s|yt(N)ys(N)

with yt(N) = logz2
t −µlog z2 +

∑N
j=0 ψ0jεt−j−1, 0 < N < ∞. The main part of

the proof is devoted to establish var(PT − PT (N)) = O(T δN) for a sequence

of positive terms satisfying δN → 0 as N → ∞.

We first show that var(PT ) = O(T ). In fact

var(PT ) =
T∑

t1,s1,t2,s2=1

h|t1−s1|h
′
|t2−s2|

(
c|t1−t2|c|s1−s2| + c|s1−t2|c|t1−s2|

)
(25)

+
T∑

t1,s1,t2,s2=1

h|t1−s1|h
′
|t2−s2|cum (yt1 , yt2 , ys1 , ys2) , (26)

where cum(·, ·, ·, ·) defines the fourth-order cumulant operator. Setting QT (f), QT (g)

equal to the T × T Toeplitz matrix based on the Fourier transforms of f(λ)

and g(λ) respectively, the two terms on the right hand side of (25) can be

written as tr(QT (f)QT (g)QT (f)QT (g)). When | f(λ) |= O(λ−a−δ), | g(λ) |=
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O(λ−b−δ) as λ → 0, any δ > 0, and satisfying the regularity condition of Fox

and Taqqu (1987, p.215), then tr(QT (f)QT (g)QT (f)QT (g)) = O(T ) when

2(a + b) < 1 by Fox and Taqqu (1987, Theorem 1). Since any slowly varying

function satisfies | L(u) |= O(uδ), u → ∞, any δ > 0, and for all possible of

our cases −b ≥ a ≥ 0 the result follows. For (26), it can be easily seen that

cum (yt1 , yt2 , ys1 , ys2) is made by the sum of sixteen terms of the form:

κlogz2logz2logz2logz21t1=t2=s1=s2 (one term),
κlogz2logz2logz2εψs2−t1−11t1=t2=s1 (four terms),
κlogz2logz2εε1t1=t2ψs1−t2−1ψs2−t1−1 (six terms),
κlogz2εεεψt2−t1−1ψs1−t1−1ψs2−t1−1 (four terms),
κεεεε

∑∞
k=0 ψkψk+t2−t1ψk+s1−t1ψk+s2−t1 (one term),

(27)

where we set κabcd = cum(a0, b0, c0, d0) for i.i.d. {at, bt, ct, dt} with bounded

fourth moment. Consider the last term. Since ψj = 0, j < 0 then 0 ≤
s2 − t1 + k implies s1 − s2 ≤ s1 − t1 + k. Likewise s2 − s1 ≤ s2 − t1 +

k, yielding | ψk+s1−t1ψk+s2−t1 |= 1s2−s1>0 | ψk+s1−t1ψk+s2−t1 | +1s1−s2≥0 |
ψk+s1−t1ψk+s2−t1 |≤ 1s2−s1>0K | ψs2−s1 | +1s1−s2≥0K | ψs1−s2 |≤ K | ψ|s2−s1| |
which in turn implies κεεεε

∑∞
k=0 | ψkψk+t2−t1ψk+s1−t1ψk+s2−t1 |≤ K | ψ|s2−s1| |∑∞

k=0 | ψkψk+|t2−t1| |≤ K
∑∞

k=0 | ψkψk+|s2−s1| | ∑∞
k=0 | ψkψk+|t2−t1| |. There-

fore we can apply Fox and Taqqu (1987, Theorem 1) precisely as we have done

above, yielding that the term of (26) involving κεεεε

∑∞
k=0 ψkψk+t2−t1ψk+s1−t1ψk+s2−t1

is O(T ). Along the same lines, one can easily show that all the other terms of

(26) are O(T ), implying var(PT ) = O(T ). Write var(PT −PT (N)) = A1+A2+

A3 where A1 = var
(∑T

t,s=1 h|t−s|yt(ys − ys(N))
)

, A2 = var
(∑T

t,s=1 h|t−s|ys(N) (yt − yt(N))
)

,

A3 = 2cov
(∑T

t,s=1 h|t−s|yt (ys − ys(N)),
∑T

t,s=1 hϑi,|t−s|ys(N)(yt − yt(N))
)
. The

same bound apply to A1 and A2 and therefore, by Schwarz inequality, to A3

as well, so we just consider A1. By the cumulants theorem (see Leonov and

Shiryaev (1959)) one obtains A1 = B1 + B2 + B3 with

B1 =
∑T

t1,s1,t2,s2=1 h|t1−s1|h′
|t2−s2|cov (yt1 , yt2) cov (ys1 − ys1(N), ys2 − ys2(N)) B2 =∑T

t1,s1,t2,s2=1 h|t1−s1|h′
|t2−s2|cov (yt1 , ys2 − ys2(N)) cov (yt2 , ys1 − ys1(N)) ,

B3 =
∑T

t1,s1,t2,s2=1 h|t1−s1|h′
|t2−s2|cum (yt1 , yt2 , ys1 − ys1(N), ys2 − ys2(N)). By

Assumption A(2), cov (yt, ys) = α01t=s + β0∆|t−s|(ζ0) + γ01t6=sψ0|s−t|−1,
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cov (yt − yt(N), ys − ys(N)) = β0

∑∞
j=N+1 ψ0jψ0j+|t−s|, cov (yt, ys − ys(N)) =

γ0ψ0s−t−11(s−t>N+2) + β0

∑∞
j=N+1 ψ0jψ0j+|t−s|, and by Assumption A(4)

cum (yt1 , yt2 , ys1 − ys1(N), ys2 − ys2(N)) = (28)

κlogz2logz2εεψs1−t2−1ψs2−t1−11t1=t21s1−t2≥N+11s2−t1≥N+1

+ κlogz2εεεψ|t2−t1|−1ψs1−t1−1ψs2−t1−11s1−t1≥N+11s2−t1≥N+1

+ κlogz2εεεψ|t1−t2|−1ψs1−t2−1ψs2−t2−11s1−t2≥N+11s2−t2≥N+1

+ κεεεε

∞∑

k=0

1k≥max{0,N+1−s1+t1,N+1−s2+t1}ψkψk+t2−t1ψk+s1−t1ψk+s2−t1 .

For B1, for some 0 < η < 1

| cov (yt, ys) |≤ K

{ ∞∑

j=0

| ψ0j |1−η/2| ψ0j+|t−s| |1−η/2

}
, (29)

| cov (yt − yt(N), ys − ys(N)) |≤ β0 |
∞∑

j=N+1

| ψ0j |η/2| ψ0j |1−η/2| ψ0j+|t−s| |η/2| ψ0j+|t−s| |1−η/2

≤ K | ψ0N |η
{ ∞∑

j=0

| ψ0j |1−η/2| ψ0j+|t−s| |1−η/2

}
. (30)

Consider Ass. C(0, 1) and d = d(θ0) ∈ (0, 1/2) and set Dr(u) = Dr(u; ϑ0), r =

0, ±1, .... As u → ∞,
∑∞

k=0 | ψk |1−η/2| ψk+u |1−η/2∼| ψu |1−η/2
∑u

k=0 ψk +∑∞
k=u+1 | ψk |2−η ∼ K | D0(u) |2−η u(1−η/2)(2d−1). Take j large enough so

that ψi > 0, j ≤ i < ∞. The same applies when ψi < 0, j ≤ i < ∞.

This is because D0(·) is slowly varying at infinity and thus does not change

sign asymptotically. Then for any η > 0, | (ψη
0j − ψη

0j+1)ψ
1−η
0j |≤| (ψη

0j −
ψη

0j+1)ψ
1−η
0j +ψη

0j+1(ψ
1−η
0j − ψ1−η

0j+1) |=| ψη
0jψ

1−η
0j − ψη

0j+1ψ
1−η
0j+1 |=| ψ0j − ψ0j+1 |≤

Kψ0j/j implying that ψη
0j is quasi-monotonically convergent to zero, any

η > 0. Therefore, by Yong (1974, Theorem III-23 and III-33 (ii)) the

Fourier transform of the terms in { }-brackets on left hand side of (29)

and (30) is O(λ−(1+(1−η/2)(2d−1))−δ), any η, δ > 0, as λ → 0. Therefore

B1 = O(| ψ0N |η T ) by Fox and Taqqu (1987, Theorem 1) as long as

2(−2d + 1 + (1 − η/2)(2d − 1)) < 1 implied by η < 1/(1 − 2d). The same
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arguments carry through to show that B2 = O(| ψ0N |η T ). For the cumu-

lant term B3, consider the last term on the left hand side of (28). When

both s1 − t1 > N + 1, s2 − t1 > N + 1 this bounded by K | ψ0N |η ∑∞
k=0 |

ψkψk+|s2−s1| |1−η/2
∑∞

k=0 | ψkψk+|t2−t1| |1−η/2 by following the same arguments

used for the corresponding term of (26). When either s1 − t1 > N + 1 or

s2 − t1 > N + 1 then the bound is K | ψ0N |η/2
∑∞

k=0 | ψkψk+|s2−s1| |1−η/2

∑∞
k=0 | ψkψk+|t2−t1| |1−η/2. Finally when both s1 − t1 ≤ N +1, s2 − t1 ≤ N +1

the bound is K | ψ0N | ∑∞
k=0 | ψkψk+|s2−s1| | ∑∞

k=0 | ψkψk+|t2−t1| |. A tighter

bound applies to the other terms of (28) yielding B3 = O(| ψ0N |η/2 T ). Cases

C(0, 1), D(0, 1), with d ≤ 0, and C(1, 1) follow along the same lines, with an

even simpler proof.

The proof ends considering that PT (N)/
√

T is a quadratic form in N -

dependent variates. This implies that it is φ-mixing with arbitrarily fast

decreasing mixing coefficients and Ibragimov and Linnik (1971, Theorem

18.5.1) applies. ¥

Lemma 8 Under Assumptions A(2), B, C(k2, 3), D(k2, 3), F, for MT (ϑ) =
∂2

∂ϑ∂ϑ′ QT (ϑ),

sup
ϑ∈Θ

‖MT (ϑ) − M(ϑ)‖ →a.s. 0 as T → ∞.

Proof. All the convergences below hold as T → ∞. We first establish

pointwise convergence of MT (ϑ) to M(ϑ) a.s. for each ϑ ∈ Θ. Let

MT (ϑ) = A1T (ϑ) + A2T (ϑ) + A3T (ϑ) + A4T (ϑ), (31)

with

A1T (ϑ) =
1

T

T −1∑

t=1

∂2f(λt; ϑ)

∂ϑ∂ϑ′
1

f(λt; ϑ)
, A2T (ϑ) = − 1

T

T −1∑

t=1

∂f(λt; ϑ)

∂ϑ

∂f(λt; ϑ)

∂ϑ′
1

f 2(λt; ϑ)
,

A3T (ϑ) = − 1

T

T −1∑

t=1

∂2f(λt; ϑ)

∂ϑ∂ϑ′
IT (λt)

f 2(λt; ϑ)
, A4T (ϑ) =

2

T

T −1∑

t=1

∂f(λt; ϑ)

∂ϑ

∂f(λt; ϑ)

∂ϑ′
IT (λt)

f 3(λt; ϑ)
.

By Hannan (1973, Lemma 1), given Lemmas 3 and 4-(ii), uniformly in ϑ ∈ Θ,

A3T (ϑ) →a.s A3(ϑ) = −(2π)−1
∫ π

−π
f(λ)/f 2(λ; ϑ)( ∂2

∂ϑ∂ϑ′ f(λ; ϑ))dλ,A4T (ϑ) →a.s
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A4(ϑ) = (π)−1
∫ π

−π
f(λ)/f 3(λ; ϑ)( ∂

∂ϑ
f(λ; ϑ))( ∂

∂ϑ′ f(λ; ϑ))dλ. When d(ζ) ∈
[0, 1/2), much in the same way as in Zaffaroni (2003, Lemma 14), A1T (ϑ) →a.s.

A1(ϑ) = (2π)−1
∫ π

−π
f −1(λ; ϑ)( ∂2

∂ϑ∂ϑ′ f(λ; ϑ))dλ,A2T (ϑ) →a.s. A2(ϑ) =

−(2π)−1
∫ π

−π
f −2(λ; ϑ)( ∂

∂ϑ
f(λ; ϑ))( ∂

∂ϑ′ f(λ; ϑ))dλ, whereas when d(ζ) < 0 we

adapt Hannan (1973, Lemma 1) idea, using the decomposition | 1/T
∑T

t=1 g(λt)−
1/(2π)

∫ π

−π
g(λ)dλ |≤| 1/T

∑T
t=1 g(λt)−1/T

∑T
t=1 gT (λt) | + | 1/T

∑T
t=1 gT (λt)−

1/(2π)
∫ π

−π
g(λ)dλ | for a generic Lip-continuous function g(λ) with Cesaro

sum gT (λ). It remains to show that the following equicontinuity property

holds: supϑ̃:‖ϑ̃−ϑ‖<ε ‖AiT (ϑ̃) − AiT (ϑ)‖ → 0 as ε → 0, and that Ai(ϑ) are

continuous, for i = 1, 2. These are implied by ‖ ∂AiT (ϑ)
∂ϑ

‖ + ‖ ∂Ai(ϑ)
∂ϑ

‖ < ∞, for

i = 1, 2, and the latter easily follow by the same arguments used to establish

pointwise convergence, given the smoothness of the third-order derivatives

of f(λ; ϑ) away from zero frequency, and making use of Lemma 1 regarding

their local behaviour around zero frequency. ¥

Lemma 9 Under Assumptions A(4), B, C(k2, 2), D(k2, 2), F,

sup
ϑ∈Θ

‖VT (ϑ) − V (ϑ)‖ → 0 as T → ∞,

where

VT (ϑ) =
2

T

T −1∑

t=1

N(λt; ϑ)N ′(λt; ϑ) +
2π

T 2

T −1∑

t1=1

T −1∑

t2=1

N(λt1 ; ϑ)

f(λt1 ; ϑ)

N(λt2 ; ϑ)′

f(λt2 ; ϑ)
Q(−λt1 , λt2 , −λt2 ; ϑ), (32)

V (ϑ) =
1

π

∫ π

−π

N(ω; ϑ)N ′(ω; ϑ)dω +
1

2π

∫ π

−π

∫ π

−π

N(ω1; ϑ)

f(ω1; ϑ)

N(ω2; ϑ)′

f(ω2; ϑ)
Q(−ω1, ω2, −ω2; ϑ)dω1dω2
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and where the trispectrum Q(ω1, ω2, ω3) = Q(ω1, ω2, ω3; ϑ0) is defined by

Q(ω1, ω2, ω3; ϑ) =
κlogz2logz2logz2logz2

(2π)3
(33)

+
κlogz2logz2logz2ε

(2π)3
(eiω1ψ(eiω1;ζ)+eiω2ψ(eiω2;ζ)+eiω3ψ(eiω3;ζ)+e−i(ω1+ω2+ω3)ψ(e−i(ω1+ω2+ω3);ζ))

+
κlogz2logz2εε

(2π)3
(ei(ω2+ω3)ψ(eiω2;ζ)ψ(eiω3;ζ)+ei(ω1+ω3)ψ(eiω1;ζ)ψ(eiω3;ζ)+ei(ω1+ω2)ψ(eiω1;ζ)ψ(eiω2;ζ)

+ψ(e−i(ω1+ω2+ω3);ζ)
{
e−i(ω1+ω3)ψ(eiω2;ζ)+e−i(ω2+ω3)ψ(eiω1;ζ)+e−i(ω1+ω2)ψ(eiω3;ζ)

} )
+

κlogz2εεε

(2π)3
(ei(ω1+ω2+ω3)ψ(eiω1;ζ)ψ(eiω2;ζ)ψ(eiω3;ζ)

+ψ(e−i(ω1+ω2+ω3);ζ)
{
e−iω1ψ(eiω2;ζ)ψ(eiω3;ζ) + e−iω2ψ(eiω1;ζ)ψ(eiω3;ζ) + e−iω3ψ(eiω1;ζ)ψ(eiω2;ζ)

} )
+

κεεεε

(2π)3
ψ(ei(ω1+ω2+ω3);ζ)ψ(e−iω1;ζ)ψ(e−iω2;ζ)ψ(e−iω3;ζ).

Proof. We first establish (33) evaluated at ϑ0. The general case ϑ 6= ϑ0

follows by substituting the ψ0k with the ψk(ζ). Set u1 = t2 − t1, u2 =

s1 − t1, u3 = s2 − t1. We need to evaluate the Fourier transform of each of the

sixteen terms which make cum(y0, yu1 , yu2 , yu3), listed in (27). The first term

is trivial. Let us consider the four terms which involve κlogz2logz2logz2ε. These

correspond to the four cases u1 = u2 = 0, u1 = u3 = 0, u2 = u3 = 0 and u1 =

u2 = u3. For the first, neglecting constants,
∑∞

u1=u2=0, u3=−∞ ψu3−1e
i(u1ω1+u2ω2+u3ω3) =

eiω3
∑∞

u3=1 ψ0u3−1e
i(u3−1)ω3 = eiω3ψ(eiω3 ; ζ0), and likewise for the second and

third term. For the fourth
∑∞

u1=u2=u3=u, u=−∞ ψ−u−1e
i(u1ω1+u2ω2+u3ω3) =∑−1

u=−∞ ψ0−u−1e
iu(ω1+ω2+ω3) = e−i(ω1+ω2+ω3)ψ(e−i(ω1+ω2+ω3); ζ0). Evaluation of

the other terms of (33) follows along the same lines and details are skipped

for sake of simplicity. Pointwise convergence of VT (ϑ) to V (ϑ) easily follow by

the same arguments used to establish convergence for terms AiT (ϑ), i = 1, 2

in Lemma 8, since the factorization of Q(−ω1, ω2, −ω2; ϑ) permits to evaluate

the double sum term of VT (ϑ) by looking at each sum separately. Finally, uni-

form convergence follows by equicontinuity of VT (ϑ) and continuity of V (ϑ)

which in turn hold since by the same arguments ‖ ∂VT (ϑ)
∂ϑ

‖ + ‖ ∂V (ϑ)
∂ϑ

‖ < ∞. ¥
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Proof of Theorem 1. In view of Lemmas 4-6, the result follows adapting

the proof of Hannan (1973, Theorem 1). ¥.

Proof of Theorem 2. The result follow by the Delta method, in view of

Lemmas 7 and 8, once we show that
(∫ π

−π

g(λ)E(IT (λ))dλ +

∫ π

−π

∂log f(λ; ϑ0)

∂ϑ
dλ

)
= o(T − 1

2 ). (34)

By Parseval’s relation the left hand side of (34) equals(∑T −1
u=−T+1(1 − u/T )cu

∫ π

−π
g(λ)eiuλdλ − ∑∞

u=−∞ hucu

)
, and the norm of the

above expression is bounded by O
(∥∥∑∞

u=T −1 hucu +
∑∞

u=T −1
u
T
hucu

∥∥)

= O(| L(T ) | T −1). Expression (32) of V follows directly as a by-product

from the proof of Lemma 7, for the part just involving the spectral density,

whereas for the part involving the trispectrum one can relatively easily adapt

Hosoya (1997, Lemma 3.2). A consistent estimate of asymptotic covariance

is obtained by Lemma 8 and 9 by plugging ϑ̂T into MT (ϑ) and VT (ϑ). To

obtain the estimator of V , we also require a consistent estimate of the joint

cumulants in the log z2
t and εt, listed in (33), which can be easily obtained

since the cumulants, as any mixed moment of (zt, εt), are known functions

of φ0. A consistent estimate is simply obtained by plugging φ̂T into the

expression for the theoretical cumulants. ¥
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