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Thermal di¤usion in a binary liquid due to recti�ed molecular �uctuations

Simon Villain-Guillot and Alois Würger
Laboratoire Ondes et Matière d�Aquitaine, Université Bordeaux 1 & CNRS,

351 cours de la Libération, 33405 Talence, France

The Soret motion in binary liquids is shown to arise to a large extent from recti�ed velocity
�uctuations. From a hard-bead model with elastic collisions in a non-uniform temperature, we
derive a net force on each molecule, which is proportional to the temperature gradient and depends
on the ratio of the molecular masses and moments of inertia. Our �ndings agree with previous
numerical simulations and provide an explanation for the thermal di¤usion isotope e¤ect observed
for several liquids.

Non-equilibrium �uctuations may rectify the motion
of a Brownian particle and give rise to directed di¤u-
sion [1, 2]. Noise-driven transport has been studied
extensively in terms of ratchet models, where the bro-
ken symmetry is realized by a random force with zero
mean and asymmetric spectrum, a saw-tooth like poten-
tial with a periodic time-dependent temperature pro�le,
or non-uniform chemical reactions. Applications range
from molecular motors to electron transport in quantum
devices [2].

The thermal di¤usion or Soret e¤ect describes motion
due to a temperature gradient [3]. From kinetic theory
it is known that in a gas mixture the lighter atoms move
to the warm, the heavier ones to the cold [4]. It has
been realized early that this e¤ect can be used for isotope
separation [5]. In contrast to gases, thermally driven
motion in molecular liquids is less well understood [6, 7],
despite a variety of available approaches [8�11]. Part of
the complexity is due to the presence of two basically
di¤erent driving mechanisms: The �rst one results from
solute-solvent interactions such as electric-double layer
and dispersion forces [12�15], and is particularly relevant
for charged colloidal suspensions [16�18]. The second
one, which we are interested in here, relies on the thermal
�uctuations of solute and solvent molecules.

Since velocity �uctuations are inversely proportional
to the mass, they are expected to be most relevant for
light molecules or atoms. This is con�rmed by the iso-
tope e¤ects observed in experiments on molecular liq-
uids [19�22] and by numerical simulations [23�26]. Thus
Debuschewitz and Köhler reported that protonated ben-
zene in cyclohexane migrates to higher temperatures,
whereas deuterated benzene goes to the cold side [20].
Even more strikingly, the benzene isotopes 12C6D6 and
13C6H6, which have equal mass but di¤erent moment of
inertia, vary signi�cantly in their thermal di¤usion be-
havior, thus hinting at the role of rotational di¤usion.

In the present paper we study how velocity �uctua-
tions and rotational di¤usion a¤ect the Soret e¤ect of a
binary liquid. Thermal noise acts as a random force f
and results in molecular Brownian motion. In thermal
equilibrium the mean force is zero. In a non-equilibrium
system, however, its average F = hfi does not necessarily

T∇

FIG. 1: Schematic view of a binary liquid of non-spherical
molecules. The two species have equal volume but di¤erent
mass and di¤erent moment of inertia.

vanish and may result in a steady-state velocity

u =
F

�
; (1)

where the Stokes friction coe¢ cient � is given by the cor-
relation hf(t)f(0)i. Our main purpose is to relate this
drift term to the non-uniform temperature that appears
in the molecular velocity distribution functions. The ran-
dom force is described by the momentum �p transferred
from colliding neighbor molecules, f =

P
i�p�(t � ti).

Its average value reads

F =

�
�p

�

�
; (2)

where � is the time separating two subsequent collisions.
The conservation laws are evaluated explicitly for a hard-
bead model with elastic collisions, giving F as a function
of the molecular masses and moments of inertia. The
model is shown in Fig. 1, which in particular illustrates
the importance of translation-rotation coupling for non-
spherical molecules.
In the absence of an external potential, the weighted

average of the forces Fa and Fb exerted on each compo-
nent vanishes. For molecules of equal size this condition
simpli�es to

�aFa + �bFb = 0; (3)
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FIG. 2: Schematic view of two-particle elastic collisions. The
left panel shows a frontal impact with the second particle
coming from the left (v2 > v1) or from the right (v2 < v1).
Because of the non-uniform temperature, the velocity distri-
bution of each particle is with respect to a particular value,
TL < T0 < TR. In terms of the constant gradient rT , the
di¤erences read �bTrT . The right panel shows the case of
non-zero impact parameter b. The upper example illustrates
an initial state with linear velocity and zero angular velocity
(!i = 0), and the lower one the opposite case with �nite !i
and zero vi. In both cases linear momentum �p is transferred
during the collision, according to Eq. (11). Only collisions
from the left side are shown.

where the volume fractions satisfy �a + �b = 1. The
momentum transfer �p depends on the linear and angu-
lar velocities of both molecules. Elastic collisions of two
rigid particles satisfy the conservation laws

E01 + E
0
2 = E1 + E2;

p01 + p
0
2 = p1 + p2; (4)

�01 + �
0
2 = �1 + �2;

where pi = mivi denotes the linear momentum, �i the an-
gular momentum, and Ei = p2i =2mi + �

2
i =2Ii the kinetic

energy with the moment of inertia Ii. The primed quanti-
ties describe the state after the collision. In three dimen-
sions there are seven independent equations for twelve
unknown variables; an unambiguous �nal state is deter-
mined by �ve additional conditions for the collision.
Here we study a one-dimensional model where p and �

are taken as scalars. In a �rst approach we neglect the an-
gular momentum and consider frontal collisions only, as
illustrated in the left panel of Fig. 2. From the conserva-
tion laws for E and p, one readily obtains the momentum
transfer �p = p01 � p1 in terms of the initial state,

�p = 2�12(v2 � v1); (5)

with the reduced mass 1=�12 = 1=m1 + 1=m2.
A net force arises from the fact that the thermal aver-

age in (2) has to be done with a particular temperature

for each particle. The position of molecule 1 de�nes a
reference temperature T0, whereas that of particle 2 may
be lower or higher, depending on its relative position, as
illustrated in the left panel of Fig. 2. As an important
quantity, the collision rate 1=� is a function of tempera-
ture and velocity. In order to keep the algebra as simple
as possible, we adopt from the beginning the form

1=� = jv2 � v1j=`; (6)

which is proportional to the relative velocity. The mo-
mentum transfer is positive for collisions from the left,
that is for v2 > v1; inserting �p and the rate in (2) one
�nds�

�p

�

�
L

= 2�12

Z 1

�1
dv1

Z 1

v1

dv2'1'2
(v2 � v1)2

`L
;

with the Maxwell velocity distribution function '(v) =
(2�hv2i)� 1

2 e�
1
2v

2=hv2i. A similar expression of opposite
sign arises from neighbor molecules coming from the
right, where v2 < v1. Because of the spatial variation of
temperature and of the parameter `, these contributions
do not completely cancel each other. Their di¤erence
gives the net force on particle 1,

F1 = �12

�
hv21i0 + hv22iL

`L
� hv

2
1i0 + hv22iR

`R

�
; (7)

where 0; L;R indicate the molecular position.
Now we determine the temperature dependence of the

mean spacing `. We insert (7) with the mean velocity
square hv2i iX = kBTX=mi in the constraint (3). Perform-
ing for both molecules 1 and 2 the average with respect
to the species a and b, we obtain the condition

(T0 + TL)=`L = (T0 + TR)=`R; (8)

which means that ` is determined by the mean temper-
ature of the colliding molecules. This relation could be
obtained equally well by requiring that the net force van-
ishes in a pure system, in other words, by putting F = 0
for an a-molecule in an a-environment.
The physical origin of the thermal force is best dis-

cussed in terms of the velocity �uctuations appearing in
(7). Its positive and negative contributions arise from
collisions with molecules at the left or at the right, with
TL < TR. If particle 1 is much lighter than 2 (m1 � m2),
its mean square hv21i0 = kBT0=m1 dominates the numer-
ators and, because of `L < `R, leads to a positive force to
the hot side. In the opposite case m1 � m2, the numer-
ators are proportional to TL and TR; since `(T ) varies
more weakly with T , the second term in (7) exceeds the
�rst one, and the force takes a minus sign. Thus the tem-
perature gradient acts like a recti�er on the molecular ve-
locity �uctuations, which drives the heavier component
to lower T , and the lighter one to the hot side.
Eq. (8) can be rewritten as ` = `0(T + T0)=2T0, with

constant `0. Replugging this expression in the force on
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an a-molecule, averaging the collision partner 2 with re-
spect to composition, and expanding to linear order in
the temperature variation, we �nd

Fa = �b
bT
`0

mb �ma

mb +ma
kBrT: (9)

Here we have used TR=L = T0 � bTrT as de�ned in
Fig. 2. The force on a molecule of the second species is
obtained by exchanging the labels a and b; one readily
veri�es the condition (3). It is noteworthy that Fa van-
ishes in a pure a-system (�b = 0) and is maximum in a
b-environment (�b = 1). Our expresson for Fa compares
favorably with early work for heavy Brownian particles,
where F = �kBrT [28]. This corresponds to our Eq.
(9) for ma � mb and bT = `0. The latter parameters
are related to the molecular structure, which is hardly
addressed in [28].
Now we take the angular momentum into account. Be-

sides the three conservation laws (4), there is one condi-
tion relating the changes of momentum and angular mo-
mentum �� = �01 � �1. In the one-dimensional model it
takes the simple form

�� = b�p; (10)

where b is an impact parameter as illustrated in the right
panel of Fig. 2. The four equations (4) and (10) deter-
mine the �nal state p0i; �

0
i in terms of the incoming quan-

tities pi; �i, with the angular momentum �i = Ii!i. In
view of (2) we are mainly interested in the momentum
transfer, and thus give its explicit expression

�p =
2

1=�12 + b2=I12
[v2 � v1 + b(!2 � !1)] ; (11)

with the reduced moment I�112 = I�11 +I�12 . For non-zero
b both linear and angular velocities result in momentum
transfer, as illustrated in the right panel of Fig. 2. In
analogy to (6), the collision rate reads 1=� = jv2 � v1 +
b(!2 � !1)j=`;
We consider separately collisions with non-zero veloc-

ities vi and angular velocities !i. The �rst case is iden-
tical to the analysis between Eqs. (5) and (9), with
the reduced mass replaced by the denominator in (11).
Proceeding in the same way for the second case, where
the center of mass of both moelcules is initially at rest
(vi = 0), we merely have to replace the linear velocities
vi with b!i. Inserting the mean square h!2i i = kBT=Ii
leads to a force similar to that of the �rst case, but with
the moments of inertia instead of the masses.
Adding the contributions calculated independently for

the cases !i = 0 and vi = 0, we have

Fa = ��b
bT
`0
	kBrT; (12)

with the shorthand notation for the relative di¤erences
of mass and inertia,

	 =
m�1
a �m�1

b + b2(I�1a � I�1b )

m�1
a +m�1

b + b2(I�1a + I�1b )
: (13)
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FIG. 3: Isotope e¤ect on the Soret coe¢ cient ST of benzene-
cyclohexane mixtures. Black points are Debuschewitz and
Köhler�s experimental data at equal mole fractions [20]. The
list of isotopes corresponds to the eight data points from the
left to the right. The solid line is calcatuled from Eq. (14)
with the ratio bT =`0 = 3:4 and the impact parameter b = 2:5
Å; the values of mi and Ii are taken from [20]. The verti-
cal o¤-set S0T = �1:1 � 10�3K�1 is indicated by the dashed
line. With benzene as a-molecules, the �rst two data points
correspond to 	 > 0, and the remaining ones to negative 	.

For b = 0 we recover (9). In principle, this expression
should be averaged over the parameters b, bT , `0. More-
over, in a general initial state both linear and angular
velocities take non-zero values and should be considered
simultaneously in (2). These modi�cations would encum-
ber the algebra without signi�cantly modifying the net
force.
Now we discuss the steady state resulting from the

the drift velocity (1) and di¤usion with the Einstein co-
e¢ cient D = kBT=�. The current of the component a
reads Ja = �Dr�a + �aua and is opposite to that of
b-molecules. The steady-state condition Ja = 0 may be
rewritten as [3]

r�a + �a�bSTrT = 0;

where the Soret coe¢ cient ST describes the stationary
non-uniform composition of the binary system. With this
sign convention, a-molecules accumulate at lower temper-
ature for ST > 0 and at higher T for ST < 0. From (1)
and (12) one readily derives

ST = S
0
T +

bT
`0

	

T0
; (14)

where we have added a term S0T that accounts for mole-
cular dispersion forces. Eqs. (12) and (14) consitute the
main result of the present paper.
In Fig. 3 we plot data of Debuschewitz and Köhler

for mixtures of benzene and cyclohexan·e [20]. Study-
ing various isotopes that range from deuterated benzene
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and protonated cyclohexane (C6D6-C6H12) to the oppo-
site case C6H6-C6D12, these authors observed a strong
mass e¤ect of the Soret coe¢ cient ST . Since the isotopes
have very similar chemical properties and, in particular,
the same van der Waals interaction potential, these data
show unambiguously that thermal di¤usion varies with
both molecular mass and moment of inertia. The depen-
dence on the latter quantity is best displayed by compar-
ing deuterated benzene C6D6 and the protonated heavy-
carbon isotope 13C6H6: These molecules have equal mass
but di¤erent moment of inertia; their ST values di¤er by
about 50 %.
The solid line in Fig. 3 is calculated from Eq. (14).

With Ii=mi � 2:5 Å2 for benzene and cyclohexane [20],
the value for the impact parameter b = 2:5 Å implies
that the angular velocity �uctuations kBTb2=Ii are sev-
eral times larger than the linear ones kBT=mi. Thus
the quantity 	 is determined by the moments of inertia
rather than by the masses. In physical terms this means
that the Soret e¤ect is mainly due to rotational di¤usion
with the mean square angular velocity



!2i
�
= kBT=Ii.

The vertical o¤set S0T describes thermally driven mo-
tion due to dispersion forces and thus is insensitive to
a change of the molecular mass; its numerical value is
taken from [20]. Thus the Soret coe¢ cient (14) consists
of two terms, one of which depends on the composition
and the other one on the molecular mass and inertia only
[20, 21]. This is con�rmed by several experiments that
show that the mass and composition dependence of ST

separates in additive contributions [20, 21]. For compo-
nents of comparable size, a linear variation of S0T with
the volume fraction � has been observed in accordance
with simulations [27] and a simple mean-�eld model [15].

The Soret coe¢ cient (14) agrees with numerical simu-
lations of Lennard-Jones and hard-bead systems. Several
authors reported dependencies on mass and moment of
inertia similar to (13) [23�26]. The ratio of the molecu-
lar mean distance bT and mean spacing `0 is related to
the �lling factor; the linear variation of (14) compares fa-
vorably with simulation results at di¤erent densities [25].
The numerical value of bT =`0 used in Fig. 3 agrees with
the molecular size bT � 4 Å and the spacing between
particles `0 � 1 Å.

The present one-dimensional hard-bead model consid-
erably simpli�es the otherwise complex molecular colli-
sions. The recti�cation of thermal �uctuations, as ex-
pressed by the mean-square velocities at di¤erent tem-
peratures in Eq. (7), is insensitive to the model details
and results in a net force proportional to rT with the
coe¢ cient 	. The agreement of Eq. (14) with the iso-
tope data and with numerical simulations [23�26] con-
�rms that thermal di¤usion in binary liquids is to a large
extent driven by recti�ed molecular �uctuations. Though
similar e¤ects are expected to occur in macromolecular
solutions [30], one should keep in mind that a polymer
cannot be treated as a rigid body, thus requiring a re�ned
picture for its collisions with solvent molecules.
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