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A Wald test for the cointegration rank in nonstationary
fractional systemsI

Marco Avaruccia, Carlos Velasco∗,b

aDepartment of Quantitative Economics, Maastricht University
bDepartment of Economics, Universidad Carlos III de Madrid.

Abstract

This paper develops new methods for determining the cointegration rank in
a nonstationary fractionally integrated system, extending univariate optimal
methods for testing the degree of integration. We propose a simple Wald test
based on the singular value decomposition of the unrestricted estimate of the
long run multiplier matrix. When the “strength” of the cointegrating relation-
ship is less than 1/2, the test statistic has a standard asymptotic distribution,
like Lagrange Multiplier tests exploiting local properties. We consider the be-
havior of our test under estimation of short run parameters and local alter-
natives. We compare our procedure with other cointegration tests based on
different principles and find that the new method has better properties in a
range of situations by using information on the alternative obtained through a
preliminary estimate of the cointegration strength.

Key words: Fractional integration, fractional error correction model, singular
value decomposition, cointegration test.
JEL: C12, C32

1. Introduction

Fractional cointegration models are increasingly used as a flexible tool for
the modeling of long run relationships among economic time series. These mod-
els allow observed time series to be integrated of any arbitrary order, being
even stationary as in many financial applications, and simultaneously permit
any degree of persistence for the equilibrium relationship. Much effort has been
dedicated in the last years to the estimation of the cointegrating relationship,
including the asymptotic analysis of different variants of ordinary least squares
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(OLS), such as narrow band and generalized least squares (GLS) versions, see
e.g. Robinson and Marinucci [2003] and Robinson and Hualde [2003]. At the
same time, a number of cointegration tests have been developed, most of them
built on the null hypothesis of no cointegration versus the alternative of frac-
tional cointegration. If the cointegration vector is known, standard methods
for testing the integration degree could be routinely applied, but if this vector,
or the level of integration of the original series, has to be estimated, inference
methods should adapt to these additional sources of uncertainty. Thus, testing
for the cointegration rank in this framework poses further complications in sys-
tems with more than two series, even if certain restrictions on the definition of
cointegration are imposed.

In a semiparametric frequency domain set up, Marinucci and Robinson [2001]
suggested a Hausman-type cointegration test comparing different estimates of
the integration orders of the observed series. Recently Robinson [2008] provided
rigorous theoretical support to this idea. Marmol and Velasco [2004] proposed
a Wald test of the null of spurious relationships against the alternative of a sin-
gle cointegration relationship among the components of a nonstationary vector
process. Their approach relies upon comparing OLS and narrow band GLS-
type estimates of the cointegrating vector, with different properties under the
competitive hypotheses. A similar idea was used by Hualde and Velasco [2008],
employing the GLS estimates of Robinson and Hualde [2003]. The chi-squared
distribution of the GLS Wald statistic is inherited by a parallel cointegration
test, hence avoiding the nonstandard asymptotic distribution of Marmol and
Velasco’s (2004) test and allowing for vector series with components of different
integration orders.

In a parametric, time domain framework, Breitung and Hassler [2002] pro-
posed a trace test for the cointegration rank based on a generalized eigenvalue
problem of the type considered by Johansen [1988, 1991]. The resulting limit
distribution of the statistic was found to be chi squared, where the degrees
of freedom depend only on the cointegration rank under the null hypothesis.
Nielsen [2005] argued that the equivalence of this regression based test and the
Lagrange Multiplier (LM) test for integration does not extend to the multivari-
ate case and showed that the actual multivariate LM test is also implicitly a test
of the null of no cointegration. Breitung and Hassler [2006] considered the case
were the cointegrating vector has to be estimated allowing for only one coin-
tegration relationship. They showed that the limit distribution of the statistic
is standard under the null of no cointegration, when employing the residuals
from a regression in differences. Gil-Alaña [2004] extended Engle and Granger
[1987]’s procedure, testing for the equality of memory parameters of the orig-
inal series and of regression residuals using Robinson [1994]’s univariate test,
while Nielsen [2004a] proposed a residual based LM test of the null hypothesis
of cointegration assuming that the integration orders were known a priori.

Despite this effort on cointegration testing, relatively few work has been ded-
icated to the analysis of cointegration matrices, subspaces, and rank in fractional
systems of dimension greater than two, allowing for multiple cointegrating re-
lationships. For stationary series, Robinson and Yajima [2002] analyzed testing
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procedures based on the eigenvalues of the estimated and normalized spectral
density matrix around frequency zero after a preliminary step to partition the
vector series into subsets with identical differencing parameters. The restriction
imposed by cointegration on the spectral density matrix at zero frequency was
also investigated by Nielsen [2004b] and by Nielsen and Shimotsu [2007] using
alternative semiparametric memory estimates. A different route was explored
by Chen and Hurvich [2003], who proposed to estimate the cointegrating re-
lationships by the eigenvectors corresponding to the smallest eigenvalues of an
averaged periodogram matrix of tapered, differenced observations. Then, Chen
and Hurvich [2006] developed and justified a test for fractional cointegration
and a procedure for consistently determining the number and the dimension of
the cointegrating subspaces.

A further line of work has focused on several fractional generalizations of
Granger [1986]’s Error Correction Model (ECM), such as Davidson [2002], who
applied parametric bootstrap to testing the existence of cointegrating relation-
ships. Lasak [2007] considered Likelihood Ratio (LR) tests in a related frame-
work, extending original Johansen’s (1988, 1991) set up to allow explicitly for
fractional cointegration alternatives with stationary residuals of unknown mem-
ory.

In this paper we focus on fractional cointegration methods inspired on a
further test for the integration degree proposed by Lobato and Velasco [2007].
They questioned the choice of the regressor of the fractional Dickey-Fuller test
of Dolado, Gonzalo, and Mayoral [2002] for the null hypothesis of unit root
against the alternative of fractional unit root, and proposed an efficient version
based on a different regression model. In Lobato and Velasco’s (2007) basic
framework, xt is a Type II I(d) fractional differencing process,

∆dxt1{t>0} = ηt, t = 1, 2, . . . , (1)

where ηt are independent and identically distributed (iid) random variables
with zero mean and finite variance, and 1{·} is the indicator function. The
fractional difference filter ∆d = (1− L)d is given by its formal expansion for
any d 6= −1,−2, . . . ,

(1− z)−d =
∞∑

j=0

zjψj(d),

with ψj(d) = Γ(j + d)/ (Γ(d)Γ(j + 1)) , where Γ is the gamma function and
Γ (d) = ∞ for d = 0,−1,−2, . . . , with Γ(0)/Γ(0) = 1. Suppressing the trunca-
tion in the notation, for any d, equation (1) can be rewritten as

∆xt = φ(∆d−1 − 1)∆xt + ηt, t = 1, 2, . . . , (2)

where φ = 0 under the null H0 : d = 1, and φ = −1 under the alternative
Ha : d < 1. The null hypothesis is tested by means of a simple one-sided t-test
for φ = 0 in a rescaled regression, exploiting the fact that (∆δ−1 − 1)∆xt is
uncorrelated with ∆xt for any value of δ under H0.
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We explore in this paper a multivariate extension of Lobato and Velasco’s
(2007) procedure for testing the cointegrating rank in a nonstationary fraction-
ally integrated system. The univariate regression model (2) is replaced by an
appropriate ECM to be estimated by OLS. The idea is to test whether the small-
est singular values of the long run multiplier matrix estimates are significantly
different from zero, exploiting the approach recently proposed by Kleibergen
and Paap [2006]. We derive the limit distribution that is standard in the case
of “weak cointegration”. It is shown that the estimation of the memory of the
residuals does not affect the asymptotic properties of the statistic, neither the
estimation of other short run parameters.

The plan of the article is the following. In Section 2 we propose the Wald
test to determine the cointegration rank in fractional systems, adapting Kleiber-
gen and Paap’s (2006) approach. In Section 3 we show the link between our
test statistic and the canonical correlation test statistic and compare it with
the trace test proposed by Breitung and Hassler [2002]. Section 4 proposes a
generalized model accounting for more complex dynamics. The behavior of the
test under local alternatives is analyzed in Section 5. In Section 6 the finite
sample properties of the considered test are investigated by means of a small
Monte Carlo experiment. Section 7 concludes and proposes some further lines
of research. Proofs are collected in the Appendix.

Throughout this paper we shall adopt the following notation: [A,B] indicates
the p× (q + s) matrix obtained by placing side by side the p× q matrix A and
the p × s matrix B. For p > q we define A⊥ to be a p × (p − q) matrix of
rank p − q, for which A′A⊥ = 0. |A|, rank(A), tr(A) denote respectively the
determinant, the rank and the trace of the (square) matrix A, ‖·‖ the Euclidean
norm of a matrix such that ‖A‖ =

√
tr(A′A), vec(A) the vec operator stacking

the columns of a matrix one over the other, Ip the p-rowed identity matrix. We
write A > 0 to indicate that A is positive definite, “⊗” indicates the Kronecker
product and “:=” stands for definition.

2. Testing the cointegration rank

Our basic framework is given by the m-dimensional fractional error correc-
tion model (FECM)

∆dXt1{t>0} = αβ′(∆d−b −∆d)Xt1{t>0} + εt, t = 1, 2, . . . , (3)

where εt ∼ iid(0,Σε), Σε > 0, and α and β are full rank m × r matrices,
0 ≤ r < m, 0 < b < d. Rewrite the FECM (3) as

∆d−b (∆bXt1{t>0} − αβ′(1−∆b)Xt1{t>0}
)

= εt (4)

and define the characteristic polynomial Π(z) = (1− z)d−αβ′(1− (1− z)b)(1−
z)d−b such that (4) is equivalent to ∆d−bΠ∗(Lb)Xt1{t>0} = εt, with Lb = 1−∆b,
and

Π∗(u) = (1− u)Im − αβ′u, u = u(z) := 1− (1− z)b, (5)
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so that Π(z) = (1 − z)d−bΠ∗(1 − (1 − z)b). Let the set Cb be the image of the
unit disk under the mapping z 7→ 1 − (1− z)b (see Johansen [2008], Appendix
A.3 and Figure 1 for further details). Next lemma characterizes the solutions
of the FECM when r > 0.

Lemma 1. Assume that |Π∗(u)| = 0 implies either u = 1 or u ∈ Cb, that α, β
have rank r, 0 < r < m, and |α′⊥β⊥| 6= 0. Then the solution of Π(L)Xt1{t>0} =
εt has the representation

Xt = Cαβ∆−dεt1{t>0} + ∆b−dYt1{t>0} (6)

with Cαβ = β⊥(α′⊥β⊥)−1α′⊥ and Yt = α(β′α)−1β′∆d−bXt, where ∆d−bβ′Xt is
an I(0) process having a positive definite spectral density matrix at the origin.

Then each element xj,t of the vector Xt, and each cointegrating residual β′iXt

are respectively type-II I(d) and I(d− b) fractionally differencing processes, for
j = 1, . . . ,m, i = 1, . . . , r, where βi indicates the i-th column of the matrix
β. Note that if r = 0, so that αβ′ = 0, there is no cointegration and b is not
identified by (3), but in this case we set its true value to 0 because any non
trivial linear combination of the elements of Xt is I(d). In principle it could
be possible that each of the r cointegrating relationships has different degree
of integration, allowing for different b. Our methods could be adapted to this
possibility, but for simplicity we only consider a unique parameter b, and that
all observed series are of the same memory d.

This set up includes triangular systems much used in the literature, see e.g.
Robinson and Hualde [2003],

β′∆d−bXt = U1t1{t>0}
γ′∆dXt = U2t1{t>0},

t = 1, 2, . . . , (7)

where Ut = [U ′1t, U
′
2t]
′ ∼ iid(0,Σu), Σu > 0 and β and γ are m×r and m×(m−r)

matrices respectively, 0 ≤ r < m, such that (β, γ) has full rank m. In this
case b > 0 is required when r > 0 to identify β and γ. Using the identity
γ⊥(β′γ⊥)−1β′ + β⊥(γ′β⊥)−1γ′ = Im, the system (7) can then be rewritten as
the FECM (3) when r > 0, where now εt is a linear and invertible transformation
of the vector Ut, α = −γ⊥(β′γ⊥)−1, and Yt = −αβ′εt.

From now on, for notational convenience, we will suppress the truncation for
nonpositive t in (3), assuming implicitly that Xt = 0, t ≤ 0. Moreover, we focus
on the case d = 1, as assumed in most economic applications. To simplify the
exposition, we first assume that b is known (or equal to a fixed value if testing
the null hypothesis that r = 0). We later consider the case where we use a
consistent estimate of b.

Given a sample Xt, t = 1, 2, . . . , n, the basic idea of our procedure is testing
the rank of the unrestricted OLS estimation of (3), i.e. a linear regression of
∆Xt on (∆1−b −∆)Xt = (∆−b − 1)∆Xt. We note that this regressor vanishes
for b = 0. In order to make the regressor continuous at b = 0, following Lobato
and Velasco [2007] we employ the rescaled regression model

∆Xt = ΠZ(b)
t−1 + εt, t = 2, 3, . . . , n (8)

5
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where

Z
(b)
t−1 :=

(∆−b − 1)∆Xt

b
, Π := bαβ′. (9)

For b→ 0, the indetermination 0/0 in the first equation of (9) is solved using the
L’Hôpital’s rule, since the ratio limb→0((1− z)−b − 1)/b tends to the derivative
of the fractional filter (1 − z)−δ evaluated at δ = 0, that is, to the linear filter
J(z) = − log(1− z) =

∑∞
j=1 j

−1zj . We therefore define Z(0)
t−1 = J(L)∆Xt. The

value of b reflects some knowledge on the alternative hypothesis that we wish to
use when testing to gain power. If we set b = 0 this leads to local tests of LM
type, see also Breitung and Hassler’s (2002) test, but if under the alternative
the true b is positive, local tests are not efficient. If r = 0 (so that b = 0), ∆Xt

is an iid sequence and hence is uncorrelated with Z
(δ)
t−1 for any value of δ. The

hypothesis of no cointegration can be therefore easily nested in our framework
and formulated as the null Π = 0 in the regression model ∆Xt = ΠZ(δ)

t−1 + εt,
any δ ≥ 0.

We stress that for b ∈ [0, 0.5) the process Z(b)
t−1 is asymptotically station-

ary and therefore standard normal asymptotics apply to the unrestricted OLS
estimate of Π in (8),

Π̂ := S01S
−1
11 , (10)

where we define the following sample moments based on n observations,

S01 :=
1
n

n∑

t=2

∆XtZ
(b)′
t−1, S11 :=

1
n

n∑

t=2

Z
(b)
t−1Z

(b)′
t−1.

Extending the results provided by Theorem 1 in Dolado, Gonzalo, and Mayoral
[2002] to the multivariate framework, it can be shown that for b = 0.5 the dis-
tribution remain gaussian but the rate of convergence is equal to (n log(n))1/2.
Allowing for b > 0.5, the distribution of nbvec(Π̂ − Π) is expressed in terms of
functionals of fractional Brownian motion. This distribution would lead to a
non-pivotal statistic depending on the memory parameter b. The above argu-
ments justify the following assumption allowing only for “weak cointegration”,
b < 0.5. This maintains the economic meaning of long-run equilibrium, implying
that deviations from the equilibrium are “mean reverting” but nonstationary.

Assumption 1. We assume that data is generated by the FECM (3), d is
known and equal to 1, b ∈ [0, 0.5) and εt ∼ iid(0,Σε) with finite fourth order
moment.

The rank test statistic relies on the following decomposition of a generic
square matrix C of dimension m,

C = AsBs +As,⊥ΛsBs,⊥, s = 0, 1, . . . ,m− 1, (11)

related to the singular value decomposition (hereafter SVD) C = USV ′. As, B′s
are m × s matrices, As,⊥, B′s,⊥ m × (m − s) matrices, satisfying the relations
A′sAs,⊥ = 0, Bs,⊥B′s = 0, A′s,⊥As,⊥ = Im−s, Bs,⊥B′s,⊥ = Im−s. Let Sm−s

6
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the m− s square submatrix of S, containing in its diagonal the m− s smallest
singular values of the matrix C. The (m−s)× (m−s) matrix Λs is defined as a
transformation of Sm−s. If Λs = 0 and both As and Bs have full column rank,
the rank of C is equal to s. The exact relation between the decomposition (11)
and the SVD depends on the specification of As and Bs, obtained by imposing
a normalization for AsBs. Every normalization leads to the same expressions
of Λs, As,⊥ and Bs,⊥. For simplicity, we have followed here the notation of
Kleibergen and Paap [2006] as close as possible, despite that it is not standard
in the cointegrating literature. Let Ĉ be a consistent estimator of the unknown
matrix C, and let Λ̂s be an (m − s) × (m − s) matrix, such that there are
matrices Âs, B̂s, Âs,⊥ and B̂s,⊥ for which Ĉ has a decomposition given by
Ĉ = ÂsB̂s+ Âs,⊥Λ̂sB̂s,⊥. Then, Λ̂s reflects the distance to rank reduction, that
is, a test for rank(C) = r0 will be based on a test for H0 : Λr0 = 0. Since
vec(Λ̂s) is just a rotation of vec(Ŝm−s) around the origin, its elements are no
longer restricted to be non-negative (as the singular values are), and can be
asymptotically normally distributed. See Kleibergen and van Dijk [1998] and
Kleibergen and Paap [2006] for details.

If we apply the SVD directly on Π̂, the resulting testing procedure could be
sensitive to scaling of Π̂. Kleibergen and Paap [2006] suggest to normalize the
estimator Π̂ before we conduct the SVD of it, in order to improve the power
properties of the test. Therefore, according to (11), we decompose the matrix

Θ̂ := S
− 1

2
00 Π̂S

1
2
11,

with S00 := n−1
∑n
t=2 ∆Xt∆X ′t, as

Θ̂ = ÂsB̂s + Âs,⊥Λ̂sB̂s,⊥, s = 0, . . . ,m− 1. (12)

Under the model (3) and Assumption 1, the probability limits of the matrices
S00 and S11, Ω00 and Ω11 respectively, have full rank according to next result.

Lemma 2. Under Assumption 1, the following matrices have full rank,

Ω00 := lim
n→∞

1
n

n∑

t=2

E (∆Xt∆X ′t) , Ω11 := lim
n→∞

1
n

n∑

t=2

E
(
Z

(b)
t−1Z

(b)′

t−1

)
.

Then the decomposition

Θ := Ω−
1
2

00 ΠΩ
1
2
11 = AsBs +As,⊥ΛsBs,⊥ (13)

is well defined and it follows that Π and Θ have the same rank. We note that up
to the constant b, As = Ω−

1
2

00 α and Bs = β′Ω
1
2
11, so that As and Bs can still be

interpreted respectively as adjustment coefficients and cointegrating matrices α
and β′.

We formulate the null hypothesis

H0 (r0) : r := rank(Θ) = r0. (14)

7
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Testing (14) is equivalent to test for H ′0 (r0) : Λr0 = 0 if and only if Ar0 and
Br0 have full rank, as assumed when (3) was derived from (7). If the full rank
condition on Ar0 , Br0 is not satisfied, the hypothesis Λr0 = 0 should be inter-
preted as the null that the rank of the cointegrating space is at most r0, against
the alternative that it exceeds r0; see the discussion in Johansen [1996], Chap-
ter 5. The alternative hypothesis Ha (r0) : r > r0 can be therefore formulated
as Λr0 6= 0. The hypothesis of no-cointegration (r = 0) corresponds to the case
A0B0 = 0 and A0,⊥Λ0B0,⊥ = USV ′ = Θ. In this case we test if all the singular
values of Θ̂ are statistically different from zero.

In order to identify ÂsB̂s we impose the normalization B̂s = [Is, B̂s,2] as
suggested by Kleibergen and Paap [2006]. The limiting behavior of the different
elements of Θ̂ in (12) is stated in Lemma 3 and Theorem 1.

Lemma 3. If Θ̂
p→ Θ, then, under H0 (r0), Âr0 , B̂r0 , Âr0,⊥, B̂r0,⊥ converge in

probability, respectively to Ar0 , Br0 , Ar0,⊥, Br0,⊥ and Λ̂r0
p→ 0.

Theorem 1. Assume that b is known. Under H0 (r0) and Assumption 1,

√
nλ̂r0

d−→ N
(
0, I(m−r0)2

)
,

where λ̂s = vec(Λ̂s) and Λ̂s = Â′s,⊥Θ̂B̂′s,⊥.

All proofs are in the Appendix. The proof of Lemma 3 is similar to the proof
of Theorem 1 in Kleibergen and Paap [2006] and it is reported for completeness.
The main difference with the proof of Theorem 1 in Kleibergen and Paap [2006]
lies in the derivation of the intermediate results discussed in Remark 1 below.
The limiting behaviour of the rank statistic rkn(r0) := nλ̂′r0 λ̂r0 to test (14)
is described in the next corollary, whose proof is straightforward and hence
omitted.

Corollary 1. Under Assumption 1 and H0 (r0),

rkn(r0) := nλ̂′r0 λ̂r0
d−→ χ2

(m−r0)2 .

Under the alternative Ha(r0) the statistic rkn(r0) diverges to infinity at rate n.

Remark 1. Kleibergen and Paap [2006] argue in the proof of their Theorem 1
that, provided that Λ̂r0

p→ Λr0 = 0, the asymptotic normality of the (rescaled)
OLS estimator Θ̂ of Θ,

√
n vec(Θ̂−Ar0Br0) =

√
n
[
vec(Âr0B̂r0 −Ar0Br0)− vec(Âr0,⊥Λ̂r0B̂r0,⊥)

]

implies that Âr0B̂r0 is a root-n consistent estimator of Ar0Br0 . However this
needs not to be the case because of possible cancelation between some non
negligible components of the two vec(·) terms inside the square brackets. In our
proofs we use an alternative argument that only requires consistency as stated
in Lemma 3.

8



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

In the remainder of this section we consider the model (8) allowing b to be
unknown, whereas d remains fixed and equal to one. Assumption 1 is still valid
for the “true” b. To perform inference on the rank of Π in the equation (8) we
need a consistent estimator b̂ of b. We label Π̃ the least square estimator of Π
obtained plugging in b̂ in Z

(b)
t−1,

Π̃ := S02S
−1
22 ,

where S02 and S22 are defined as S01 and S11, respectively, with Z
(b)
t−1 replaced

by Z
(b̂)
t−1. As done before, we can define the decomposition (11) on the scaled

matrix
Θ̃ := S

− 1
2

00 Π̃S
1
2
22 = ÃsB̃s + Ãs,⊥Λ̃sB̃s,⊥. (15)

If Θ̃
p→ Θ, then Λ̃s

p→ Λs by Lemma 3, where Λs is given by (13), so that Λr0 = 0
under H0 (r0). The following theorem shows that the first order asymptotic
properties of the proposed test are not affected by the pre-estimation of the
memory parameter b.

Theorem 2. Let Assumption 1 hold and let the input b̂ of Z(b̂)
t−1 satisfy

b̂− b = Op(n−τ ), with τ > 0, and b̂ ∈ [0, 0.5). (16)

Then, under H0 (r0) √
nλ̃r0

d−→ N
(
0, I(m−r0)2

)
,

where λ̃s = vec(Λ̃s) and Λ̃s = Ã′s,⊥Θ̃B̃′s,⊥ and

r̃kn(r0) := nλ̃′r0 λ̃r0
d−→ χ2

(m−r0)2 . (17)

Under the alternative Ha(r0) the statistic r̃kn(r0) diverges to infinity at rate n.

Remark 2. If the fractional difference parameter of the observed series d is
also unknown, a test could be performed by replacing it by some consistent
estimator d̂. However, using similar arguments to Breitung and Hassler [2006],
it can be shown that the estimation of d may affect the limiting distribution of
the test, so Theorems 1 and 2 would no longer be valid.

Remark 3. We propose to estimate b from the residuals of the univariate re-
gression in levels Xi,t = θ′X [i]

t + ei,t, where X [i]
t is the (m− 1)-vector resulting

from the deletion of the i-th component from Xt. If r > 1 and the observables
and cointegrating residuals are purely nonstationary, Marmol and Velasco [2005]
showed that, in contrast to the standard case with I(0) cointegration errors (see
Wooldrige [1991], Johansen [2002]), the OLS estimate of the cointegrating vector
(1, θ′)′ does not provide a consistent estimate of a suitable linear combination of
the cointegrating relations, though remains bounded in probability. Despite of
that, in our setting of common error memory of cointegrating residuals, it was

9
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shown that the OLS residuals êt still approximate an I(1− b) process as in the
single equation set-up. See also Marmol and Velasco [2004] for a discussion.

If d is taken to be known and equal to 1, the condition b̂ ∈ [0, 0.5) can be
imposed naturally for implicitly defined memory estimators, such as the Gaus-
sian semiparametric procedure of Robinson [1995] and the related exact local
Whittle procedure of Shimotsu and Phillips [2005]. The upper bound implies

that Z(b̂)
t−1 is always asymptotically stationary. The lower bound is justified by

the fact that order of integration of a linear combination of I(1) systems cannot
be greater than one, and in case of no cointegration it should be I (1) , being
this the reason to fix the true b to 0 in this case. We do not discuss formally
in this paper which estimation procedures satisfy the condition of power-rate
convergence of the estimator b̂ stated in (16). Bias reduction techniques like
higher-order kernels suggested by Hualde and Robinson [2006], should be use-
ful to augment the speed of convergence of b̂. Further improvements could be
obtained employing spectral regression methods for the estimation of θ.

3. A comparison with a related approach

Kleibergen and Paap [2006], Proposition 1, show that, if the covariance
matrix of λ̃r0 has a Kronecker structure, Π̃ is the least square estimator and the
normalization matrices are appropriately specified, the rank statistic r̃kn(r0) can
be computed as the sum of the smallest m − r0 eigenvalues of Θ̃′Θ̃ multiplied
by n. It follows that λ̃′r0 λ̃r0 =

∑m
j=r0+1 µj , where µ1 ≥ µ2 ≥ · · · ≥ µm are

the ordered eigenvalues solving the generalized eigenvalue problem, see also
Johansen [1991], p. 94,

|µS00 − S02S
−1
22 S20| = 0, (18)

where S20 = S′02.
We note that our approach is not developed in a likelihood inference frame-

work and therefore it cannot be considered an extension to fractional set up of
the analysis of Johansen [1988] of nonstationary systems. The rank statistic (17)
results directly from the decomposition (12), showing that it can be viewed as
a multivariate extension of the Wald statistic proposed by Lobato and Velasco
[2007]. However, an alternative proof of Theorems 1-2 could be provided adapt-
ing the proof of Theorem 11.1 and 14.4 in Johansen [1996], where likelihood
ratio (LR) statistics were considered.

The approach based on the solution of (18) is a useful computational device
and allows us to compare our method with the trace statistic proposed by Bre-
itung and Hassler [2002]. They test the null hypothesis that the cointegration
rank is equal to r0, checking if the m− r0 smallest eigenvalues solving

∣∣µS00 −M01M
−1
11 M10

∣∣ = 0 (19)

are equal to zero, where

M10 =
1
n

n∑

t=2

X∗t−1∆X ′t, M11 =
1
n

n∑

t=2

X∗t−1X
∗′
t−1

10
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with X∗t−1 :=
∑t−1
j=1 j

−1∆Xt−j = J(L)∆Xt and M01 = M ′10. Breitung and Has-
sler’s trace statistic has the form µ(r0) = n

∑m
j=r0+1 µj and it was proven that

under the null it is asymptotically distributed as a χ2
(m−r0)2 random variable.

Nielsen [2005] showed that µ(r0) is not a regression variant of the multivariate
score statistic, as demonstrated by Breitung and Hassler [2002] in the univariate
case.

The eigenvectors corresponding to the eigenvalues µj , j = 1, . . . ,m, solving
the generalized eigenvalue problem (19), can always be chosen to be orthogonal
respect to S00. Stated differently, given two generalized eigenvectors vi, vj ,
i, j = 1, . . . ,m, v′iS00vj = 1{i=j}. It turns out that

nµj = n
v′jM01M

−1
11 M10vj

v′jS00vj
, j = 1, . . . ,m,

is a test-statistic for φj = 0 in the auxiliary regression

(v′j∆Xt) = φ′jJ(L)∆Xt + et, t = 1, 2, . . . , n. (20)

The test based on nµj should not reject the null hypothesis that φj = 0 in (20)
if vj ∈ span(α⊥), and reject it when vj ∈ span(β). Therefore, µ(r0) can be
regarded as a Wald statistic rather than as a Score statistic.

However, rewriting the triangular system (7) as

β′∆Xt = β′(∆−∆1−b)Xt + U1t

γ′∆Xt = U2t,
(21)

we note that the model (20) is misspecified because it does not include the data
generating process (DGP) defined by (21) as a particular case under the alter-
native hypothesis, as pointed out by Lobato and Velasco [2007] in the univariate
case. This misspecification can affect the efficiency of the resulting Wald test
compared to a statistic based on the regression model

(v′j∆Xt) = ϕ′jZ
(b)
t−1 + et, t = 1, 2, . . . , n. (22)

As noted in Section 2, limb→0 Z
(b)
t−1 = J(L)∆Xt so that models (20) and (22) are

identical when b approaches to zero. Therefore also the statistics are equivalent
if the normalization S00 is adopted. From the proof of Theorem 1, is easy to show
that, under the null, Ar,⊥S

1
2
00.2∆Xt has a smaller variance than Ar,⊥S

1
2
00∆Xt,

where S00.2 = S00 − S02S
−1
22 S20. It follows that the normalization S00 leads

to better empirical size of the test, but employing the normalization S00.2 (see
Johansen [1996], p. 94), the asymptotic variance of the vector λ̂r0 is the identity
matrix both under the null and under the alternative and power may improve.

4. Short run dynamics

The FECM (3) was adequate to illustrate the idea behind the test procedure,
but it is undoubtedly very restrictive for empirical applications. In order to allow

11
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for a richer dynamics we propose the process

Φ(L)∆Xt = αβ′(∆−b − 1)Φ(L)∆Xt + εt, (23)

where the roots of the polynomial matrix Φ(z) = Im −Φ1z − · · · −Φpzp are all
outside the unit circle. From Lemma 1 it follows that

Xt = ξ(1)Cαβ∆−1εt + ∆b−1ξ(L)Yt + ξ∗(L)Cαβεt,

where ξ(z) = Φ(z)−1 and we exploit the decomposition ξ (z) = ξ (1)+(1− z) ξ∗ (z).
The cointegrating matrix of Xt defined by (23) is given by β∗ = ξ(1)−1′β =
Φ(1)′β, so the cointegration rank is preserved and depends only on Π = −b(αβ′).
Now the cointegrating residuals are given by the sum of an I(1− b) process plus
an I(0) component. For the general case d > 1, β′Φ(1)Xt is a fractionally
integrated process of order δ∗ := max{d− 1, d− b}.

Equation (23) motivates a nonlinear regression model but we propose to
consider the rescaled linear regression

∆Xt = Π∗Z(b)
t−1 +

p∑

j=1

Ψj∆Z
(b)
t−j +

p∑

j=1

Φj∆Xt−j + εt, (24)

where Φ(z) = Φ(1)+(1− z) Φ∗(z), so that Ψj = ΠΦ∗j and Π∗ = ΠΦ(1) = bαβ∗′.
We build the rank test on the unrestricted OLS estimate of Π∗ in model (24).
Our approach ignores the multiplicative structure of the Ψj , therefore it can
be inefficient but keeps the test procedure simple. Rewrite the model (24) as
∆Xt = Π∗Z(b)

t−1 + ΓW (b)
t−1 + εt, with Γ = [Ψ1, . . . ,Ψp,Φ1, . . . ,Φp] and W

(b)
t−1 =[

∆Z(b)′

t−1, . . . ,∆Z
(b)′

t−p,∆X
′
t−1, . . . ,∆X

′
t−p
]′
, and consider the partitioned linear

regression model

∆Xt = Π∗Z(b̂)
t−1 + ΓW (b̂)

t−1 + et, t = 2, . . . , n. (25)

Applying the Frish-Waugh Theorem it follows that the OLS estimate of Π∗

is Π̃∗ = S̃02S̃
−1
22 where the matrices S̃00, S̃02 and S̃22 are defined as S00, S02

and S22 in Section 2, substituting ∆Xt, Z
(b̂)
t−1 with ∆X̃t, Z̃

(b̂)
t−1, obtained after

projection on W
(b̂)
t−1, e.g.

∆X̃t = ∆Xt −
n∑

t=2

∆XtW
(b̂)′

t−1

(
n∑

t=2

W
(b̂)
t−1W

(b̂)′

t−1

)−1

W
(b̂)
t−1.

Then we generalize the definition of Θ̃ to the estimation of the model with p

lags, so that Θ̃ = S̃
− 1

2
00 Π̃∗S̃

1
2
22, p = 0, 1, . . . , as well as the parameter matrix

Θ = Ω̃−
1
2

00 Π∗Ω̃
1
2
11 generalizes definition (13) for p > 0, where Ω̃00 and Ω̃11 are the

probability limits of S̃00 and S̃22, respectively. Then H0 (r0) fixes a value for
the rank of Θ and the FECM, for any p = 0, 1, . . . .

We now present the following generalization of Theorem 2 based on the
decomposition (15) of Θ̃. Its proof is simpler than Theorem 4 bellow, and hence
omitted.

12
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Theorem 3. Let Assumption 1 hold and b̂ satisfy (16). Assume that the DGP
is given by (23). Then, under H0 (r0)

√
nλ̃r0

d−→ N
(
0, I(m−r0)2

)
,

and the rank statistic r̃kn(r0) d−→ χ2
(m−r0)2 . Under the alternative Ha(r0) the

statistic r̃kn(r0) diverges to infinity at rate n.

Given the structure of the FECM (23), we can consider an alternative two-
step procedure based on a first step preliminary estimation of the filter Φ (L),
obtained e.g. by means of the unrestricted least squares estimation of (24). The
second step obtains the least squares estimate Π̂ in the linear model

∆Xt = ΠΦ̂ (L)Z(b̂)
t−1 +

p∑

j=1

Φj∆Xt−j + et, (26)

where Φ̂ (L)Z(b̂)
t−1 =

(
I − Φ̂1L− · · · − Φ̂pLp

)
Z

(b̂)
t−1 is based on n1/2-consistent

estimates of the matrices Φj . Then we apply the SVD to the correspond-

ing scaled least squares estimator, Θ̄ := S̄
− 1

2
00 Π̂S̄

1
2
22, so that Θ̄ = Ār0B̄r0 +

Ār0,⊥Λ̄r0B̄r0,⊥, where now S̄00 and S̄22 are moment matrices based on versions of

∆Xt and ∆Z(b̂)
t−1 only filtered by p lags of ∆Xt settingW (b)

t−1 =
[
∆X ′t−1, . . . ,∆X

′
t−p
]′
.

This method is parallel to the one proposed by Lobato and Velasco (2007) for
univariate time series and the asymptotic theory for the corresponding test
statistic based on λ̄r0 = vec(Λ̄r0) is the same as that in Theorem 3.

Corollary 2. Under the conditions of Theorem 3 and H0 (r0),

√
nλ̄r0

d−→ N
(
0, I(m−r0)2

)
,

and rkn(r0) := nλ̄′r0 λ̄r0
d−→ χ2

(m−r0)2 . Under the alternative Ha(r0) the rank
statistic rkn(r0) diverges to infinity at rate n.

Since the estimation of Φ and b in the term Φ̂ (L)Z(b̂)
t−1 does not affect first or-

der asymptotic properties of the test, the rank test statistic rkn(r0) resulting of
the least squares estimation of (26) is asymptotically equivalent to the LR statis-
tic obtained from solving an eigenvalue problem similar to (18), where now in the

sample moments S22, S02 and S20, (∆Xt, Z
(b̂)
t−1) is replaced by (∆Xt,Φ (L)Z(b)

t−1)
previously projected on p lags of ∆Xt. This is true even in absence of knowl-
edge on Φ and b, given in the latter case that r0 > 0 so that b can be estimated
consistently under both the null and the alternative that r > r0. Therefore,
for rank testing purposes is not necessary to consider the nonlinear model (23),
and, following the same line of argument, we can expect the two step procedure
to be more efficient than single step methods.
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5. Local alternatives

In this section we investigate the power properties of our tests against local
alternatives. We consider first a general class of alternatives local to the null of
r = r0 ≥ 0, for a fixed value of b, and later we also reinterpret these hypotheses
under the null of no cointegration, r = 0, as a weakly cointegrated system with
b→ 0 with n.

Consider the general model (24), and let hi, i = 1, . . . ,m, be the singular

values of the matrix Θ = Ω̃−
1
2

00 Π∗Ω̃
1
2
11, i.e. the limit of the coefficient Θ̃ cor-

responding to the normalized regression (24). Similarly, we might work with
procedures based on (26), see Corollary 3. We define the class of local alterna-
tives for r0 = 0, 1, . . . ,m− 2 and q0 = 1, . . . ,m− r0 − 1 in terms of the ordered
singular values {hj}mj=1 of Θ,

H1n(r0, q0) : diag{hr0+1, . . . , hr0+q0} = n−
1
2K0,

where K0 = diag{k1, . . . , kq0}, ki > 0 for i = 1, . . . , q0. The first r0 singular
values of Θ, h1, . . . , hr0 , are positive constants and the remaining m− (r0 + q0)
ones are equal to zero. The interpretation of this parameterization is that under
the local alternative H1n(r0, q0) the process has q0 extra cointegrating vectors,
0 < q0 < m−r0, that are difficult to detect, apart from the r0 fixed cointegrating
relationships included in H0 (r0). We label as Λ(1,n)

r0 the (m − r0) × (m − r0)
matrix Λr0 for the r0-SVD of Θ under the local alternatives H1n(r0, q0). In the
next theorem we provide the asymptotic behavior of Wald tests under H1n.

Theorem 4. Let Assumption 1 hold and b̂ satisfy (16). Under H1n(r0, q0),
√
nλ̃r0

d−→ N(ξr0 , Im−r0 ⊗ Im−r0),

where ξr0 = limn→∞
√
nλ

(1,n)
r0 and λ

(1,n)
r0 = vec(Λ(1,n)

r0 ). The rank statistic
r̃kn(r0) converges to a noncentral χ2

(m−r0)2 with noncentrality parameter
∑q0
j=1 k

2
j .

Remark 4. Theorem 4 shows that our Wald tests have nontrivial power under
local alternatives converging to the null at a parametric rate. This result is in
line with the standard asymptotics of the tests under the null. The drift depends
naturally on the strength of the extra local cointegrating relationships. However
this drift does not depend explicitly on the presence of extra short term lags in
the model, since the local hypothesis is established on the singular values of Θ,
which is already normalized by sample moments of sequences projected out on
these lags. If the local hypothesis is established in terms of the unnormalized
coefficient Π∗, then the corresponding drift would depend on the probability
limits of S̃00 and S̃22, and the local power of the test will be affected by the
usual signal-to-noise ratio tradeoff. Similarly, the larger q0, i.e. the more extra
cointegrating relationships in H1,n (r0, q0) , the larger is the local power.

Remark 5. The effect of the parameter b on the local power is however twofold.
First, we note that ‖Π∗‖ = O(b), for given cointegrating and adjustment matri-
ces. On the other hand, the variance of Z(b)

t−1 depends also on b, both because

14
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normalization and fractional integration, so the overall impact factor of b on
the noncentrality parameter ξr0 is given by

∑∞
j=1 ψj (b)2 , which is increasing

with b, and zero for b = 0. It is also important to note that in this case the
pre-estimation of b does not play a role in asymptotics, but that when r0 > 0
in H1n(r0, q0), b has to be strictly positive to give a full meaning to the (fixed)
r0 cointegration relationships.

Changing the focus of the alternative hypotheses when r0 = 0, we can set
up explicitly local alternatives in the cointegrating degree b, assuming that it
converges to zero with n as b = n−1/2b0, b0 > 0, whereas Π/b = αβ′ and
Π∗/b = αβ∗′ are fixed with n, where α, β and β∗ are full rank m× q0 matrices.
Under the local alternatives H1n(0, q0), S = diag{n− 1

2K0,0m−q0}, where 0m−q0
is a m − q0 vector of zeros. In this set up, instead of considering the singular
values of Θ to establish the local alternatives, we consider the SVD of the
unnormalized coefficient Θ/b, Ω̃−

1
2

00 αβ
∗′Ω̃

1
2
11 = US0V

′. Then S and S0 are related
by the following relation

S = n−1/2b0S0, with S0 = diag
{
K0

b0
,0m−q0

}
,

where b0 and S0 are fixed with n.

Therefore, if {hi}mi=1 are the ordered singular values of Ω̃−
1
2

00 αβ
∗′Ω̃

1
2
11, we

define the equivalent class of local alternatives

H†1n(0, q0) : b = n−
1
2 b0,

with h1, . . . , hq0 being positive constants, hj = kj/b0, and the remaining m− q0
singular values of S0 being equal to zero.

Then, under H†1n(0, q0),
√
nλ̃0 and the rank statistic r̃kn(0) have the same

asymptotic behavior as under H1n (0, q0), where the noncentrality parameter
can be written as

∑q0
j=1 k

2
j = b20

∑q0
j=1 h

2
j . In this case the relevant regressor

is Z
(b0/

√
n)

t−1 which in the limit, as well as Z(b̂)
t−1 under (16), leads to the local

regressor J (L) ∆Xt, the natural one to test for local alternatives around b = 0,
and to the proportionally factor

∑∞
j=1 j

−2 = π2/6 in the variance matrix of

Z
(0)

t−1 replacing
∑∞
j=1 ψj (b)2 .

Remark 6. Working with the two step procedure based on estimation of (26),
we can set up the local alternatives H1n(r0, q0) in terms of the singular values of
Θ̄, and find that rkn(r0) has power against H1n. However, the direct comparison
of both procedures, single and two step, is not easy in this framework since they
are based on different coefficient matrices, Π∗ and Π, and different projection
strategies.

6. Simulations

In this section we examine the finite sample performance of the proposed test
by means a small Monte Carlo experiment. The data are generated according

15



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

to the triangular model
{

(1− L)1−b(X1t − Ξ′X2t) = ε1t1{t>0}
(1− L)X2t = ε2t1{t>0}

t = 1, . . . , n,

see Nielsen and Shimotsu [2007]. The dimension of the system is set to m = 4
and r0 = 2 cointegration relationships are imposed. The cointegrating matrix is
given by β = [I2,−Ξ′]′, with Ξ = [[1, 0.5]′, [0.5, 1]′] and [ε′1t, ε

′
2t]
′ is an iid(0,I4)

gaussian sequence. We also consider a model with short run dynamics following
(23) with p = 1 and Φ1 = 0.6 · I4 by replacing Xt by Φ (L)Xt in the DGP. Let
Xt = (X ′1t, X

′
2t)
′ and xi,t the i-th component of Xt, i = 1, . . . , 4. The memory

parameter b is estimated from the OLS residuals êt of the auxiliary regression

x1,t = θ′zt + et, with zt = [x2,t, x3,t, x4,t]′

by means of the Exact Local Whittle (hereafter ELW) estimator by Shimotsu
and Phillips [2005]. More precisely we apply the ELW to estimate the memory
δ of the series êt = x1t− θ̂′zt over the compact set [0.500001, 1], with δ = 1− b,
so that b̂ := 1− δ̂ satisfies condition (16) in Theorem 2.

Our inference procedure consist in testing H ′0(r0) : Λr0 = 0. If r0 > r,
then rank(Ar0Br0) < r0 and H ′0(r0) is not equivalent to H0(r0) : rank(Θ) = r0.
To avoid this case, we suggest to perform the test H ′0(r0), for r0 = 0, 1, . . . , r̂,
where r̂ < m is the first value assumed by the index r0 for which we can not
reject H ′0(r0). In other words, the test rejects H ′0(r0) for r0 = 0, 1, . . . , r̂ − 1
but not H ′0(r̂). Then r̂ is a consistent estimator of r. In our experiment we
test H ′0(r0), r0 = 0, 1, 2. The tables report the percentage of rejection of the
null hypothesis H ′0(r0) at the nominal level of 5%. The number of replications is
50,000, the sample lengths n are 100, 200, 500. The parameter b takes the values
b = {0.1, 0.2, 0.3, 0.4, 0.499999}. When we test for no cointegration (r0 = 0), we
also include b = 0. The first row of Tables 1 and 2 indicate the memory of the
cointegrating residuals 1 − b, approximated to the first decimal number. We
also report results for Johansen’s LR (employing the critical values computed
by Mackinnon, Haug, and Michelis [1999], while BH indicates Breitung and
Hassler [2002]’s trace statistic results. The rank statistics r̃kn(r0) and rkn(r0)
proposed in this paper have been computed employing different bandwidths M
for the ELW estimation of b in the auxiliary univariate regression; [z] denotes
the largest integer smaller of equal to z. The (unfeasible) statistic rkn(r0) is
computed using the “true” b.

Our Wald tests are implemented by solving the generalized eigenvalue prob-
lem (18). We have also tried the alternative scaling of the matrix Π̃ obtained

by pre-multiplying this matrix by S
− 1

2
00.2, with S00.2 = S00 − S02S

−1
22 S20. From

simulations unreported here, it emerged that building test statistics on the ma-
trix S

− 1
2

00.2Π̃S
1
2
22 the size is upper-biased especially for T = 100 and large b, but

power increases.
Table 1 contains the results for tests within the model with p = 0. The

first panel of Table 1 provides the percentage of rejections when the hypothesis
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H0(0) of no cointegration is tested. As b→ 0 all the eigenvalues of Π approach
zero. In this case, corresponding to the last column of the table (1 − b = 1),
Xt can be considered as equivalent to a multivariate random walk with full
rank covariance matrix and therefore the null is true. The empirical rejection
frequencies of r̃kn(0) are above the nominal level, because the estimation of b
leads to an increase in the sampling variation of the test statistic. The distortion
is higher for small sample sizes and more narrow bandwidths.

In the second panel of Table 1 we consider the rejection frequencies for the
hypothesis that the cointegration rank is one. The test shows good power also
in small samples for b ≥ 0.3. For 1 − b = 0.9 the rank of ArBr is near to be
zero and the power of the test is very poor for n ≤ 200. This indicates that
large samples are needed for detecting very weak cointegration relationships.
Simulations unreported here show that for n = 1000 the size for 1 − b = 0.9
is still around 2%, showing that is very complicated to estimate precisely very
weak cointegration relationships with small b. Similar arguments can explain the
empirical size of the test, examined in the third panel of Table 1. We also note
that in this simple framework the behavior of the proposed test is not greatly
affected from the first step estimation of b̂, at least for n ≥ 200. Moreover its
power is superior to Johansen’s test and the trace statistic by Breitung and
Hassler [2002] while the size is comparable.

When p = 1 we consider three alternative testing procedures: a first one
labeled OLS based on (18) after projecting on one lag of all variables, cf. (25);
a two step (2S) procedure based on (26) and rkn(r0), where the estimate of Φ1

in Φ̂ (L) is obtained in the initial OLS estimation; and an iterated procedure
(ITER) based on the same equation, but where Φ̂1 is updated 10 times from
the previous fit of (26). We only report results for n = 500, since the increased
number of parameters to be estimated made procedures quite erratic for smaller
sample sizes. The results reported in Table 2 are comparable to those in Table
1. Here all tests show more overrejection for H ′0 (0) when b→ 0, OLS being the
most distorted, while 2S seems to be the most accurate. However in the third
panel the empirical size for H0 (2) of OLS and the iterated procedure is closer
to the nominal one. Power comparisons are difficult because of these distortions
and dependence on the estimated b. Size adjusted power results not reported
here seem to confirm that OLS provides a good overall performance, though for
some particular cases iterated procedures can be more powerful. In any case,
these preliminary findings should be confirmed in a more detailed analysis with
more DGPs and parameter values.

7. Conclusion and directions for further research

In this paper we have introduced a simple Wald test for determining the coin-
tegration rank of a nonstationary system, allowing to the cointegrating residuals
to be fractionally integrated of unknown order. The test is regression based but
can be easily implemented solving a generalized eigenvalue problem of the type
proposed by Johansen [1988]. Many directions for further investigation could
be suggested. First, we only allow for weak cointegration leading to standard
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asymptotics. If b > 1/2 then the limit distribution of the test is not stan-
dard and bootstrap techniques could be employed, following Davidson [2002,
2006]. Second, we recall that we used the ELW estimator by Shimotsu and
Phillips [2005] without formally proving that the assumption of the power rate
consistency of b̂ was satisfied. This issue deserves further investigation. The
finite sample performance of these estimates could be improved applying spec-
tral regression techniques to the univariate auxiliary regression. Third, in the
presence of short run correlation in the ECM we propose to use linear unre-
stricted estimation and two-step procedures. However efficiency improvements
could be achieved in finite samples by using nonlinear estimates that exploit the
multiplicative structure of the matrix coefficients.

Appendix

Proof of Lemma 1. The assumption that α′⊥β⊥ have full rank is equivalent
to the condition that β′α, (β, α⊥) have full rank (see Exercises 3.7 and 4.12 in
Johansen [1996]). Premultiply equation (4) by α′⊥ and β′

α′⊥∆dXt = α′⊥εt (27)
∆d−bβ′∆bXt = β′α∆d−b(1−∆b)β′Xt + β′εt (28)

We rewrite (28) as β′Π(L)Xt = ∆d−b(Ir − (Ir + β′α)Lb)β′Xt = β′εt and define
the polynomial characteristic polynomial associated to the process β′Xt

ζ(z) = (1− z)d−b
(
Ir − (Ir + β′α)

(
1− (1− z)b

))

and the polynomial ζ∗(u) = (Ir − (Ir + β′α)u). These are related via the
transformation u(z) = 1 − (1 − z)b, so that ζ(z) = (1 − z)d−bζ∗(1 − (1 − z)b).
Since β′α has full rank, then eig{Ir + β′α} < 1 (see again Exercise 4.12 in
Johansen [1996]) and therefore |ζ∗(u)| 6= 0 for |u| ≤ 1, so that ζ∗

−1
(u) =∑∞

j=0(Ir + β′α)juj is regular and continuous for |u| ≤ 1. Following similar
arguments to Johansen (2008), Theorem 8, the function u(z) = 1 − (1 − z)b is
also regular for |z| < 1, and continuous for |z| ≤ 1, when b > 0. Hence the
compound function F (z) = ζ∗

−1
(1 − (1 − z)b) is continuous for |z| ≤ 1 and

regular without singularities on |z| < 1. Therefore, by Lemma A.6 in Johansen
(2008) it has an expansion F (z) =

∑∞
j=0 Fjz

j , |z| < 1, where the coefficients
satisfy

∑∞
j=0 ‖Fj‖2 < ∞. We define the zero mean stationary process Wt =∑∞

j=0 Fjβ
′εt−j . Using the identity β⊥(α′⊥β⊥)−1α′⊥ + α(β′α)−1β′ = Im and the

solution of (27), given by α′⊥Xt = ∆−dα′⊥εt, we find that

Xt = β⊥(α′⊥β⊥)−1α′⊥∆−dεt + α(β′α)−1∆−d+bWt

and (6) follows defining Yt = α(β′α)−1Wt. Then the spectral density ma-
trix of β′∆d−bXt = Wt is given byf

W
(ω) = (2π)−1F (e−iω)β′ΣεβF (eiω)′ where

f
W

(0) = (β′α)−1β′Σεβ(β′α)−1′ > 0. �
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Proof of Lemma 2. Using that Cov(Z(b)
t−1, εt) = 0, we have that Ω00 = ΠΩ11Π′+

Σε > 0, because ΠΩ11Π′ is semidefinite positive. The full rank of Ω11 follows
using the definition of Z(b)

t−1 and the full rank of Ω00, since Z
(b)
t−1 is obtained

from ∆Xt with the scalar filter
∑t
j=1 ψj (b)Lj , with limit transfer function∣∣∣

∑∞
j=1 ψj (b) eiωj

∣∣∣
2

> 0 for all ω ∈ [0, π] and all b > 0. �

Proof of Lemma 3. If Θ̂ is a consistent estimator of Θ and null hypothesis
H0(r0) holds true, then ‖Θ̂−Ar0Br0‖

p−→ 0, where Ar0 and Br0 are of full rank
r0. Therefore, pre- and post-multiplying Θ̂ − Θ by the matrices (Âr0 , Âr0,⊥)′

and [B̂′r0 , B̂
′
r0,⊥] we obtain

R =

[
Â′r0(Âr0B̂r0 −Ar0Br0)B̂′r0 −Â′r0(Ar0Br0)B̂′r0,⊥
−Â′r0,⊥(Ar0Br0)B̂′r0 Λ̂r0 − Â′r0,⊥(Ar0Br0)B̂′r0,⊥

]
p−→ 0. (29)

We label Rij , i, j = 1, 2 the sub-matrices obtained partitioning the matrix R as

in (29). The singular values of Θ̂ are equal to
√

eig(Θ̂′Θ̂) and the eigenvalues are

continuous function of Θ̂. Therefore Slutsky’s theorem implies that the smallest
m−r singular values of Θ̂ converge in probability to the m−r null singular values
of Θ = Ar0Br0 , that is Λ̂r0

p−→ 0. It follows that also the second component
of the submatrix R22, i.e. Â′r0,⊥(Ar0Br0)B̂′r0,⊥, converges in probability to the

null matrix. Considering jointly R12 and R22, we have Â′r0(Ar0Br0)B̂′r0,⊥
p−→ 0,

and Â′r0,⊥(Ar0Br0)B̂′r0,⊥
p−→ 0. It allows us to conclude that Br0B̂

′
r0,⊥

p−→ 0,

since it is not possible that both Â′r0Ar
p→ 0 and Â′r0,⊥Ar0

p→ 0 hold true. Then

B̂r0,⊥
p→ Br0,⊥, and this implies, directly from the identity B̂r0,⊥B̂

′
r0 ≡ 0 ⇔

(B̂r0,⊥ −Br0,⊥)B′r0 ≡ B̂r0,⊥(Br0 − B̂r)′ so that also B̂r0
p→ Br0 .

The consistency of Âr0 and Âr0,⊥ can be derived by the same arguments,
considering the blocks R21 and R22 and the identity Â′r0Âr0,⊥ ≡ 0. �

Proof of Theorem 1. As discussed in Section 3, the proof of Theorem 1 we
provide is not a simple application to fractional cointegration of Kleibergen and
Paap’s (2006) Theorem 1, which relies on root-n consistency of Âr0 and B̂r0 .
We instead only use consistency of Âr0 and B̂r0 under H0. Under Assumption
1, ∆Xt and Z

(b)
t−1 are asymptotically stationary and using a standard central

limit theorem for martingale difference sequences it follows that
√
nvec(Π̂ −

Π) d−→ N (0,Ω−1
11 ⊗ Σε). Using the decomposition Θ̂−Θ = Âr0B̂r0 −Ar0Br0 +

Âr0,⊥Λ̂r0B̂r0,⊥, and recalling that Θ = Ω−
1
2

00 ΠΩ
1
2
11, we have that under H0 (r0)

√
nvec

(
Âr0B̂r0 −Ar0Br0

)
+
√
n vec

(
Âr0,⊥Λ̂r0B̂r0,⊥

)
d−→ N(0,V) (30)
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where V = (Ω
1
2
11 ⊗ Ω−

1
2

00 )(Ω−1
11 ⊗ Σε)(Ω

1
2
11 ⊗ Ω−

1
2

00 )′ = Im ⊗ Ω−
1
2

00 ΣεΩ
− 1

2
00 , with

Ω−
1
2

00 ΣεΩ
− 1

2
00 = Ω−

1
2

00 lim
n→∞

1
n

n∑

t=1

E(∆Xt −ΠZ(b)
t−1)(∆Xt −ΠZ(b)

t−1)′Ω−
1
2

00

= Im − lim
n→∞

1
n

n∑

t=1

E
(

Ω−
1
2

00 ∆XtZ
(b)′

t−1Ω−
1
2

11 Θ′ −ΘΩ−
1
2

11 Z
(b)
t−1∆X ′tΩ

− 1
2

00

)
+ ΘΘ′,

so that A′r0,⊥Ω−
1
2

00 ΣεΩ
− 1

2
00 Ar0,⊥ = A′r0,⊥Ar0,⊥ = Im because A′r0,⊥Θ = 0 under

H0 (r0) . Using that A′r0Ar0,⊥ ≡ 0, B̂r0,⊥B̂
′
r0,⊥ = 0, A′r0,⊥Ar0,⊥ = Im−r0 , and

the consistency of Âr0,⊥ from (30), we get

√
nvec

{
A′r0,⊥(Θ̂−Θ)B̂′r0,⊥

}
= (1 + op(1))

√
nλ̂r0

d−→ N (0, Im−r0 ⊗ Im−r0),

proving the theorem. �

Proof of Theorem 2. We first show the consistency of the estimator. Con-
sider the regression model

∆Xt = ΠZ(b)
t−1 + εt = ΠZ(b̂)

t−1 + Π(Z(b)
t−1 − Z

(b̂)
t−1) + εt. (31)

In order to show that Π̃ is consistent, we rewrite Π̃−Π as

= Π
n∑

t=2

{
(∆−b −∆−b̂)

b
∆Xt

}
Z

(b̂)′

t−1

(
n∑

t=2

Z
(b̂)
t−1Z

(b̂)′

t−1

)−1

+Op(n−τ ) (32)

+
1
n

n∑

t=2

εtZ
(b̂)
t−1

(
1
n

n∑

t=2

Z
(b̂)
t−1Z

(b̂)′

t−1

)−1

. (33)

We consider the single terms distinctly, and firstly (32). We first note that

bZ
(b)
t−1 − b̂Z

(b̂)
t−1 = (∆−b −∆−b̂)∆Xt =

t−1∑

j=1

{
ψj(b)− ψj(b̂)

}
∆Xt−j . (34)

Following Lobato and Velasco [2007] and Robinson and Hualde [2003], Proposi-
tion 9, we note that, for j = 1, 2, . . . , n, the expression

{
ψj(b)− ψj(b̂)

}
in (34)

equals
Q−1∑

q=1

1
q!

(
b− b̂

)q
ψ

(q)
j (b) +

1
Q

(
b− b̂

)Q
ψ

(Q)
j (b̄) (35)

where, b̄ is an intermediate stochastic point between b and b̂ and ψ
(q)
j (b) =
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dqψj(b)/dbq. It follows that

1
n

n∑

t=2

[
(∆−b −∆−b̂)∆Xt

]
Z

(b̂)′

t−1 =
1
n

n∑

t=2



t−1∑

j=1

(ψj(b)− ψj(b̂))∆Xt−j


Z

(b̂)′

t−1

=
Q−1∑

q=1

1
q!

(
b̂− b

)q

 1
n

n∑

t=2



t−1∑

j=1

ψ
(q)
j (b)∆Xt−j


Z

(b̂)′

t−1


 (36)

+
1
Q!

(
b̂− b

)Q 1
n




n∑

t=2



t−1∑

j=1

ψ
(Q)
j (b̄)∆Xt−j


Z

(b̂)′

t−1


 (37)

Since |ψ(q)
j (b)| ≤ C(1 + j)b−1(log(1 + j))q, j = 1, 2, . . . n, 1 ≤ q ≤ Q (see Robin-

son and Hualde [2003], Lemma D1) the sequence ψ(q)
j (b) is square summable

when b < 1/2, then the term in square brackets in (36) is Op(1). Moreover, for

b̂ < 1/2, n−1
∑n
t=2 Z

(b̂)
t−1Z

(b̂)′

t−1 = Op(1), then if b̂ − b = Op(n−τ ), τ > 0, (36) is
Op(n−τ ).

In order to analyze (37), we focus on the term:

1
n

n∑

t=2

t−1∑

j=1

ψ
(Q)
j (b̄)∆X(κ)

t−jZ
(b̂,`)
t−1 ≤

1
n

√√√√√
n∑

t=2

∣∣∣∣∣∣

t−1∑

j=1

ψ
(Q)
j (b̄)∆X(κ)

t−j

∣∣∣∣∣∣

2√√√√
n∑

t=2

Z
(b̂,`)2

t−1

where ∆X(κ)
t−j , Z

(b̂,`)
t−1 are, respectively, the κ-th and `-th elements of the vectors

∆Xt−j and Z
(b̂)
t−1. The first term of the product in the right hand side of the

above equation can be bounded by

sup
t

∣∣∣∣∣∣

t−1∑

j=1

ψ
(Q)
j (b̄)∆X(κ)

t−j

∣∣∣∣∣∣
≤

n∑

j=1

∣∣∣ψ(Q)
j (b̄)

∣∣∣
∣∣∣∆X(κ)

t−j

∣∣∣ (38)

≤




n∑

j=1

∣∣∣ψ(Q)
j (b̄)

∣∣∣
2 n∑

j=1

∣∣∣∆X(κ)
t−j

∣∣∣
2




1/2

.

By Lemma D.5 of Robinson and Hualde [2003], for any ε > 0,
∣∣∣ψ(Q)
j (b̄)

∣∣∣ = Op
(
(j + 1)b+ε−1(log(j + 1))Q

)
, as n→∞ (39)

so that
∑n
j=1

∣∣∣ψ(Q)
j (b̄)

∣∣∣
2

≤ Cn2b+2ε−1(log n)2Q. Noting that
∑n
j=1(∆X(κ)

t−j)
2 =

Op(n), the term (38) is Op
(
nb+ε(log n)Q

)
and taking Q large enough we can

make (37) op(n−τ ), since n−1
∑n
t=2 |Z

(b̂,`)
t−1 |2 is Op(1).

It remains to analyze the asymptotic behavior of the term (33). Since the
second factor in this term is Op(1), we consider the first one scaled by

√
n and
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we have that

1√
n

(
n∑

t=2

εtZ
(b̂)′

t−1 −
n∑

t=2

εtZ
(b)′

t−1

)

=
1√
n

n∑

t=2

εt

t−1∑

j=1

{
Q−1∑

q=1

1
q!

(
b− b̂

)q
ψ

(q)
j (b)

}
∆Xt−j (40)

+
1√
n

n∑

t=2

εt

t−1∑

j=1

{
1
Q!

(
b− b̂

)Q
ψ

(Q)
j (b̄)

}
∆Xt−j , (41)

where

1√
n

n∑

t=2

εt

t−1∑

j=1

1
q!
ψ

(q)
j (b)∆X ′t−j = Op(1), for q = 1, 2, . . . , Q− 1

1√
n

n∑

t=2

εt

t−1∑

j=1

{
1
Q!
ψ

(Q)
j (b̄)

}
∆X ′t−j = Op(nb+ε+1/2(log n)Q).

For Q large enough, (41) is op(1) and the higher order terms in (40) are Op(n−τ )
Therefore (33) is op(1), proving that Θ̃

p→ Θ, so that Lemma 2 applies.
From the first order condition for the OLS estimator Π̃, we obtain

∑n
t=2(∆Xt−

Π̃Z(b̂)′

t−1)Z(b̂)′

t−1 = 0, which is equivalent to the equality

0 =
n∑

t=2

(S−
1
2

00 ∆Xt − Θ̃S−
1
2

22 Z
(b̂)
t−1)Z(b̂)′

t−1S
− 1

2
22 . (42)

Given the regression model S−
1
2

00 ∆Xt = S
− 1

2
00 ΠS

1
2
22S
− 1

2
22 Z

(b)
t−1 + S

− 1
2

00 εt, (42) can
therefore be written as

0 =
n∑

t=2

(Θ(n)S
− 1

2
22 Z

(b)
t−1 + S

− 1
2

00 εt − Θ̃S−
1
2

22 Z
(b̂)
t−1)Z(b̂)′

t−1S
− 1

2
22

with Θ(n) = S
− 1

2
00 ΠS

1
2
22 and plimn→∞Θ(n) = Θ, and both Θ and Θ(n) have

exactly rank r0 under the null. Therefore, with the SVD Θ(n) = A
(n)
r0 B

(n)
r0 and

using the decomposition (15) we get

Ãr0,⊥Λ̃r0B̃r0,⊥S
− 1

2
22

(
1
n

n∑

t=2

Z
(b̂)
t−1Z

(b̂)′

t−1

)
S
− 1

2
22 = S

− 1
2

00

(
1
n

n∑

t=2

εtZ
(b̂)′

t−1

)
S
− 1

2
22 ,

− Ãr0B̃r0S
− 1

2
22

(
1
n

n∑

t=2

Z
(b̂)
t−1Z

(b̂)′

t−1

)
S
− 1

2
22 +A(n)

r0 B
(n)
r0 S

− 1
2

22

(
1
n

n∑

t=2

Z
(b)
t−1Z

(b̂)′

t−1

)
S
− 1

2
22

so that Ãr0,⊥Λ̃r0B̃r0,⊥ equals

A(n)
r0 B

(n)
r0 S

− 1
2

22

(
1
n

n∑

t=2

Z
(b)
t−1Z

(b̂)′

t−1

)
S
− 1

2
22 + S00

(
1
n

n∑

t=2

εtZ
(b̂)′

t−1

)
S
− 1

2
22 − Ãr0B̃r0 .

(43)
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Pre-multiplying the above equation by A
(n)′
r0,⊥, post-multiplying by B̃′r0,⊥ and

noting that Ar0,⊥ = A
(n)
r0,⊥ + op(1) = Ãr0,⊥ + op(1) by Θ(n) p→ Θ, see Lemma 3,

we obtain

√
nλ̃ = (1 + op(1))−1

(
B̃r0,⊥S

− 1
2

22 ⊗A′r0,⊥S
− 1

2
00

) 1√
n

vec
n∑

t=2

εtZ
(b̂)′

t−1.

Using (40)-(41) it follows that n−1/2vec
∑n
t=2 εtZ

(b̂)′

t−1
d−→ N(0,Ω11⊗Σε), whereas,

the proof that plimn→∞ S22 = Ω11 is based on (35). Proceeding as in the proof of
Theorem 1, it is easy to check that, as n→∞,

√
nλ̃r0

d−→ N(0, Im−r0⊗Im−r0),
proving the theorem. �

Proof of Theorem 4 We consider first the case without lags. Under local
alternative H1n(r0, q0), equation (43) should be substituted by

Ãr0,⊥Λ̃r0B̃r0,⊥ =
(
Ar0Br0 +Ar0,⊥Λ(1,n)

p Br0,⊥
)
S
− 1

2
22

(
1
n

n∑

t=2

Z
(b)
t−1Z

(b̂)′

t−1

)
S
− 1

2
22

−Ãr0B̃r0 + S
− 1

2
00

(
1
n

n∑

t=2

εtZ
(b̂)′

t−1

)
S
− 1

2
22 .

Pre- and post- multiplying the above equation, respectively by A′r0,⊥, by B̃′r0,⊥
and taking the vec we obtain

(1 + op(1))
√
nλ̃r0−

[
B̃r0,⊥S

− 1
2

22

(
1
n

n∑

t=2

Z
(b̂)
t−1Z

(b)′

t−1

)
S
− 1

2
22 B′r0,⊥ ⊗ Im−r0

]
√
nλ(1,n)

r0

=
(
B̃r0,⊥S

− 1
2

22 ⊗A′r0,⊥S
− 1

2
00

)( 1√
n

vec
n∑

t=2

εtZ
(b̂)′

t−1

)
. (44)

Rewriting Z(b)
t−1 = Z

(b̂)
t−1 −

(
Z

(b̂)
t−1 − Z

(b)
t−1

)
, equation (44) can be stated as

(1 + op(1))
√
nλ̃−

[
B̃r0,⊥B

′
r0,⊥ ⊗ Im−r0

]√
nλ(1,n)

r0 + (45)

+

{
B̃r0,⊥S

− 1
2

22

[
1
n

n∑

t=2

Z
(b̂)
t−1

(
Z

(b̂)
t−1 − Z

(b)
t−1

)′]
S
− 1

2
22 B′r0,⊥⊗ Im−r0

}
√
nλ(1,n)

r0 .

(46)
Provided that

1
n

n∑

t=2

Z
(b̂)
t−1

(
Z

(b̂)
t−1 − Z

(b)
t−1

)′
= op(1) and

√
nλ(1,n)

r0 = O(1) (47)

equation (46) is op(1) and the theorem follows because, adapting the proof
of Proposition 1 in Kleibergen and Paap [2006], it can be easily shown that
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λ
(1,n)′
r0 λ

(1,n)
r0 = tr(S2

m−r0) = n−1
∑p
j=1 k

2
j . When we have lags, the first order

condition is given by,

n∑

t=2

(
S̃
− 1

2
00 ∆Xt − Θ̃S̃−

1
2

22 Z̃
(b̂)
t−1

)
Z̃

(b̂)′

t−1S̃
− 1

2
22 = 0 ⇐⇒

n∑

t=2

(
Θ(n)S̃

− 1
2

22 (Φ(1) + Φ∗(L)∆)Z(b)
t−1 − S̃

− 1
2

00 (Φ(L)− Im)∆Xt

)
Z̃

(b̂)′

t−1S̃
− 1

2
22

+
n∑

t=2

(
S̃
− 1

2
00 εt − Θ̃S̃−

1
2

22 Z̃
(b̂)
t−1

)
Z̃

(b̂)′

t−1S̃
− 1

2
22 = 0,

where Θ(n) = S̃
− 1

2
00 Π∗S̃

1
2
22,

∑n
t=2 ∆X̃tZ̃

(b̂)′

t−1 =
∑n
t=2 ∆XtZ̃

(b̂)′

t−1 and the terms

∆Xt−j and Z̃
(b̂)
t−1 are orthogonal for j ≤ 1. Using arguments similar to (44), it

can be shown that
∑n
t=2 ∆Z(b)

t−jZ̃
(b̂)′

t−1, op(1) for j ≥ 1, and

n∑

t=2

S̃
− 1

2
22 Z

(b)
t−1Z̃

(b̂)′

t−1S̃
− 1

2
22 =

n∑

t=2

S̃
− 1

2
22 Z

(b̂)
t−1Z̃

(b̂)′

t−1S̃
− 1

2
22 + op(1)

Recalling that
∑n
t=2 Z

(b̂)
t−1Z̃

(b̂)′

t−1 =
∑n
t=2 Z̃

(b̂)
t−1Z̃

(b̂)′

t−1, this proves that the intro-
duction of the short run dynamics does not change the expression of the drift.
�
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