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Abstract

The work presented in this paper aims at providing a unified modeling framework for the reactive control

of wheeled mobile manipulators (WMM). Where most work in the literature often provides models, sometimes

simplified, of a given type of WMM, an extensive description of the obtaining of explicit kinematic and dynamic

models of those systems is given. This modeling framework is particularly well suited for reactive control

approaches which, in the case of mobile manipulation missions, are often necessary to handle the complexity of

the tasks to be fulfilled, the dynamic aspect of the extended workspace and the uncertainties on the knowledge

of the environment. A flexible reactive framework is thus also provided, allowing the sequencing of operational

tasks (in our case tasks described in the end-effector frame) whose natures are different but also an on-line

switching mechanism between constraints that are to be satisfied using the system redundancy. This framework

has been successfully implemented in simulation and on a real robot. Some of the obtained results are presented.

1 Introduction

From manipulators executing highly specific and simple tasks in structured environments, robotics missions have

evolved towards the service domain where robots are expected to explore (partially) unknown dynamic environments,
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interact with human beings or manipulate hazardous products. Examples of field or service robotics applications

are numerous and they all involve robots whose workspace capabilities have to be extended and whose control

architecture and strategies must ensure good overall performances in complex missions. The complexity of those

missions lies in the fact that an extension of the workspace of robots leads to a partial knowledge of the environment:

a precise map of a large environment cannot be known in advance and has to be updated at each time with the

information regarding the dynamic elements of the environment (moving obstacles for example). It also lies in the

fact that a complex mission is often an aggregation or sequence of different types of tasks: trajectory tracking,

motion in dynamic environment, contact interaction, compliant motion. To fulfil such missions, robotic systems are

required to combine both locomotion and manipulation capabilities and such systems are called mobile manipulators.

The physical aspect of mobile manipulators varies with the type of mobile manipulation mission that is considered.

The main differences between those systems of a same family consist in the locomotion mean that is used. Apart from

very specific applications such as underwater applications where submarine locomotion is used, mobile manipulators

can be divided into two large families: legged systems such as humanoid robots and wheeled systems. The need

for humanoid robots is mostly associated to service missions for which the social aspect of the interaction is of

great importance. To this social aspect of the interaction, one must add the need for adaptation to environments

primarily designed for human beings. When those two characteristics are not present in the features of the mission

to accomplish, the locomotion problem can be partially simplified by the use of wheeled mobile platforms whose

design and control is less demanding. Moreover, in several cases, wheeled mobile platforms are more suitable than

legged type robots whose locomotion properties are restricted especially in terms of speed and load. This paper

focuses on this latter type of mobile manipulators: wheeled mobile manipulators (WMM), especially those evolving

on flat grounds, i.e. whose platforms are not characterised by high terrain clearance capabilities. Any system

combining a wheeled mobile platform and one or several manipulators (classically arms) is named WMM.

Those systems have the following features:

– wheeled mobile platforms, and by extension WMM, are nonholonomic systems;

– they are often kinematically redundant with respect to the task to be achieved;

– the mass properties, and thus the dynamic properties, of the wheeled platform and those of the manipulator(s)

are very different.

To these characteristics, one has to add the constraints associated to the control of robots and robotic missions

themselves:

– joint limits avoidance;

– rated input for the actuators;
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– singular configurations avoidance;

– obstacles avoidance;

– tip-over of the system and skidding /slipping of the wheels.

From this set of constraints and characteristics, different approaches have been developed to control WMM. A first

class of approach is inherited from the control schemes that have been developed for manipulators. Those control

schemes have been extended to WMM in order to account for their specificities. Among those approaches, the

pioneering work of H. Seraji1 can be distinguished. He proposed an extension of kinematic based control laws to

the case of a mobile manipulator equipped with a wheeled platform (unicycle) and a manipulator. The innovation

of this work was to consider the system without making any explicit difference between the two subsystems and

thus to offer an implicit coordination control scheme, extending the concept of redundancy to the whole system and

not only the manipulator. If for a given problem, one might want to use an ad hoc coordinated control scheme of

a mobile manipulator (i.e. a control scheme where the coordination between the subsystems is suited to solve the

given problem but may not be in other cases), the most generic framework to control mobile manipulators is clearly

to consider an implicit coordination of the system. This framework allows to define the control problem without

explicitly defining the wheeled platform trajectory thus not restricting the set of solutions to a smaller subset

corresponding to a specific platform trajectory. This implicit coordination approach was extended to dynamic

model based control schemes by Y. Yamamoto and X. Yun in2, 3 where they showed that the dynamic coupling

between the two subsystems does not require to be fully compensated to achieve good tracking performances.

Implicitly coordinated approaches to the force control problem of WMM has also been tackled using the dynamic

models of some specific type of WMM4, 5, 6, 7. Finally, reactive motion has been studied for WMM in the case of

omnidirectional wheeled platforms using a dynamical model8. H. Tanner et al. also provided in9 some results for

navigation with obstacles but from the planning point of view and considering the coordination of multiple WMM.

If those studies provide some major developments for the control of WMM, they do not offer a general framework

for the modelling of those systems. A unification of the kinematic modelling of those system is proposed by B.

Bayle et al. in10. This work is based on the generic classification of wheeled mobile platforms presented in11

by G. Campion et al.. M. Fruchard et al. also provide in12 a general kinematic control approach based on the

transverse function approach that was initially developed for wheeled mobile robots13. This approach takes into

account the small time controllability properties of wheeled mobile platforms and thus requires an explicit definition

of the platform trajectory. In this paper, another solution is presented to solve this control problem. It is based

on the instantaneous kinematics properties of the system. The goal is to provide a global model that relates the

system’s inputs to the motion and force at the end-effector. This does not require an explicit definition of the

platform trajectory.

Regarding a generic dynamic model for WMM, no previous work has been done to propose a unified expression of
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this model. Of course, most of the studies of WMM based on a dynamic model provide an expression of this model

in the specific case of a given robot. The goal of this paper is thus to provide an explicit formulation of the dynamic

model of any kind of WMM that can be used for torque based control for reactive mission execution. An emphasis

on the reactivity is put since it is, given the set of constraints to satisfy at any time, the complexity of the missions

and the uncertainty on the plan execution, a necessary feature of the control of WMM.

This paper is organised in four sections. In the first section the basics of the generic configuration description of

WMM is recalled. In the second section, after presenting the generic kinematic modelling of those systems that

was proposed in14, a generic dynamic formulation of WMM and its connections to reactive control approaches is

derived. In the third section, some results regarding reactive control of WMM in the case of robotic missions based

on tasks sequencing are presented. This study is concluded by the perspectives and needs for future work regarding

the reactive control of WMM.

2 Configuration description of wheeled mobile manipulators

Model based control approaches require a clear definition of the configuration parameters of the system whose

models are derived. The configuration description of a mechanical system is a well known concept. However, even

if the literature (see15 for example) in this domain is well furnished, it is of interest to take time to clarify this

“simple” notion in order to provide a sound basis to any further developments. To do so, the general case of the

configuration description of nonholonomic systems is treated and then focus is put on the case of WMM.

2.1 General case of nonholonomic systems

The configuration of a mechanical system is supposed to be known when the location (position and orientation) of

any body of the system is known. In the 3D space, for a system composed of nb bodies, this description requires

6nb parameters p1, p2, . . . , p6nb
called primary generalized coordinates of the system. This set of coordinates is

not unique and those parameters are usually not independent since constrained by the different joints between the

bodies of the system or the bodies of the system and external bodies. Joints equations can be written in a generic

form linking the primary generalized coordinates, their time derivatives and the time:

6nb∑

i=1

αi (p1, p2, . . . , p6nb
, t) ṗi + β (p1, p2, . . . , p6nb

, t) = 0. (1)

When equation (1) is integrable, it is called an holonomic joint equation and can be written:

f (p1, p2, . . . , p6nb
, t) = 0. (2)
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If non integrable, (1) is called a nonholonomic joint equation. A mechanical system with one or more non integrable

equation is called, by extension, a nonholonomic system.

Holonomic equations can be used to reduce the number of generalized coordinates required to describe the config-

uration of a system. Those equation are then called primary joints equations. Noting hp the number of primary

joints equations chosen to reduce the number of parameters needed to describe the configuration of the system,

this configuration is then defined by n = 6nb − hp parameters that are the components of vector q called the

vector of generalized coordinates. The number of nonholonomic joints equations is denoted h̄. Those equations

do not allow to reduce the size of q and together with the holonomic joints equations that have not be chosen to

reduce the number of parameters needed to describe the configuration (whose number is noted hc) of the system,

they form the set of complementary joints equations. The global degree of freedom of the system is then given by

ndof = n −
(
hc + h̄

)
and only ndof components of vector q can have an independent evolution. The evolution of

the hc + h̄ other ones is related to the latter by the set of complementary joints equations. Thus q̇, the vector of

generalized velocities, is restricted to evolve in a subspace, whose size is ndof , tangent in q to the space associated

to the generalized coordinates.

2.2 Configuration of a wheeled mobile manipulator

Considering the four classical types of wheels (fixed, centred, off-centred, Swedish) and using the notations intro-

duced in11 (cf. figure 1), one can intuitively define the configuration of a wheeled mobile manipulator evolving

on a planar surface as the configuration of the holonomic arm mounted on the mobile platform, the location of

the wheeled mobile platform in the world reference frame and the configuration of each wheel with respect to the

platform. For the sake of conciseness, the focus is put on the one arm case but extending the following models to

the multiple arms case (i.e. multiple operational points case) is straightforward. This leads to:

q =

[

qt
m ξt

p ϕt βt

]t

,

where:

– qm is the configuration of the manipulator mounted on the platform. Using the modified version of the D.-H.

parameters16, the nm components of qm can be naturally chosen as the nm joint parameters thus leading to

a minimal representation of the configuration of the manipulator;

– ξp =

[

x y ϑ

]t

is the vector of location of the platform (whose size is denoted mp = 3) with respect to

the world reference frame R = (O, ~x, ~y, ~z);

– ϕ =

[

ϕt
f ϕt

c ϕt
oc ϕt

s

]t

is the vector of the N = Nf + Nc + Noc + Ns spinning angles of the Nf fixed

wheels, Nc centred wheels, Noc off-centred wheels and Ns Swedish wheels respectively;
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Figure 1: Configuration description of wheeled planar platforms.

– β =

[

βt
oc βt

c

]t

is the vector of the NS = Nc + Noc steering angles of the Nc centred wheels and Noc

off-centred wheels respectively.

The configuration of a WMM is thus defined by a vector q of size n = nm + mp + N + NS . However, apart from

classical revolute and prismatic joints, a WMM is subject to rolling without slipping conditions which are joints

equations of a specific type. Those conditions are hereafter described.

2.3 Rolling without slipping conditions

The rolling without slipping conditions of a wheel represent the fact that perfect joint of the wheel with the ground

is considered, i.e. no slipping of the wheel in its vertical plane and no skidding in its orthogonal plane. Using the

configuration description, they can respectively be written, for a given wheel:

[

−Sαβγ Cαβγ bCβγ

]

R(ϑ)T ξ̇p + rCγϕ̇ = 0, (3)
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D (qp) =









Om×m Om×mp
Om×N Om×Noc

Om×Nc

ON×m J1R (ϑ)
T

J2 ON×Noc
ON×Nc

ONf×m C1f ONf×N ONf×Noc
ONf×Nc

ONc×m C1c (βc) R (ϑ)
T ONc×N ONc×Noc

ONc×Nc

ONoc×m C1oc (βoc) R (ϑ)
T ONoc×N C2oc ONoc×Nc









.

Table 1: Detailed description of matrix D (qp).

and:
[

Cαβ Sαβ b′ + bSβ

]

R (ϑ)
T

ξ̇p + b′β̇ = 0 , (4)

where (4) does not apply to Swedish wheels, Cαβ and Sαβ are short notations respectively for cos (α + β) and

sin (α + β). R (ϑ) represents the rotation matrix of angle ϑ around ~z.

Those joints equations are most of the time non integrable, i.e. nonholonomic. In the specific cases where some

combinations of those equations can be integrated, they are often kept as complementary joints equations. This

choice can be justified in the practical cases where pure rolling without slipping is never completely respected

and thus basing the knowledge of some configuration parameters on this assumption might lead to a drift of the

reconstructed (not directly measured by physical sensors) parameters.

3 Unified kinematic and dynamic modelling of wheeled mobile manip-

ulators

Given a WMM, the task of the system is expressed in terms of a trajectory to follow, a point to reach or a force to

exert for the end-effector of the manipulator. This operational point is associated to a set of operational coordinates

whose size is associated to the type of task to fulfil: constrained location, constrained position etc. The vector of

operational coordinates of the manipulator is written ξ and its size is denoted m. The forward kinematics model

of the WMM can then be written:

ξ = f
(
ξp,qm

)
, (5)

where f is a set of nonlinear functions, independently of the type of platform (cf. figure 2).

Differentiation of (5) leads to:

ξ̇ = J (q) q̇. (6)

J(q) is the m × n Jacobian matrix of the WMM.

Equation (6) is not sufficient to fully describe the system’s differential kinematics. One needs to also take the rolling
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Figure 2: Parameters of a WMM defining the forward kinematics model.

without slipping joint equation of the wheels. Those equations can be written in the concise form:












J1f

J1c (βc)

J1oc (βoc)

J1s












R (ϑ)
T

ξ̇p +












J2f

J2c

J2oc

J2s












ϕ̇ = 0, (7)









C1f

C1c (βc)

C1oc (βoc)









R (ϑ)
T

ξ̇p +









ONf×Noc

ONc×Noc

C2oc









β̇oc = 0. (8)

One can easily deduce that :

– J1 =

[

JT
1f J1c (βc)

T
J1oc (βoc)

T
JT

1s

]T

is a (N × mp) matrix ;

– J2 =

[

JT
2f JT

2c JT
2oc JT

2s

]T

is a diagonal, constant, (N × N) matrix ;

– C1 =

[

CT
1f C1c (βc)

T
C1oc (βoc)

T

]T

is a ((N − Ns) × mp) matrix ;

– and C2 =

[

ONoc×Nf
ONoc×Nc

CT
2oc

]T

is a diagonal, constant, ((N − Ns) × Noc) matrix ;

(7) and (8) can then be compactly written as :
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D (qp) q̇ = 0, (9)

where a full description of D (qp) is given in table 1.

In order to be able to control the system without violating the rolling without slipping assumption, it is necessary

to find the subset of q̇ such that (9) is always satisfied.

3.1 Mobility analysis

An analysis of matrix D (qp) leads to the conclusion that for a motion of a WMM to be possible, conditions to be

respected are only related to the velocity of the wheeled platform. Especially, for a possible motion of the platform

to exist, the following constraint, extracted from D (qp), has to be met:

C1fc (βc)R (ϑ)
T

ξ̇p = 0, (10)

where :

C1fc (βc) =






C1f

C1c (βc)




 .

This condition on the movement of the platform is such that ξ̇p is constrained to evolve in a subspace of the space

of possible planar velocities. The size of this subspace is denoted δmobp ≤ mp and called the degree of mobility

of the platform. δmobp is dependent on the platform type and it is shown in11 that there is actually a limited

number of wheeled platform types such that δmobp 6= 0, i.e. such that the platform can move. Considering the set

of feasible wheeled platform type described in11 (i.e. wheeled platform such that rank (C1fc (βc)) < mp), constraint

(10) requires to choose ξ̇p in the range of N (C1fc (βc)). Given, Σ(βc) a (mp × δmobp) matrix whose column are a

basis of N (C1fc (βc)), any ξ̇p chosen as :

ξ̇p = R (ϑ) Σ (βc)umobp, (11)

will satisfy constraint (10). umobp is any vector of size δmobp and is named the mobility control input of the wheeled

platform. From relation (11), the values of the velocity ϕ̇ and β̇oc that will lead to the complete satisfaction of

constraint (9) are then obtained by :

ϕ̇ = −J−1
2 J1Σ(βc)umobp, (12)

and :

β̇oc = −C−1
2ocC1ocΣ(βc)umobp. (13)
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Constraint (9) does not give any guidance for the determination of β̇c, but among the set of feasible wheeled

platform type, one can demonstrate that the number of components of β̇c that can be steered independently cannot

be more that 2. This number is called the degree of steerability of the wheeled platform and is denoted δst. The δst

independent components of β̇c form the steerability control input ust of the wheeled platform. The steering velocity

of any other centred wheel can be determined from this steerability control vector (see17).

Regarding the manipulator, its mobility control input can be simply chosen as :

umobm = q̇m. (14)

The sum of δmob + δst is called the degree of manoeuvrability δman of the WMM. Given the restriction on the type

of feasible wheeled platform and the definition of the degree of freedom of a mechanical system recalled in 2.1 :

δman = ndof .

Considering wheeled platform with no more than two steerable wheels (any other case can be deduced from this

one), the subset of q̇ satisfying (9) are thus related to the control input of the WMM by the relation :

q̇ = S (qp)u, (15)

where u =

[

ut
mobm ut

mobp ut
st

]t

and :

S (qp) =















Im Om×δmobp
Om×δst

Omp×m R (ϑ) Σ (βc) Omp×δst

ON×m −J−1
2 J1Σ(βc) ON×δst

ONoc×m −C−1
2ocC1ocΣ(βc) ONoc×δst

Oδst×m Oδst×δmobp
Iδst















.

One can easily check that D (qp) S (qp) = 0 for any q. An analysis of the number of joints equations that are

actually nonholonomic can be determined by studying the span of the vector fields generated by the columns of

S (qp) (details can be found in11 and examples in the case of WMM in18).

3.2 Kinematic model

From this subset of generalized velocities, the kinematic model can now be written in a form that can be used to

control the system. It is first to be noted that there is no kinematic connection between ξ̇ and β̇c. Thus, even if

the problem of designing the proper steerability control input for the WMM is not tackled in this paper, it is of
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importance to notice that the full kinematic model description of a WMM is extended to the following relation:

ż = B (q) q̇, (16)

where :

z =






ξ

βc




 ,

and :

B (q) =






J (q)

Oδst×(n−δst) Iδst




 . (17)

Plugging (15) in (16) leads to :

ż = B̄ (q)u, (18)

where :

B̄ (q) = B (q) S (qp) , (19)

which can also be written :

B̄ (q) =






J̄ (q) Om×δst

Oδst×δmob
Iδst




 ,

with :
[

J̄ (q) Om×δst

]

= J (q) S (qp) .

In the kinematic redundant case (i.e. δmob > m), an inverse kinematic model-based controller can be used :

u = B̄ (q)
⋆
ż +

(
Indof

− B̄ (q)
⋆
B̄ (q)

)
u0, (20)

with B̄ (q)
⋆

a weighted pseudo-inverse of B̄ (q), ż the desired operational and steering velocity and u0 any vector.

B̄ (q)
⋆

is given by :

B̄ (q)
⋆

=






J̄ (q)
⋆ Oδmob×δst

Oδst×m Iδst




 .

The computed u has the minimum least-squares norm with respect to the chosen weight (see19). The choice of the

weight is thus very important since it will determine the way the actuators are solicited. For example, choosing

a basic pseudo-inverse leads to an equivalent solicitation of all the actuators without taking into account their

respective sizes and positions in the kinematic chain. This is obviously not the best solution given the difference in

size of an actuator used to spin one of the platform’s wheels and an actuator used for the motion of the manipulator

11



wrist. To take this kind of differences into account, the weighting matrix can be related to the way inertia is

distributed in the system. More generally, different weighting matrices can be used to achieve different goals. An

example of possible choice is given in the part of this paper dealing with dynamics (3.3).

Access to the system redundancy is given by the term
(
Indof

− B̄ (q)
⋆
B̄ (q)

)
u0. u0 can be chosen using gradient

descent techniques to locally minimize any potential function P (q) used to represent a constraint that has to be

satisfied by the system at a given time. To locally minimize P (q), Ṗ (q) ≤ 0 has to be ensured. Ṗ (q) can be

expressed as :

Ṗ (q) = ∇
tP (q) q̇,

where ∇P (q) is the gradient of function P (q). In order not to provide any operational effects and to be compatible

with the complementary joints equations, q̇ has to be chosen as :

q̇ = S (qp)
(
Indof

− B̄ (q)
⋆
B̄ (q)

)
u0.

This leads to :

Ṗ (q) = ∇
tP (q)S (qp)

(
Indof

− B̄ (q)
⋆
B̄ (q)

)
u0.

Given the idempotence property of matrix projectors such as
(
Indof

− B̄ (q)
⋆
B̄ (q)

)
, choosing u0 as :

u0 = −K
(
∇

tP (q)S (qp)
(
Inddl

− B̄ (q)
⋆
B̄ (q)

))t
,

where K is a positive definite matrix, leads to Ṗ (q) ≤ 0. One has to notice that when the operational task to be achie-

ved and the potential function to be optimised are not compatible, the projection of u0 into
(
Indof

− B̄ (q)
⋆
B̄ (q)

)

will lead to 0. The operational task has a greater priority than the optimisation of the potential function. The

priority concept can be extended to multiple secondary tasks achieved (or partially achieved) at the same time.

When the secondary tasks can be expressed as potential functions, a solution consists in building a weighted-sum

of the different potential functions. The potential function with the biggest priority is given the biggest weight,

the one with the minimum priority is given the smallest weight20. This kind of approach can be efficient for some

specific problems but one should keep in mind that the optimised criterion has no clear signification and in the case

of critical secondary tasks, these methods generally lead to failure. A better approach to solve this problem is based

on recursive null space projections of the different tasks with respect to their levels of priority. The basics of this

prioritization technique can be found in21 but this is still an open problem which is being addressed by some recent

publications :22,23. These studies attempt to design algorithms to arbitrate the fulfillment of different secondary

tasks (among which some can be partially or completely conflicting) with different priorities. Those techniques make

a lot of sense with highly redundant robots such as humanoids. In the case of WMM, the redundancy degree of the
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system is not high enough to efficiently optimise multiple potential functions at the same time. Thus, in this paper,

only one secondary task is considered at a time and switching occurs when the fulfillment of another secondary

task becomes more critical. Of course, this approach does not solve the redundancy problem in a completely generic

manner and can lead to some failure cases. However, it is generic enough to provide an efficient solution to a large

number of missions.

3.3 Dynamic model

When interaction forces are involved and/or compliant behaviour is desired, the use of a dynamic model of the

system is required in order to correctly compensate for the natural dynamic of the system. The implicit and

explicit formulation of the dynamics of manipulators is a widely treated subject. Regarding WMM, some papers

propose a dynamic modelling in the specific case of a given system (see for example2 or6). In the case of a specific

WMM, J.H. Chung et al. in24 extended, using a tire friction model, the dynamic description to the case where

the rolling without slipping conditions are not always respected. Some work was also done to propose a general

description of the dynamics of a WMM: H. Tanner et al. in25 proposed a formulation of the dynamic model of

WMM using Kane’s approach. A recursive formulation of the dynamics of a WMM was also proposed in Q. Yu

et al. in26 with an application to a specific example of WMM. These studies are of high interest since they give

a very methodological approach to derive a dynamic description of WMM, however, these formulations, if they

are well suited to simulate the dynamics of such systems, cannot be directly used for control purposes. Such an

explicit dynamic model based on Lagrange formulation is here derived. This only partially covers the topic of the

dynamic modelling of nonholonomic systems and27 and28 can be used as complete reference books.

The Lagrange formulation of the dynamic of a mechanical system can be summarised by the following formula:

d

dt

(
∂T (q, q̇, t)

∂q̇i

)

−

(
∂T (q, q̇, t)

∂qi

)

= Qi, (1 ≤ i ≤ n), (21)

or :

Pi = Qi, (1 ≤ i ≤ n),

with Pi = d
dt

(
∂T (q,q̇,t)

∂q̇i

)

−
(

∂T (q,q̇,t)
∂qi

)

.

This results from the expression of the virtual power principle, expressed in terms of the kinetic energy T (q, q̇, t)

of the system. Briefly :

– Pi is the force applied to the system which is due to its motion and which is associated to coordinate qi ;

– Qi is the sum of any other force acting on the system and associated to coordinate qi.

However relation (21) does not account for the complementary joints equations and any virtual velocity q̇⋆ compa-
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tible with the complementary joints equations is such that :

D (q) q̇⋆ = 0. (22)

The virtual power principle also leads to the following results :

(P − Q)
t
q̇⋆ = 0. (23)

Relations (22) and (23) leads to the conclusion that q̇⋆ has to be orthogonal to the h̄ + hc rows of D (q) and also

orthogonal to vector (P − Q). The latter can thus be written as a linear combination of D (q) rows:

Pi − Qi =

h̄+hc∑

j=1

λjDji, (1 ≤ i ≤ n) ,

where λj are h̄ + hc scalars (historically known as Lagrange multipliers).

Complete dynamics of the system is thus given by:

Pi = Qi +

h̄+hc∑

j=1

λjDji, (1 ≤ i ≤ n).

Computing the kinetic energy of the system and computing the components of P , dynamics of a WMM can always

be written in the form:

A (q) q̈ + C (q, q̇) q̇ = Q + D (q)
t
λ. (24)

A (q) is the n × n symmetric, positive definite, inertia matrix of the system. C (q, q̇) is the n × n Coriolis and

centrifugal matrix of the system. Q can be written as the sum of four terms Q = Qa + Qg + Qd + Qext, where :

– Qa = MΓ, the actuation forces acting on the system. An analysis of the actuation of WMM is not provided

here (see11) but assuming a system with na actuators such that all control inputs in u can be independently

actuated, Γ is the actual vector of actuation torques (actually force or torque) and M is a (n × na) matrix

such that Mik = 1 if coordinate qi is directly actuated by actuator k and Mik = 0 otherwise;

– Qg = −g (q), the vector of gravity forces acting on the system;

– Qd, the vector of force disturbances such as friction effects acting on the system;

– Qext, the vector of external interaction forces.
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Regarding Qext, the location ξcl
of the interaction/contact on the WMM can be related to the configuration by a

geometrical relation:

ξcl
= gcl

(q) ,

that can be differentiated leading to a kinematic relation of the type:

ξ̇cl
= Jcl

(q) q̇.

The kineto-static principle of equivalence allows to compute Qext, the equivalent generalized force associated to

this contact force at ξcl
, as a function of the contact forces fcl

. This leads to:

Qext = −Jcl
(q)

t
fcl

.

For multiple contact points, one can concatenate the vectors of contact forces fcl
and jacobians Jcl

(q) and thus for

nc contact locations:

Qext = −Jc (q)
t
fc,

where:

Jc (q) =

(

Jc1
(q) . . . Jcl

(q) . . . Jcnc
(q)

)t

,

and:

fc =

(

fc1
. . . fcl

. . . fcnc

)t

.

No assumption about the compatibility between the contact force applied at ξc and the motion of the controlled

system is made here. For a detailed multi-contact force control study, see29. The focus is rather put here on the

specific case where this contact interaction occurs at the end-effector of the WMM but also assume some resistive

torque for the steering axes of the steerable wheels. This latter assumption is realistic when the contact point of

the wheels with the ground is actually more a line than a point thus leading to some amplified resistive friction

effects of the ground on the wheels with respect to the steering axis. In that specific case, Jc (q) = B (q) and thus:

Qext = −B (q)
t
fc.

From here, neglecting friction, the dynamic equation of motion can be written:

A (q) q̈ + C (q, q̇) q̇ + g (q) + B (q)
t
fc = MΓ + D (q)

t
λ. (25)

D (q)
t
λ is actually the projection of the reaction forces at each joint whose equation has been chosen as a com-
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plementary joint equation. Assuming that only the rolling without slipping joint equation have been kept as

complementary joints equations, λ precisely represents the vector of the tangential reaction forces (collinear with

plane (O, ~x, ~y)) of the wheels on the ground. If the non slipping assumption is not realistic (that can be the case in

outdoor, non-structured ground applications), using a friction model, one can lead a study of the slipping/skidding

conditions for the system based on (25). In some applications, this assumption is valid and one may want to restrict

the study to those motions that do not violate the constraints. To do so, one can eliminate the term D (q)
t
λ in

(25) by multiplying both sides by S (q)
t
. This leads to:

S (q)
t
A (q) q̈ + S (q)

t
C (q, q̇) q̇+

S (q)
t
g (q) + S (q)

t
B (q)

t
fc = S (q)

t
MΓ.

(26)

The rolling without slipping conditions are supposed to be respected and thus q̇ and q̈ are restricted to:

q̇ = S (q)u and q̈ = Ṡ (q)u + S (q) u̇.

Plugging into (26) leads to the reduced dynamic model of the WMM or constraint consistent dynamic model :

Ā (q) u̇ + C̄ (q, q̇)u + ḡ (q) + B̄ (q)
t
fc = Γ̄, (27)

where:

– Ā (q) is the ndof × ndof , symmetric, positive definite, constraint consistent inertia matrix of the system. It

can be decomposed as:

Ā (q) =






Am (qm) Āp/m (q)

Āp/m (q)
t

Āp (q) + Āmp (q)




 ,

with:

– Am (qm) the nm × nm inertia matrix of the manipulator;

– Āp (q) the (ndof − nm)×(ndof − nm) constraint consistent inertia matrix of the wheeled platform without

accounting for the presence of the manipulator;

– Āmp (q) the (ndof − nm)× (ndof − nm) constraint consistent inertia matrix term representing the influ-

ence of the presence of the manipulator on the wheeled platform;

– Āp/m (q) the nm × (ndof − nm) constraint consistent inertia matrix representing the influence of the

platform acceleration on the manipulator inertial properties.

– C̄ (q, q̇) is the ndof × ndof constraint consistent matrix of the Coriolis and centrifugal effects of the system

which can also be decomposed in terms of manipulator, platform and mutual effects;
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– Γ̄ = M̄Γ, with M̄ = S (q)
t
M .

Given any (u, u̇) computed from (20) and any consistent fc (consistent with ξ̇ in terms of controlled operational

direction), one can compute the needed torque Γop to fully compensate for the dynamic effects of the desired motion

of the system:

Γ̄op = Ā (q) u̇ + C̄ (q, q̇)u + ḡ (qb) + B̄ (q)
t
fc,

and:

Γop = M̄⋆
(

Ā (q) u̇ + C̄ (q, q̇)u + ḡ (qb) + B̄ (q)
t
fc

)

. (28)

The obtained explicit formulation of the dynamic model allows to conclude that (28) leads to an actuation torque

that perfectly compensate for the dynamic effects of the system providing that the weighting matrix for the weighted

pseudo-inverse of matrix B̄ (q) is chosen as the inertia matrix Ā of the system (see18 for details). In the case of

force-based potential functions to locally optimise, access to the redundancy is also given in the torque space:

Γ̄ = Γ̄op +
(

Indof
− B̄ (q)

t
B̄ (q)

t[1,2]
)

Γ̄0.

B̄ (q)
t[1,2]

(see19 for a complete definition of [1, 2]−generalized inverses) also has to be chosen as the inertia matrix

weighted pseudo-inverse in order to fully compensate for the system dynamic.

This framework can be extended to the operational space formulation of O. Khatib30 that was primarily developed

for manipulators.

4 Reactive control for wheeled mobile manipulators

Using model-based actuation torque or velocity computation as presented in section 3, a framework has been devel-

oped allowing a reactive execution of complex mobile manipulation missions based on the sequencing of operational

space tasks for the WMM. This was validated in simulation using a Matlab/Simulink simulator developed to simu-

late the dynamics of the WMM, test different control laws and implement our framework for reactive control. This

framework was implemented using the Genom control architecture31 of the LAAS Laboratory in Toulouse (France)

on a real robot: H2Bis + GT6a.

4.1 Framework description

Missions based on the sequencing of operational tasks whose nature can be different are considered: free-space

motion, constrained motion, force interaction. A mission can then be represented as a state machine where each

state or mode represents a specific operational task. The possible transitions between states are described and

transition conditions are mainly based on sensors information. This allows to describe a large number of missions.
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Regarding the operational trajectories, they can either be pre-planned or generated on-line. The actuators’ inputs

are then computed based either on inverse kinematics or on both inverse kinematics and dynamics. In both cases,

the computed input can be written:

c = cop
︸︷︷︸

operational task

+
(
Indof

− E (q)
⋆
E (q)

)
c0

︸ ︷︷ ︸

cred : redundancy

,

where, in the kinematic case, c = u, cop = B̄(q)⋆ż, E (q) = B̄(q) and c0 = u0. In the torque formulation (dynamic

or even static when neglecting inertial effects) : c = Γ̄, cop = Γ̄op, E (q) = B̄(q)t⋆ and c0 = Γ̄0.

Actuator input Considering the case where redundancy is formulated in the kinematic framework, rated input

actuators (in terms of velocity and acceleration) have to be respected. To do so, one has to ensure that the

operational task term is such that:

|cop| ≤ cmax, (29)

where cmax is the vector of maximum velocities for the actuators of the system. This constraint can be easily met

when designing the input trajectories. One then has to find the largest positive value of a real αs such that:

|cop + αscred| ≤ cmax.

This allows to scale down (or eventually up) the redundancy term in order to respect the constraint on maximum

velocities. It also keeps the direction of descent of the gradient method used to compute c0, when it is chosen as a

potential function to locally optimise. αs can be computed as:

min

((
|cmax,i.sign (cred,i) − cop,i|

|cred,i|

)

i=1...ndof

, αsmax

)

.

This lead to a value of αs between 0 and αsmax
. αsmax

is an upper limit used not to over amplify the redundancy

term. It can for example be chosen using Armijo’s rule.

Active constraint The criticalities of the constraints listed in Introduction can be different given the type of task

to be executed. Moreover, those constraints are not always active. For example, the obstacle avoidance constraint

has to be respected at any time. However, it is not be necessary to take it into account when far from obstacles. The

same reasoning can be applied to any type of constraint and a deterministic arbitration mechanism was designed

that evaluates the criticality at each time, with respect to the current executed task, of each potential function
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associated to the constraints and chooses which constraint is of greater importance at a given time. To avoid fast

switching between two antagonist constraints, activation and deactivation thresholds for a given constraint can be

chosen differently. A simple way to obtain smooth transition is to design a switching function βs (t) linearly varying

between 0 and 1, 0 being the value of the function when the transition starts (time tti) and 1 its value when the

transition ends (time ttf ):

βs(t) =







0 if t < tti
(

1
(ttf−tti)

)

(t − tti) if tti ≤ t < ttf

1 if t ≥ ttf

.

The transition potential function is thus respectively given by :

P(q) =







Pold(q)

Pnew(q)β(t)2 + Pold(q)
(
1 − β(t)2

)

Pnew(q)

.

In order to ensure an efficient optimisation of the potential function associated to a given constraint, one has to

make sure that the ratio cred

c0

is not too small and that αs is not to small. The first case corresponds to a situation

where the operational task to be achieved and the potential function to be optimised are not compatible. In that

case, O. Brock et al. propose in8 to release some operational constraints temporarily in order to respect the

constraints associated to the potential function. The second case occurs when the operational trajectories are very

demanding in terms of actuation in which case the scaling of the redundancy term can lead to a drastic reduction

of the efficiency of the optimised function. A threshold based mechanism is used (threshold on αs value) leading

to the modification of the operational trajectories in terms of speed of execution. This allows to redistribute the

actuation capabilities of the system. In case of pre-planned trajectories, no complete re-planning is necessary and a

simple adaptation of the original plan is sufficient. When trajectories are generated on-line, they are filtered using

a low pass filter that is designed with varying parameters so that the constraints on the actuators inputs are met

and so that the actuation power of the system can be redistributed. The direction of the operational movement is

kept identical, only the speed of execution is reduced.

4.2 Task sequencing involving contact transition

The task sequencing mechanism was first introduced in32 in the case of a mission involving contact transition

between free-space motion and constrained motion. In the example considered here, a free space motion is first

planned for the end-effector followed by a constrained motion along a given surface. For the constrained motion,

an hybrid force/velocity scheme is used where the normal direction to the contact surface is force-controlled and all

the other operational directions are velocity-controlled. The WMM used for experimentation can only be velocity
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controlled and thus a kinematic-based controller is used.

In the case of contact transition, one more constraint is added to the list of constraints to be fulfilled : impact effects

limitation at contact transition. Indeed, even if this transition is pre-planned, the uncertainties in the knowledge

of the contact surface characteristics but also the uncertainties in the knowledge of the location of this contact

surface can lead to a huge peak of force when contact occurs. This peak can be destructive for the environment

and the WMM itself. One way to reduce this force peak is to design a potential function whose optimisation leads

to a reconfiguration of the WMM such as it exhibits good inertial properties. Results concerning omnidirectional

WMM are presented in4. In this work the notion of impulse force F̂ is used but was first used in Robotics by I.D.

Walker in his study of contact transition for robotic arms33. F̂ is defined as:

F̂ = lim
∆t→0

∫ ti+∆t

ti

f(s)ds,

where ti is the impact time and f the force measured at the end-effector of the arm. Using the dynamic model of

the system and basic collision theory, one can show that the magnitude of F̂ can be expressed as:

F̂ =
(1 + e)vtn

nT R (q)n
.

v is the linear velocity of the end-effector at impact time, e is the restitution coefficient (i.e. a physical characteristic

of the contact), n is the normal direction to the contact surface and R (q) is the inverse of the inertia matrix of

the system projected in the operational space and restricted to linear acceleration terms. In order to minimize F̂ ,

one has of course to plan a low impact velocity but uncertainties in the knowledge of the environment location

may still lead to bad results. e can also be adapted using Remote Center Compliant Devices but thus leading to a

very specific solution for the problem to be treated. In fact, the best solution is to maximize nT R (q)n and thus to

modify the configuration of the system in a way that will reduce the inertia of the system, seen at the end-effector,

in the normal direction to the contact surface.

Both simulation and experimental results are presented. Those results illustrate the whole framework :

– operational tasks switching;

– reactive potential functions switching;

– contact transition;

– operational velocity adaptation.

In simulation, the WMM is a unicycle wheeled platform with a two dofs, revolute joints, planar arm. The position

of the end-effector is controlled, not its orientation. The obstacles in the scene are not known at the planning
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(a) Free space motion
(b) Free space motion with
contact transition active

constraint
(c) Constrained motion

Fig. 3 – WMM mission with contact transition : decomposition in three tasks

Fig. 4 – Adapted operational input velocities and real velocities

stage and thus have to be avoided dynamically using the redundancy of the system and an associated potential

function. Figure 3 gives an overview of the different tasks associated to the mission. The operational trajectory

is planned but its time execution is reactively modified to satisfy the different constraints. The planned velocity

profile is trapezoidal from the initial point to the impact point. The latter is planned to be reached at zero velocity.

Then, a second trapezoidal profile is planned for the end-effector velocity component tangential to the board. The

resulting velocity profile is illustrated in figure 4. This figure presents the actual operational speed (reactively

modified (⋆) and real) of the end effector. The time execution of the end-effector motion is modified by this reactive

adaptation but the end-effector path is not. The evolution of the value of the indicator associated to the active

constraint is shown in figure 5 . By comparing figure 4 and 5, one can notice that obstacle avoidance (see peaks in

figure 5 corresponding to each new obstacle) is very demanding in terms of actuation and thus lead to the largest

slowdowns of the operational velocity (figure 4). Regarding the constraint associated to manipulability, it is used

to avoid singular or badly conditioned configuration for the system that would lead to a failure of the control input

computation.

To illustrate the efficiency of the impact reduction strategy, results originally presented in34 are recalled. The normal
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Fig. 5 – Evolution of the indicator associated to the active constraint

force set-point is 10 N and figure 6 shows that at contact time, the force overshoot is reduced from 80% to 20%
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Fig. 6 – Impact force reduction : Normal contact force comparison.

when using the presented impact reduction strategy. Figure 7 illustrates the impact of this strategy on the velocities

and configuration of the system. In the case of this specific WMM, the reduced inertia matrix is mostly a function

of the arm configuration (qb1 and qb2 in figure 7) and this leads to a larger influence of the impact scheme on the

arm configuration than on the platform one (ϑ, xOp
and yOp

in figure 7).

The experimental system is also composed of a unicycle wheeled platform and of a six dofs, revolute joints robotic

arm. The whole system is controlled using on board calculators equipped with the real time operating system

VxWorks and running on Motorola 68000 and Power PC boards. Control algorithms are implemented using

Genom, a generator of software control modules developed, as well as the robot, in the RIA team of the LAAS

laboratory. At actuator level, the control sampling time is 5ms (the smaller one admitted by the control modules)

whereas at operational level it is chosen to be either 10 or 20ms.

The same type of contact transition mission has been tested using this experimental system. Figure 8 illustrates

the initial and final configuration of the system. Figure 9 shows the linear velocity and position of the end-effector

during the mission. The operational positioning error has a value of 5 mm at the end of the mission which is, in
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(a) System’s initial configuration (b) System’s final configuration

Fig. 8 – Initial and final configuration of the system for an experimental mission including contact transition.

the case of an indoor mobile manipulation mission, quite a good result in terms of tracking. The noise on the real

velocity signals is actually not measurement noise but effects of high friction at the joint level when operating the

robotic arm at slow velocity. Despite those uncompensated effects, the overall performance in terms of tracking

(position and force) is good and demonstrate the effectiveness of the proposed approach.
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Fig. 9 – Linear velocity and speed of the end effector

Fig. 10 – Principle of the virtual teleoperation of a wheeled mobile manipulator

4.3 On-line generated operational trajectories

To illustrate the case of on-line generated trajectories, simulation results are proposed, using the same planar WMM

where the operational trajectory is generated in real time by a user interacting with Simulink via a software joystick.

A 3D visual feedback of the scene is generated using GDHE 35. The principle of this application is given in figure

10.

For filtering purposes, a first order filter (low pass) F (s) is chosen:

F (s) =
Kf

1 + τs
, (30)
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Fig. 11 – Effects of filtering operational velocity set-points issued from joystick

such as :

ξ̇(s)∗f = F (s)ξ̇(s)∗, (31)

where ξ̇(t)∗ is the norm of the operational velocity set-point generated by the user using the joystick and ξ̇(t)∗f

the norm of the filtered operational velocity set-point. Maximum operational velocity is dynamically set using Kf ,

a function of ξ̇max, P(q) and αs. Using relations (30) and (31) and choosing ξ̈(t)∗f to the maximum value ξ̈max,

parameter τ is given by :

τ =
Kf ξ̇(s)∗ − ξ̇(s)∗f

ξ̈max

.

For real time interaction purposes, simulation of the robot dynamics is simplified. Three different types of potential

functions are considered:

– one for low obstacles avoidance; this potential function aims at maximising the distance from the wheeled

mobile platform to the obstacles;

– one for each joint limit avoidance; these functions are bowl-shaped and take their maximum values around

the joint limit values. They have to be minimized;

– one for numerical singularities avoidance; these singularities occur when J̄ (q) is rank deficient or has a bad

condition number; maximising the manipulability of the system is a way to avoid singular configurations.

Figure 11 presents the effect of filtering the operational velocity set-point issued from the joystick. The five time

zones where the filtered velocity is really lower than the unfiltered one are the one for which obstacle avoidance is the
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Fig. 12 – Planar view of the movement of the system during the mission

active constraint. In this particular simulation no joint limit avoidance was needed and when redundancy is not used

to avoid low obstacles, it is used to maximize manipulability. This figure also presents signal e(t)∗f = ξ̇(t)∗ − ξ̇(t)∗f .

This signal shows the effects of operational velocity set-point reduction as well as the difference induced by the

respect of maximum operational acceleration.

Figure 12 gives a planar view of the whole movement (blue curve : path of the end-effector, red curve : path of

point Op of the platform). Obstacles are represented as green points. These obstacles are efficiently avoided using a

totally reactive control scheme. This robust reactive behaviour is also enlightened by the platform trajectory that

exhibits not explicitly planned cusps.

5 Conclusion

In this paper, a unified framework for the reactive control of wheeled mobile manipulators is presented. It is

dedicated to the execution of complex robotic missions composed of different types of operational tasks that are

dynamically sequenced.

This framework is mainly based on model-based control strategies and relies on the generic kinematic and dynamic

modeling of WMM. These models give access to the redundancy of the system. This redundancy allows, using local

optimisation techniques, the satisfaction of the internal and external constraints associated to the control of such

systems. Arbitration and switching between critical constraints, scaling of the actuators’ inputs and operational

trajectories offer the required flexibility in the realisation of a complex robotic mission. This framework has been

implemented in both simulation and experimental cases. The exhibited performances demonstrate the feasibility

and effectiveness of the proposed approach both in the case of pre-planned operational trajectories and on-line
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generated trajectories.

Further developments will be conducted especially to fully integrate and automate the design of the steering wheels’

control within the proposed framework. In the case of outdoor applications, the rolling without slipping assumption

may be too strong and it would be interesting to extend this framework to the case where a friction model of the

couple wheel/ground might be useful in order to correctly model the dynamic behaviour of the WMM and thus

correctly compensate for it.

Web resources

Movies of the simulation and experimental results can be found at:

http://www.stanford.edu/ ~vpadois/ResearcH/mobile_manipulation.html
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Appendix - List of symbols

Symbols in subsection 2.1

– nb: Number of bodies of a multi-body system

– p1, p2, . . . , p6nb
: Primary generalized coordinates of the system

–
P6nb

i=1 αi (p1, p2, . . . , p6nb
, t) ṗi + β (p1, p2, . . . , p6nb

, t) = 0: Generic form of a joint equation

– f (p1, p2, . . . , p6nb
, t) = 0: Generic form of an holonomic joint equation

– hp\hc\h̄: Number of primary \ complementary \ nonholonomic joints equations

– q \ q̇: Vector of the n generalized coordinates \ velocities

– ndof = n −
`

hc + h̄
´

: Global degree of freedom of the system

Symbols in subsection 2.2

– qm: Vector of the nm generalized coordinates of the manipulator

– R = (O, ~x, ~y, ~z): World reference frame

– Rp = (Op, ~xp, ~yp, ~zp): Platform reference frame

– ξp =
ˆ

x y ϑ
˜t

: Vector of the mp location parameters of the platform in R

– Nf ,Nc,Noc,Ns: Number of fixed, centred, off-centred, Swedish wheels

– NS = Nc + Noc: Number of steerable wheels

– b, b′, r, α, γ, β, ϕ: Parameters describing the location of a wheel in Rp

– ϕ =
ˆ

ϕt
f ϕt

c ϕt
oc ϕt

s

˜t
: Spinning angles of the wheels

– β =
ˆ

βt
oc βt

c

˜t
: Steering angles of the wheels

Symbols in subsection 2.3

– Cαβ\Sαβ : Shortcut notation of cos (α + β) \ sin (α + β)

– R (ϑ): Rotation matrix of angle ϑ around ~z

Symbols in section 3

– REE = (OEE , ~xEE , ~yEE , ~zEE): End-effector reference frame
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– Rm = (Om, ~xm, ~ym, ~zm): Manipulator reference frame

– ξ\ξm: Vector of the m operational coordinates in R \ Rm

– ξ = f
`

ξp,qm

´

: Forward kinematics model of a WMM

– ξ̇: Operational velocities

– J(q): m × n Jacobian matrix of a WMM

– J1, J2, C1, C2: Rolling without slipping constraint matrices

– D (qp): Rolling without slipping compact constraint matrix

Symbols in subsection 3.1

– C1fc (βc): Mobility constraint matrix

– δmobp\δst: Degree of mobility\steerability of the platform

– N (C1fc (βc)): Kernel of C1fc (βc)

– Σ (βc): Motion compatibility matrix of the platform

– umobp\ust: Mobility\steerability control input of the platform

– umobm: Mobility control input of the manipulator

– u: Vector of control inputs of a WMM

– δmob\δman: Degree of mobility\manoeuvrability of a WMM

– S (qp): Motion compatibility matrix of a WMM

Symbols in subsection 3.2

– z: Extended operational coordinates vector of a WMM

– B (q): Extended jacobian of a WMM

– J̄ (q): Reduced jacobian of a WMM

– B̄ (q): Reduced extended jacobian of a WMM

– B̄ (q)⋆\J̄ (q)⋆: Weighted pseudo-inverse of B̄ (q)\J̄ (q)

– u0: Vector of control inputs associated to the redundancy term

– P (q): Configuration dependant potential function

– ∇P (q): Gradient of P (q)

– K: Positive definite weighting matrix

Symbols in subsection 3.3

– T (q, q̇, t): Kinetic energy of a mechanical system

– P: Vector of the forces applied to the system due to its motion
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– Q: Vector of the sum of any other force acting on the system

– q̇⋆: Virtual velocity of the system

– λ: Vector of Lagrange multipliers

– A (q): n × n symmetric, positive definite, inertia matrix of the system

– C (q, q̇): n × n Coriolis and centrifugal matrix of the system

– Γ: Vector of actuation forces provided by the na actuators

– M : Matrix of actuation forces distribution in the system

– Qa: Vector of actuation forces acting on the system

– Qg = −g (q): Vector of gravity forces acting on the system

– Qd: Vector of force disturbances such as friction effects acting on the system

– Qext: Vector of external forces acting on the system

– ξcl: Location on the system of the applied external forces

– gcl (q): Geometrical relation between the system configuration and ξcl

– Jcl (q): Jacobian matrix associated to gcl (q)

– Jc (q): Matrix concatenation of the Jacobians for the nc external forces applied to the system

– fc: Vector concatenation of the nc external forces applied to the system

– Ā (q): ndof × ndof , symmetric, positive definite, constraint consistent inertia matrix of the system

– Am (qm): nm × nm inertia matrix of the manipulator

– Āp (q): (ndof − nm) × (ndof − nm) constraint consistent inertia matrix of the wheeled platform without accounting
for the presence of the manipulator

– Āmp (q): (ndof − nm) × (ndof − nm) constraint consistent inertia matrix term representing the influence the manipu-
lator on the wheeled platform

– Āp/m (q): nm×(ndof − nm) constraint consistent inertia matrix representing the influence of the platform acceleration
on the manipulator inertia

– C̄ (q, q̇): ndof × ndof constraint consistent matrix of the Coriolis and centrifugal effects on the system

– Γ̄: Constraint consistent vector of actuation forces

– Γop: Computed actuation forces for a given operational motion\force and full dynamic compensation

– Γ̄op\Γ̄0: Constraint consistent vector of actuation forces associated to the operational points\redundancy of the system

– B̄ (q)t[1,2] : A [1, 2]−generalized inverse of B̄ (q)t

Symbols in subsection 4.1

– c: Computed control input (either velocity or force\torque)

– cop\c0,cred: Computed control input related to the operational points\redundancy of the system

– cmax: Vector of maximum values for the control inputs

– αs: Scaling factor for the redundancy term

– αsmax : Maximum value of αs

– βs(t): Transition function between two secondary constraints
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– tti\ttf : Starting\final time of the transition

– Pold (q): Potential function associated to the secondary constraints before switching

– Pnew (q): Potential function associated to the secondary constraints after switching

Symbols in subsection 4.2

– F̂ : Impulse force at impact for contact transition

– ti: Time of impact for contact transition

– ∆t: Infinitesimal period of time during which impact occurs

– f : Measured force at the end-effector of the arm

– F̂ : Estimated magnitude of F̂

– v : Linear velocity of the end-effector at impact time

– e : Restitution coefficient of the contact

– n : Normal direction to the contact surface

– R (q) : Inverse of the inertia matrix of the system projected in the operational space and restricted to linear acceleration
terms

– Td : Operational controller contact detection time

– fth: Force threshold value used for contact detection

– ∆Tp: Period of influence of the impact reduction scheme

Symbols in subsection 4.3

– F (s): Transfer function of the low pass filter used to adapt the norm of the end-effector desired velocity ξ̇(t)
∗

– τ\Kf : Time constant\static gain of F (s)

– ξ̇(t)
∗

f\ξ̈(t)
∗

f : Filtered value of the norm of the end-effector desired velocity\acceleration

– ξ̇max\ξ̈max: Maximum value of the norm of the end-effector velocity\acceleration

– e(t)∗f : Difference between the desired end-effector velocity vector ξ̇(t)
∗

and the filtered one ξ̇(t)
∗

f
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