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Thermal di¤usion in a binary liquid due to recti…ed molecular ‡uctuations

The Soret motion in binary liquids is shown to arise to a large extent from recti…ed velocity ‡uctuations. From a hard-bead model with elastic collisions in a non-uniform temperature, we derive a net force on each molecule, which is proportional to the temperature gradient and depends on the ratio of the molecular masses and moments of inertia. Our …ndings agree with previous numerical simulations and provide an explanation for the thermal di¤usion isotope e¤ect observed for several liquids.

Non-equilibrium ‡uctuations may rectify the motion of a Brownian particle and give rise to directed di¤usion [1,2]. Noise-driven transport has been studied extensively in terms of ratchet models, where the broken symmetry is realized by a random force with zero mean and asymmetric spectrum, a saw-tooth like potential with a periodic time-dependent temperature pro…le, or non-uniform chemical reactions. Applications range from molecular motors to electron transport in quantum devices [2].

The thermal di¤usion or Soret e¤ect describes motion due to a temperature gradient [START_REF] De Groot | Non-equlibrium Thermodynamics[END_REF]. From kinetic theory it is known that in a gas mixture the lighter atoms move to the warm, the heavier ones to the cold [START_REF] Chapman | The Mathematical Theory of Non-uniform Gases[END_REF]. It has been realized early that this e¤ect can be used for isotope separation [START_REF] Furry | [END_REF]. In contrast to gases, thermally driven motion in molecular liquids is less well understood [START_REF] Köhler | Thermal Nonequilibrium Phenomena in Fluid Mixtures[END_REF]7], despite a variety of available approaches [8][9][10][11]. Part of the complexity is due to the presence of two basically di¤erent driving mechanisms: The …rst one results from solute-solvent interactions such as electric-double layer and dispersion forces [12][13][14][15], and is particularly relevant for charged colloidal suspensions [16][17][START_REF] Duhr | Proc. Natl. Acad. Sci[END_REF]. The second one, which we are interested in here, relies on the thermal ‡uctuations of solute and solvent molecules.

Since velocity ‡uctuations are inversely proportional to the mass, they are expected to be most relevant for light molecules or atoms. This is con…rmed by the isotope e¤ects observed in experiments on molecular liquids [START_REF] Rutherford | [END_REF][20][21][22] and by numerical simulations [23][24][25][26]. Thus Debuschewitz and Köhler reported that protonated benzene in cyclohexane migrates to higher temperatures, whereas deuterated benzene goes to the cold side [20]. Even more strikingly, the benzene isotopes 12 C 6 D 6 and 13 C 6 H 6 , which have equal mass but di¤erent moment of inertia, vary signi…cantly in their thermal di¤usion behavior, thus hinting at the role of rotational di¤usion.

In the present paper we study how velocity ‡uctuations and rotational di¤usion a¤ect the Soret e¤ect of a binary liquid. Thermal noise acts as a random force f and results in molecular Brownian motion. In thermal equilibrium the mean force is zero. In a non-equilibrium system, however, its average F = hf i does not necessarily T ∇ 1: Schematic view of a binary liquid of non-spherical molecules. The two species have equal volume but di¤erent mass and di¤erent moment of inertia. vanish and may result in a steady-state velocity

u = F ; (1) 
where the Stokes friction coe¢ cient is given by the correlation hf (t)f (0)i. Our main purpose is to relate this drift term to the non-uniform temperature that appears in the molecular velocity distribution functions. The random force is described by the momentum p transferred from colliding neighbor molecules, f = P i p (t t i ).

Its average value reads

F = p ; (2) 
where is the time separating two subsequent collisions. The conservation laws are evaluated explicitly for a hardbead model with elastic collisions, giving F as a function of the molecular masses and moments of inertia. The model is shown in Fig. 1, which in particular illustrates the importance of translation-rotation coupling for nonspherical molecules.

In the absence of an external potential, the weighted average of the forces F a and F b exerted on each component vanishes. For molecules of equal size this condition simpli…es to a F a + b F b = 0;

(3)
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2: Schematic view of two-particle elastic collisions. The left panel shows a frontal impact with the second particle coming from the left (v2 > v1) or from the right (v2 < v1).

Because of the non-uniform temperature, the velocity distribution of each particle is with respect to a particular value, TL < T0 < TR. In terms of the constant gradient rT , the di¤erences read bT rT . The right panel shows the case of non-zero impact parameter b. The upper example illustrates an initial state with linear velocity and zero angular velocity (!i = 0), and the lower one the opposite case with …nite !i and zero vi. In both cases linear momentum p is transferred during the collision, according to Eq. ( 11). Only collisions from the left side are shown.

where the volume fractions satisfy a + b = 1. The momentum transfer p depends on the linear and angular velocities of both molecules. Elastic collisions of two rigid particles satisfy the conservation laws

E 0 1 + E 0 2 = E 1 + E 2 ; p 0 1 + p 0 2 = p 1 + p 2 ; (4) 
0 1 + 0 2 = 1 + 2 ;
where p i = m i v i denotes the linear momentum, i the angular momentum, and

E i = p 2 i =2m i + 2 i =2I
i the kinetic energy with the moment of inertia I i . The primed quantities describe the state after the collision. In three dimensions there are seven independent equations for twelve unknown variables; an unambiguous …nal state is determined by …ve additional conditions for the collision.

Here we study a one-dimensional model where p and are taken as scalars. In a …rst approach we neglect the angular momentum and consider frontal collisions only, as illustrated in the left panel of Fig. 2. From the conservation laws for E and p, one readily obtains the momentum transfer p = p 0 1 p 1 in terms of the initial state,

p = 2 12 (v 2 v 1 ); (5) 
with the reduced mass

1= 12 = 1=m 1 + 1=m 2 .
A net force arises from the fact that the thermal average in (2) has to be done with a particular temperature for each particle. The position of molecule 1 de…nes a reference temperature T 0 , whereas that of particle 2 may be lower or higher, depending on its relative position, as illustrated in the left panel of Fig. 2. As an important quantity, the collision rate 1= is a function of temperature and velocity. In order to keep the algebra as simple as possible, we adopt from the beginning the form

1= = jv 2 v 1 j=`; (6) 
which is proportional to the relative velocity. The momentum transfer is positive for collisions from the left, that is for v 2 > v 1 ; inserting p and the rate in (2) one …nds

p L = 2 12 Z 1 1 dv 1 Z 1 v1 dv 2 ' 1 ' 2 (v 2 v 1 ) 2 `L ;
with the Maxwell velocity distribution function

'(v) = (2 hv 2 i) 1 2 e 1 2 v 2 =hv 2 i .
A similar expression of opposite sign arises from neighbor molecules coming from the right, where v 2 < v 1 . Because of the spatial variation of temperature and of the parameter `, these contributions do not completely cancel each other. Their di¤erence gives the net force on particle 1,

F 1 = 12 hv 2 1 i 0 + hv 2 2 i L `L hv 2 1 i 0 + hv 2 2 i R `R ; (7) 
where 0; L; R indicate the molecular position. Now we determine the temperature dependence of the mean spacing `. We insert (7) with the mean velocity square hv 2 i i X = k B T X =m i in the constraint (3). Performing for both molecules 1 and 2 the average with respect to the species a and b, we obtain the condition

(T 0 + T L )=`L = (T 0 + T R )=`R; (8) 
which means that `is determined by the mean temperature of the colliding molecules. This relation could be obtained equally well by requiring that the net force vanishes in a pure system, in other words, by putting F = 0 for an a-molecule in an a-environment.

The physical origin of the thermal force is best discussed in terms of the velocity ‡uctuations appearing in (7). Its positive and negative contributions arise from collisions with molecules at the left or at the right, with T L < T R . If particle 1 is much lighter than 2 (m 1 m 2 ), its mean square hv 2 1 i 0 = k B T 0 =m 1 dominates the numerators and, because of `L < `R, leads to a positive force to the hot side. In the opposite case m 1 m 2 , the numerators are proportional to T L and T R ; since `(T ) varies more weakly with T , the second term in (7) exceeds the …rst one, and the force takes a minus sign. Thus the temperature gradient acts like a recti…er on the molecular velocity ‡uctuations, which drives the heavier component to lower T , and the lighter one to the hot side.

Eq. ( 8) can be rewritten as `= `0(T + T 0 )=2T 0 , with constant `0. Replugging this expression in the force on an a-molecule, averaging the collision partner 2 with respect to composition, and expanding to linear order in the temperature variation, we …nd

F a = b b T `0 m b m a m b + m a k B rT: (9) 
Here we have used T R=L = T 0 b T rT as de…ned in Fig. 2. The force on a molecule of the second species is obtained by exchanging the labels a and b; one readily veri…es the condition (3). It is noteworthy that F a vanishes in a pure a-system ( b = 0) and is maximum in a b-environment ( b = 1). Our expresson for F a compares favorably with early work for heavy Brownian particles, where F = k B rT [28]. This corresponds to our Eq. ( 9) for m a m b and b T = `0. The latter parameters are related to the molecular structure, which is hardly addressed in [28]. Now we take the angular momentum into account. Besides the three conservation laws (4), there is one condition relating the changes of momentum and angular momentum = 0 1 1 . In the one-dimensional model it takes the simple form

= b p; ( 10 
)
where b is an impact parameter as illustrated in the right panel of Fig. 2. The four equations ( 4) and ( 10) determine the …nal state p 0 i ; 0 i in terms of the incoming quantities p i ; i , with the angular momentum i = I i ! i . In view of (2) we are mainly interested in the momentum transfer, and thus give its explicit expression

p = 2 1= 12 + b 2 =I 12 [v 2 v 1 + b(! 2 ! 1 )] ; (11) 
with the reduced moment I 1 12 = I 1 1 +I 1 2 . For non-zero b both linear and angular velocities result in momentum transfer, as illustrated in the right panel of Fig. 2. In analogy to [START_REF] Köhler | Thermal Nonequilibrium Phenomena in Fluid Mixtures[END_REF], the collision rate reads 1= = jv 2 v 1 + b(! 2 ! 1 )j=`;

We consider separately collisions with non-zero velocities v i and angular velocities ! i . The …rst case is identical to the analysis between Eqs. ( 5) and ( 9), with the reduced mass replaced by the denominator in (11). Proceeding in the same way for the second case, where the center of mass of both moelcules is initially at rest (v i = 0), we merely have to replace the linear velocities v i with b! i . Inserting the mean square h! 2 i i = k B T =I i leads to a force similar to that of the …rst case, but with the moments of inertia instead of the masses.

Adding the contributions calculated independently for the cases ! i = 0 and v i = 0, we have

F a = b b T `0 k B rT; (12) 
with the shorthand notation for the relative di¤erences of mass and inertia, 
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FIG. 3: Isotope e¤ect on the Soret coe¢ cient ST of benzenecyclohexane mixtures. Black points are Debuschewitz and Köhler's experimental data at equal mole fractions [20]. The list of isotopes corresponds to the eight data points from the left to the right. The solid line is calcatuled from Eq. ( 14) with the ratio bT =`0 = 3:4 and the impact parameter b = 2:5 Å; the values of mi and Ii are taken from [20]. The vertical o¤-set S 0 T = 1:1 10 3 K 1 is indicated by the dashed line. With benzene as a-molecules, the …rst two data points correspond to > 0, and the remaining ones to negative .

For b = 0 we recover (9). In principle, this expression should be averaged over the parameters b, b T , `0. Moreover, in a general initial state both linear and angular velocities take non-zero values and should be considered simultaneously in (2). These modi…cations would encumber the algebra without signi…cantly modifying the net force.

Now we discuss the steady state resulting from the the drift velocity (1) and di¤usion with the Einstein co-e¢ cient D = k B T = . The current of the component a reads J a = Dr a + a u a and is opposite to that of b-molecules. The steady-state condition J a = 0 may be rewritten as [START_REF] De Groot | Non-equlibrium Thermodynamics[END_REF] r a + a b S T rT = 0;

where the Soret coe¢ cient S T describes the stationary non-uniform composition of the binary system. With this sign convention, a-molecules accumulate at lower temperature for S T > 0 and at higher T for S T < 0. From (1) and ( 12) one readily derives

S T = S 0 T + b T `0 T 0 ; (14) 
where we have added a term S 0 T that accounts for molecular dispersion forces. Eqs. ( 12) and ( 14) consitute the main result of the present paper.

In Fig. 3 we plot data of Debuschewitz and Köhler for mixtures of benzene and cyclohexan• e [20]. Studying various isotopes that range from deuterated benzene and protonated cyclohexane (C 6 D 6 -C 6 H 12 ) to the opposite case C 6 H 6 -C 6 D 12 , these authors observed a strong mass e¤ect of the Soret coe¢ cient S T . Since the isotopes have very similar chemical properties and, in particular, the same van der Waals interaction potential, these data show unambiguously that thermal di¤usion varies with both molecular mass and moment of inertia. The dependence on the latter quantity is best displayed by comparing deuterated benzene C 6 D 6 and the protonated heavycarbon isotope 13 C 6 H 6 : These molecules have equal mass but di¤erent moment of inertia; their S T values di¤er by about 50 %.

The solid line in Fig. 3 is calculated from Eq. ( 14). With I i =m i 2:5 Å 2 for benzene and cyclohexane [20], the value for the impact parameter b = 2:5 Å implies that the angular velocity ‡uctuations k B T b 2 =I i are several times larger than the linear ones k B T =m i . Thus the quantity is determined by the moments of inertia rather than by the masses. In physical terms this means that the Soret e¤ect is mainly due to rotational di¤usion with the mean square angular velocity ! 2 i = k B T =I i . The vertical o¤set S 0 T describes thermally driven motion due to dispersion forces and thus is insensitive to a change of the molecular mass; its numerical value is taken from [20]. Thus the Soret coe¢ cient ( 14) consists of two terms, one of which depends on the composition and the other one on the molecular mass and inertia only [20,21]. This is con…rmed by several experiments that show that the mass and composition dependence of S T separates in additive contributions [20,21]. For components of comparable size, a linear variation of S 0 T with the volume fraction has been observed in accordance with simulations [27] and a simple mean-…eld model [15]. The Soret coe¢ cient (14) agrees with numerical simulations of Lennard-Jones and hard-bead systems. Several authors reported dependencies on mass and moment of inertia similar to (13) [23][24][25][26]. The ratio of the molecular mean distance b T and mean spacing `0 is related to the …lling factor; the linear variation of ( 14) compares favorably with simulation results at di¤erent densities [25]. The numerical value of b T =`0 used in Fig. 3 agrees with the molecular size b T 4 Å and the spacing between particles `0 1 Å.

The present one-dimensional hard-bead model considerably simpli…es the otherwise complex molecular collisions. The recti…cation of thermal ‡uctuations, as expressed by the mean-square velocities at di¤erent temperatures in Eq. (7), is insensitive to the model details and results in a net force proportional to rT with the coe¢ cient . The agreement of Eq. ( 14) with the isotope data and with numerical simulations [23][24][25][26] con-…rms that thermal di¤usion in binary liquids is to a large extent driven by recti…ed molecular ‡uctuations. Though similar e¤ects are expected to occur in macromolecular solutions [30], one should keep in mind that a polymer cannot be treated as a rigid body, thus requiring a re…ned picture for its collisions with solvent molecules.