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NEW HARDY SPACES OF MUSIELAK-ORLICZ TYPE AND

BOUNDEDNESS OF SUBLINEAR OPERATORS

LUONG DANG KY

Abstract. We introduce a new class of Hardy spaces Hϕ(·,·)(Rn), called
Hardy spaces of Musielak-Orlicz type, which generalize the Hardy-Orlicz
spaces of Janson and the weighted Hardy spaces of Garćıa-Cuerva, Strömberg,
and Torchinsky. Here, ϕ : Rn × [0,∞) → [0,∞) is a function such that
ϕ(x, ·) is an Orlicz function and ϕ(·, t) is a MuckenhouptA∞ weight. A func-
tion f belongs to Hϕ(·,·)(Rn) if and only if its maximal function f∗ is so that
x 7→ ϕ(x, |f∗(x)|) is integrable. Such a space arises naturally for instance
in the description of the product of functions in H1(Rn) and BMO(Rn)
respectively (see [6]). We characterize these spaces via the grand maximal
function and establish their atomic decomposition. We characterize also
their dual spaces. The class of pointwise multipliers for BMO(Rn) charac-
terized by Nakai and Yabuta can be seen as the dual of L1(Rn)+H log(Rn)
where H log(Rn) is the Hardy space of Musielak-Orlicz type related to the

Musielak-Orlicz function θ(x, t) =
t

log(e+ |x|) + log(e+ t)
.

Furthermore, under additional assumption on ϕ(·, ·) we prove that if T is
a sublinear operator and maps all atoms into uniformly bounded elements
of a quasi-Banach space B, then T uniquely extends to a bounded sublinear
operator from Hϕ(·,·)(Rn) to B. These results are new even for the classical
Hardy-Orlicz spaces on Rn.

1. Introduction

Since Lebesgue theory of integration has taken a center stage in concrete
problems of analysis, the need for more inclusive classes of function spaces
than the Lp(Rn)-families naturally arose. It is well known that the Hardy
spaces Hp(Rn) when p ∈ (0, 1] are good substitutes of Lp(Rn) when studying
the boundedness of operators: for example, the Riesz operators are bounded
on Hp(Rn), but not on Lp(Rn) when p ∈ (0, 1]. The theory of Hardy spaces
Hp on the Euclidean space Rn was initially developed by Stein and Weiss
[45]. Later, Fefferman and Stein [16] systematically developed a real-variable
theory for the Hardy spaces Hp(Rn) with p ∈ (0, 1], which now plays an
important role in various fields of analysis and partial differential equations;
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see, for example, [12, 13, 39]. A key feature of the classical Hardy spaces is
their atomic decomposition characterizations, which were obtained by Coifman
[11] when n = 1 and Latter [31] when n > 1. Later, the theory of Hardy
spaces and their dual spaces associated with Muckenhoupt weights have been
extensively studied by Garćıa-Cuerva [18], Strömberg and Torchinsky [47] (see
also [38, 10, 19]); there the weighted Hardy spaces was defined by using the
nontangential maximal functions and the atomic decompositions were derived.
On the other hand, as another generalization of Lp(Rn), the Orlicz spaces were
introduced by Birnbaum-Orlicz in [3] and Orlicz in [42], since then, the theory
of the Orlicz spaces themselves has been well developed and the spaces have
been widely used in probability, statistics, potential theory, partial differential
equations, as well as harmonic analysis and some other fields of analysis; see,
for example, [2, 24, 33]. Moreover, the Hardy-Orlicz spaces are also good
substitutes of the Orlicz spaces in dealing with many problems of analysis,
say, the boundedness of operators.

Let Φ be a Orlicz function which is of positive lower type and (quasi-
)concave. In [29], Janson has considered the Hardy-Orlicz space HΦ(Rn) the
space of all tempered distributions f such that the nontangential grand max-
imal function of f is defined by

f ∗(x) = sup
φ∈AN

sup
|x−y|<t

|f ∗ φt(y)|,

for all x ∈ Rn, here and in what follows φt(x) := t−nφ(t−1x), with

AN =
{
φ ∈ S(Rn) : sup

x∈Rn

(1 + |x|)N |∂αxφ(x)| ≤ 1 for α ∈ N
n, |α| ≤ N

}

with N = N(n,Φ) taken large enough, belongs to the Orlicz space LΦ(Rn).
Remark that these Hardy-Orlicz type spaces appear naturally when studying
the theory of nonlinear PDEs (cf. [21, 25, 27]) since many cancellation phe-
nomena for Jacobians cannot be observed in the usual Hardy spaces Hp(Rn).
For instance, let f = (f 1, ..., fn) in the Sobolev class W 1,n(Rn,Rn) and the
Jacobians J(x, f)dx = df 1 ∧ · · · ∧ dfn, then (see [27, Theorem 10.2])

T (J(x, f)) ∈ L1(Rn) +HΦ(Rn)

where Φ(t) = t/ log(e + t) and T (f) = f log |f |, since J(x, f) ∈ H1(Rn) (cf.
[13]) and T is well defined on H1(Rn). We refer readers to [43, 26] for this
interesting nonlinear operator T .

In this paper we want to allow generalized Hardy-Orlicz spaces related to
generalized Orlicz functions that may vary in the spatial variables. More pre-
cisely the Orlicz function Φ(t) is replaced by a function ϕ(x, t), called Musielak-
Orlicz function (cf. [40, 14]). We then define Hardy spaces of Musielak-Orlicz
type. Apart from interesting theoretical considerations, the motivation to
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study function spaces of Musielak-Orlicz type comes from applications to elas-
ticity, fluid dynamics, image processing, nonlinear PDEs and the calculus of
variation (cf. [14, 15]).

A particular case of Hardy spaces of Musielak-Orlicz type appears naturally
when considering the products of functions in BMO(Rn) and H1(Rn) (see
[6]); and the endpoint estimates for the div-curl lemma (see [4, 6]). More
precisely, in [6] the authors proved that product of a BMO(Rn) function and
a H1(Rn) function may be written as a sum of an integrable term and of a term
in H log(Rn), a Hardy space of Musielak-Orlicz type related to the Musielak-
Orlicz function θ(x, t) = t

log(e+|x|)+log(e+t)
. Moreover, the corresponding bilinear

operators are bounded. This result gives in particular a positive answer to the
Conjecture 1.7 in [7]. By duality, one finds pointwise multipliers forBMO(Rn).
Recall that a function g on Rn is called a pointwise multiplier for BMO(Rn), if
the pointwise multiplication fg belongs to BMO(Rn) for all f in BMO(Rn).
In [41], Nakai and Yabuta characterize the pointwise multipliers for BMO(Rn):
they prove that g is a pointwise multiplier for BMO(Rn) if and only if g belong
to L∞(Rn) ∩ BMOlog(Rn), where

BMOlog(Rn) =

=





f ∈ L1

loc(R
n) : ‖f‖BMOlog := sup

B(a,r)

| log r|+ log(e + |a|)

|B(a, r)|

∫

B(a,r)

|f(x)− fB(a,r)|dx <∞





.

By using the theory of these new Hardy spaces and dual spaces, we establish
that the class of pointwise multipliers forBMO(Rn) is just the dual of L1(Rn)+
H log(Rn). Remark that the class of pointwise multipliers for BMO(Rn) have
also recently been used by Lerner [32] for solving a conjecture of Diening (see
[14]) on the boundedness of the Hardy-Littlewood maximal operator on the
generalized Lebesgue spaces Lp(x)(Rn) (a special case of Musielak-Orlicz spaces,
for the details see [14, 32]).

Motivated by all of the above mentioned facts, in this paper, we introduce a
new class of Hardy spaces Hϕ(·,·)(Rn), called Hardy spaces of Musielak-Orlicz
type, which generalize the Hardy-Orlicz spaces of Janson and the weighted
Hardy spaces of Garćıa-Cuerva, Strömberg, and Torchinsky. Here, ϕ : Rn ×
[0,∞) → [0,∞) is a function such that ϕ(x, ·) is an Orlicz function and ϕ(·, t)
is a Muckenhoupt weight A∞. In the special case ϕ(x, t) = w(x)Φ(t) with
w in the Muckenhoupt class and Φ an Orlicz function, our Hardy spaces are
weighted Hardy-Orlicz spaces but they are different from the ones considered
by Harboure, Salinas, and Viviani [22], [23].

As an example of our results, let us give the atomic decomposition with
bounded atoms. Let ϕ be a growth function (see Section 2). A bounded
function a is a ϕ-atom if it satisfies the following three conditions

i) supp a ⊂ B for some ball B,
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ii) ‖a‖L∞ ≤ ‖χB‖
−1
Lϕ,

iii)
∫
Rn a(x)x

αdx = 0 for any |α| ≤ [n( q(ϕ)
i(ϕ)

− 1)],

where q(ϕ) and i(ϕ) are the indices of ϕ (see Section 2). We next define

the atomic Hardy space of Musielak-Orlicz type H
ϕ(·,·)
at (Rn) as those distri-

butions f ∈ S ′(Rn) such that f =
∑

j bj (in the sense of S ′(Rn)), where
bj

,s are multiples of ϕ-atoms supported in the balls Bj
,s, with the property∑

j ϕ(Bj, ‖bj‖Lq
ϕ(Bj)) <∞; and define the norm of f by

‖f‖
H

ϕ(·,·)
at

= inf
{
Λ∞({bj}) : f =

∑

j

bj in the sense of S ′(Rn)
}
,

where Λ∞({bj}) = inf
{
λ > 0 :

∑
j ϕ
(
Bj,

‖bj‖L∞

λ

)
≤ 1

}
with ϕ(B, t) :=

∫
B
ϕ(x, t)dx for all t ≥ 0 and B is measurable. Then we obtain

Theorem 1.1. H
ϕ(·,·)
at (Rn) = Hϕ(·,·)(Rn) with equivalent norms.

The fact that Λ∞({bj}), which is the right expression for the (quasi-)norm
in the atomic Hardy space of Musielak-Orlicz type, plays a central role in this
paper. It should be emphasized that, even if the steps of the proof of such a
theorem are standard, the adaptation to this context is not standard.

On the other hand, to establish the boundedness of operators on Hardy
spaces, one usually appeals to the atomic decomposition characterization, see
[11, 31, 48], which means that a function or distribution in Hardy spaces can be
represented as a linear combination of functions of an elementary form, namely,
atoms. Then, the boundedness of operators on Hardy spaces can be deduced
from their behavior on atoms or molecules in principle. However, caution
needs to be taken due to an example constructed in [8, Theorem 2]. There
exists a linear functional defined on a dense subspace of H1(Rn), which maps
all (1,∞, 0)-atoms into bounded scalars, but however does not extend to a
bounded linear functional on the whole H1(Rn). This implies that the uniform
boundedness of a linear operator T on atoms does not automatically guarantee
the boundedness of T from H1(Rn) to a Banach space B. Nevertheless, by
using the grand maximal function characterization of Hp(Rn), Meda, Sjögren,
and Vallarino [34, 35] proved that if a sublinear operator T maps all (p, q, s)-
atoms when q < ∞ and continuous (p,∞, s)-atoms into uniformly bounded
elements of Lp(Rn) (see also [50, 9] for quasi-Banach spaces), then T uniquely
extends to a bounded sublinear operator from Hp(Rn) to Lp(Rn). In this
paper, we study boundedness of sublinear operators in the context of new
Hardy spaces of Musielak-Orlicz type which generalize the main results in
[34, 35]. More precisely, under additional assumption on ϕ(·, ·), we prove that
finite atomic norms on dense subspaces of Hϕ(·,·)(Rn) are equivalent with the
standard infinite atomic decomposition norms. As an application, we prove
that if T is a sublinear operator and maps all atoms into uniformly bounded
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elements of a quasi-Banach space B, then T uniquely extends to a bounded
sublinear operator from Hϕ(·,·)(Rn) to B.

In a forecoming paper, using the theory of these new Hardy spaces and
ideas from [6], we study and establish some new interesting estimates of end-
point type for the commutators of singular integrals and fractional integrals
on Hardy-type spaces.

Our paper is organized as follows. In Section 2 we give the notation and
definitions that we shall use in the sequel. For simplicity we write ϕ for
ϕ(·, ·). One then introduces Hardy spaces of Musielak-Orlicz type Hϕ(Rn)
via grand maximal functions, atomic Hardy spaces Hϕ,q,s

at (Rn), finite atomic
Hardy spaces Hϕ,q,s

fin (Rn) for any admissible triplet (ϕ, q, s), BMO-Musielak-
Orlicz-type spaces BMOϕ(Rn), and generalized quasi-Banach spaces Bγ for
γ ∈ (0, 1]. In Section 3 we state the main results: the atomic decompositions
(Theorem 3.1), the duality (Theorem 3.2), the class of pointwise multipliers
for BMO(Rn) (Theorem 3.3), the finite atomic decomposition (Theorem 3.4),
and the criterion for boundedness of sublinear operators in Hϕ(Rn) (Theorem
3.5). In Section 4 we present and prove the basic properties of the growth
functions ϕ since they provide the tools for further work with this type of
functions. In Section 5 we generalize the Calderón-Zygmund decomposition
associated to the grand maximal function on Rn in the setting of the spaces of
Musielak-Orlicz type. Applying this, we further prove that for any admissible
triplet (ϕ, q, s), Hϕ(Rn) = Hϕ,q,s

at (Rn) with equivalent norms (Theorem 3.1).
In Section 6 we prove the dual theorem. By Theorem 2 in [8], one has to be
careful with the argument ”the operator T is uniformly bounded in Hp

w(R
n)

(Hϕ(Rn) here ϕ(x, t) = w(x).tp in our context) on w-(p,∞)-atoms, and hence
it extends to a bounded operator on Hp

w(R
n)” which has been used in [18] and

[10]. In Section 7 we introduce log-atoms and consider the particular case of
H log(Rn). Finally, in Section 8 we prove that ‖ · ‖Hϕ,q,s

fin
and ‖ · ‖Hϕ are equiva-

lent quasi-norms on Hϕ,q,s
fin (Rn) when q <∞ and on Hϕ,q,s

fin (Rn) ∩ C(Rn) when
q = ∞, here and in what follows C(Rn) denotes the set of all continuous func-
tions. Then, we consider generalized quasi-Banach spaces which generalize the
notion of quasi-Banach spaces in [50] (see also [9]), and obtain criterious for
boundedness of sublinear operators in Hϕ(Rn).

Throughout the whole paper, C denotes a positive geometric constant which
is independent of the main parameters, but may change from line to line. The
symbol f ≈ g means that f is equivalent to g (i.e. C−1f ≤ g ≤ Cf), and [·]
denotes the integer function. By X∗ we denote the dual of the (quasi-)Banach
space X . In Rn, we denote by B = B(x, r) an open ball with center x and
radius r > 0. For any measurable set E, we denote by χE its characteristic
function, by |E| its Lebesgue measure, and by Ec the set Rn \E.

Acknowledgements. The author would like to thank Prof. Aline Bonami
and Prof. Sandrine Grellier for many helpful suggestions and discussions. He
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2. Notation and definitions

2.1. Musielak-Orlicz-type functions. First let us recall notations for Orlicz
functions.

A function φ : [0,∞) → [0,∞) is called Orlicz if it is nondecreasing and
φ(0) = 0; φ(t) > 0, t > 0; limt→∞ φ(t) = ∞. An Orlicz function φ is said to
be of lower type (resp., upper type) p, p ∈ (−∞,∞), if there exists a positive
constant C so that

φ(st) ≤ Cspφ(t),

for all t ≥ 0 and s ∈ (0, 1) (resp., s ∈ [1,∞)). One say that φ is of positive
lower type (resp., finite upper type) if it is of lower type (resp., upper type) p
for some p > 0 (resp., p finite).

Obviously, if φ is both of lower type p1 and of upper type p2, then p1 ≤ p2.
Moreover, if φ is of lower type (resp., upper type) p then it is also of lower
type (resp., upper) p̃ for −∞ < p̃ < p (resp., p < p̃ <∞). We thus write

i(φ) := sup{p ∈ (−∞,∞) : φ is of lower type p}

I(φ) := inf{p ∈ (−∞,∞) : φ is of upper type p}

to denote the critical lower type and the critical upper type of the function φ.
Let us generalize these notions to functions ϕ : Rn × [0,∞) → [0,∞).
Given a function ϕ : Rn × [0,∞) → [0,∞) so that for any x ∈ Rn, ϕ(x, ·) is

Orlicz. We say that ϕ is of uniformly lower type (resp., upper type) p if there
exists a positive constant C so that

(2.1) ϕ(x, st) ≤ Cspϕ(x, t),

for all x ∈ Rn and t ≥ 0, s ∈ (0, 1) (resp., s ∈ [1,∞)). We say that ϕ is
of positive uniformly lower type (resp., finite uniform upper type) if it is of
uniformly lower type (resp., uniform upper type) p for some p > 0 (resp., p
finite), and denote

i(ϕ) := sup{p ∈ (−∞,∞) : ϕ is of uniformly lower type p}

I(ϕ) := inf{p ∈ (−∞,∞) : ϕ is of uniformly upper type p}.

We next need to recall notations for Muckenhoupt weights.
Let 1 ≤ q <∞. A nonnegative locally integrable function w belongs to the

Muckenhoupt class Aq, say w ∈ Aq, if there exists a positive constant C so
that

1

|B|

∫

B

w(x)dx
( 1

|B|

∫

B

(w(x))−1/(q−1)dx
)q−1

≤ C, if 1 < q <∞,



NEW HARDY SPACES OF MUSIELAK-ORLICZ TYPE 7

and
1

|B|

∫

B

w(x)dx ≤ C ess-inf
x∈B

w(x), if q = 1,

for all balls B in Rn. We say that w ∈ A∞ if w ∈ Aq for some q ∈ [1,∞).
It is well known that w ∈ Aq, 1 ≤ q < ∞, implies w ∈ Ar for all r > q.

Also, if w ∈ Aq, 1 < q < ∞, then w ∈ Ar for some r ∈ [1, q). One thus write
qw := inf{q ≥ 1 : w ∈ Aq} to denote the critical index of w.

Now, let us generalize these notions to functions ϕ : Rn × [0,∞) → [0,∞).
Let ϕ : Rn × [0,∞) → C be so that x 7→ ϕ(x, t) is measurable for all

t ∈ [0,∞). We say that ϕ(·, t) is uniformly locally integrable if for all compact
set K in Rn, the following holds

∫

K

sup
t>0

|ϕ(x, t)|∫
K
|ϕ(y, t)|dy

dx <∞

whenever the integral exists. A simple example for such uniformly locally
integrable functions is ϕ(x, t) = w(x)Φ(t) with w a locally integrable function
on Rn and Φ an arbitrary function on [0,∞). Our interesting examples are
uniformly locally integrable functions ϕ(x, t) = tp

(log(e+|x|)+log(e+tp))p
, 0 < p ≤ 1,

since they arise naturally in the study of pointwise product of functions in
Hp(Rn) with functions in BMO(Rn) (cf. [6]).

Given ϕ : Rn × [0,∞) → [0,∞) is a uniformly locally integrable function.
We say that the function ϕ(·, t) satisfies the uniformly Muckenhoupt condition
Aq, say ϕ ∈ Aq, for some 1 ≤ q < ∞ if there exists a positive constant C so
that

1

|B|

∫

B

ϕ(x, t)dx.
( 1

|B|

∫

B

ϕ(x, t)−1/(q−1)dx
)q−1

≤ C, if 1 < q <∞,

and
1

|B|

∫

B

ϕ(x, t)dx ≤ C ess-inf
x∈B

ϕ(x, t), if q = 1,

for all t > 0 and balls B in Rn. We also say that ϕ ∈ A∞ if ϕ ∈ Aq for some
q ∈ [1,∞), and denote

q(ϕ) := inf{q ≥ 1 : ϕ ∈ Aq}.

Now, we are able to introduce the growth functions which are the basis for
our new Hardy spaces.

Definition 2.1. We say that ϕ : Rn× [0,∞) → [0,∞) is a growth function

if the following conditions are satisfied.

(1) The function ϕ is a Musielak-Orlicz function that is
(a) the function ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function for all

x ∈ Rn,
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(b) the function ϕ(·, t) is a Lebesgue measurable function for all t ∈
[0,∞).

(2) The function ϕ belongs to A∞.
(3) The function ϕ is of positive uniformly lower type and of uniformly

upper type 1.

For ϕ a growth function, we denote m(ϕ) :=
[
n
(

q(ϕ)
i(ϕ)

− 1
)]

.

Clearly, ϕ(x, t) = w(x)Φ(t) is a growth function if w ∈ A∞ and Φ is of
positive lower type and of upper type 1. Of course, there exists growth func-
tions which are not of that form for instance ϕ(x, t) = tα

[log(e+|x|)]β+[log(e+t)]γ
for

α ∈ (0, 1]; β, γ ∈ (0,∞). More precisely, ϕ ∈ A1 and ϕ is of uniformly upper
type α with i(ϕ) = α. In this paper, we are especially interested in the growth
functions ϕ(x, t) = tp

(log(e+|x|)+log(e+tp))p
, 0 < p ≤ 1, since the Hardy spaces of

Musielak-Orlicz type Hϕ(Rn) arise naturally in the study of pointwise prod-
uct of functions in Hp(Rn) with functions in BMO(Rn) (see also [5] in the
setting of holomorphic functions in convex domains of finite type or strictly
pseudoconvex domains in Cn).

2.2. Hardy spaces of Musielak-Orlicz type. Throughout the whole paper,
we always assume that ϕ is a growth function.

Let us now introduce the Musielak-Orlicz-type spaces.
The Musielak-Orlicz-type space Lϕ(Rn) is the set of all measurable functions

f such that
∫
Rn ϕ(x, |f(x)|/λ)dx < ∞ for some λ > 0, with Luxembourg

(quasi-)norm

‖f‖Lϕ := inf
{
λ > 0 :

∫

Rn

ϕ(x, |f(x)|/λ)dx ≤ 1
}
.

As usual, S(Rn) denote the Schwartz class of test functions on Rn and S ′(Rn)
the space of tempered distributions (or distributions for brevity). For m ∈ N,
we define

Sm(R
n) =

{
φ ∈ S(Rn) : ‖φ‖m = sup

x∈Rn,|α|≤m+1

(1 + |x|)(m+2)(n+1)|∂αxφ(x)| ≤ 1
}
.

For each distribution f , we define the nontangential grand maximal function
f ∗
m of f by

f ∗
m(x) = sup

φ∈Sm(Rn)

sup
|y−x|<t

|f ∗ φt(y)|, x ∈ R
n.

When m = m(ϕ) we write f ∗ instead of f ∗
m(ϕ).

Definition 2.2. The Hardy space of Musielak-Orlicz type Hϕ(Rn) is the space
of all distributions f such that f ∗ ∈ Lϕ(Rn) with the (quasi-)norm

‖f‖Hϕ := ‖f ∗‖Lϕ .
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Observe that, when ϕ(x, t) = w(x)Φ(t) with w a Muckenhoupt weight and Φ
an Orlicz function, our Hardy spaces are weighted Hardy-Orlicz spaces which
include the classical Hardy-Orlicz spaces of Janson [29] (w ≡ 1 in this context)
and the classical weighted Hardy spaces of Garćıa-Cuerva [18], Strömberg and
Torchinsky [47] (Φ(t) ≡ tp in this context), see also [38, 10, 19] . Recently,
the weighted anisotropic Hardy spaces (see [9]) and the Hardy-Orlicz spaces
associated with operators (see [30]) have also been studied.

Next, to introduce the atomic Hardy spaces of Musielak-Orlicz type below,
we need the following new spaces.

Definition 2.3. For each ball B in Rn, we denote Lq
ϕ(B), 1 ≤ q ≤ ∞, the set

of all measurable functions f on Rn supported in B such that

‖f‖Lq
ϕ(B) :=




sup
t>0

(∫
Rn

|f(x)|qϕ(x,t)dx

ϕ(B,t)

)1/q
<∞ , 1 ≤ q <∞,

‖f‖L∞ <∞ , q = ∞,

here and in the future ϕ(B, t) :=
∫
B
ϕ(x, t)dx.

Then, it is straightforward to verify that (Lq
ϕ(B), ‖ · ‖Lq

ϕ(B)) is a Banach
space.

Now, we are able to introduce the atomic Hardy spaces of Musielak-Orlicz
type.

Definition 2.4. A triplet (ϕ, q, s) is called admissible, if q ∈ (q(ϕ),∞] and
s ∈ N satisfies s ≥ m(ϕ). A measurable function a is a (ϕ, q, s)-atom if it
satisfies the following three conditions

i) a ∈ Lq
ϕ(B) for some ball B,

ii) ‖a‖Lq
ϕ(B) ≤ ‖χB‖

−1
Lϕ,

iii)
∫
Rn a(x)x

αdx = 0 for any |α| ≤ s.

In this setting we define the atomic Hardy space of Musielak-Orlicz type
Hϕ,q,s

at (Rn) as those distributions f ∈ S ′(Rn) that can be represented as a sum
of multiples of (ϕ, q, s)-atoms, that is,

f =
∑

j

bj in the sense of S ′(Rn),

where bj
,s are multiples of (ϕ, q, s)-atoms supported in the balls Bj

,s, with the
property ∑

j

ϕ(Bj, ‖bj‖Lq
ϕ(Bj)) <∞.

We introduce a (quasi-)norm in Hϕ,q,s
at (Rn). Given a sequence of multiples of

(ϕ, q, s)-atoms, {bj}j , we denote

Λq({bj}) = inf
{
λ > 0 :

∑

j

ϕ
(
Bj,

‖bj‖Lq
ϕ(Bj)

λ

)
≤ 1
}
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and define

‖f‖Hϕ,q,s
at

= inf
{
Λq({bj}) : f =

∑

j

bj in the sense of S ′(Rn)
}
.

Let (ϕ, q, s) be an admissible triplet. We denote Hϕ,q,s
fin (Rn) the vector space

of all finite linear combinations of (ϕ, q, s)-atoms, that is,

f =
k∑

j=1

bj ,

where bj ’s are multiples of (ϕ, q, s)-atoms supported in balls Bj ’s. Then, the
norm of f in Hϕ,q,s

fin (Rn) is defined by

‖f‖Hϕ,q,s
fin

= inf
{
Λq({bj}

k
j=1) : f =

k∑

j=1

bj

}
.

Obviously, for any admissible triplet (ϕ, q, s), the set Hϕ,q,s
fin (Rn) is dense in

Hϕ,q,s
at (Rn) with respect to the quasi-norm ‖ · ‖Hϕ,q,s

at
.

We should point out that the theory of atomic Hardy-Orlicz spaces have
been first introduced by Viviani [49] in the setting of spaces of homogeneous
type. Later, Serra [44] generalized it to the context of the Euclidean space
Rn and obtained the molecular characterization. In the particular case, when
ϕ(x, t) ≡ Φ(t) the space Hϕ,q,s

at (Rn) is the space considered in [44]. We also
remark that when ϕ(x, t) ≡ w(x).tp, 0 < p ≤ 1, w a Muckenhoupt weight, the
space Hϕ,q,s

at (Rn) is just the classical weighted atomic Hardy space Hp,q,s
w (Rn)

which has been considered by Garćıa-Cuerva [18], Strömberg and Torchinsky
[47].

2.3. BMO-Musielak-Orlicz-type spaces. We also need BMO type spaces,
which will be in duality of the Hardy spaces of Musielak-Orlicz type defined
above. A function f ∈ L1

loc(R
n) is said to belong to BMOϕ(Rn) if

‖f‖BMOϕ := sup
B

1

‖χB‖Lϕ

∫

B

|f(x)− fB|dx <∞,

where fB = 1
|B|

∫
B
f(x)dx and the supremum is taken over all balls B in Rn.

Our typical example is BMOϕ(Rn), called BMOlog(Rn), related to ϕ(x, t) =
t

log(e+|x|)+log(e+t)
. Clearly, when ϕ(x, t) ≡ t, then BMOϕ(Rn) is just the well-

known BMO(Rn) of John and Nirenberg. We remark that when ϕ(x, t) =
w(x).t with w ∈ A(n+1)/n, then BMOϕ(Rn) is just BMOw(R

n) was first in-
troduced by Muckenhoupt and Wheeden [37, 38]. There, they proved that
BMOw(R

n) is the dual of H1
w(R

n) (see also [10]).
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2.4. Quasi-Banach valued sublinear operators. Recall that a quasi-Banach
space B is a vector space endowed with a quasi-norm ‖ · ‖B which is nonneg-
ative, non-degenerate (i.e., ‖f‖B = 0 if and only if f = 0), homogeneous, and
obeys the quasi-triangle inequality, i.e., there exists a positive constant κ no
less than 1 such that for all f, g ∈ B, we have ‖f + g‖B ≤ κ(‖f‖B + ‖g‖B).

Definition 2.5. Let γ ∈ (0, 1]. A quasi-Banach space Bγ with the quasi-norm
‖ · ‖Bγ

is said to be a γ-quasi-Banach space if there exists a positive constant
κ no less than 1 such that for all fj ∈ Bγ , j = 1, 2, ..., m, we have

∥∥∥
m∑

j=1

fj

∥∥∥
γ

Bγ

≤ κ
m∑

j=1

‖fj‖
γ
Bγ
.

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-
Banach spaces ℓp, Lp

w(R
n) and Hp

w(R
n) with p ∈ (0, 1] are typical p-quasi-

Banach spaces. Also, when ϕ is of uniformly lower type p ∈ (0, 1], the space
Hϕ(Rn) is a p-quasi-Banach space.

For any given γ-quasi-Banach space Bγ with γ ∈ (0, 1] and a linear space
Y , an operator T from Y to Bγ is called Bγ-sublinear if there exists a positive
constant κ no less than 1 such that for all fj ∈ Y , λj ∈ C, j = 1, ..., m, we have

∥∥∥T
( m∑

j=1

λjfj

)∥∥∥
γ

Bγ

≤ κ

m∑

j=1

|λj|
γ‖T (fj)‖

γ
Bγ
.

We remark that if T is linear, then T is Bγ-sublinear. We should point out
that if the constant κ, in Definition 2.5, equal 1, then we obtain the notion of
γ-quasi-Banach spaces introduced in [50] (see also [9]).

3. Statement of the results

Our main theorems are the following.

Theorem 3.1. Let (ϕ, q, s) be admissible. Then Hϕ(Rn) = Hϕ,q,s
at (Rn) with

equivalent norms.

Denote by L∞
0 (Rn) the set of all bounded functions with compact support

and zero average. As a consequence of Theorem 3.1, we have the following

Lemma 3.1. Let ϕ be a growth function satisfying nq(ϕ) < (n+1)i(ϕ). Then,
L∞
0 (Rn) is dense in Hϕ(Rn).

We now can present our dual theorem as follows

Theorem 3.2. Let ϕ be a growth function satisfying nq(ϕ) < (n + 1)i(ϕ).
Then, the dual space of Hϕ(Rn) is BMOϕ(Rn) in the following sense

i) Suppose b ∈ BMOϕ(Rn). Then the linear functional Lb : f → Lb(f) :=∫
Rn f(x)b(x)dx, initially defined for L

∞
0 (Rn), has a bounded extension to Hϕ(Rn).

ii) Conversely, every continuous linear functional on Hϕ(Rn) arises as the
above with a unique element b of BMOϕ(Rn). Moreover ‖b‖BMOϕ ≈ ‖Lb‖(Hϕ)∗ .
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Next result concerns the class of pointwise multipliers for BMO(Rn).

Theorem 3.3. The class of pointwise multipliers for BMO(Rn) is the dual
of L1(Rn)+H log(Rn) where H log(Rn) is a Hardy space of Musielak-Orlicz type
related to the Musielak-Orlicz function θ(x, t) = t

log(e+|x|)+log(e+t)
.

In order to obtain the finite atomic decomposition, we need the notion of
uniformly locally dominated convergence condition. A growth function ϕ is
said to be satisfy uniformly locally dominated convergence condition if the
following holds:

Given K compact set in R
n. Let {fm}m≥1 be a sequence of measurable

functions s.t fm(x) tends to f(x) a.e x ∈ Rn. If there exists a nonnegative

measurable function g s.t |fm(x)| ≤ g(x) and supt>0

∫
K
g(x) ϕ(x,t)∫

K
ϕ(y,t)dy

dx < ∞,

then supt>0

∫
K
|fm(x)− f(x)| ϕ(x,t)∫

K
ϕ(y,t)dy

dx tends 0.

We remark that the growth functions ϕ(x, t) = w(x)Φ(t) and ϕ(x, t) =
tp

(log(e+|x|)+log(e+tp))p
, 0 < p ≤ 1, satisfy the uniformly locally dominated conver-

gence condition.

Theorem 3.4. Let ϕ be a growth function satisfying uniformly locally domi-
nated convergence condition, and (ϕ, q, s) be an admissible triplet.

i) If q ∈ (q(ϕ),∞) then ‖ · ‖Hϕ,q,s
fin

and ‖ · ‖Hϕ are equivalent quasi-norms on

Hϕ,q,s
fin (Rn).
ii) ‖ · ‖Hϕ,∞,s

fin
and ‖ · ‖Hϕ are equivalent quasi-norms on Hϕ,∞,s

fin (Rn)∩C(Rn).

As an application, we obtain criterions for boundedness of quasi-Banach
valued sublinear operators in Hϕ(Rn).

Theorem 3.5. Let ϕ be a growth function satisfying uniformly locally domi-
nated convergence condition, (ϕ, q, s) be an admissible triplet, ϕ be of uniformly
upper type γ ∈ (0, 1], and Bγ be a quasi-Banach space. Suppose one of the fol-
lowing holds:

i) q ∈ (q(ϕ),∞), and T : Hϕ,q,s
fin (Rn) → Bγ is a Bγ-sublinear operator such

that

A = sup{‖Ta‖Bγ
: a is a (ϕ, q, s)−atom} <∞;

ii) T is a Bγ-sublinear operator defined on continuous (ϕ,∞, s)-atoms such
that

A = sup{‖Ta‖Bγ
: a is a continuous (ϕ,∞, s)−atom} <∞.

Then there exists a unique bounded Bγ-sublinear operator T̃ from Hϕ(Rn) to
Bγ which extends T .

4. Some basic lemmas on growth functions

We start by the following lemma.
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Lemma 4.1. i) Let ϕ be a growth function. Then ϕ is uniformly σ-quasi-
subadditive on R

n × [0,∞), i.e. there exists a constant C > 0 such that

ϕ(x,
∞∑

j=1

tj) ≤ C
∞∑

j=1

ϕ(x, tj),

for all (x, tj) ∈ R
n × [0,∞), j = 1, 2, ...

ii) Let ϕ be a growth function and ϕ̃(x, t) :=
∫ t

0
ϕ(x,s)

s
ds for (x, t) ∈ Rn ×

[0,∞). Then ϕ̃ is a growth function equivalent to ϕ, moreover, ϕ̃(x, ·) is
continuous and strictly increasing.

iii) A Musielak-Orlicz function ϕ is a growth function if and only if ϕ is of
positive uniformly lower type and uniformly quasi-concave, i.e. there exists a
constant C > 0 such that

λϕ(x, t) + (1− λ)ϕ(x, s) ≤ Cϕ(x, λt+ (1− λ)s),

for all x ∈ R
n, t, s ∈ [0,∞) and λ ∈ [0, 1].

Proof. i) We just need to consider the case when
∑∞

j=1 tj > 0. Then it follows
from the fact that

tk∑∞
j=1 tj

ϕ(x,

∞∑

j=1

tj) ≤ Cϕ(x, tk)

by ϕ is of uniformly upper type 1.
ii) Since ϕ is a growth function, it is easy to see that ϕ̃(x, ·) is continuous and

strictly increasing. Moreover, there exists p > 0 such that ϕ is of uniformly
lower type p. Hence,

(4.1) ϕ̃(x, t) =

t∫

0

ϕ(x, s)

s
ds ≤ C

ϕ(x, t)

tp

t∫

0

1

s1−p
ds ≤ Cϕ(x, t).

On the other hand, since ϕ is of uniformly upper type 1, we get

(4.2) ϕ̃(x, t) =

t∫

0

ϕ(x, s)

s
ds ≥ C−1

t∫

0

ϕ(x, t)

t
ds ≥ C−1ϕ(x, t).

Combining (4.1) and (4.2), we obtain ϕ̃ ≈ ϕ, and thus ϕ̃ is a growth function.

iii) Suppose ϕ is a growth function. By (ii), ϕ is equivalent to ˜̃ϕ. On the

other hand, ∂ ˜̃ϕ
∂t
(x, t) = ϕ̃(x,t)

t
is uniformly quasi-decreasing in t. Hence, ˜̃ϕ is

uniformly quasi-concave, and thus is ϕ.
The converse is easy by taking s = 0. We omit the details. �

Remark 4.1. Let us observe that the results stated in Section 3 are invariant
under change of equivalent growth functions. By Lemm 4.1, in the future,
we always consider a growth function ϕ of positive uniformly lower type, of
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uniformly upper type 1 (or, equivalently, uniformly quasi-concave), and so that
ϕ(x, ·) is continuous and strictly increasing for all x ∈ R

n.

Lemma 4.2. Let ϕ be a growth function. Then

i)

∫

Rn

ϕ
(
x,

|f(x)|

‖f‖Lϕ

)
dx = 1 for all f ∈ Lϕ(Rn) \ {0}.

ii) limk→∞ ‖fk‖Lϕ = 0 if and only if limk→∞

∫
Rn ϕ(x, |fk(x)|)dx = 0.

Proof. Statement i) follows from the fact that the function

ϑ(t) :=

∫

Rn

ϕ(x, t|f(x)|)dx,

t ∈ [0,∞), is continuous by the dominated convergence theorem since ϕ(x, ·)
is continuous.

Statement ii) follows from the fact that

‖f‖Lϕ ≤ Cmax
{∫

Rn

ϕ(x, |f(x)|)dx,
(∫

Rn

ϕ(x, |f(x)|)dx
)1/p}

,

and ∫

Rn

ϕ(x, |f(x)|)dx ≤ Cmax
{
‖f‖Lϕ, (‖f‖Lϕ)p

}

for some p ∈ (0, i(ϕ)). �

Lemma 4.3. Given c is a positive constant. Then, there exists a constant
C > 0 such that

i) The inequality
∫
Rn ϕ

(
x, |f(x)|

λ

)
dx ≤ c, for λ > 0, implies

‖f‖Lϕ ≤ Cλ.

ii) The inequality
∑

j ϕ
(
Bj ,

tj
λ

)
≤ c, for λ > 0, implies

inf
{
α > 0 :

∑

j

ϕ
(
Bj ,

tj
α

)
≤ 1
}
≤ Cλ.

Proof. The proofs are simple since we may take C = (1 + c.Cp)
1/p, for some

p ∈ (0, i(ϕ)), where Cp is such that (2.1) holds. �

Lemma 4.4. Let (ϕ, q, s) be an admissible triplet. Then there exists a positive
constant C such that

∞∑

j=1

‖bj‖Lq
ϕ(Bj)‖χBj

‖Lϕ ≤ CΛq({bj}),

for all f =
∑∞

j=1 bj ∈ Hϕ,q,s
at (Rn) where bj’s are multiples of (ϕ, q, s)-atoms

supported in balls Bj’s.
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Proof. Since ϕ is of uniformly upper type 1, there exists a positive constant
c > 0 such that

ϕ
(
x,

‖bi‖Lq
ϕ(Bi)∑∞

j=1 ‖bj‖Lq
ϕ(Bj)‖χBj

‖Lϕ

)
≥ c

‖bi‖Lq
ϕ(Bi)‖χBi

‖Lϕ

∑∞
j=1 ‖bj‖Lq

ϕ(Bj)‖χBj
‖Lϕ

ϕ
(
x,

1

‖χBi
‖Lϕ

)

for all x ∈ R
n, i ≥ 1. Hence, for all i ≥ 1,

ϕ
(
Bi,

‖bi‖Lq
ϕ(Bi)∑∞

j=1 ‖bj‖Lq
ϕ(Bj)‖χBj

‖Lϕ

)
≥ c

‖bi‖Lq
ϕ(Bi)‖χBi

‖Lϕ

∑∞
j=1 ‖bj‖Lq

ϕ(Bj)‖χBj
‖Lϕ

since
∫
Bi
ϕ
(
x, 1

‖χBi
‖Lϕ

)
dx = 1 by Lemma 4.2. It follows that

∞∑

i=1

ϕ
(
Bi,

‖bi‖Lq
ϕ(Bi)∑∞

j=1 ‖bj‖Lq
ϕ(Bj)‖χBj

‖Lϕ

)
≥ c.

We deduce from the above that
∞∑

j=1

‖bj‖Lq
ϕ(Bj)‖χBj

‖Lϕ ≤ CΛq({bj}),

with C = (Cp/c)
1/p for some p ∈ (0, i(ϕ)), where Cp is such that (2.1) holds.

�

Lemma 4.5. Let ϕ ∈ Aq, 1 < q < ∞. Then, there exists a positive constant
C such that

i) For all ball B(x0, r), λ > 0, and t ∈ [0,∞), we have

ϕ(B(x0, λr), t) ≤ Cλnqϕ(B(x0, r), t).

ii) For all ball B(x0, r) and t ∈ [0,∞), we have
∫

Bc

ϕ(x, t)

|x− x0|nq
dx ≤ C

ϕ(B, t)

rnq
.

iii) For all ball B, f measurable and t ∈ (0,∞), we have
( 1

|B|

∫

B

|f(x)|
)q

≤ C
1

ϕ(B, t)

∫

B

|f(x)|qϕ(x, t)dx.

iii) For all f measurable and t ∈ [0,∞), we have
∫

Rn

Mf(x)qϕ(x, t)dx ≤ C

∫

Rn

|f(x)|qϕ(x, t)dx,

where M is the classical Hardy-Littlewood maximal operator defined by

Mf(x) = sup
x∈B−ball

1

|B|

∫

B

|f(y)|dy , x ∈ R
n.
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In the setting ϕ(x, t) = w(x)Φ(t), w ∈ A∞ and Φ a Orlicz function, the
above lemma is well-known as a classical result in the theory of Muckenhoupt
weight (cf. [20]). Since ϕ satisfies uniformly Muckenhoupt condition, the
proof of Lemma 4.5 is a slight modification of the classical result. We omit the
details.

5. Atomic decompositions

The purpose of this section is prove the atomic decomposition theorem (The-
orem 3.1). The construction is by now standard, but the estimates require the
preliminary lemmas. For the reader convenience, we give all steps of the proof,
even if only the generalization to our framework is new.

We first introduce a class of Hardy spaces that the Hardy space of Musielak-
Orlicz type Hϕ(Rn) containing as a particular case.

Definition 5.1. Form ∈ N, we denote by Hϕ
m(R

n) the space of all distributions
f such that f ∗

m ∈ Lϕ(Rn) with the (quasi-)norm

‖f‖Hϕ
m
:= ‖f ∗

m‖Lϕ.

Clearly, Hϕ(Rn) is a special case associated with m = m(ϕ).

5.1. Some basic properties concerning Hϕ
m(R

n) and Hϕ,q,s
at (Rn). We start

by the following proposition.

Proposition 5.1. For m ∈ N, we have Hϕ
m(R

n) ⊂ S ′(Rn) and the inclusion
is continuous.

Proof. Let f ∈ Hϕ
m(R

n). For any φ ∈ S(Rn), and x ∈ B(0, 1), we write

〈f, φ〉 = f ∗ φ̃(0) = f ∗ ψ(x),

where ψ(y) = φ̃(y − x) = φ(x− y) for all y ∈ Rn.

It is easy to verify that sup
x∈B(0,1),y∈Rn

1+|y|
1+|y−x|

≤ 2. Consequently,

| 〈f, φ〉 | = |f ∗ ψ(x)| ≤ 2(m+2)(n+1)‖φ‖Sm
inf

x∈B(0,1)
f ∗
m(x)

≤ 2(m+2)(n+1)‖φ‖Sm
‖χB(0,1)‖

−1
Lϕ‖f‖Hϕ

m
.

This implies that f ∈ S ′(Rn) and the inclusion is continuous. �

The following proposition gives the completeness of Hϕ
m(R

n).

Proposition 5.2. The space Hϕ
m(R

n) is complete.

Proof. In order to prove the completeness of Hϕ
m(R

n), it suffices to prove that
for every sequence {fj}j≥1 with ‖fj‖Hϕ

m
≤ 2−j for any j ≥ 1, the series

∑
j fj
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converges in Hϕ
m(R

n). Let us now take p > 0 such that ϕ is of uniformly lower
type p. Then, for any j ≥ 1,

(5.1)

∫

Rn

ϕ(x, (fj)
∗
m(x))dx ≤ C(2−j)p

∫

Rn

ϕ
(
x,

(fj)
∗
m(x)

2−j

)
dx ≤ C2−jp.

Since {
∑j

i=1 fi}j≥1 is a Cauchy sequence in Hϕ
m(R

n), by Proposition 5.1

and the completeness of S ′(Rn), {
∑j

i=1 fi}j≥1 is also a Cauchy sequence in
S ′(Rn) and thus converges to some f ∈ S ′(Rn). This implies that, for every
φ ∈ S(Rn), the series

∑
j fj ∗ φ converges to f ∗ φ pointwisely. Therefore

f ∗
m(x) ≤

∑
j(fj)

∗
m(x) and (f −

∑k
j=1 fj)

∗
m(x) ≤

∑
j≥k+1(fj)

∗
m(x) for all x ∈

Rn, k ≥ 1. Combining this and (5.1), we obtain

∫

Rn

ϕ(x, (f −
k∑

j=1

fj)
∗
m(x))dx ≤ C

∑

j≥k+1

∫

Rn

ϕ(x, (fj)
∗
m(x))dx

≤ C
∑

j≥k+1

2−jp → 0,

as k → ∞, here we used Lemma 4.1. Thus, the series
∑

j fj converges to f in

Hϕ
m(R

n) by Lemma 4.2. This completes the proof. �

Corollary 5.1. The Hardy space of Musielak-Orlicz type Hϕ(Rn) is complete.

The following lemma and its corollary show that (ϕ, q, s)-atoms are inHϕ(Rn).
Furthermore, it is the necessary estimate for proving thatHϕ,q,s

at (Rn) ⊂ Hϕ(Rn)
and the inclusion is continuous, see Theorem 5.1 below.

Lemma 5.1. Let (ϕ, q, s) be an admissible triplet and m ≥ s. Then, there
exists a constant C = C(ϕ, q, s,m) such that

∫

Rn

ϕ(x, f ∗
m(x))dx ≤ Cϕ(B, ‖f‖Lq

ϕ(B)),

for all f multiples of (ϕ, q, s)-atom associated with ball B = B(x0, r).

Proof. The case q = ∞ is easy and will be omitted. We just consider q ∈
(q(ϕ),∞). Now let us set B̃ = B(x0, 9r), and write

∫

Rn

ϕ(x, f ∗
m(x))dx =

∫

B̃

ϕ(x, f ∗
m(x))dx+

∫

(B̃)c

ϕ(x, f ∗
m(x))dx

= I + II.
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Since ϕ is of uniformly upper type 1, by Hölder inequality, we get

I =

∫

B̃

ϕ(x, f ∗
m(x))dx ≤ C

∫

B̃

( f ∗
m(x)

‖f‖Lq
ϕ(B)

+ 1
)
ϕ(x, ‖f‖Lq

ϕ(B))dx

≤ Cϕ(B̃, ‖f‖Lq
ϕ(B))

+ C
1

‖f‖Lq
ϕ(B)

(∫

B̃

|f ∗
m(x)|

qϕ(x, ‖f‖Lq
ϕ(B))dx

)1/q
ϕ(B̃, ‖f‖Lq

ϕ(B))
(q−1)/q

≤ Cϕ(B, ‖f‖Lq
ϕ(B)) + C

1

‖f‖Lq
ϕ(B)

‖f‖Lq
ϕ(B̃)ϕ(B̃, ‖f‖Lq

ϕ(B))

≤ Cϕ(B, ‖f‖Lq
ϕ(B)).

We used the fact f ∗
m(x) ≤ C(m)Mf(x) and Lemma 4.5.

To estimate II, we note that since m ≥ s, there exists a constant C = C(m)
such that

∣∣∣φ
(x− y

t

)
−
∑

|α|≤s

∂αφ(x−x0

t
)

α!

(x0 − y

t

)α∣∣∣ ≤ Ctn
|y − x0|

s+1

|x− x0|n+s+1

for all φ ∈ Sm(R
n), t > 0, x ∈ (B̃)c, y ∈ B. Therefore

|f ∗ φt(x)| =
1

tn

∣∣∣
∫

B

f(y)
[
φ
(x− y

t

)
−
∑

|α|≤s

∂αφ(x−x0

t
)

α!

(x0 − y

t

)α]
dy
∣∣∣

≤ C

∫

B

|f(y)|
|y − x0|

s+1

|x− x0|n+s+1
dy

≤ C
rs+1

|x− x0|n+s+1

(∫

B

|f(y)|qϕ(y, λ)dy
)1/q( ∫

B

[ϕ(y, λ)]−1/(q−1)dy
)(q−1)/q

≤ C‖f‖Lq
ϕ(B)

( r

|x− x0|

)n+s+1

.

For any λ > 0, we used that
∫
B
ϕ(y, λ)dy(

∫
B
[ϕ(y, λ)]−1/(q−1)dy)q−1 ≤ C|B|q

since ϕ ∈ Aq. As a consequence, we get

f ∗
m(x) ≤ C(m) sup

φ∈Sm(Rn)

sup
t>0

|f ∗ φt(x)| ≤ C‖f‖Lq
ϕ(B)

( r

|x− x0|

)n+s+1

.
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By s ≥ m(ϕ), there exists p ∈ (0, i(ϕ)) such that (n+ s+1)p > nq(ϕ). Hence,
by Lemma 4.5,

II =

∫

(B̃)c

ϕ(x, f ∗
m(x))dx ≤ C

∫

(B̃)c

( r

|x− x0|

)(n+s+1)p

ϕ(x, ‖f‖Lq
ϕ(B))dx

≤ Cr(n+s+1)p
ϕ(B̃, ‖f‖Lq

ϕ(B))

(9r)(n+s+1)p

≤ Cϕ(B, ‖f‖Lq
ϕ(B)).

This completes the proof. �

Corollary 5.2. There exists a constant C = C(ϕ, q, s) > 0 such that

‖a‖Hϕ ≤ C,

for all (ϕ, q, s)-atom a.

Theorem 5.1. Let (ϕ, q, s) be an admissible triplet and m ≥ s. Then

Hϕ,q,s
at (Rn) ⊂ Hϕ

m(R
n),

moreover, the inclusion is continuous.

Proof. For any 0 6= f ∈ Hϕ,q,s
at (Rn). Let f =

∑
j bj be an atomic decomposition

of f , with supp bj ⊂ Bj, j = 1, 2, ... For all φ ∈ S(Rn), the series
∑

j bj ∗ φ
converges to f ∗φ pointwise since f =

∑
j bj in S ′. Hence f ∗

m(x) ≤
∑

j(bj)
∗
m(x).

By applying Lemma 5.1, we obtain
∫

Rn

ϕ
(
x,

f ∗
m(x)

Λq({bj})

)
dx ≤ C

∑

j

∫

Rn

ϕ
(
x,

(bj)
∗
m(x)

Λq({bj})

)
dx

≤ C
∑

j

ϕ
(
Bj ,

‖bj‖Lq
ϕ(Bj )

Λq({bj})

)

≤ C.

This implies that ‖f‖Hϕ
m

≤ CΛq({bj}) (see Lemma 4.3) for any atomic
decomposition f =

∑
j bj , and thus, ‖f‖Hϕ

m
≤ C‖f‖Hϕ,q,s

at
. �

5.2. Calderón-Zygmund decompositions. Throughout this subsection, we
fix m and s so that m, s ≥ m(ϕ). For a given λ > 0, we set Ω = {x ∈ Rn :
f ∗
m(x) > λ}. Observe that Ω is open. Hence by Whitney’s Lemma , there
exists x1, x2, ... in Ω and r1, r2, ... > 0 such that

(i) Ω = ∪jB(xj , rj),
(ii) the balls B(xj , rj/4), j = 1, 2, ..., are disjoint,
(iii) B(xj , 18rj) ∩ Ωc = ∅, but B(xj , 54rj) ∩ Ωc 6= ∅, for any j = 1, 2, ...,
(iv) there exists L ∈ N (depending only on n) such that no point of Ω lies

in more than L of the balls B(xj , 18rj), j = 1, 2, ...
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We fix once for all, a function θ ∈ C∞
0 (Rn) such that supp θ ⊂ B(0, 2), 0 ≤

θ ≤ 1, θ = 1 on B(0, 1), and set θj(x) = θ((x−xj)/rj), for j=1,2,... Obviously,
supp θj ⊂ B(xj , 2rj), j = 1, 2, ..., and 1 ≤

∑
j θj ≤ L for all x ∈ Ω. Hence if we

set ζj(x) = θj(x)/
∑∞

i=1 θi(x) if x ∈ Ω and ζj(x) = 0 if x ∈ Ωc, j = 1, 2, ..., then
supp ζj ⊂ B(xj , 2rj), 0 ≤ ζj ≤ 1,

∑
j ζj = χΩ, and L

−1 ≤ ζj ≤ 1 on B(xj , rj).

The family {ζj}j forms a smooth partition of unity of Ω. let s ∈ N be some
fixed natural number and Ps(R

n) (or simply Ps) denote the linear space of
polynomials in n variables of degree less than s. For each j, we consider the
inner product 〈P,Q〉j = 1∫

Rn
ζj(x)dx

∫
Rn P (x)Q(x)ζj(x)dx for P,Q ∈ Ps. Then

(Ps, 〈·, ·〉j) is a finite dimensional Hilbert space. Let f ∈ S ′. Since f induces a

linear functional on Ps via Q → 1∫
Rn

ζj(x)dx

∫
Rn f(x)Q(x)ζj(x)dx, by the Riesz

theorem, there exists a unique polynomial Pj ∈ Ps such that for all Q ∈ Ps,
〈Pj, Q〉j = 1∫

Rn
ζj(x)dx

∫
Rn f(x)Q(x)ζj(x)dx. For each j, j = 1, 2, ..., we define

bj = (f − Pj)ζj, and note Bj = B(xj , rj), B̃j = B(xj , 9rj). Then, it is easy to
see that

∫
Rn bj(x)Q(x)dx = 0 for allQ ∈ Ps. It turns out, in the case of interest,

that the series
∑

j bj converges in S ′. In this case, we set g = f −
∑

j bj , and

we call the representation f = g +
∑

j bj a Calderón-Zygmund decomposition
of f of degree s and height λ associated to f ∗

m.

For any j = 1, 2, ..., we denote Bj = B(xj , rj) and B̃j = B(xj , 9rj). Then
we have the following lemma
Lemma A (see [17, Chapter 3]) There are four constant c1, c2, c3, c4, indepen-
dent of f, j, and λ, such that

i)

sup
|α|≤N,x∈Rn

r
|α|
j |∂αζj(x)| ≤ c1.

ii)

sup
x∈Rn

|Pj(x)ζj(x)| ≤ c2λ.

iii)

(bj)
∗
m(x) ≤ c3f

∗
m(x), for all x ∈ B̃j.

iv)

(bj)
∗
m(x) ≤ c4λ(rj/|x− xj |)

n+ms , for all x /∈ B̃j ,

where ms = min{s+ 1, m+ 1}.

Lemma 5.2. For all f ∈ Hϕ
m(R

n), there exists a geometric constant C, inde-
pendent of f, j, and λ, such that,

∫

Rn

ϕ
(
x, (bj)

∗
m(x)

)
dx ≤ C

∫

B̃j

ϕ(x, f ∗
m(x))dx.

Moreover, the series
∑

j bj converges in Hϕ
m(R

n), and
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∫

Rn

ϕ
(
x, (
∑

j

bj)
∗
m(x)

)
dx ≤ C

∫

Ω

ϕ(x, f ∗
m(x))dx.

Proof. As m, s ≥ m(ϕ), ms = min{s + 1, m+ 1} > n(q(ϕ)/i(ϕ) − 1). Hence,
there exist q > q(ϕ) and 0 < p < i(ϕ) such that ms > n(q/p− 1), deduce that
(n+ms)p > nq. Therefore, ϕ ∈ A(n+ms)p/n and ϕ is of uniformly lower type p.
Thus, there exists a positive constant C, independent of f, j, and λ, such that

∫

(B̃j)c

ϕ(x, λ(rj/|x− xj |)
n+ms)dx ≤ C

∫

(B̃j)c

( rj
|x− xj |

)(n+ms)p

ϕ(x, λ)dx

≤ C(rj)
(n+ms)p

ϕ(B̃j, λ)

(9rj)(n+ms)p

≤ C

∫

B̃j

ϕ(x, f ∗
m(x))dx,

since rj/|x− xj | < 1 and f ∗
m > λ on B̃j . Combining this and Lemma A, we

get

∫

Rn

ϕ
(
x, (bj)

∗
m(x)

)
dx ≤ C

[ ∫

B̃j

ϕ(x, f ∗
m(x))dx+

∫

(B̃j)c

ϕ(x, λ(rj/|x− xj |)
n+ms)dx

]

≤ C

∫

B̃j

ϕ(x, f ∗
m(x))dx.

As a consequence of the above estimate, since
∑

j χB̃j
≤ L and Ω = ∪jB̃j, we

obtain
∑

j

∫

Rn

ϕ
(
x, (bj)

∗
m(x)

)
dx ≤ C

∑

j

∫

B̃j

ϕ(x, f ∗
m(x))dx

≤ C

∫

Ω

ϕ(x, f ∗
m(x))dx.

This implies that the series
∑

j bj converges in Hϕ
m(R

n) by completeness of

Hϕ
m(R

n). Moreover,
∫

Rn

ϕ
(
x, (
∑

j

bj)
∗
m(x)

)
dx ≤ C

∫

Ω

ϕ(x, f ∗
m(x))dx.

�
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Let q ∈ [1,∞]. We denote by Lq
ϕ(·,1)(R

n) the usually weighted Lebesgue

space with the Muckenhoupt weight ϕ(x, 1). Then we have the following lemma
(see [9, Lemma 4.8]).
Lemma B. Let q ∈ (q(ϕ),∞]. Assume that f ∈ Lq

ϕ(·,1)(R
n), then the series∑

j bj converges in Lq
ϕ(·,1)(R

n) and there exists a constant C, independent of

f, j, and λ such that ‖
∑

j |bj|‖Lq

ϕ(·,1)
≤ C‖f‖Lq

ϕ(·,1)
.

Remark 5.1. By Lemma B, the series
∑

j |bj|, and thus the series
∑

j bj,
converges a.e on Rn.

Lemma C. (see [17, Lemma 3.19]) Suppose that the series
∑

j bj converges

in S ′(Rn). Then, there exists a positive constant C, independent of f, j, and
λ, such that for all x ∈ R

n,

g∗m(x) ≤ Cλ
∑

j

( rj
|x− xj |+ rj

)n+ms

+ f ∗
m(x)χΩc(x).

Lemma 5.3. For any q ∈ (q(ϕ),∞) and f ∈ Hϕ
m(R

n). Then g∗m ∈ Lq
ϕ(·,1)(R

n),

and there exists a positive constant C, independent of f, j, and λ, such that
∫

Rn

[g∗m(x)]
qϕ(x, 1)dx ≤ Cλq max{1/λ, 1/λp}

∫

Rn

ϕ(x, f ∗
m(x))dx.

Proof. For any j = 1, 2, ... and x ∈ Rn, we have

( rj
|x− xj |+ rj

)n
=

1

|B(xj , |x− xj |+ rj)|

∫

B(xj ,|x−xj|+rj)

χBj
(y)dy ≤ M(χBj

)(x)

since Bj ⊂ B(xj , |x− xj |+ rj).
Therefore, by Lrq

ϕ(·,1)-boundedness of vector-valued maximal functions [1,

Theorem 3.1], where r := (n +ms)/n > 1, we obtain that
∫

Rn

[∑

j

( rj
|x− xj |+ rj

)n+ms

]q
ϕ(x, 1)dx ≤

∫

Rn

[(∑

j

(M(χBj
)(x))r

)1/r]rq
ϕ(x, 1)dx

≤ Cs,q

∫

Rn

[(∑

j

(χBj
(x))r

)1/r]rq
ϕ(x, 1)dx

≤ Cs,qL

∫

Ω

ϕ(x, 1)dx

≤ Cmax{1/λ, 1/λp}

∫

Rn

ϕ(x, f ∗
m(x))dx
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for some p ∈ (0, i(ϕ)) since ϕ ∈ Aq ⊂ Arq and f ∗
m > λ on Ω. Combine this,

Lemma C and Hölder inequality, we obtain
∫

Rn

[g∗m(x)]
qϕ(x, 1)dx ≤ Cλq max{1/λ, 1/λp}

∫

Rn

ϕ(x, f ∗
m(x))dx+ C

∫

Ωc

[f ∗
m(x)]

qϕ(x, 1)dx

≤ Cλq max{1/λ, 1/λp}

∫

Rn

ϕ(x, f ∗
m(x))dx,

since f ∗
m ≤ λ on Ωc, here one used ϕ(x, λ)/λq ≤ Cϕ(x, f ∗

m(x))/[f
∗
m(x)]

q on
Ωc. �

Proposition 5.3. For any q ∈ (q(ϕ),∞) and m ≥ m(ϕ). The subspace
Lq
ϕ(·,1)(R

n) ∩Hϕ
m(R

n) is dense in Hϕ
m(R

n).

Proof. Let f be an arbitrary element in Hϕ
m(R

n). For each λ > 0, let f =
gλ +

∑
j b

λ
j be the Calderon-Zygmund decomposition of f of degree m(ϕ),

and height λ associated with f ∗
m. Then by Lemma 5.2 and Lemma 5.3, gλ ∈

Lq
ϕ(·,1)(R

n) ∩Hϕ
m(R

n), moreover,
∫

Rn

ϕ(x, (gλ − f)∗m(x))dx ≤ C

∫

f∗
m(x)>λ

ϕ(x, f ∗
m(x))dx→ 0,

as λ → ∞. Consequently, ‖gλ − f‖Hϕ
m
→ 0 as λ → ∞ by Lemma 4.2. Thus

Lq
ϕ(·,1)(R

n) ∩Hϕ
m(R

n) is dense in Hϕ
m(R

n). �

5.3. The atomic decompositions Hϕ
m(R

n). Recall that m, s ≥ m(ϕ), and f
is a distribution such that f ∗

m ∈ Lϕ(Rn). For each k ∈ Z, let f = gk+
∑

j b
k
j be

the Calderón-Zygmund decomposition of f of degree s and height 2k associated
with f ∗

m. We shall label all the ingredients in this construction as in subsection
5.2, but with superscript k′s: for example,

Ωk = {x ∈ R
n : f ∗

m(x) > 2k}, bkj = (f − P k
j )ζ

k
j , Bk

j = B(xkj , r
k
j ).

Moreover, for each k ∈ Z, and i, j, let P k+1
i,j be the orthogonal projection of

(f −P k+1
j )ζki onto Ps with respect to the norm associated to ζk+1

j , namely, the
unique element of Ps such that for all Q ∈ Ps,∫

Rn

(f(x)− P k+1
j (x))ζki (x)Q(x)ζ

k+1
j (x)dx =

∫

Rn

P k+1
i,j (x)Q(x)ζk+1

j (x)dx.

For convenience, we set B̂k
j = B(xkj , 2r

k
j ). Then we have the following lemma.

Lemma D. (see [17, Chapter 3])

i) If B̂k+1
j ∩ B̂k

i 6= ∅ the rk+1
j < 4rki and B̂k+1

j ⊂ B(xki , 18r
k
i ).

ii) For each j there are at most L (depending only on n as in last section)
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values of i such that B̂k+1
j ∩ B̂k

i 6= ∅.
iii) There is a constant C > 0, independent of f, i, j, and k, such that

sup
x∈Rn

|P k+1
i,j (x)ζk+1

j (x)| ≤ C2k+1.

iv) For every k ∈ Z,
∑

i(
∑

j P
k+1
i,j ζk+1

j ) = 0, where the series converges point-

wise and in S ′(Rn).
We now give the necessary estimates for proving thatHϕ

m(R
n) ⊂ Hϕ,∞,s

at (Rn),
m ≥ s ≥ m(ϕ), and the inclusion is continuous.

Lemma 5.4. Let f ∈ Hϕ
m(R

n), and for each k ∈ Z, set

Ωk = {x ∈ R
n : f ∗

m(x) > 2k}.

Then for any λ > 0, there exists a constant C, independent of f and λ, such
that

∞∑

k=−∞

ϕ
(
Ωk,

2k

λ

)
≤ C

∫

Rn

ϕ
(
x,
f ∗
m(x)

λ

)
dx.

Proof. Let p ∈ (0, i(ϕ)) and Cp is such that (2.1) holds. We now set N0 =
[(log2Cp)/p] + 1 so that 2N0p > Cp. For each ℓ ∈ N, 0 ≤ ℓ ≤ N0 − 1, we

consider the sequence U ℓ
m =

∑m
k=−m ϕ

(
ΩN0k+ℓ, 2

N0k+ℓ

λ

)
. Obviously, {U ℓ

m}m∈N

is an increasing sequence. Moreover, for any m ∈ N,

U ℓ
m =

m∑

k=−m

ϕ
(
ΩN0(k+1)+ℓ,

2N0k+ℓ

λ

)
+

m∑

k=−m

{
ϕ
(
ΩN0k+ℓ,

2N0k+ℓ

λ

)
− ϕ

(
ΩN0(k+1)+ℓ,

2N0k+ℓ

λ

)}

≤ Cp
1

2N0p

{
U ℓ
m + ϕ

(
ΩN0(m+1)+ℓ,

2N0(m+1)+ℓ

λ

)
+ ϕ

(
ΩN0(−m)+ℓ,

2N0(−m)+ℓ

λ

)}
+

+

m∑

k=−m

∫

ΩN0k+ℓ\ΩN0(k+1)+ℓ

ϕ
(
x,
f ∗
m(x)

λ

)
dx

≤
Cp

2N0p
U ℓ
m +

(
2
Cp

2N0p
+ 1
)∫

Rn

ϕ
(
x,
f ∗
m(x)

λ

)
dx.

This implies that U ℓ
m ≤ 3

1−Cp/(2N0p)

∫
Rn ϕ

(
x, f

∗
m(x)
λ

)
dx. Consequently,

∞∑

k=−∞

ϕ
(
Ωk,

2k

λ

)
=

N0−1∑

ℓ=0

lim
m→∞

U ℓ
m ≤ C

∫

Rn

ϕ
(
x,
f ∗
m(x)

λ

)
dx,

where C = 3N0

1−Cp/(2N0p)
independent of f and λ. �

Theorem 5.2. Let m ≥ s ≥ m(ϕ). Then, Hϕ
m(R

n) ⊂ Hϕ,∞,s
at (Rn) and the

inclusion is continuous.
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Proof. Suppose first that f ∈ Lq
ϕ(·,1)(R

n) ∩ Hϕ
m(R

n) for some q ∈ (q(ϕ),∞).

Let f = gk +
∑

j b
k
j be the Calderón-Zygmund decompositions of f of degree

s with height 2k, for k ∈ Z associated with f ∗
m. By Proposition 5.3, gk → f in

Hϕ
m(R

n) as k → ∞, while by [9, Lemma 4.10], gk → 0 uniformly as k → −∞
since f ∈ Lq

ϕ(·,1)(R
n). Therefore, f =

∑∞
−∞(gk+1 − gk) in S ′(Rn). Using

[17, Lemma 3.27] together with the equation
∑

i ζ
k
i b

k+1
j = χΩkbk+1

j = bk+1
j by

suppbk+1
j ⊂ Ωk+1 ⊂ Ωk, we get

gk+1 − gk = (f −
∑

j

bk+1
j )− (f −

∑

i

bki )

=
∑

i

bki −
∑

j

bk+1
j +

∑

i

∑

j

P k+1
i,j ζk+1

j

=
∑

i

[
bki −

∑

j

(
ζki b

k+1
j − P k+1

i,j ζk+1
j

)]

=
∑

i

hki

where all the series converge in S ′(Rn) and almost everywhere. Furthermore,

(5.2) hki = (f − P k
i )ζ

k
i −

∑

j

(
(f − P k+1

j )ζki − P k+1
i,j

)
ζk+1
j .

From this formula it is obvious that
∫
Rn h

k
i (x)P (x)dx = 0 for all P ∈

Ps. Moreover, hki = ζki fχ(Ωk+1)c − P k
i ζ

k
i + ζki

∑
j P

k+1
j ζk+1

j +
∑

j P
k+1
i,j ζk+1

j ,

by
∑

j ζ
k+1
j = χΩk+1 . But |f(x)| ≤ C(m)f ∗

m(x) ≤ C2k+1 for almost every

x ∈ (Ωk+1)c, so by [17, Lemma 3.8 and 3.26], and
∑

j ζ
k+1
j ≤ L,

(5.3) ‖hki ‖L∞ ≤ C2k+1 + C2k + CL2k+1 + CL2k+1 ≤ C2k,

Lastly, since P k+1
i,j = 0 unless B̂k

i ∩ B̂k+1
j 6= ∅, it follows from (5.2) and [17,

Lemma 3.24] that hki is supported in B(xki , 18r
k
i ). Thus hki is a multiple of

(ϕ,∞, s)-atom. Moreover, by (5.3) and Lemma 5.4, for any λ > 0,

∑

k∈Z

∑

i

ϕ
(
B(xki , 18r

k
i ),

‖hki ‖L∞

λ

)
≤

∑

k∈Z

Lϕ(Ωk, C2k/λ)

≤ C

∫

Rn

ϕ
(
x,
f ∗
m(x)

λ

)
dx <∞.
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Thus the series
∑

k∈Z

∑
i h

k
i converges in Hϕ,∞,s

at (Rn) and defines an atomic
decomposition of f . Moreover,

∑

k∈Z

∑

i

ϕ
(
B(xki , 18r

k
i ),

‖hki ‖L∞

‖f‖Hϕ
m

)
≤ C

∫

Rn

ϕ
(
x,
f ∗
m(x)

‖f‖Hϕ
m

)
dx

≤ C.

Consequently, ‖f‖Hϕ,∞,s
at

≤ Λ∞({hki }) ≤ C‖f‖Hϕ
m
by Lemma 4.3.

Now, let f be an arbitrary element of Hϕ
m(R

n). There exists a sequence
{fℓ}ℓ≥1 ⊂ Lq

ϕ(·,1)(R
n) ∩ Hϕ

m(R
n) such that f =

∑∞
ℓ=1 fℓ in Hϕ

m(R
n) (thus in

S ′(Rn)) and ‖fℓ‖Hϕ
m
≤ 22−ℓ‖f‖Hϕ

m
for any ℓ ≥ 1. For any ℓ ≥ 1, let fℓ =

∑
j bj,ℓ

be the atomic decomposition of fℓ, with supp bj,ℓ ⊂ Bj,ℓ constructed above.
Then f =

∑∞
ℓ=1

∑
j bj,ℓ is an atomic decomposition of f , and

∞∑

ℓ=1

∑

j

ϕ
(
Bj,ℓ,

‖bj,ℓ‖L∞

‖f‖Hϕ
m

)
≤

∞∑

ℓ=1

∑

i

ϕ
(
Bj,ℓ,

‖bj,ℓ‖L∞

2ℓ−2‖fℓ‖Hϕ
m

)

≤
∞∑

ℓ=1

Cp
1

(2ℓ−2)p
=: C,

where Cp is such that (2.1) holds. Thus f ∈ Hϕ,∞,s
at (Rn), moreover,

‖f‖Hϕ,∞,s
at

≤ Λ∞({bj,ℓ}) ≤ C‖f‖Hϕ
m

by Lemma 4.3. This completes the proof. �

Proof of Theorem 3.1. By Theorem 5.1 and Theorem 5.2, we obtain

Hϕ,∞,s
at (Rn) ⊂ Hϕ,q,s

at (Rn) ⊂ H
ϕ,q,m(ϕ)
at (Rn) ⊂ Hϕ(Rn) ⊂ Hϕ

s (R
n) ⊂ Hϕ,∞,s

at (Rn)

and the inclusions are continuous. Thus Hϕ(Rn) = Hϕ,q,s
at (Rn) with equivalent

norms. �

6. Dual spaces

In this Section, we give the proof of Theorem 3.2. In order to do this, we
need the lemma, which can be seen as a consequence of the fact that ϕ(·, t) is
uniformly locally integrable, below. We omit the details here.

Lemma 6.1. Given a ball B, and {Bj}j be a sequence of measurable subsets
of B such that lim

j→∞
|Bj| = 0. Then the following holds

lim
j→∞

sup
t>0

ϕ(Bj , t)

ϕ(B, t)
= 0.
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We next note that if b ∈ BMOϕ(Rn) is real-valued and

bN(x) =





N if b(x) > N,

b(x) if |b(x)| ≤ N,

−N if b(x) < −N,

then by using the fact

‖f‖BMOϕ ≤ sup
B−ball

1

‖χB‖Lϕ

1

|B|

∫

B×B

|f(x)− f(y)|dxdy ≤ 2‖f‖BMOϕ,

we obtain that ‖bN‖BMOϕ ≤ 2‖b‖BMOϕ for all N > 0.

Proof of Theorem 3.2. i) It is sufficient to prove it for b ∈ BMOϕ(Rn) real-
valued since b ∈ BMOϕ(Rn) iff b = b1+ib2 with bj ∈ BMOϕ(Rn) real-valued,
j = 1, 2, moreover

‖b‖BMOϕ ≈ ‖b1‖BMOϕ + ‖b2‖BMOϕ .

Suppose first that b ∈ BMOϕ(Rn) ∩ L∞(Rn). Then, the functional

Lb(f) =

∫

Rn

f(x)b(x)dx

is well defined for any f ∈ L∞
0 (Rn) since b ∈ L1

loc(R
n).

Furthermore, since f ∈ L∞
0 (Rn) ⊂ L2(Rn) ∩ H1(Rn), we remark that the

atomic decomposition f =
∑

k∈Z

∑
i h

k
i in the proof of Theorem 5.2 is also the

classical atomic decomposition of f in H1(Rn), so that the series converge in
H1(Rn) and thus in L1(Rn). Combining this with the fact b ∈ L∞(Rn), we
obtain

Lb(f) =

∫

Rn

f(x)b(x)dx =
∑

k∈Z

∑

i

∫

Rn

hki (x)b(x)dx.

Therefore, by Lemma 4.4 and the proof of Theorem 5.2,

|Lb(f)| =
∣∣∣
∫

Rn

f(x)b(x)dx
∣∣∣ ≤

∑

k∈Z

∑

i

∣∣∣
∫

Rn

hki (x)b(x)dx
∣∣∣

=
∑

k∈Z

∑

i

∣∣∣
∫

B(xk
i ,18r

k
i )

hki (x)(b(x)− bB(xk
i ,18r

k
i )
(x))dx

∣∣∣

≤ ‖b‖BMOϕ

∑

k∈Z

∑

i

‖hki ‖L∞‖χB(xk
i
,18rk

i
)‖Lϕ

≤ C‖b‖BMOϕΛ∞({hki })

≤ C‖b‖BMOϕ‖f‖Hϕ.

Now, let b be an arbitrary element in BMOϕ(Rn). For any f ∈ L∞
0 (Rn),

it is clear that |f |.|bℓ| ≤ |f |.|b| ∈ L1(Rn), ℓ ≥ 1, and f(x)bℓ(x) → f(x)b(x),
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as ℓ → ∞, a.e x ∈ Rn. Therefore, by the Lebesgue dominated convergence
theorem, we obtain

|Lb(f)| =
∣∣∣
∫

Rn

f(x)b(x)dx
∣∣∣ = lim

ℓ→∞

∣∣∣
∫

Rn

f(x)bℓ(x)dx
∣∣∣ ≤ C‖b‖BMOϕ‖f‖Hϕ,

since ‖bℓ‖BMOϕ ≤ 2‖b‖BMOϕ for all ℓ ≥ 1.
Because of the density of L∞

0 (Rn) in Hϕ(Rn), the functional Lb can be ex-
tended to a bounded functional onHϕ(Rn), moreover, ‖Lb‖(Hϕ)∗ ≤ C‖b‖BMOϕ.

ii) Conversely, suppose L is a continuous linear functional on Hϕ(Rn) ≡
Hϕ,q,0

at (Rn) for some q ∈ (q(ϕ),∞). For any ball B, denote by Lq
ϕ,0(B) the

subspace of Lq
ϕ(B) defined by

Lq
ϕ,0(B) :=

{
f ∈ Lq

ϕ(B) :

∫

Rn

f(x)dx = 0
}
.

Obviously, if B1 ⊂ B2 then

(6.1) Lq
ϕ(B1) ⊂ Lq

ϕ(B2) and Lq
ϕ,0(B1) ⊂ Lq

ϕ,0(B2).

Moreover, when f ∈ Lq
ϕ,0(B) \ {0}, a(x) = ‖χB‖

−1
Lϕ‖f‖−1

Lq
ϕ(B)

f(x) is a (ϕ, q, 0)-

atom, thus f ∈ Hϕ,q,0
at (Rn) and

‖f‖Hϕ,q,0
at

≤ ‖χB‖Lϕ‖f‖Lq
ϕ(B).

Since L ∈ (Hϕ,q,0
at (Rn))∗, by the above,

|L(f)| ≤ ‖L‖(Hϕ,q,0
at )∗‖f‖Hϕ,q,0

at
≤ ‖L‖(Hϕ,q,0

at )∗‖χB‖Lϕ‖f‖Lq
ϕ(B),

for all f ∈ Lq
ϕ,0(B). Therefore, L provides a bounded linear functional on

Lq
ϕ,0(B) which can be extended by the Hahn-Banach theorem to the whole

space Lq
ϕ(B) without increasing its norm. On the other hand, by Lemma 6.1

and Lebesgue-Nikodym theorem, there exists h ∈ L1(B) such that

L(f) =

∫

Rn

f(x)h(x)dx,

for all f ∈ Lq
ϕ,0(B), and thus f ∈ L∞

ϕ,0(B) since L∞
ϕ,0(B) ⊂ Lq

ϕ,0(B).
We now take a sequence of balls {Bj}j≥1 such that B1 ⊂ B2 ⊂ · · · ⊂ Bj ⊂

· · · and ∪jBj = Rn. Then, there exists a sequence {hj}j≥1 such that

hj ∈ L1(Bj) and L(f) =

∫

Rn

f(x)hj(x)dx,
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for all f ∈ L∞
ϕ,0(Bj), j = 1, 2, ... Hence, for all f ∈ L∞

ϕ,0(B1) ⊂ L∞
ϕ,0(B2) (by

6.1),
∫

Rn

f(x)(h1(x)−h2(x))dx =

∫

Rn

f(x)h1(x)dx−

∫

Rn

f(x)h2(x)dx = L(f)−L(f) = 0.

As fB1 = 0 if f ∈ L∞
ϕ,0(B1), we have

∫

Rn

f(x)
(
(h1(x)− h2(x))− (h1 − h2)B1

)
dx = 0

for all f ∈ L∞
ϕ,0(B1), and thus for f ∈ L∞

ϕ (B1). Hence,

h1(x)− h2(x) = (h1 − h2)B1 , a.e x ∈ B1.

By the similar arguments, we also obtain

(6.2) hj(x)− hj+1(x) = (hj − hj+1)Bj

a.e x ∈ Bj , j = 2, 3, ... Consequently, if we define the sequence {h̃j}j≥1 by
{
h̃1 = h1

h̃j+1 = hj+1 + (h̃j − hj+1)Bj
, j = 1, 2, ...

then it follows from (6.2) that

h̃j ∈ L1(Bj) and h̃j+1(x) = h̃j(x)

a.e x ∈ Bj , j = 1, 2, ... Thus, we can be define the function b on R
n by

b(x) = h̃j(x)

if x ∈ Bj for some j ≥ 1 since B1 ⊂ B2 ⊂ · · · ⊂ Bj ⊂ · · · and ∪jBj = Rn.
Let us now show that b ∈ BMOϕ(Rn) and

L(f) =

∫

Rn

f(x)b(x)dx,

for all f ∈ L∞
0 (Rn).

Indeed, for any f ∈ L∞
0 (Rn), there exists j ≥ 1 such that f ∈ L∞

ϕ,0(Bj).
Hence,

L(f) =

∫

Rn

f(x)h̃j(x)dx =

∫

Bj

f(x)h̃j(x)dx =

∫

Rn

f(x)b(x)dx.

On the other hand, for all ball B, one consider f = sign(b − bB) where
signξ = ξ/|ξ| if ξ 6= 0 and sign0 = 0. Then,

a =
1

2
‖χB‖

−1
Lϕ(f − fB)χB
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is a (ϕ,∞, 0)-atom. Consequently,

|L(a)| =
1

2
‖χB‖

−1
Lϕ

∣∣∣
∫

Rn

b(x)(f(x)− fB)χB(x)dx
∣∣∣

=
1

2

1

‖χB‖Lϕ

∣∣∣
∫

B

(b(x)− bB)f(x)dx
∣∣∣

=
1

2

1

‖χB‖Lϕ

∫

B

|b(x)− bB|dx

≤ ‖L‖(Hϕ)∗‖a‖Hϕ ≤ C‖L‖(Hϕ)∗

since L ∈ (Hϕ(Rn))∗ and Corollary 5.2. As B is arbitrary, the above implies
b ∈ BMOϕ(Rn) and

‖b‖BMOϕ ≤ C‖L‖(Hϕ)∗ .

The uniqueness (in the sense b = b̃ if b − b̃ = const) of the function b is
clear. And thus the proof is finished. �

7. The class of pointwise multipliers for BMO(Rn)

In this subsection, we give as an interesting application that the class of
pointwise multipliers for BMO(Rn) is just the dual of L1(Rn)+H log(Rn) where
H log(Rn) is a Hardy space of Musielak-Orlicz type related to the Musielak-
Orlicz function θ(x, t) = t

log(e+|x|)+log(e+t)
.

We first introduce log-atoms. A measurable function a is said to be log-atom
if it satisfies the following three conditions

• a supported in B for some ball B in Rn,

• ‖a‖L∞ ≤
log(e+ 1

|B|
) + supx∈B log(e+ |x|)

|B|
,

•
∫
Rn a(x)dx = 0.

To prove Theorem 3.3, we need the following two propositions.

Proposition 7.1. There exists a positive constant C such that if f is a θ-atom
(resp., log-atom) then C−1f is a log-atom (resp., θ-atom).

Proposition 7.2. On BMOlog(Rn), we have

‖f‖BMOlog ≈ sup
B−ball

log(e+ 1
|B|

) + supx∈B log(e+ |x|)

|B|

∫

B

|f(x)− fB|dx <∞.

We first note that θ is a growth function that satisfies nq(θ) < (n + 1)i(θ)
in Theorem 3.2. More precisely, θ ∈ A1 and θ(x, ·) is concave with i(θ) = 1.
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Proof of Proposition 7.1. Let f be a log-atom. By the above remark, to
prove that there exists a constant C > 0 (independent of f and which may
change from line to line) such that C−1f is a θ-atom, it is sufficient to show
that there exists a constant C > 0 such that

∫

B

θ
(
x,

log(e+ 1
|B|

) + supx∈B log(e+ |x|)

|B|

)
dx ≤ C

or, equivalently,

log(e+ 1
|B|

)+supx∈B log(e+|x|)

|B|

log(e+
log(e+ 1

|B|
)+supx∈B log(e+|x|)

|B|
) + supx∈B log(e+ |x|)

|B| ≤ C,

since θ ∈ A1. However, the last inequality is obvious.
Conversely, suppose that f is a θ-atom. Similarly, we need to show that

there exists a constant C > 0 such that
∫

B

θ
(
x, C

log(e+ 1
|B|

) + supx∈B log(e+ |x|)

|B|

)
dx ≥ 1

or, equivalently,

C
log(e+ 1

|B|
)+supx∈B log(e+|x|)

|B|

log(e + C
log(e+ 1

|B|
)+supx∈B log(e+|x|)

|B|
) + supx∈B log(e+ |x|)

|B| ≥ 1.

However it is true. For instance we may take C = 3. �

Proof of Proposition 7.2. It is sufficient to show that there exists a con-
stant C > 0 such that

C−1(| log r|+log(e+|x|)) ≤ log
(
e+

1

|B(x, r)|

)
+ sup

y∈B(x,r)

log(e+|y|) ≤ C(| log r|+log(e+|x|)).

The first inequality is easy and shall be omited. For the second, one first
consider the 1 dimensional case. Then by symmetry, we just need to prove
that

log(e+ 1/(b− a)) + sup
x∈[a,b]

log(e+ |x|) ≤ C(| log(b− a)/2|+ log(e+ |a+ b|/2))

for all b > 0, a ∈ [−b, b) ⊂ R. However, this follows from the basic two
inequalities:

log(e+ 1/(b− a)) ≤ 2(| log(b− a)/2|+ log(e+ |a+ b|/2))

and

log(e + b) ≤ 5 log(e + b)/2 ≤ 5(| log(b− a)/2|+ log(e+ |a+ b|/2)).
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For the general case Rn, by the 1-dimensional result, we obtain

log
(
e+

1

|B(x, r)|

)
≤

2n

cn

n∑

i=1

log
(
e+

1

|[xi − r, xi + r]|

)

≤ C
n∑

i=1

(| log r|+ log(e+ |xi|))

≤ C(| log r|+ log(e + |x|))

where cn = |B(0, 1)|, and

sup
y∈B(x,r)

log(e + |y|) ≤
n∑

i=1

sup
yi∈[xi−r,xi+r]

log(e + |yi|)

≤ C

n∑

i=1

(| log r|+ log(e + |xi|))

≤ C(| log r|+ log(e+ |x|))

where x = (x1, ..., xn), y = (y1, ..., yn) ∈ R
n. This finishes the proof. �

Proof of Theorem 3.3. By Theorem 3.1, Theorem 3.2, Proposition 7.1, and
Proposition 7.2, we obtain (H log(Rn))∗ ≡ BMOlog(Rn). We deduce that, the
class of pointwise multipliers for BMO(Rn) is the dual of L1(Rn) +H log(Rn).

�

8. Finite atomic decompositions and their applications

We first prove the finite atomic decomposition theorem.

Proof of Theorem 3.4. Obviously, Hϕ,q,s
fin (Rn) ⊂ Hϕ(Rn) and for all f ∈

Hϕ,q,s
fin (Rn),

‖f‖Hϕ ≤ C‖f‖Hϕ,q,s
fin

.

Thus, we have to show that for every q ∈ (q(ϕ),∞) there exists a constant
C > 0 such that

‖f‖Hϕ,q,s
fin

≤ C‖f‖Hϕ

for all f ∈ Hϕ,q,s
fin (Rn) and that a similar estimate holds for q = ∞ and all

f ∈ Hϕ,∞,s
fin (Rn) ∩ C(Rn).

Assume that q ∈ (q(ϕ),∞], and by homogeneity, f ∈ Hϕ,q,s
fin (Rn) with

‖f‖Hϕ = 1. Notice that f has compact support. Suppose that supp f ⊂
B = B(x0, r) for some ball B. Recall that, for each k ∈ Z,

Ωk = {x ∈ R
n : f ∗(x) > 2k}.

Clearly, f ∈ Lq
ϕ(·,1)(R

n) ∩ Hϕ(Rn) where q = q if q < ∞, q = q(ϕ) + 1 if

q = ∞. Hence, by Theorem 5.2, there exists a atomic decomposition f =
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∑
k∈Z

∑
i h

k
i ∈ Hϕ,∞,s

at (Rn) ⊂ Hϕ,q,s
at (Rn) where the series converges in S ′(Rn)

and almost everywhere. Moreover,

(8.1) Λq({h
k
i }) ≤ Λ∞({hki }) ≤ C‖f‖Hϕ = C.

On the other hand, it follows from the second step in the proof of Theorem
6.2 in [9] that there exists a constant C̃ > 0, depending only on m(ϕ), such

that f ∗(x) ≤ C̃ inf
y∈B

f ∗(y) for all x ∈ B(x0, 2r)
c. Hence, we have

f ∗(x) ≤ C̃ inf
y∈B

f ∗(y) ≤ C̃‖χB‖
−1
Lϕ‖f ∗‖Lϕ ≤ C̃‖χB‖

−1
Lϕ

for all x ∈ B(x0, 2r)
c. We now denote by k′ the largest integer k such that

2k < C̃‖χB‖
−1
Lϕ . Then,

(8.2) Ωk ⊂ B(x0, 2r) for all k > k′.

Next we define the functions g and ℓ by

g =
∑

k≤k′

∑

i

hki and ℓ =
∑

k>k′

∑

i

hki ,

where the series converge in S ′(Rn) and almost everywhere. Clearly, f = g+ ℓ
and supp ℓ ⊂ ∪k>k′Ωk ⊂ B(x0, 2r) by (8.2). Therefore, g = f = 0 inB(x0, 2r)

c,
and thus supp g ⊂ B(x0, 2r).

Let 1 < q̃ < q
q(ϕ)

, then ϕ ∈ Aq/q̃. Consequently,

( 1

|B|

∫

B

|f(x)|q̃dx
)1/q̃

≤ C


 1

ϕ(B, 1)

∫

B

|f(x)|qϕ(x, 1)dx




1/q

<∞

by Lemma 4.5 if q < ∞ and it is trivial if q = ∞. Observe that supp f ⊂ B
and that f has vanishing moments up to order s. By the above, we obtain
that f is a multiple of a classical (1, q̃, 0)-atom and thus f ∗ ∈ L1(Rn). Hence,
it follows from (8.2) that
∫

Rn

∑

k>k′

∑

i

|hki (x)x
α|dx ≤ C(|x0|+ 2r)s

∑

k>k′

2k|Ωk| ≤ C(|x0|+ 2r)s‖f ∗‖L1 <∞,

for all |α| ≤ s. This together with the vanishing moments of hki implies that ℓ
has vanishing moments up to order s and thus so does g by g = f − ℓ.

In order to estimate the size of g in B(x0, 2r), we recall that

(8.3) ‖hki ‖L∞ ≤ C2k , supp hki ⊂ B(xki , 18r
k
i ) and

∑

i

χB(xk
i ,18r

k
i )
≤ C.

Combining the above and the fact ‖χB‖Lϕ ≈ ‖χB(x0,2r)‖Lϕ , we obtain

‖g‖L∞ ≤ C
∑

k≤k′

2k ≤ C2k
′

≤ CC̃‖χB‖
−1
Lϕ ≤ C‖χB(x0,2r)‖

−1
Lϕ.
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This proves that (see Definition 2.4)

(8.4) C−1g is a (ϕ,∞, s)−atom.

Now, we assume that q ∈ (q(ϕ),∞) and conclude the proof of (i). We first
verify

∑
k>k′

∑
i h

k
i ∈ Lq

ϕ(B(x0, 2r)). For any x ∈ Rn, since Rn = ∪k∈Z(Ωk \

Ωk+1), there exists j ∈ Z such that x ∈ Ωj \Ωj+1. Since supp hki ⊂ Ωk ⊂ Ωj+1

for k ≥ j + 1, it follows from (8.3) that
∑

k>k′

∑

i

|hki (x)| ≤ C
∑

k≤j

2k ≤ C2j ≤ Cf ∗(x).

Since f ∈ Lq
ϕ(B) ⊂ Lq

ϕ(B(x0, 2r)), we have f ∗ ∈ Lq
ϕ(B(x0, 2r)). As ϕ

satisfies uniformly locally dominated convergence condition, we further obtain∑
k>k′

∑
i h

k
i converges to ℓ in Lq

ϕ(B(x0, 2r)).
Now, for any positive integer K, set FK = {(i, k) : k > k′, |i| + |k| ≤ K}

and ℓK =
∑

(i,k)∈FK
hki . Observe that since

∑
k>k′

∑
i h

k
i converges to ℓ in

Lq
ϕ(B(x0, 2r)), for any ε > 0, if K is large enough, we have ε−1(ℓ − ℓK) is a

(ϕ, q, s)-atom. Thus, f = g+ ℓK +(ℓ− ℓK) is a finite linear atom combination
of f . Then, it follows from (8.1) and (8.4) that

‖f‖Hϕ,q,s
fin

≤ C(C + Λq({h
k
i }(i,k)∈FK

) + ε) ≤ C,

which ends the proof of (i).
To prove (ii), assume that f is a continuous function in Hϕ,∞,s

fin (Rn), and thus
f is uniformly continuous. Then, hki is continuous by examining its definition.
Since f is bounded, there exists a positive integer k′′ > k′ such that Ωk = ∅
for all k > k′′. Consequently, ℓ =

∑
k′<k≤k′′

∑
i h

k
i .

Let ε > 0. Since f is uniformly continuous, there exists δ > 0 such that if
|x− y| < δ, then |f(x)− f(y)| < ε. Write ℓ = ℓε1 + ℓε2 with

ℓε1 ≡
∑

(i,k)∈F1

hki and ℓε2 ≡
∑

(i,k)∈F2

hki

where F1 = {(i, k) : Crki ≥ δ, k′ < k ≤ k′′} and F2 = {(i, k) : Crki < δ, k′ < k ≤
k′′} with C > 36 the geometric constant (see [35]). Notice that the remaining
part ℓε1 will then be a finite sum. Since the atoms are continuous, ℓε1 will be a
continuous function. Furthermore, ‖ℓε2‖L∞ ≤ C(k′′ − k′)ε (see also [35]). This
means that one can write ℓ as the sum of one continuous term and of one which
is uniformly arbitrarily small. Hence, ℓ is continuous, and so is g = f − ℓ.

To find a finite atomic decomposition of f , we use again the splitting ℓ =
ℓε1 + ℓε2. By (8.1), the part ℓε1 is a finite sum of multiples of (ϕ,∞, s)-atoms,
and

(8.5) ‖ℓε1‖Hϕ,∞,s
fin

≤ Λ∞({hki }) ≤ C‖f‖Hϕ = C.

By ℓ, ℓε1 are continuous and have vanishing moments up to order s, and thus
so does ℓε2 = ℓ− ℓε1. Moreover, supp ℓε2 ⊂ B(x0, 2r) and ‖ℓε2‖L∞ ≤ C(k′′ − k′)ε.



NEW HARDY SPACES OF MUSIELAK-ORLICZ TYPE 35

So we can choose ε small enough such that ℓε2 into an arbitrarily small multiple
of a continuous (ϕ,∞, s)-atom. Therefore, f = g + ℓε1 + ℓε2 is a finite linear
continuous atom combination of f . Then, it follows from (8.4) and (8.5) that

‖f‖Hϕ,∞,s
fin

≤ C(‖g‖Hϕ,∞,s
fin

+ ‖ℓε1‖Hϕ,∞,s
fin

+ ‖ℓε2‖Hϕ,∞,s
fin

) ≤ C.

This finishes the proof of (ii) and hence, the proof of Theorem 3.4.
�

Next we give the proof for Theorem 3.5.

Proof of Theorem 3.5. Suppose that the assumption (i) holds. For any
f ∈ Hϕ,q,s

fin (Rn), by Theorem 3.4, there exists a finite atomic decomposition

f =
∑k

j=1 λjaj , where aj’s are multiples of (ϕ, q, s)-atoms with supported in
balls Bj ’s, such that

Λq({λjaj}
k
j=1) = inf

{
λ > 0 :

k∑

j=1

ϕ
(
Bj,

|λj|‖χBj
‖−1
Lϕ

λ

)
≤ 1

}
≤ C‖f‖Hϕ.

Recall that, since ϕ is of uniformly upper type γ, there exists a constant
Cγ > 0 such that

(8.6) ϕ(x, st) ≤ Cγs
γϕ(x, t) for all x ∈ R

n, s ≥ 1, t ∈ [0,∞).

If there exist j0 ∈ {1, ..., k} such that Cγ|λj0|
γ ≥

∑k
j=1 |λj|

γ, then

k∑

j=1

ϕ

(
Bj,

|λj |‖χBj
‖−1
Lϕ

C
−1/γ
γ (

∑k
j=1 |λj|

γ)1/γ

)
≥ ϕ(Bj0, ‖χBj0

‖−1
Lϕ) = 1.

Otherwise, it follows from (8.6) that

k∑

j=1

ϕ

(
Bj,

|λj|‖χBj
‖−1
Lϕ

C
−1/γ
γ (

∑k
j=1 |λj|

γ)1/γ

)
≥

k∑

j=1

|λj|
γ

∑k
j=1 |λj|

γ
ϕ(Bj , ‖χBj

‖−1
Lϕ) = 1.

The above means that

( k∑

j=1

|λj|
γ
)1/γ

≤ C1/γ
γ Λq({λjaj}

k
j=1) ≤ C‖f‖Hϕ.

Therefore, by assumption (i), we obtain that

‖Tf‖Bγ
=

∥∥∥∥∥T
( k∑

j=1

λjaj

)∥∥∥∥∥
Bγ

≤ C
( k∑

j=1

|λj|
γ
)1/γ

≤ C‖f‖Hϕ.

Since Hϕ,q,s
fin (Rn) is dense in Hϕ(Rn), a density argument gives the desired

result.
The case (ii) is similar by using the fact that Hϕ,∞,s

fin (Rn) ∩ C(Rn) is dense
in Hϕ,∞,s

fin (Rn) in the quasi-norm ‖ · ‖Hϕ , see the lemma below. �
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We end the paper by the following lemma.

Lemma 8.1. Let ϕ be a growth function satisfying uniformly locally dom-
inated convergence condition, and (ϕ,∞, s) be an admissible triplet. Then,
Hϕ,∞,s

fin (Rn) ∩ C∞(Rn) is dense in Hϕ,∞,s
fin (Rn) in the quasi-norm ‖ · ‖Hϕ.

Proof. We take q ∈ (q(ϕ),∞) and φ ∈ S(Rn) satisfying supp φ ⊂ B(0, 1),∫
Rn φ(x)dx = 1. Then, the proof of the lemma is simple since it follows from
the fact that for every (ϕ,∞, s)-atom a supported in ball B(x0, r),

lim
t→0

‖a− a ∗ φt‖Lq
ϕ(B(x0,2r)) = 0

as ϕ satisfies uniformly locally dominated convergence condition. �
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