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On the Statistical Identification of DSGE
models∗

Agostino Consolo, Carlo A. Favero, Alessia Paccagnini†

January 15, 2009

Abstract

Dynamic Stochastic General Equilibrium (DSGE) models are now con-
sidered attractive by the profession not only from the theoretical perspec-
tive but also from an empirical standpoint. As a consequence of this
development, methods for diagnosing the fit of these models are being
proposed and implemented. In this article we illustrate how the concept
of statistical identification, that was introduced and used by Spanos(1990)
to criticize traditional evaluation methods of Cowles Commission models,
could be relevant for DSGE models. We conclude that the recently pro-
posed model evaluation method, based on the DSGE − V AR(λ), might
not satisfy the condition for statistical identification. However, our appli-
cation also shows that the adoption of a FAVAR as a statistically identified
benchmark leaves unaltered the support of the data for the DSGE model
and that a DSGE-FAVAR can be an optimal forecasting model.

Keywords : Bayesian analysis; Dynamic stochastic general equilibrium
model; Model evaluation,Statistical Identification,Vector autoregression,
Factor-Augmented Vector Autoregression.

JEL Classification : C11, C52

1 Introduction
Dynamic Stochastic General Equilibrium (DSGE) models are now considered
attractive by the profession not only from the theoretical perspective but also
for empirical analysis and for econometric policy simulation.1 Model evaluation
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in Del Negro-Schorfheide(2004). We are also grateful to participants in the Applied Macro-
econometric Network for useful comments. Carlo Favero is especially grateful to Katarina
Juselius for her strong encouragement to write this paper. All errors are our own.
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Dept of Finance (Universita’ Bocconi) and CEPR. Paccagnini, IGIER (Università Bocconi).

1 See An and Schorfheide(2006) and the JBES Invited address presented at the Joint Statis-
tical Meeting 2006 "On the Fit of New Keynesian Models" by Del Negro, Schorfheide, Smets
and Wouters, published on the April 2007 issue of the JBES with comments by L.Christiano,
R.Gallant, C.Sims, J.Faust, and L.Killian.
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is an issue of crucial importance before policy simulation. Therefore, methods
for diagnosing the fit of these models are being proposed and implemented.
This article illustrates how the concept of statistical identification, originally
introduced to criticize traditional evaluation methods of Cowles Commission
models, could also be applied to the diagnostic tools recently proposed for DSGE
models.
The concept of statistical identification has been introduced by Spanos(1990).

Structural models can be viewed statistically as a reparameterization, possi-
bly (in case of over-identified models) with restrictions, of the reduced form.
Spanos distinguishes between structural identification and statistical identifica-
tion. Structural identification refers to the uniqueness of the structural para-
meters, as defined by the reparameterization and restriction mapping from the
statistical parameters in the reduced form, while statistical identification refers
to the choice of a well-defined statistical model as reduced form. Diagnostics
for model evaluation are constructed in Cowles commission tradition in a way
that is closely related to the solution of the identification problem. In fact,
in the (very common) case of over-identified models, a test of the validity of
the over-identifying restrictions can be constructed by comparing the restricted
reduced form implied by the structural model with the reduced form implied
by the just-identified model in which each endogenous variables depend on all
exogenous variables with unrestricted coefficients. The statistics are derived in
Anderson and Rubin(1949) and Basman(1960). The logic of the test attributes
a central role to the structural model. The statistical model of reference for
the evaluation of the structural model is derived by the structural model itself.
Spanos(1990) points out that the root of the failure of the Cowles Commission
approach lies in the little attention paid to the statistical model implicit in the
estimated structure. Any identified structure that is estimated without checking
that the implied statistical model is an accurate description of the data is bound
to fail if the statistical model is not valid. The Spanos critique of the Cowles
commission approach lies naturally within the LSE approach to econometric
modelling. Such approach reverses the prominence of the structural model with
respect to the reduced form representation. The LSE approach starts its specifi-
cation and identification procedure with a general dynamic reduced form model.
The congruency of such a model cannot be directly assessed against the true
DGP, which is unobservable. However, model evaluation is made possible by
applying the general principle that congruent models should feature true ran-
dom residuals; hence, any departure of the vector of residuals from a random
normal multivariate distribution should signal a mis-specification. A structural
model can be identified and estimated only after a validation procedure based
on a battery of tests on the reduced form residuals has been satisfactorily im-
plemented. A just-identified specification does not require any further testing,
as its implied reduced form does not impose any further restrictions on the
baseline statistical model. The validity of over-identified specification is instead
tested by evaluating the validity of the restrictions implicitly imposed on the
general reduced form. Interestingly, the lack of statistical identification offers
an explanation for the failure of the Cowles Commission models very different

2



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

from the "great critiques" by Lucas(1976) and Sims(1980), that concentrate on
model failure related to structural identification problems.
The structural identification problem for DSGE has recently received some

close attention (Canova and Sala(2006)). This paper concentrates on the statis-
tical identification model of DSGE models. We illustrate how the logic of some
recently proposed model evaluation tools for DSGE models, based on the com-
parative evaluation of a DSGE-VAR model with an unrestricted VAR model,
resembles closely the logic applied within the Cowles Commission approach
in testing for the validity of over-identifying restrictions in structural models.
We then show that statistical identification can be achieved by using a Factor
Augmented VAR (FAVAR), and we compare the properties of DSGE-VAR and
DSGE-FAVAR. We provide an empirical illustration by considering the case of
a very simple three-equations DSGE model (Del Negro and Schorfheide(2004)).

2 Statistical Identification: the original concept
Spanos (1990) considers the case of a simple demand and supply model to show
how the reduced form is ignored in the traditional approach. The example is
based on the market for commercial loans discussed in Maddala (1988). Most
of the widely used estimators allow the derivation of numerical values for the
structural parameters without even seeing the statistical models represented by
the reduced form. Following this tradition, the estimated (by 2SLS) structural
model is a static model that relates the demand for loans to the average prime
rate, to the Aaa corporate bond rate and to the industrial production index,
while the supply of loans depends on the average prime rate, the three-month
bill rate and total bank deposits. The quantity of commercial loans and the av-
erage prime rate are considered as endogenous while all other variables are taken
as, at least, weakly exogenous variables in the sense of Engle et al. (1983) and
no equation for them is explicitly estimated. Given that there are two omitted
instruments in each equation, one over-identifying restriction is imposed in both
the demand and supply equations. The validity of the restrictions is tested via
the Anderson-Rubin (1949) tests, and leads to the rejection of the restrictions
at the 5 per cent level in both equations, although in the second equation the re-
strictions cannot be rejected at the 1 per cent level. This mild evidence against
the adopted structural model ignores the fact that estimation of the statistical
model, i.e. the reduced form implied by the adopted identifying restrictions,
yields a specification for which the underlying statistical assumptions of linear-
ity, homoscedasticity, absence of autocorrelation and normality of residuals are
all strongly rejected. On the basis of this evidence the adopted statistical model
is not considered as appropriate. An alternative model allowing for a richer
dynamic structure (two lags) in the reduced form is then considered. Such dy-
namic specification is shown to provide a much better statistical model for the
data than the static reduced from. Of course, the adopted structural model im-
plies many more over-identifying restrictions than the initial more parsimonious
specification. When tested, the validity of these restrictions is overwhelmingly
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rejected for both the demand and the supply equations. Such evidence leads
to the conclusion that the lack of statistical identification of the original model
might lead to failure of rejecting the structural model of interest when it is false.
In practice, Cowles Commission models have been abandoned because of

their empirical failure and because of the great critiques related to their lack of
structural identification, much less emphasis has been posed by the mainstream
literature on the problem of statistical identification, with the notable exception
of the LSE approach to econometric dynamics (see, Hendry,1995). Cowles Com-
mission models for policy evaluation have been replaced by Dynamic Stochastic
General Equilibrium (DSGE) models.

3 The Statistical Identification of VAR andDSGE
models

The general linear (or linearized around equilibrium) DSGE model takes the
following form(see Sims(2002)):

Γ0Zt = Γ1Zt−1 + C +Ψ�t +Πηt (1)

Where C is a vector of constants, �t is an exogenously evolving random dis-
turbance, ηt is a vector of expectations errors,

¡
Et

¡
ηt+1

¢
= 0

¢
, not given ex-

ogenously but to be treated as part of the model solution. The forcing processes
here are the elements of the vector �t, this typically contains processes like Total
Factor Productivity or policy variables that are not determined by an optimiza-
tion process. Policy variables set by optimization, typically included Zt, are
naturally endogenous as optimal policy requires some response to current and
expected developments of the economy. Expectations at time t for some of the
variables of the systems at time t+1 are also included in the vector Zt,whenever
the model is forward looking. Model like (1)can be solved using standard numer-
ical techniques (see, for example, Sims, 2002), and the solution can be expressed
as:

Zt = A0 +A1Zt−1 +R�t (2)

where the matrices A0,A1,and R contain convolutions of the underlying
model structural parameters. Consider the simple case in which all variables in
the DSGE are observable and the number of structural shocks in �t is exactly
equal to the number of variables in Zt. In this case VAR are natural specifications
for the data, therefore the estimated reduced form in modern macroeconometrics
is:

Zt = A0 +A1Zt−1 + ut (3)

Within this framework a new role for empirical analysis based on reduced
form models emerges, that is to provide evidence on the stylized facts to be
matched by the theoretical model adopted for policy analysis and to decide
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between competing DSGE models. Given the estimation of a VAR the selection
of a particular DSGE model among different alternatives can be based on the
following three steps (see Christiano, Eichenbaum and Evans (1998)):

1. policy shocks of interests are identified in actual economies, i.e. in a VAR
without theoretical restrictions;

2. the response of relevant economic variables to these shocks is then de-
scribed;

3. finally, the same experiment is performed in the model economies (DSGE)
to compare actual and model-based responses as an evaluation tool and a
selection criterion for theoretical models.

The identification of the shocks of interest is the structural identification
problem in VAR-based model evaluation. VAR modelling recognizes that iden-
tification and estimation of structural parameters is impossible without explic-
itly modelling expectations, therefore a structure like (3) can only be used to
run special experiments that do not involve simulating different scenarios for
the parameters of interests. A natural way to achieve these results is to experi-
ment with the shocks �t. Facts are then provided by looking at impulse response
analysis, variance decompositions and historical decompositions. All these ex-
periments are run by keeping estimated parameters unaltered. Importantly,
running these experiments is easier if shocks to the different variables included
in the VAR are orthogonal to each other, otherwise it would not be possible
to simulate a policy shock by maintaining all the other shocks at zero. As a
consequence, VAR models need a structure because orthogonal shocks are nor-
mally not a feature of the statistical model. This fact generates the structural
identification problem. The relation between (3) and (2)implies that:

ut = R�t,

from which we can derive the relation between the variance-covariance matrices
of ut (observed) and νt (unobserved) as follows:

E (utu
0
t) = RE (�t�t

0)R0. (4)

Substituting population moments with sample moments the relevant struc-
tural shocks can be identified and a number of parameters in the R matrix
equal up to the number of different elements in the variance covariance ma-
trix of the VAR innovations (m(m+ 1)/2, where m is the number of variables
included in the VAR ) can be estimated. As usual, for such a condition also
to be sufficient for identification, no equation in (4) should be a linear combi-
nation of the other equations in the system (see Amisano and Giannini 1996,
Hamilton 1994). As for traditional models, we have the three possible cases
of under-identification, just-identification and over-identification. The validity
of over-identifying restrictions can be tested via a statistic distributed as a χ2

with the number of degrees of freedom equal to the number of over-identifying
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restrictions. But again structural identification of a VAR is a totally different
from statistical identification. In fact, misspecification of a VAR generated by
omitted variables does not prevent structural identification but it leads to lack
of statistical identification.2

Recent Model Evaluation of DSGE models exploits the fact that a solved
RBC model is a statistical model. In fact, solved DSGE model often generates
a restricted MA representation for the vector of observable variables of interest,
that can be approximated by a VAR of finite order (see Fernandez-Villaverde
et al.(2007) and Ravenna, (2007)). Interestingly, this recent approach to model
evaluation does not require identification of structural shocks but it is still po-
tentially affected by lack of statistical identification.
To see this point consider the general case of system (2) in which only a

subset n of the m variables included in Zt is observable and define such subset
Yt. Yt has a VAR(∞) representation. This is usually approximated by a finite
VAR representation at the cost of a truncation that can be relevant for purposes
such as the identification of structural shocks (see Ravenna(2007)). Note that if
the RBC model features a number of shocks smaller than the number of variables
included in the VAR, some of the VAR shocks are interpreted as measurement
error.
The finite approximate VAR representation of a solved RBC model is then

written as the following structural VAR in which the number of shocks is equal
to the length of the vector of observable variables Yt:

Yt = Φ∗0 (θ) +Φ
∗
1 (θ)Yt−1 + ...+Φ∗p (θ)Yt−p + u

∗
t (5)

u∗t ∼ N (0,Σ∗u (θ))

Y = XΦ∗ (θ) + u∗

u∗
Txn

=
h
u∗1
Tx1

... u∗n
Tx1

i
(6)

Y
Txn

=
h
Y1
Tx1

... Yn
Tx1

i
(7)

X
Tx(np+1)

=

⎡⎣ X0
1

X0
T

⎤⎦ ,
X0
t

1x(np+1)

=

"
1,Y0

t−1
1xn

...Y0
t−p
1xn

#
(8)

Φ∗ (θ)
(np+1)xn

=

"
Φ∗0 (θ)
nx1

,Φ∗1 (θ)
nxn

, ...,Φ∗p (θ)
nxn

#0
,

where all coefficients are convolutions of the structural parameters in the
model included in the vector θ. Of course the theoretical model imposes some

2Think for example of a simple Data Generating Process made of a bivariate cointegrated
VAR with two strucutral shocks: a temporary one and a permanent one. The estimation of
a VAR in difference omitting the cointegrating relations would not prevent structural identi-
fication of the two shocks but it would certainly lead to lack of statistical identification.
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restrictions on the VAR, that can be tested by evaluating them against the
unrestricted VAR. Note that the relevant statistical model is constructed exactly
as in the Cowles Commission approach: the specification of the statistical model
is totally driven by that of the structural model. In fact, the statistical model is
obtained by solving the structural model and then by relaxing some restrictions.
As a matter of fact when this procedure is followed variables omitted from
the structural model are never included in the statistical model and statistical
identification becomes a potentially relevant issue. In a series of papers Del
Negro and Schorfheide (2004, and 2006) and Del Negro, Schorfheide, Smets
and Wouters(2004) adopt this line of research to propose a Bayesian framework
for model evaluation. This method tilts coefficient estimates of an unrestricted
VAR toward the restriction implied by a DSGE model. The weight placed on
the DSGE model is controlled by an hyperparameter called λ. This parameter
takes values ranging from 0 (no-weight on the DSGE model) to ∞ (no weight
on the unrestricted VAR). Therefore, the posterior distribution of λ provides an
overall assessment of the validity of the DSGE model restrictions.
The chosen benchmark to evaluate this model is the unrestricted VAR de-

rived from the solved DSGE model

Yt = Φ0 +Φ1Yt−1 + ...+ΦpYt−p + ut (9)

ut ∼ N (0,Σu)

Y = XΦ+ u

Φ
(np+1)xn

=

∙
Φ0
nx1

,Φ1
nxn

, ...,Φp
nxn

¸0
, (10)

where:

Φ = Φ∗ (θ) +Φ∆

Σu = Σ∗u (θ) +Σ
∆
u

the DSGE restrictions are imposed on the VAR by defining:

ΓXX (θ) = ED
θ [XtX

0
t]

ΓXZ (θ) = ED
θ [XtY

0
t]

where ED
θ defines the expectation with respect to the distribution generated

by the DSGE model, that of course have to be well defined. We then have:

Φ∗ (θ) = ΓXX (θ)
−1
ΓXY (θ)

Beliefs about the DSGE model parameters θ and model misspecification
matrices Φ∆ and Σ∆u are summarized in prior distributions, that, as shown in
Del Negro and Schorfheide(2004) can be transformed into prior for the VAR
parameters Φ and Σu.In particular we have:
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Σu |θ ∼ IW (λTΣ∗u (θ) , λT − k, n)

Φ |Σu, θ ∼ N

µ
Φ∗ (θ) ,

1

λT

£
Σ−1u ⊗ ΓXX (θ)

¤−1¶
where the parameter λ controls the degree of model misspecification with

respect to the VAR: for small values of λ the discrepancy between the VAR
and the DSGE-VAR is large and a sizeable distance is generated between un-
restricted VAR and DSGE estimators, large values of λ correspond to small
model misspecification and for λ = ∞ beliefs about DSGE mis-specification
degenerate to a point mass at zero. Bayesian estimation could be interpreted
as estimation based a sample in which data are augmented by an hypothetical
sample in which observations are generated by the DSGE model, within this
framework λ determines the length of the hypothetical sample.
Given the prior distribution, posterior are derived by the Bayes theorem:

Σu |θ, Y ∼ IW

µ
(λ+ 1)T

ˆ

Σu,b (θ) , (λ+ 1)T − k, n

¶
Φ |Σu, θ, Y ∼ N

µ
ˆ

Φb (θ) ,Σu ⊗ [λTΓXX (θ) +X
0X]
−1
¶

ˆ

Φb (θ) = (λTΓXX (θ) +X
0X)
−1
(λTΓXY (θ) +X

0Y)
ˆ

Σu,b (θ) =
1

(λ+ 1)T

∙
(λTΓY Y (θ) +Y

0Y)− (λTΓXY (θ) +X
0Y)

ˆ

Φb (θ)

¸
which shows that the smaller λ, the closer the estimates are to the OLS estimates
of an unrestricted VAR, the higher λ the closer the estimates are to the values
implied by the DSGE model parameters θ.
In practice, a grid search is conducted on a range of values for λ to choose

that value that maximize the marginal data density. The typical results obtained
when using DSGE-VAR(λ) to evaluate models with frictions is that " ... the
degree of misspecification in large-scale DSGE models is no longer so large as
to prevent their use in day-to-day policy analysis, yet is not small enough that
it cannot be ignored...".
DSGE-VAR model evaluation ignores the issue of specification of the statis-

tical model. Although the models are different, the evaluation strategy in the
DSGE-VAR approach is very similar to the approach of evaluating models by
testing over-identifying restrictions without assessing the statistical model im-
plemented in Cowles foundation models. In the Cowles Commission approach
the statistical model was derived by taking the reduced form obtained by re-
moving all the over-identifying restrictions implied by the theoretical model. As
a consequence, as in the case of the market for loans analyzed by Spanos(1991),
a static theoretical model would always be evaluated against a static statistical
model, which would certainly lack statistical identification whenever the true
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Data Generating Process featured any form of dynamics. In the DSGE-VAR
approach the fact that the a DSGE model is a restricted VAR is used to derive
the statistical model by removing the DSGE restrictions from the VAR. How-
ever, the question of the validity of this unrestricted VAR to represent the data
is not addressed. In fact, the DSGE-VAR approach is looser than the Cowles
foundation approach: model based restrictions are not imposed and tested but
are made fuzzy by imposing a distribution on them and then the relevant ques-
tion becomes what is the amount of uncertainty that we have to add to model
based restrictions in order to make them compatible with a model-derived unre-
stricted VAR representation of the data. In fact such representation might not
represent the data. The natural question here is how well does this procedure
do in rejecting false models? Spanos(1991) has shown clearly that generalizing
the statistical model by adding features that are not included in the theoretical
model (the omitted dynamics in the case of the static demand and supply for
loans model considered in the original illustrative example) could lead to dra-
matic changes in the outcome of tests for over-identifying restrictions. Is the
Spanos criticisms of Cowles Commission model evaluation applicable to DSGE-
VAR model evaluation?

4 The statistical identification of a DSGE-FAVAR
A DSGE model is a restricted VAR, removing the restrictions from the VAR and
using an unrestricted VAR as a statistical model would imply that the Spanos
criticism of the Cowles Commission model evaluation approach is applicable to
DSGE-VAR model evaluation if the unrestricted VAR cannot be considered
statistically identified. If the unrestricted VAR is not statistically identified we
might not be able to conduct a proper statistical evaluation of the theoretical
model by using it as a benchmark. The important point made by Spanos in
his contribution is that reduced form of theoretical must be evaluated against
specifications that captures the relevant information in the data potentially
omitted from the theoretical model. Obviously the omission of dynamics used
by Spanos to criticize the statistical identification of static Cowles Commission
models is not applicable to VAR specifications. However, there are a number of
potential sources of mis-specification for the model derived VAR. Think of all
those variables that are omitted from the theoretical model because of its specific
nature, say fiscal policy in a model designed to analyze the effect of monetary
policy or foreign variables and the exchange rate in a closed economy model, but
also of all variables that are not theory related but are relevant to determine the
actual behaviour of policy makers. A good example is the commodity price index
and the problem of modelling of the behaviour of monetary policy authority.
Early VARs for the analysis of monetary policy that did not include in the
information set a commodity price index tended to deliver a "price puzzle",
i.e. a positive response of prices to an unexpected monetary tightening. Such
anomaly has been attributed to the existence of a leading indicator for inflation
to which the Fed reacts and which is omitted from the VAR. The omission form
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the information set of a variable positively correlated with inflation and interest
rates makes the VAR mis-specified and explains the positive relation between
prices and interest rates observed in the impulse response functions. It has been
observed (see Christiano, Eichenbaum and Evans (1996)) that the inclusion of
a Commodity Price Index in the VAR solves the ‘price puzzle’. DSGE model
do not typically include the commodity price index in their specification as
a consequence the VAR derived by relaxing the theoretical restrictions in a
DSGE model is misspecified. So the evaluation of the effects of conducting
model misspecification with a "wrong" benchmark is a practically relevant one.
As a matter of fact DSGE model tend to produce a high number of very

persistent shocks (see Smets and Wouters, 2003), such evidence would have
been certainly taken as a signal of model mis-specification by an LSE type
methodology. Still the model do not do too badly when judged in the metric of
the λ test.
Another dimension potentially relevant for evaluating the statistical model

underlying DSGE-VAR is structural stability of the VAR parameters. If the
DSGE restrictions are valid, then parameters in the VAR are convolutions of
structural parameters that, by their nature, should be constant over time. Cog-
ley and Sargent(2005), Primiceri (2005) and Sims and Zha(2006) point out
to instability of reduced form VARs. Interestingly, the evidence is mixed on
the source of instability: Cogley and Sargent(2005) and Primiceri(2005) point
toward time variation in parameters and in disturbance variance, while, accord-
ing to Sims and Zha(2006) the best fit allows time variation in disturbance
variances only. Justiniano and Primiceri(2007) and Fernandez-Villaverde and
Rubio Ramirez (2007a, 2007b) point out to parameter instability of DSGE mod-
els, and the evidence on the sources of instability is similar to that available for
reduced form VAR, with Justiniano and Primiceri(2007) highlighting the im-
portance of stochastic volatilities while Fernandez and Rubio Ramirez (2007b)
questioning the stability of parameters deemed to be structural.
In the light of this evidence it would be important to consider as a benchmark

for model evaluation a more general specification than the one obtained by
releasing some coefficient restrictions on a VAR involving only the variables
included in a DSGE model. Ideally, we would like to consider as a benchmark
a model that parsimoniously includes all the information excluded from the
theoretical DSGE. A recent strand of the econometric literature3 has shown
that very large macroeconomic datasets can be properly modelled using dynamic
factor models, where the factors can be considered as an exhaustive summary
of the information in the data. The rationale underlying dynamic factor models
is that the behavior of several variables is driven by few common forces, the
factors, plus idiosyncratic shocks. Hence, the factors can provide an exhaustive
summary of the information in large datasets, and in this sense they are precious
to alleviate omitted variable problems in empirical analysis using traditional
small-scale models, see Bernanke and Boivin (2003). In fact, Bernanke and
Boivin (2003), Bernanke, Boivin and Eliasz(2005) proposed to exploit factors

3Stock and Watson (2002), Forni and Reichlin (1996, 1998) and Forni et al. (1999, 2000)
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in the estimation of VAR to generate a more general specification. Chudik
and Pesaran (2007) illustrate how a VAR augmented by factor could help in
keeping the number of parameters to be estimated under control without loosing
relevant information. Boivin and Giannoni(2006) propose a DSGE-FAVAR as a
way of removing the assumption that economic variables included in a DSGE
are properly measured by a single indicator. The theoretical concepts of the
model are treated as partially observed to use the information set in factors
to map them. We shall use a factor-augmented VAR (FAVAR) as the relevant
statistical model to conduct model evaluation. A FAVAR benchmark for the
evaluation of a DSGE model will take the following specification:µ

Yt

Ft

¶
=

∙
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

¸µ
Yt−1
Ft−1

¶
+

µ
uZt
uFt

¶
,

where Yt are the observable variables included in the DSGE model and Ft
is a small vector of unobserved factors extracted from a large data-set of macro-
economic time series, that capture additional economic information relevant to
model the dynamics of Y

t. The system reduces to the standard VAR used to evaluate DSGE models if
Φ12(L) = 0, therefore, within this context, the relevant λ test would add to the
usual DSGEmodel-related restrictions onΦ11(L) the restrictionsΦ12(L) = 0.To
our knowledge, FAVAR have not been so far used to evaluate DSGE, and this
is what we shall do in this paper using dynamic factors as the analogue of a
richer dynamics for the evaluation of Cowles commission models proposed by
Spanos4.
Importantly, and differently from Boivin and Giannoni(2006), we do not

interpret the FAVAR as the reduced form of a DSGE model at hand. In fact, in
this case the restrictions implied by DSGE model on a general FAVAR are very
difficult to trace and model evaluation becomes even more difficult to implement.
A very tightly parameterized theory model can have a very highly parameterized
reduced form if one is prepared to accept that the relevant theoretical concepts
in the model are combination of many macroeconomic and financial variables.
Identification of the relevant structural parameters, that is very hard also in
DSGE model with observed variables (see Canova and Sala,2006), becomes even
harder. Natural advantages of this approach are increased efficiency in the
estimation of the model and improved forecasting performance. However, model
evaluation becomes almost impossible to pursue and a theoretical model can only
by rejected by another theoretical model, while the implied statistical model is
made so general that virtually no room is left to the data to reject a DSGE
model.

5 Model Evaluation of a Simple DSGE Model
We consider a small New Keynesian DSGE model of the economy which features
a representative household optimizing over consumption, real money holdings

4 In our application we consider a special case of the FAVAR in which Φ21 (L) = 0
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and leisure, a continuum of monopolistically competitive firms with price ad-
justment costs and a monetary policy authority which sets the interest rate.
Furthermore, the model is driven by three exogenous processes which deter-
mine government spending, gt, the stationary component of technology, zt, and
the policy shock, �R,t.
A full description of the model can be found in Woodford (2003). Here,

we mainly focus on its log-linear representation which takes each variable as
deviations from its trend. The model has a deterministic steady state with
respect to the de-trended variables: the common component is generated by a
stochastic trend in the exogenous process for technology. The model follows Del
Negro and Schorfheide (2004) (henceforth, DS) and it reads

x̃t = Etx̃t+1 −
1

τ
(R̃t −Etπ̃t+1) + (1− ρG)g̃t + ρz

1

τ
z̃t (11)

π̃t = βEtπ̃t+1 + κ (x̃t − g̃t) (12)

R̃t = ρRR̃t−1 + (1− ρR)(ψ1π̃t + ψ2x̃t) + �R,t (13)

g̃t = ρgg̃t−1 + �g,t (14)

z̃t = ρz z̃t−1 + �z,t (15)

where x̃t is the output gap, π̃t is the inflation rate, R̃t is the short-term interest
rate and g̃t and z̃t are two AR(1) stationary processes for government and
technology, respectively.
The first equation is an intertemporal Euler equation obtained from the

households’ optimal choice of consumption and bond holdings. There is no
investment in the model and so output is proportional to consumption up to an
exogenous process that can be interpreted as time-varying government spending.
The net effects of these exogenous shifts on the Euler equation are captured in
the process g̃t. The parameter 0 < β < 1 is the households’ discount factor and
τ > 0 is the inverse of the elasticity of intertemporal substitution. The second
equation is the forward-looking Phillips curve which describes the dynamics of
inflation and κ determines the degree of the short-run trade-off between output
and inflation.
The third equation describes the behavior of the monetary authority. The

central bank follows a nominal interest rate rule by adjusting its instrument
to deviations of inflation and output from their respective target levels. The
shock �R,t can be interpreted as unanticipated deviation from the policy rule
or as policy implementation error. The set of structural shocks is thus �t =
(�R,t, �g,t, �z,t)

0 which collects technology, government and monetary shocks.
The model needs to be solved and this can be done by applying the al-

gorithm proposed by Sims (2002). Define the vector of variables as Z̃t =¡
x̃t π̃t R̃t R̃∗t g̃t z̃t Etx̃t+1 Etπ̃t+1

¢
and the vector of shocks as �t =¡

�R,t �g,t �z,t
¢
. Therefore the previous set of equations, (11) - (15), can be

recasted into a set of matrices (Γ0,Γ1, C,Ψ,Π) accordingly to the definition of
the vectors Z̃t and �t

Γ0Z̃t = C + Γ1Z̃t−1 +Ψ�t +Πηt (16)

12
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where ηt+1, such that Etηt+1 ≡ Et (yt+1 −Etyt+1) = 0, is the expectations
error5.
As a solution to (16), we obtain the following policy function

Z̃t = T (θ) Z̃t−1 +R (θ) �t (17)

and in order to provide the mapping between the observable data and those
computed as deviations from the steady state of the model we set the following
measurement equations as in DS

∆ lnxt = ln γ +∆x̃t + z̃t (18)

∆ lnPt = lnπ∗ + π̃t (19)

lnRt = 4[(lnR∗ + lnπ∗) + R̃t] (20)

which can be also cast into matrices as

Yt = Λ0 (θ) + Λ1 (θ) Z̃t + vt (21)

where Yt = (∆ lnxt,∆ lnPt, lnRt)
0, vt = 0 and Λ0 and Λ1 are defined accord-

ingly. For completeness, we write the matrices T , R, Λ0 and Λ1 as a function of
the structural parameters in the model, θ =

¡
ln γ, lnπ∗, ln r∗, κ, τ , ψ1, ψ2, ρR, ρg, ρZ , σR, σg, σZ

¢0
:

such a formulation derives from the rational expectations solution.
The evolution of the variables of interest, Yt, is therefore determined by

(17) and (21) which impose a set of restrictions across the parameters on the
moving average (MA) representation. Given that the MA representation can be
very closely approximated by a finite order VAR representation, DS propose to
evaluate the DSGE model by assessing the validity of the restrictions imposed by
such a model with respect to an unrestricted VAR representation. The choice
of the variables to be included in the VAR is however completely driven by
those entering in the DSGE model regardless of the statistical goodness of the
unrestricted VAR.
The model evaluation method proposed by DS is based on a mixed estimation

which combines the data information with the prior information deriving from
the DSGE model. The source for the data information is the unrestricted VAR
process for all variables included in the DSGE model. The measurement, (21),
and the transition, (17), equation can be used to derive a sample of artificial
data which are theory driven. This is effectively a set of dummy observations
which can be added to the observables data as in Sims and Zha (1998)6 to derive
a prior distribution for the VAR coefficients. Furthermore, such a prior would
be conjugate and that is relevant to keep tractability of the posterior analysis.
A further step would be to compute the posterior distribution for (Φ,Σe, θ).

Such a posterior can be written as

P (Φ,Σe, θ | Y ) = PΦ (Φ,Σe | θ, Y )× Pθ (θ | Y ) , (22)

5See Appendix A for a detailed derivation.
6We follow DS and work with population moments instead of artificial data generated from

the restricted VAR(1) to avoid stochastic variation.
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where the first component can be easily calculated by using the conjugacy prop-
erty of the DSGE-based prior while the second one, P (θ | Y ), will be derived by
recalling MCMC methods. In particular, following DS, the Metropolis-Hastings
will be employed to approximate the posterior. The posterior mean of the esti-
mated coefficients is governed by the parameter λ, a tightness parameters which
determines the weight of the DSGE model in the posterior estimates. For in-
stance, as λ→ 0, which means no artificial data from the DSGE, the posterior
estimates will be equal to the maximum likelihood estimates of the unrestricted
VAR since the prior would be flat.7 Alternatively, as λ→∞ we have the pos-
terior driven by the DSGE model only. Therefore the λ that maximizes the
data density is a natural criterion to assess the DSGE model against the VAR
benchmark.8 To sum up model evaluation requires to simulate from the poste-
rior distribution of θ and this results is obtained by going through a number of
steps9:

1. Set a value of λ or assume a discrete grid over which to run the computa-
tion;

2. Solve the DSGE model and get the population moments used in the prior;

3. Given λ, find the posterior moments for (Φ,Σe) and the marginal data
density P (Y | θ);

4. Construct the kernel of the posterior for θ, PY (Y | θ)× P (θ) ;

5. Apply the MH acceptance method in order to generate a Markov chain
from the posterior distribution of θ;

6. By applying the Gelfand-Dey(1994) method, with the correction proposed
by Geweke(1999), compute the marginal data density of the model for each
λ;

7. Compare such marginal densities over the discrete grid of λ. Model vali-
dation requires λ that maximizes the data density.

6 DSGE Model Evaluation and Statistical Iden-
tification.

The evaluation of DSGE models based on the λ parameter is based on the
choice of a VAR derived by relaxing the theoretical restrictions as a statistical
benchmark. This choice closely resemble the approach taken by the Cowles
Commission to evaluate structural econometric models: the chosen benchmark,

7The Jeffrey’s prior we used for the DSGE based prior.
8 See Appendix C for a detailed description of how draws from the posterior distribution

are generated.
9Details of the derivation of the relevant posterior are described in Appendix C.
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being driven the specification of the structural model adopted, could very well
lack of statistical identification.
To evaluate the potential relevance of this problem we propose to base the

evaluation of the DSGE model on a model-independent benchmark, which is
based on a larger information set than the VAR driven by the DSGE model
specification.
We consider the case in which additional economic information, not fully

captured byYt, is relevant to modelling the dynamics of inflation output growth
and the monetary policy rate. These additional information can be summarized
in a (small) (kx1) vector of unobserved factors Ft.
We then adopt a Factor Augmented VAR as our benchmark model:µ

Yt

Ft

¶
=

∙
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

¸µ
Yt−1
Ft−1

¶
+

µ
uZt
uFt

¶
,

The system reduces to the standard VAR used to evaluate DSGE models if
Φ12(L) = 0, therefore, within this context, the relevant λ test would add to the
usual DSGE model-related restrictions on Φ11(L) the restrictions Φ12(L) = 0.
The implementation of the Bayesian framework described for the evaluation

of the DSGE model is altered only as far the likelihood function is concerned,
where the more general FAVAR specification substitutes the VAR model (??) .
Factors can be constructed following a very recent strand of the econometric

literature which has shown that very large macroeconomic datasets can be prop-
erly modelled using dynamic factor models, where the factors can be considered
as an exhaustive summary of the information in the data.
We extract factors from "informational" time series included in (Nx1) vector

Xt,that consists of a balanced panel of 131 monthly macroeconomic time-series
(updates of the series used in Stock and Watson(2002)). The number of in-
formational time series N is large (larger than time period T ) and must be
greater than the number of factors and observed variables in the FAVAR sys-
tem (k +M ¿ N).
We estimate our FAVAR by implementing a two-step estimation (Bernanke,

Boivin and Eliasz (2005)).
We assume that the informational time series Xt are related to the unob-

servable factors Ft by the following observation equation:

Xt = Λ
fFt + et (23)

where Ft is a r×1 vector of common factors, Λf is a (Nxk) matrix of factor
loadings, Λy is (NxM) and the (Nx1) vector of error terms et are mean zero
and are normal and uncorrelated or with a small cross-correlation, in fact, the
estimator we employ allows for some cross-correlation in et that must vanish
as N goes to infinity. Note that this representation nests also models where Xt

depends on lagged values of the factors, see Stock-Watson(2002) for details.
In the first step factors are obtained from the observation equation by im-

posing the orthogonality restriction F 0F/T = I.This implies that bF =
√
T bG,

where the bG are the eigenvectors corresponding to the K largest eigenvalues of
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XX
0
, sorted in descending order. Stock and Watson (2002) showed that the

factors can be consistently estimated by the first r principal components of X,
even in the presence of moderate changes in the loading matrix Λ. For this
result to hold it is important that the estimated number of factors, k, is larger
or equal than the true number, r.
In the second step, we estimate the FAVAR equation replacing Ft by cFt.We

shall then compare the VAR and the FAVAR and complete the analysis by
considering a DSGE-VAR and a DSGE-FAVAR.
The standard VAR adopted as a benchmark to assess DSGE models is a

nested model into FAVAR structure. The FAVAR structure is a richer specifica-
tion than parsimoniously summarizes a much larger information set than that
considered in the VAR.
We shall use the FAVAR for evaluating the statistical identification of the

VAR by taking several steps.
First, we shall assess directly the significance of coefficient on factors and

compare the goodness of fit of the FAVAR with respect to that of the VAR. We
shall also evaluate how different is impulse response analysis based on the VAR
and on the FAVAR to see how different is the description of the economy offered
by the two alternative models.
Second, the two alternative models will be analyzed by assessing via appro-

priate tests, as suggested by Spanos(1990), the properties of homoskedasticity,
serial correlation and normality of the residuals.
Third, the out-of-sample forecasting performance of the alternative models

will be assessed by evaluating the RMSE of the FAVAR, the VAR, and the
DSGE to assess the relevance of the information progressively discarded by the
different models in forecasting the macroeconomic variables of interest.
Finally, the DSGE-FAVAR will be used as a benchmark for the implemen-

tation of the lambda test proposed by Del Negro-Schorfheide(2004) to assess
how the optimal lambda is influenced by the choice of the FAVAR rather than
the VAR as a statistical model to be combined with the DSGE.

7 Empirical Results

7.1 The Data

We analyse the DSGE-VAR model proposed by Del Negro and Schorfheide
(2004) (DS). DS based their analysis on U.S. quarterly data from 1955:III to
2001:III, they also analyse separately the 1955-1979 period and the 1980-2001
period. We concentrate on the second subsample to keep comparability between
our DSGE-FAVAR and the original DS DSGE-VAR whilst using a sample period
which has experienced a more stable monetary and financial structure and a
lesser volatility of macroeconomic variables period. Structural breaks in mean
and volatility are found in the literature by comparing the pre-80 with the
post-80 period, while the null hypothesis of parameters’ stability cannot be
rejected in the post 80 period (see Justiniano and Primiceri (2007)), moreover
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inflation, the monetary policy rate and annual real output growth, i.e. all
variables included in the empirical specification, are clearly mean reverting in
the post 1980 period. This evidence should reduce the concern of having a non-
stationary VAR that omits potential long-run cointegrating relations among the
variables of interest. The data for real output growth come from the Bureau of
Economic Analysis (Gross Domestic Product-SAAR, Billions Chained 1996$).
The data for inflation come from the Bureau of Labor Statistics (CPI-U: All
Items, seasonally adjusted, 1982-1984=100). GDP and CPI are taken in first
difference of logarithmic transformation. The interest rate series are constructed
as in Clarida, Galì and Gertler (2000), for each quarter the interest rate is
computed as the average federal funds rate (source: Haver Analytics) during the
first month of the quarter, including business days only. The lag length in the
VAR is four quarters. In order to construct the FAVAR we proceed to extract
factors from a balanced panel of 131 monthly macroeconomic and financial
time series (Stock and Watson (1999)) The dataset involves several measures of
industrial production, interest rates,various price indices, employment as well as
other important macroeconomic and also financial variables. This panel data is
in monthly format, we transform it into a quarterly dataset using end-of-period
observations. All series have been transformed to induce stationarity. The series
are taken into level, logarithms, first or second difference (in level or logarithms)
according to series characteristics (see the Appendix for a description of all series
and details of the transformations). Following Bernanke, Boivin and Eliasz
(2005) we partition the data in two categories of information variables: slow
and fast. The partitioning is crucial to identify shocks necessary to construct
impulse response functions in our FAVAR. Slow-moving variables (for example,
wages or spending) do not respond contemporaneously to unanticipated changes
in monetary policy; while fast-moving variables (for example, asset prices and
interest rates) do respond contemporaneously to monetary shocks (see again the
Appendix for further details ).
We proceed to extract two factors from slow variables and one factor from

fast variables and we call them respectively "slow factors" and "fast factor". 10

We extract factors by using principal components. Stock-Watson(1998) showed
that the factors can be consistently estimated by the first r principal components
of X, even in the presence of moderate changes in the loading matrix Λ. For
this result to hold it is important that the estimated number of factors, k, is
larger or equal than the true number, r. Bai and Ng (2000) proposed a set of
selection criteria to choose k that are generalizations of the BIC and AIC criteria.
As suggested by Bai and Ng(2000) we use information criteria to determine the
number of factors but, as they are not so decisive, we limit the number of factors
to three to strike a balance between the variance of the original series explained
by the principal components and the difference in the parameterization of the

10We extract factors by using principal components. As suggested by Bai and Ng(2000) we
use information criteria to determine the number of factors but, as they are not so decisive,
we limit the number of factors to three to strike a balance between the variance of the original
series explained by the principal components and the difference in the parameterization of the
VAR and the FAVAR.
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VAR and the FAVAR. It is also worth noting that the factors are not uniquely
identified, but this is not a problem in our context because we will not attempt
a structural interpretation of the estimated factors. Finally, having determined
the number of factors, we specify a Factor Augmented VAR by considering four-
lags of the factors to keep the same lag-order chosen by DS for the VAR, we
also consider a more parsimonious parameterization in which only one-lag of the
factors is included.

7.2 The DSGE-VAR

We consider a benchmark DSGE-VAR model that replicates the results re-
ported in Del Negro and Schorfheide (2004). As discussed in the previous section
we report estimates for the DSGE-VAR over the sample 1981-2001, considering
the DSGE model described in section 2 and a four-order VAR for the vector
Yt = (∆ lnxt,∆ lnPt, lnRt)

0
. We report in Table 1 reports Prior and Posterior

for DSGE model parameters that are calibrated to generate posterior means
and intervals as in Table 2 in Del Negro and Schorfheide (2004).

TABLE 1: Prior and Posterior of DSGE Model Parameters 1981-2001
Prior Posterior Posterior Posterior Posterior

(λ = 0.2) (λ∗ = 0.6) (λ = 1) (λ = 10)
LOW UPP LOW UPP LOW UPP LOW UPP LOW UPP

ln γ 0.101 0.922 0.314 0.923 0.378 0.926 0.388 0.914 0.440 0.859
lnπ∗ 0.219 1.863 0.511 1.112 0.503 1.080 0.474 1.087 0.288 1.548
ln r∗ 0.132 0.880 0.144 0.746 0.186 0.757 0.234 0.789 0.500 0.866
κ 0.063 0.513 0.144 0.701 0.198 0.804 0.236 0.820 0.062 0.405
τ 1.197 2.788 1.167 2.674 1.170 2.475 1.114 2.604 2.005 3.601
ψ1 1.121 1.910 1.010 1.643 1.005 1.522 1.000 1.539 0.999 1.366
ψ2 0.001 0.260 0.111 0.524 0.165 0.699 0.174 0.663 0.240 0.617
ρR 0.157 0.812 0.402 0.791 0.488 0.756 0.530 0.751 0.723 0.837
Notes: LOW and UPP are the lower and the upper bounds of the 90% confidence

intervals based on the output of the Metropolis-Hastings Algorithm.

We then conduct DSGE model evaluation by determining bλ using the grid
Λ = {0.20, 0.60, 1, 1.4, 1.8, 10, Inf} . The minimum value of λ satisfying the
lower bound restriction λ ≥ k+m

T with k = 13, m = 3 and T = 80 is λmin = .20.
Figure 1 reports the results of the grid search that deliver 0.60 as the optimal
λ in case we use Metropolis-Hastings Algorithm 100 000 replications11 .

Insert Figure 1 here
11 Slightly different results are obtained when using 25000 replications, as the mapping

between lambda and the marginal data density is not as smooth as with 100000 replications.
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Note that the weight attached to the DSGE is λ
1+λ so λ∗ = .60 implies

a weight of 0.375 on the DSGE model and therefore the size of the artificial
sample generated by the DSGE should be of sixty per cent of the size of the
sample of genuine observations. On the basis of very similar evidence Del
Negro, Schorfheide, Smets and Wouters (2006) conclude that "...the degree of
misspecification in DSGE models is no longer so large to prevent their use in
day-to-day policy analysis, yet it is not so small that it cannot be ignored....".

7.3 The Statistical Identification of the DSGE-VAR

We begin our assessment of the statistical identification of the VAR used to
construct the DSGE-VAR model by illustrating the statistical evidence on the
augmentation of the VAR with factors.
In practice, we consider the extension of the baseline VAR model:

Yt =
4X

i=1

AiYt−i + u
Y
t

Yt = (∆ lnxt,∆ lnPt, lnRt)

to the following FAVAR model

µ
Yt

Ft

¶
=

∙
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

¸µ
Yt−1
Ft−1

¶
+

µ
uYt
uFt

¶
Yt = (∆ lnxt,∆ lnPt, lnRt)

Ft =
³
F s
1t, F

s
2t, F

f
3t

´
where F s

1t, F
s
2t are the two slow factors and F

f
3t is the fast factor. Φ11(L),Φ12(L),Φ22(L)

are polynomial of order four in the lag factor for our benchmark parameteriza-
tion. We experiment also with having Φ12(L),Φ22(L) as polynomial of order
one.
Table 2 compares the VAR and FAVAR specifications for the vector Yt =

(∆ lnxt,∆ lnPt, lnRt) ,considering two alternative FAVARs’ including respec-
tively one lag(FAVAR(1)) and four lags(FAVAR(4)) of the factors .

TABLE 2: VAR and FAVAR specifications: 1981-2001
Equation ∆ lnxt ∆ lnPt lnRt

Adj R2 0.39 0.30 0.93
VAR S.E. 0.54 0.32 0.69

Adj R2 0.39 0.43 0.98
FAVAR(4) S.E. 0.54 0.29 0.46

χ2 (12) 13.05
0.36

27.88
0.006

99.77
0.000

Adj R2 0.47 0.44 0.97
FAVAR(1) S.E. 0.50 0.28 0.47

χ2 (3) 14.02
0.002

20.08
0.0002

83.94
0.000
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The results reported in Table 2 clearly illustrate that factors are jointly
significant in the specification for all three variables included in the baseline
VAR, the only exception being the specification for the output growth equation
when four lags of three factors are considered.
Table 3.1-3.3 report the evidence on the residual analysis from the VAR, the

FAVAR(1) and the FAVAR(4). Table 3.1 reports the outcome of the Jarque-
Bera(1980) tests of the null hypothesis of normality of residuals from each equa-
tion and for the joint three—equation model.

TABLE 3.1: Normality of Residuals
Equation ∆ lnxt ∆ lnPt lnRt Joint

Jarque-Bera χ2(2) χ2(2) χ2(2) χ2(6)
VAR 5.72

0.08
5.03
0.06

0.40
0.82

11.17
0.08

FAVAR(4) 10.51
0.005

2.52
0.28

8.76
0.01

21.79
0.001

FAVAR(1) 6.48
0.04

1.13
0.56

3.81
0.14

11.44
0.08

The null of normality is not rejected for the VAR and FAVAR(1) while it
is rejected in the case of the FAVAR(4), the main cause of this rejection is the
non-normality of residuals in the output growth equation. However, departure
from the null hypothesis of normality of the size described by Table 3 has been
shown to be very little relevant for the Bayesian analysis of the optimal λ,(see
Christiano(2007)).
Table 3.2 reports the outcome of Breusch-Godfrey12 Lagrange Multiplier

test for autocorrelation of residuals at all lags from one to four.

TABLE 3.2: Serial Correlation of Residuals
LM χ2(9) LAG 1 LAG 2 LAG 3 LAG 4

VAR 31.43
0.0002

29.37
0.0006

8.58
0.48

7.28
0.60

FAVAR(4) 11.97
0.21

8.44
0.49

13.06
0.16

12.77
0.17

FAVAR(1) 11.67
0.23

15.14
0.09

10.17
0.34

6.43
0.69

Here the results points toward strong evidence of residual autocorrelation
in the VAR specification while the null hypothesis of absence of residual cor-
relation at any lags cannot be rejected in the FAVAR(1) and the FAVAR(4)
specifications.

TABLE 3.3: Homoscedasticity of Residuals
White test VAR FAVAR(4) FAVAR(1)

χ2(144) χ2(288) χ2(180)
172
0.05

290
0.44

208
0.08

12 See Godfrey(1988).
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Table 3.3 reports the outcome of the White(1980) heteroscedasticity tests on
the residuals of the trivariate system. Once again while the null of homoscedas-
ticity cannot be rejected in the FAVAR(4) and the FAVAR(1) specification, it
is rejected at the five per cent level in the VAR specification. To further assess
the stability of the variance-covariance matrix of residuals in our specifications
we have estimated a diagonal BEKK (Engle and Kroner 1995) allowing for a
multivariate GARCH in the vector of residuals. Defining as Σt the (potentially)
time-varying variance-covariace of residuals, BEKK is defined as:

Σt = ΩΩ
0 +Aut−1u

0
t−1A

0 +BΣt−1B

where ut−1 is the vector of residuals from the relevant model and the A, B
are restricted to be diagonals. In the case of the FAVARs there are no significant
coefficients in the A matrices, while these coefficients are significant in the VAR
specification13. This evidence confirms the findings in Giannone et al.(2008)
that find that time-varying pattern in volatility of the shocks is a feature of
small system that might disappear when the information set is enlarged.
We proceed to a further comparative analysis of the VAR and the FAVAR

models by considering impulse response function to a monetary policy shock.
Monetary policy shocks are identified in the VAR by assuming that the macro-
economic variables, inflation and output growth, take at least one period before
responding to monetary policy while monetary policy is allowed to react simul-
taneously to macroeconomic variables. In the FAVAR identification is achieved
by extending the VAR assumptions for macroeconomic variables and interest
rates to slow factor and by assuming that the fast factor responds contempora-
neously to all other variables in the system and that monetary policy does not
contemporaneously react to the fast factor.
We plot in Figure 2 we plot responses for an horizon of 20 periods of quar-

terly inflation, quarterly output growth and the Federal Fund Rates to a mone-
tary shock as derived in the VAR and in the FAVAR(4) estimated over the usual
sample impulse in case of VAR and FAVAR for the usual sample 1981-2001. We
also report one-standard deviation confidence intervals for the VAR estimation.

Insert Figure 2 here

The impulse responses show virtually no difference between the VAR and
the FAVAR in the case of output growth, while in there are some differences in
the case of inflation and the Federal Fund. In the case of inflation the FAVAR
does not deliver the initial "price puzzle" that is observed with VAR based
impulse responses and the negative dynamic response of inflation to a restrictive
monetary policy at the one-year horizon is much more pronounced in the FAVAR
case. In the case of the Federal Fund rate a much less persistent profile is
observed in the FAVAR specification.
We complete our traditional evaluation of alternative models by considering

the out-of-sample forecasting performance of the VAR, the FAVAR and the

13Results of the BEKK estimation are available upon request
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DSGE models. Given estimation of all models over the sample 1981:1-1997:4,
we consider the out-of-sample performance for the period 1998:1-2001:4. In
particular, we concentrate on the Root Mean Squared Error of the forecasting
errors from the different model, computed as follows:

RMSEy =

vuut 1

16

16X
h=1

¡
yt+h − ŷt+h|t

¢2
(24)

y = ∆ lnxt,∆ lnPt, lnRt,

t = 1997 : 4

where ŷt+h|t is the mean forecast computed as the average across draws and.
t = 1997 : 4.
We report the results of our analysis in Table 4.

TABLE 4: The Forecasting Performance of alternative models
MODEL ∆ lnxt ∆ lnPt lnRt

RMSE RMSE RMSE
VAR(4) 0.63 0.29 0.88
FAVAR(4,4) 0.56

(0.89)
0.24
(0.82)

0.92
(1.05)

FAVAR(4,1) 0.57
(0.92)

0.24
(0.82)

0.83
(0.94)

DSGE 0.63
(1.01)

0.24
(0.83)

0.80
(0.91)

DSGE-VAR(λ∗ = 0.6) 0.61
(0.97)

0.25
(0.86)

0.80
(0.91)

RMSE relative to the VAR(4) within brackets
FAVAR(4,i) includes i lags of the factors

Our results clearly favour the FAVAR against the VAR, moreover the im-
provements in the forecasting performance achieved by the DSGE and the
DSGE-VAR(λ∗ = 0.6) against the VAR are not obtained when the FAVARs
are considered as benchmarks.

7.4 A FAVAR Analysis of the Simple DSGE Model

In the light of the evidence reported in the previous section it seems inter-
esting to apply the mixed estimation technique to evaluate the properties of
the DSGE-FAVAR instead of the DSGE-VAR. The FAVAR has the interesting
properties of being an empirical model that is based on information independent
from the theoretical model and it does then constitute a model whose statisti-
cal identification is independent of the validity of unrestricted VAR underlying
the solution of the adopted theoretical model. In fact, we have shown for our
particular application that a FAVAR which augments the VAR(p) specification
for the variables in the theoretical model with a set of factors extracted from a
large information set improves considerably on the VAR in terms of statistical
adequacy.
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In this case the benchmark specification for the unrestricted dynamics of the
variables included in the theoretical model becomes the following:

Yt = B0Xt +B1Ft +Et (25)

whereYt = (∆ lnxt,∆ lnPt, lnRt) , Xt = [1,Yt−1, ...Yt−p] , Ft =
£
f 0t, f

0
t−1, . . . f

0
t−q
¤0

groups q lags of the three factors ft = [f1,t, f2,t, f3,t]
0 extracted and interpreted

as in Bernanke, Boivin and Eliasz (2005), Et is the three-variate vector of inno-
vations. System (59) can be re-written in a more compact form as follows:

Yt = BWt +Et (26)

where B = [B0, B1] is of dimension m× (1 +mp+ rq) and Wt = [X
0
t, F

0
t ]
0.

At this stage the derivation of the likelihood function resembles very closely
the simpler case discussed in section 3. However, there are some differences in
terms of the prior and the posterior distribution between the DSGE-VAR and
the DSGE-FAVAR. We report in Appendix B the technical discussion of these
derivation. Posterior calculations are similar to those discussed in the case of the
DSGE-VAR, however in this case the parameter λ captures the relative weight
of the information coming from the FAVAR and from the theoretical model.
The parameter λ is chosen from an interval which is unbounded from above.

In our empirical exercise we will be using a discrete grid over which we will
compute the marginal data density, P (Y | λ). The minimum value, λmin =
m+k
T , is model dependent and it is related to the existence of a well-defined
Inverse-Wishart distribution. For completeness, it is worth to mention that
λ = 0 refers to the FAVAR model with no prior and it is not possible to compute
the marginal likelihood in this particular case. Therefore, we can show the
marginal data density for any value of λ larger than λmin.Importantly λmin
depends on the degrees of freedom in the FAVAR and therefore, given estimation
on the same number of available observation, λmin for a DSGE-FAVAR will
always be larger that λmin for a DSGE-VAR.
Figure 3 shows the marginal likelihood for different λ, when a FAVAR(4,1)

is considered as the baseline statistical model. The optimal value turn out to
be λ∗ = 0.60, as in the case of the DSGE-VAR. Of course, the distance between
the optimal λ and λmin is smaller in the DSGE-FAVAR than in the DSGE-VAR
but still the lambda test indicates that the size of the artificial sample generated
by the DSGE should be of sixty per cent of the size of the sample of genuine
observations generated from the FAVAR model. In the case of a FAVAR(4,4),
λ∗ = 1.4 and the size of the artificial sample generated by the DSGE should now
be greater than the size of the sample of genuine observations generated from the
FAVAR model. Also in this case λmin is higher than in our benchmark case as a
consequence of the more generous parameterization of the DSGE-FAVAR(4,4).
To provide further evidence of the performance of the DSGE evaluated on

the basis of the FAVAR, Table 5 considers the Forecasting performance of the
VAR, the FAVAR and the optimal combination between DSGE and FAVAR.
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TABLE 5: The Forecasting Performance of FAVAR and DSGE-FAVAR
MODEL ∆ lnxt ∆ lnPt lnRt

RMSE RMSE RMSE
VAR(4) 0.63 0.29 0.88
FAVAR(4,4) 0.56

(0.89)
0.24
(0.82)

0.92
(1.05)

FAVAR(4,1) 0.57
(0.92)

0.24
(0.82)

0.83
(0.94)

DSGE-FAVAR(4,4)(λ∗ = 1.4) 0.55
(0.88)

0.23
(0.79)

0.75
(0.85)

DSGE-FAVAR(4,1)(λ∗ = 0.6) 0.58
(0.93)

0.24
(0.80)

0.76
(0.87)

RMSE relative to the VAR(4) within brackets

The evidence reported shows that best forecasting performance is achieved
by the optimal combination of the DSGE and the FAVAR. As final evaluation
criterion, consistent with the Bayesian estimation procedure, we have considered
the odds ratio between the DSGE-VAR and the DSGE FAVAR. The odds ratio
compares marginal data density associated to alternative models, the traditional
rule of thumb suggest to favour a model with respect to a competitor if its
marginal data density is larger than three times that of its competitor. In our
case the log of marginal likelihood of the DSGE-VAR in correspondence of the
optimum λ is -215 while that of the DSGE-FAVAR(4,1) at the same λ is of -
197.5. This implies that the odds ratio in log terms take the value of 17.5, clearly
favouring the DSGE-FAVAR. Similar results are obtained by comparing the
DSGE-FAVAR(4,4) with the DSGE-VAR. Importantly the comparison between
Figure 1 and Figure 3 suggests that the dominance of the DSGE-FAVAR over the
DSGE-VAR in terms of the posterior odds ratio is not limited to the optimal
value of λ but it is independent from the choice of a particular value for λ.
Overall, our results suggest that using a more general statistical model than
that derived simply by relaxing restrictions from the solved theoretical model
is important along two dimensions. First, it allows a further evaluation of the
DSGE model against a larger information set. Second, in the case some support
for the DSGE model is found in the data when evaluated against the larger
information set (the optimal λ in the DSGE-FAVAR is different from zero),
the optimal combination between the DSGE model and the statistical model
based on a larger information set (the FAVAR) delivers a forecasting model
(the DSGE-FAVAR) that dominates all alternatives.

8 Conclusions
In this paper we have analyzed the statistical identification of DSGE models by
assessing if an unrestricted VAR constructed by relaxing cross-equation restric-
tions on the autoregressive approximation to the solution of a DSGE model is
an appropriate statistical model. We have considered, as an alternative to the
VAR, a FAVAR that uses a few factors to incorporate in the statistical model
all the macroeconomic and financial information left out of the DSGE model.
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Our application shows that, FAVAR models dominate VAR specification
generated by adopting unrestricted version of the solution of DSGE models.
Such dominance is clearly established by analysis of residuals and evaluation
of forecasting performance. When we proceed to evaluate DSGE using FAVAR
rather than VAR as statistical benchmark we find that some support for the
DSGE model is still found in the data (the optimal λ in the DSGE-FAVAR is
different from zero). Moreover, the optimal combination between the DSGE
model and the statistical model based on a larger information set (the FAVAR)
delivers a forecasting model (the DSGE-FAVAR) that dominates all alternatives.
The fact that the forecasting performance of the DSGE-FAVAR is the best

among all alternatives, is somewhat reassuring against the worry that an ar-
tificially high value for the parameter λ might be chosen by maximizing the
marginal likelihood. In fact, such criterion puts a considerable weight in favour
of parsimony of specification, therefore more richly parameterized models might
be unduly penalized by the lambda-test when they are evaluated against very
parsimoniously parameterized theoretical models.
Our comparative analysis of the DSGE-VAR and the DSGE-FAVAR reiter-

ates the point made by Christiano(2007) on the importance of complementing
the value of the optimal λ with a cutoff function giving some weight to the
difference between the number of free parameters in the unrestricted chosen
statistical benchmark and in the DSGE model.
We conclude that the criticism of the Cowles Commission approach to model

evaluation originally proposed by Spanos(1990) and centered on their lack of
statistical identification might well apply to DSGE models and the recently
proposed model evaluation method, based on the DSGE−V AR(λ), is unlikely
to detect the importance of such problem.
However, our application also shows that the adoption of a FAVAR as bench-

mark leaves unaltered the support of the data for the DSGE model and that a
DSGE-FAVAR is the optimal forecasting model.
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Figure 1: The optimal λ in the DSGE-VAR
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Figure 2:Responses of quarterly inflation, quarterly GDP growth and monetary
policy rates to a monetary policy shock in the VAR and in the FAVAR(4)
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Figure 3: the optimal λ in a DSGE-FAVAR

9 Appendix A : The Sims Representation of our
simple model

Del Negro and Schorfheide (2004) consider the following model:

x̃t = Etx̃t+1 −
1

τ
(R̃t −Etπ̃t+1) + (1− ρG)g̃t + ρz

1

τ
z̃t (27)

π̃t = βEtπ̃t+1 + κ (x̃t − g̃t) (28)

R̃t = ρRR̃t−1 + (1− ρR)(ψ1π̃t + ψ2x̃t) + �R,t (29)

g̃t = ρgg̃t−1 + �g,t (30)

z̃t = ρz z̃t−1 + �z,t (31)
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The first step towards solution is to cast the model in the form of :

Γ0
∼
Zt = Γ1

∼
Zt−1 + C +Ψ�t +Πηt (32)

The results is achieved as follows:

∼
Zt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exteπtfRtfR∗tegtezt
Etgxt+1
Et gπt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�t =

⎡⎣ �Rt
�Gt
�Zt

⎤⎦ ηt =

∙
ηxt = xt −Et−1(xt)
ηπt = πt −Et−1(πt)

¸

Γ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
τ 0 −(1− ρg) −

ρz
τ −1 − 1

τ
−κ 1 0 0 κ 0 0 −β
0 0 1 −(1− ρR) 0 0 0 0
−ψ2 −ψ1 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Γ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 ρR 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 ρG 0 0 0
0 0 0 0 0 ρZ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Π =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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10 Appendix B : The data used to extract fac-
tors

We describe data used to extract factors in the format adopted by Stock and
Watson(2002):series number, long description, short description, transformation
code and slow code (0. The transformation code are: 1 - no transformation; 2
- first difference; 3 - second difference; 4 - logarithm; 5 - first difference of
logarithm and 6 - second difference of logarithm.

Date Long Description Short Desc Transf codSlowCode
a0m052 Personal income (AR, bil. chain 2000 $) PI 5 1
A0M051 Personal income less transfer payments (AR, bil. chain 2000 $) PI less transfers 5 1
A0M224_Real Consumption (AC) A0m224/gmdc Consumption 5 1
A0M057 Manufacturing and trade sales (mil. Chain 1996 $) M&T sales 5 1
A0M059 Sales of retail stores (mil. Chain 2000 $) Retail sales 5 1
IPS10   INDUSTRIAL PRODUCTION INDEX -  TOTAL INDEX IP: total 5 1
IPS11   INDUSTRIAL PRODUCTION INDEX -  PRODUCTS, TOTAL IP: products 5 1
IPS299  INDUSTRIAL PRODUCTION  INDEX -  FINAL PRODUCTS IP: final prod 5 1
IPS12   INDUSTRIAL PRODUCTION INDEX -  CONSUMER GOODS IP: cons gds 5 1
IPS13   INDUSTRIAL PRODUCTION INDEX -  DURABLE CONSUMER GOODS IP: cons dble 5 1
IPS18   INDUSTRIAL PRODUCTION INDEX -  NONDURABLE CONSUMER GOODSiIP:cons nondbl 5 1
IPS25   INDUSTRIAL PRODUCTION INDEX -  BUSINESS EQUIPMENT IP:bus eqpt 5 1
IPS32   INDUSTRIAL PRODUCTION INDEX -  MATERIALS IP: matls 5 1
IPS34   INDUSTRIAL PRODUCTION INDEX -  DURABLE GOODS MATERIALS IP: dble mats 5 1
IPS38   INDUSTRIAL PRODUCTION INDEX -  NONDURABLE GOODS MATERIALSIP:nondble mats 5 1
IPS43   INDUSTRIAL PRODUCTION INDEX -  MANUFACTURING (SIC) IP: mfg 5 1
IPS307  INDUSTRIAL PRODUCTION  INDEX -  RESIDENTIAL UTILITIES IP: res util 5 1
IPS306  INDUSTRIAL PRODUCTION  INDEX -  FUELS IP: fuels 5 1
PMP     NAPM PRODUCTION INDEX (PERCENT) NAPM prodn 1 1
A0m082 Capacity Utilization (Mfg) Cap util 2 1
LHEL    INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SAHelp wanted ind 2 1
LHELX   EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF Help wanted/em 2 1
LHEM    CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) Emp CPS total 5 1
LHNAG   CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS Emp CPS nona 5 1
LHUR    UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA) U: all 2 1
LHU680  UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)U: mean duratio 2 1
LHU5    UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOU < 5 wks 5 1
LHU14   UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SU 5-14 wks 5 1
LHU15   UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) U 15+ wks 5 1
LHU26   UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,U 15-26 wks 5 1
LHU27   UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) U 27+ wks 5 1
A0M005 Average weekly initial claims, unemploy. insurance (thous.) UI claims 5 1
CES002  EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE Emp: total 5 1
CES003  EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING Emp: gds prod 5 1
CES006  EMPLOYEES ON NONFARM PAYROLLS - MINING Emp: mining 5 1
CES011  EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION Emp: const 5 1
CES015  EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING Emp: mfg 5 1
CES017  EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS Emp: dble gds 5 1
CES033  EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS Emp: nondbles 5 1
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CES046  EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING Emp: services 5 1
CES048  EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, A Emp: TTU 5 1
CES049  EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE Emp: wholesale 5 1
CES053  EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE Emp: retail 5 1
CES088  EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES Emp: FIRE 5 1
CES140  EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT Emp: Govt 5 1
A0M048 Employee hours in nonag. establishments (AR, bil. hours) Emp-hrs nonag 5 1
CES151  AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WAvg hrs 1 1
CES155  AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WOvertime: mfg 2 1
aom001 Average weekly hours, mfg. (hours) Avg hrs: mfg 1 1
PMEMP  NAPM EMPLOYMENT INDEX (PERCENT) NAPM empl 1 1
HSFR    HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-) HStarts: Total 4 0
HSNE    HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. HStarts: NE 4 0
HSMW   HOUSING STARTS:MIDWEST(THOUS.U.)S.A. HStarts: MW 4 0
HSSOU  HOUSING STARTS:SOUTH (THOUS.U.)S.A. HStarts: South 4 0
HSWST  HOUSING STARTS:WEST (THOUS.U.)S.A. HStarts: West 4 0
HSBR    HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SABP: total 4 0
HSBNE   HOUSES AUTHORIZED BY BUILD. PERMITS:NORTHEAST(THOU.U.)S.A BP: NE 4 0
HSBMW HOUSES AUTHORIZED BY BUILD. PERMITS:MIDWEST(THOU.U.)S.A. BP: MW 4 0
HSBSOUHOUSES AUTHORIZED BY BUILD. PERMITS:SOUTH(THOU.U.)S.A. BP: South 4 0
HSBWSTHOUSES AUTHORIZED BY BUILD. PERMITS:WEST(THOU.U.)S.A. BP: West 4 0
PMI     PURCHASING MANAGERS' INDEX (SA) PMI 1 0
PMNO    NAPM NEW ORDERS INDEX (PERCENT) NAPM new ordr 1 0
PMDEL   NAPM VENDOR DELIVERIES INDEX (PERCENT) NAPM vendor d 1 0
PMNV    NAPM INVENTORIES INDEX (PERCENT) NAPM Invent 1 0
A0M008 Mfrs' new orders, consumer goods and materials (bil. chain 1982 $) Orders: cons gds 5 0
A0M007 Mfrs' new orders, durable goods industries (bil. chain 2000 $) Orders: dble gds 5 0
A0M027 Mfrs' new orders, nondefense capital goods (mil. chain 1982 $) Orders: cap gds 5 0
A1M092 Mfrs' unfilled orders, durable goods indus. (bil. chain 2000 $) Unf orders: dble 5 0
A0M070 Manufacturing and trade inventories (bil. chain 2000 $) M&T invent 5 0
A0M077 Ratio, mfg. and trade inventories to sales (based on chain 2000 $) M&T invent/sales 2 0
FM1     MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK'ABLE DEP)(BIL$,SA) M1 6 0
FM2     MONEY STOCK:M2(M1+O'NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BM2 6 0
FM3     MONEY STOCK: M3(M2+LG TIME DEP,TERM RP'S&INST ONLY MMMFS)(BIL$,SA) M3 6 0
FM2DQ   MONEY SUPPLY - M2 IN 1996 DOLLARS (BCI) M2 (real) 5 0
FMFBA   MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) MB 6 0
FMRRA   DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) Reserves tot 6 0
FMRNBA  DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) Reserves nonbor 6 0
FCLNQ   COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI) C&I loans 6 0
FCLBMC  WKLY RP LG COM'L BANKS:NET CHANGE COM'L & INDUS LOANS(BIL$,SAAR) C&I loans 1 0
CCINRV  CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) Cons credit 6 0
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A0M095 Ratio, consumer installment credit to personal income (pct.) Inst cred/PI 2 0
FSPCOM  S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) S&P 500 5 0
FSPIN   S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) S&P: indust 5 0
FSDXP   S&P'S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) S&P div yield 2 0
FSPXE   S&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) S&P PE ratio 5 0
FYFF    INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA) FedFunds 2 0
CP90 Cmmercial Paper Rate (AC) Commpaper 2 0
FYGM3   INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 3 mo T-bill 2 0
FYGM6   INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 6 mo T-bill 2 0
FYGT1   INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 1 yr T-bond 2 0
FYGT5   INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 5 yr T-bond 2 0
FYGT10  INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 10 yr T-bond 2 0
FYAAAC  BOND YIELD: MOODY'S AAA CORPORATE (% PER ANNUM) Aaabond 2 0
FYBAAC  BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM) Baa bond 2 0
scp90 cp90-fyff CP-FF spread 1 0
sfygm3 fygm3-fyff 3 mo-FF spread 1 0
sFYGM6   fygm6-fyff 6 mo-FF spread 1 0
sFYGT1   fygt1-fyff 1 yr-FF spread 1 0
sFYGT5   fygt5-fyff 5 yr-FFspread 1 0
sFYGT10  fygt10-fyff 10yr-FF spread 1 0
sFYAAAC fyaaac-fyff Aaa-FF spread 1 0
sFYBAAC fybaac-fyff Baa-FF spread 1 0
EXRUS   UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) Ex rate: avg 5 0
EXRSW   FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) Ex rate: Switz 5 0
EXRJAN  FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) Ex rate: Japan 5 0
EXRUK   FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) Ex rate: UK 5 0
EXRCAN  FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) EX rate: Canada 5 0
PWFSA   PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) PPI: fin gds 6 0
PWFCSA  PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) PPI: cons gds 6 0
PWIMSA  PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) PPI: int mat’ls 6 0
PWCMSA PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) PPI: crude mat’ls 6 0
PSCCOM SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) Commod: spot pric 6 0
PSM99Q  INDEX OF SENSITIVE MATERIALS PRICES (1990=100)(BCI-99A) Sens mat’ls price 6 0
PMCP    NAPM COMMODITY PRICES INDEX (PERCENT) NAPM com price 1 0
PUNEW   CPI-U: ALL ITEMS (82-84=100,SA) CPI-U: all 6 1
PU83    CPI-U: APPAREL & UPKEEP (82-84=100,SA) CPI-U: apparel 6 1
PU84    CPI-U: TRANSPORTATION (82-84=100,SA) CPI-U: transp 6 1
PU85    CPI-U: MEDICAL CARE (82-84=100,SA) CPI-U: medical 6 1
PUC     CPI-U: COMMODITIES (82-84=100,SA) CPI-U: comm. 6 1
PUCD    CPI-U: DURABLES (82-84=100,SA) CPI-U: dbles 6 1
PUS     CPI-U: SERVICES (82-84=100,SA) CPI-U: services 6 1
PUXF    CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) CPI-U: ex food 6 1
PUXHS   CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) CPI-U: ex shelter 6 1
PUXM    CPI-U: ALL ITEMS LESS MEDICAL CARE (82-84=100,SA) CPI-U: ex med 6 1
GMDC    PCE,IMPL PR DEFL:PCE (1987=100) PCE defl 6 1
GMDCD   PCE,IMPL PR DEFL:PCE; DURABLES (1987=100) PCE defl: dlbes 6 1
GMDCN   PCE,IMPL PR DEFL:PCE; NONDURABLES (1996=100) PCE defl: nondble 6 1
GMDCS   PCE,IMPL PR DEFL:PCE; SERVICES (1987=100) PCE defl: services 6 1
CES275  AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERSAHE: goods 6 1
CES277  AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERSAHE: const 6 1
CES278  AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERSAHE: mfg 6 1
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11 Appendix C: How to generate draws from
the posterior distribution of (Φ,Σu, θ)

Here we provide the full derivation of the results reported in Section 3 on the
DS approach to obtain draws from the posterior distribution of (Φ,Σu, θ). The
analysis will be conditional to a value for λ which establishes the relevance of
the information between the VAR and DSGE in order to estimate the structural
parameter θ. We can think of λ as generating a particular model which can
support, with a certain degree, the observed data: the marginal data density
represents such a measure of goodness and it would help us to discriminate
among different models (i.e. different λ).
This appendix describes i) how to compute moments from DSGE models,

ii) how to compute a proper prior distribution given such a set of moments
conditions, iii) how to derive the marginal data density in case of conjugate
prior, iv)

11.1 The Bayesian Approach

We follow the Bayesian approach to draw all the relevant inference for the prob-
lem at hand. We consider as a good approximation for the vector of observables,
Yt = (∆ ln yt,∆ ln pt, Rt)

0, an unrestricted Gaussian VAR(p) model for the data.
Together with the likelihood function for the VAR(p) we have to specify

a prior distribution for the VAR coefficients. According to Theil and Gold-
berg(1961) and following the application by Sims (1996), we can recover a prior
distribution by using a set of dummy observations. Such a procedure could be
seen as a set of restrictions on the VAR(p) coefficients as well. A novelty of the

DS approach is to use the DSGE model to derive artificial data,
³
Ỹ , X̃

´
, which

can be used to set up the prior.
The VAR model for the data is

Yt = ΦXt +Et, (33)

where Xt =
£
ι, Y 0

t−1, . . . , Y
0
t−p
¤0
is a vector of dimension k×1, k = mp+1, which

concatenates the constant and p lags of Yt, and Φ = [Φ0 | Φ1 | . . .Φp] .
The DSGE model can be described by the following state-space representa-

tion

Ỹt = Λ0 (θ) + Λ1 (θ) Z̃t + Vt, (34)

Z̃t = T (θ) Z̃t−1 +R (θ)Ut, (35)

which groups the policy function from the RE equilibrium and the mapping
between observables, Ỹt, and simulated data, Z̃t. The vector Ỹt can be computed
by simulation methods with respect to (34) and (35) or analytically since the
DSGE model is stationary.
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Given the pair of simulated data
³
Ỹt, X̃t

´
14 we can write a similar specifi-

cation as in (33)
Ỹt = ΦX̃t +Et, (36)

that indirectly imposes restrictions on Φ driven from the theoretical model; to
derive the DSGE-based prior we will construct the likelihood function of the
process in (36).

11.2 Compute DSGE Moments

Given the state-space representation in (34) and (35), the unconditional variance
for Ỹt and Z̃t are

Σz,z = TΣz,zT
0 +RΣu,uR

0 (37)

Σy,y = Λ0Λ
0
0 + Λ1Σz,zΛ

0
1 +Σv,v + Λ1RΣu,v +Σ

0
u,vR

0Λ01 (38)

while the unconditional autocorrelation of order k for Ỹt reads

Σz,z (k) = T kΣz,z (k − 1) (39)

Σy,y (k) = Λ0Λ
0
0 + Λ1Σz,z (k)Λ

0
1 + Λ1

¡
T k
¢
RΣu,v. (40)

These high-order second moments matrices will be necessary to construct Σx,x
which is a function of the lags of Ỹt. Here we have omitted the dependence over
θ.

11.3 Getting a Proper Prior Distribution out of the DSGE
model: π1

The likelihood function for the artificial data reads

L
³
Ỹ ;Φ,Σe

´
= (2π)−mT/2 |Σe|−T/2 exp

µ
−1
2
tr
³³³
Φ− Φ̃

´³
X̃ 0X̃

´³
Φ− Φ̃

´
+ S̃

´
Σ−1e

´¶
,

(41)
where the sufficient statistics are,

Φ̃ =
³
X̃ 0X̃

´−1
X̃ 0Ỹ (42)

S̃ = Ỹ 0Ỹ − Ỹ 0X̃
³
X̃ 0X̃

´−1
X̃ 0Ỹ (43)

which can be also specified in terms of population moments

Φ̃ = Σ−1x,xΣx,y (44)

S̃ = Σy,y − Σ0x,yΣ−1x,xΣx,y (45)

14 X̃t collects lags of Ỹt.
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where, for instance, Σx,y = E
³
X̃tỸt

´
.

We thus use a flat prior to construct a proper distribution based on the
DSGE model: the Jeffreys prior for the multivariate case reads

π0 = |Σe|−
m+1
2 . (46)

By combining (41) and (46) we get the kernel of the distribution

π1 ∝ L
³
Ỹ | Φ,Σe

´
× π0, (47)

and by integrating with respect to (Φ,Σe) we derive the constant of integration

PỸ

³
Ỹ | θ

´
= (2π)

−mṽ/2 ×
¯̄̄
S̃
¯̄̄− ṽ2 × ¯̄̄H̃ ¯̄̄−m2 × h2mṽ/2 × πm(m−1)/4 × Γm (ṽ)

i
,

(48)
which is needed to have the DSGE-based prior distribution

π1

³
Φ,Σe | Ỹ , θ

´
=

L
³
Ỹ | Φ,Σe, θ

´
× π0

PỸ

³
Ỹ | θ

´ (49)

=
(2π)−mT∗/2

(2π)
−mṽ/2

×

¯̄̄
S̃
¯̄̄ṽ/2

×
¯̄̄
H̃
¯̄̄m/2

× |Σe|−(T
∗+m+1)/2

2mṽ/2 × πm(m−1)/4 × Γm (ṽ)
×

exp

∙
−1
2
tr
³
S̃Σ−1e

´¸
× exp

∙
−1
2
tr

µ³
Φ− Φ̃

´0
(Σx,x)

³
Φ− Φ̃

´
Σ−1e

¶¸
,

given Σx,x non-singular and ṽ ≡ T̃ − k > k +m.

Hence, π1
³
Φ,Σe | Ỹ , θ

´
is distribution from the Normal N

³
Φ̃,Σe ⊗H−1

´
,

Inverse-Wishart IW
³
S̃, ṽ

´
family.

11.4 The Marginal Data Density given: P (Y | θ)
With a proper prior at hand, π1, we can now combine data and model-based
information to fully specify the posterior conditional on the structural parameter
θ. By combining the likelihood and the conjugate prior, we get the posterior
kernel

PΦ (Φ,Σe | Y, θ) ∝ L (Y | Φ,Σe)× π1

³
Φ,Σe | Ỹ , θ

´
, (50)
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which can be integrated to obtain the marginal data density15

PY (Y | θ) = (2π)−Tm/2 ×

¯̄̄
S̃
¯̄̄ṽ/2

¯̄
S̄
¯̄v̄/2

¯̄̄
H̃
¯̄̄m/2

¯̄
H̄
¯̄m/2

× Γm (v̄)
Γm (ṽ)

× 2m(v̂+k)/2 (51)

The proper posterior reads

PΦ (Φ,Σe | Y, θ) = (2π)
−mk/2 × |Σe|−k/2 × exp

∙
−1
2
tr
³¡
Φ− Φ̄

¢0
H̄
¡
Φ− Φ̄

¢
Σ−1e

´¸
. . .

×
¯̄
S̄
¯̄v̄/2 ¯̄

H̄
¯̄m/2 × |Σe|−(v̂+T

∗+m+1)/2

2mv̄/2 × πm(m−1)/4Γm (v̄)
× exp

∙
−1
2
tr
¡
S̄Σ−1e

¢¸
(52)

or equivalently

p (Φ | Σe;Y,X) = N
¡
Φ̄,Σe ⊗ H̄−1

¢
(53)

p (Σe | Y,X) = IW
¡
S̄, v̄

¢
(54)

where the posterior estimates are as follows

• H̄ = X 0X + T̃Σx,x

• Φ̄ = H̄−1
³
X 0Y + T̃Σx,y

´
• Q = Φ̂0ĤΦ̂+ Φ̃0H̃Φ̃− Φ̄0H̄Φ̄

• S̄ = Ŝ + S̃ +Q

• Σ̄e =
S̄

v̄

11.5 Metropolis-Hasting Algorithm

We have obtained the posterior distribution of the VAR coefficients given the
structural parameters

P (Φ,Σ, θ | Y ) = PΦ (Φ,Σ | Y, θ)× Pθ (θ | Y ) . (55)

We also need to derive the posterior distribution with respect to θ. We use the
fact that

Pθ (θ | Y ) ∝ Kθ (θ | Y ) = PY (Y | θ)× π2 (θ) (56)

15where

H̃ = X̃0X̃

v̄ = T + T̃ − k
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where PY (Y | θ) has been computed above and π2 (θ) is a set of independent
prior distributions over each element of the vector of parameters θ; Kθ (θ | Y )
is the kernel of the posterior. By combining the likelihood and the prior we
don’t have a closed form solution. We thus need to simulate draws out of the
posterior distribution which is unknown. We follow Schorfheide (2000) and DS
and we implement a Gaussian random walk Metropolis-Hasting algorithm to
generate from Pθ (θ | Y ). We set as a scale factor the inverse of the Hessian
matrix, ΣH (θ) , with respect to Kθ (θ | Y ) evaluated at the mode, θ∗. For each
candidate draw, θ̃,

θ̃ = θs−1 + (ΣH (θ
∗))
−1/2

N (0, I) , (57)

we construct an acceptance probability threshold

α
³
θ̃, θs−1

´
= min

⎛⎝1, Kθ

³
θ̃ | Y

´
Kθ (θs−1 | Y )

⎞⎠ . (58)

If α
³
θ̃, θs−1

´
is higher than a certain probability (varying for each draw) we

accept the draw as coming from the posterior distribution Pθ (θ | Y ) and update
the Markov chain θs = θ̃, otherwise we discard θ̃ and draw another candidate
from (57).
In doing so and by controlling for convergence of the chain, we are able to

draw from the posterior distribution of θ. Given the full set of draws, we can
thus make inference on any function of the parameters.

11.6 Gelfand-Dey Method for P (Y )

We compute the marginal data density which consists of integrating out pa-
rameters from the posterior distribution to evaluate the set of models: they
basically differ from each other from the weight implied by the parameter λ.
However, in this case the functional form of the posterior, Pθ (θ | Y ), is not
known and therefore we have to rely on simulation methods. To compute P (Y )
we use the Gelfand and Dey (1994) method with the correction suggested by
Geweke (1999) to avoid problems in the tails of P (Y ) which, given the way it
is computed, could be not finite.
Once we have a measure of the marginal data density for each model which,

in our setup, depends on the choice of λ, we can then compare different models.
The idea of comparing different models based on λ clarifies the contribution of
the information from the DSGE model in shaping inference. If the maximal of
P (Y ) is attained for values of λ close to zero, the DSGE model is not strongly
supported by the data.
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11.7 A FAVAR Analysis of the Simple DSGE Model

In this case the benchmark specification for the unrestricted dynamics of the
variables included in the theoretical model becomes the following:

Yt = B0Xt +B1Ft +Et (59)

whereYt = (∆ lnxt,∆ lnPt, lnRt) , Xt = [1,Yt−1, ...Yt−p] , Ft =
£
f 0t, f

0
t−1, . . . f

0
t−q
¤0

groups q lags of the three factors ft = [f1,t, f2,t, f3,t]
0 extracted and interpreted

as in Bernanke, Boivin and Eliasz (2005), Et is the three-variate vector of inno-
vations. System (59) can be re-written in a more compact form as follows:

Yt = BWt +Et (60)

where B = [B0, B1] is of dimension m× (1 +mp+ rq) and Wt = [X
0
t, F

0
t ]
0.

11.7.1 Prior distribution

The full prior on the coefficients in (60) is derived by recalling the moments from
the DSGE model as we did in Section 3 and by working out a prior for the factors
coefficients which is centered at zero with a variance-covariance matrix set by
the second moments matrix of the factors. Given that factors do not enter in
the DSGE model, we can draw dummy observations from the theoretical model
for the endogenous variables,

³
Ỹt, X̃t

´
,16 without considering the effect from

F̃t. At the same time we can derive dummy observations to set the prior on the
coefficients of the factors, F̃t, by using a training sample on the full FAVAR.

The set of dummy observations
³
Ỹt, X̃t, F̃t

´
can be used to derive the full prior

distribution over the coefficients which reads

∙
B0
B1

¸
| Σe ∼ N

⎛⎜⎝∙B̃0
0

¸
,Σe ⊗

⎡⎢⎣
³
X̃tX̃

0
t

´−1
0

0
³
F̃tF̃

0
t

´−1
⎤⎥⎦
⎞⎟⎠ (61)

where B̃0 =
³
X̃tX̃

0
t

´−1
X̃tỸ

0
t . The cross term restriction,

³
X̃tF̃

0
t

´
, is also set

to zero because, in constructing our prior, we are considering the case in which
factors don’t have any influence on the set of endogenous variables in our DSGE
model. We spell out all these details in Appendix C. As far as the prior distri-
bution for the structural parameters is concerned, we maintain the same inde-
pendence assumption as we did in Section 3; we also consider the same shape
and parameterization.

11.7.2 Posterior distribution

Given our description of the prior distribution and the likelihood function we can
proceed with the illustration of the computation of the posterior distribution.
16As in the DSGE-VAR, their population counterparts are used
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A new feature of the analysis at this stage has to do with the contribution of the
factors in shaping inference. The DSGE model itself does not directly depend
on factors, but its estimates account for the larger information set as it appears
from the following decomposition

P (Φ,Σe, θ | Y, F ) = PΦ (Φ,Σe | θ, Y, F )× Pθ (θ | Y,F ) , (62)

where the posterior for θ, Pθ (θ | Y, F ), makes clear the dependence on the fac-
tors.
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