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Abstract
We present numerical simulation studies of 2D reduced MHD equations investigating the impact of the electronic
β parameter and of curvature effects on the nonlinear evolution of drift tearing islands. We observe a bifurcation
phenomenon that leads to an amplification of the pressure energy, the generation of E × B poloidal flow and a
nonlinear diamagnetic drift that affects the rotation of the magnetic island. These dynamical modifications arise due
to quasilinear effects that generate a zonal flow at the onset point of the bifurcation. Our simulations show that the
transition point is influenced by the β parameter such that the pressure gradient through a curvature effect strongly
stabilizes the transition. Regarding the modified rotation of the island, a model for the frequency is derived in order
to study its origin and the effect of the β parameter. It appears that after the transition, an E × B poloidal flow as
well as a nonlinear diamagnetic drift are generated due to an amplification of the stresses by pressure effects.

PACS numbers: 52.30.Cv, 52.35.Py, 52.35.Ra, 52.55.Fa

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In tokamak and space plasmas, confinement can be affected
by instabilities and in particular, at resonant surfaces,
magnetohydrodynamics activity can lead to the generation
of magnetic islands reaching a macroscopic width. Solar
flares [1], energy release events in the geotail [2] or tokamak
internal disruptions, also known as sawtooth oscillations,
are linked to such reconnection phenomena. Diamagnetic
effects and self-generated zonal flows can modify the saturated
island width via bifurcation mechanisms [3]. The rotation
frequency of the island can also be nonlinearly affected with
a strong dependence on the transport coefficients and on the
competition between the Reynolds and Maxwell stresses [4].
This can have a significant physical consequence, for example
in a tokamak, where such a nonlinear effect on the rotation
can lead to a slowing down of the plasma through locking
to the resistive wall producing in turn a degradation of the
plasma and/or triggering a transport barrier [5]. Likewise

curvature effects can also modify the nature of island dynamics.
Magnetic islands can in particular coexist with pressure driven
instabilities such as interchange modes and/or turbulence.
Several experiments report the coexistence of turbulence
and MHD activities showing some correlated effects [6, 7].
Numerical studies of the interaction between double tearing
modes and micro-turbulence to delineate the interaction
between zonal flows and the latter in the growing phase of
the double tearing instability have also been performed in [8].
More recently, in [9] an investigation of the interaction of a
2D electrostatic turbulence with an island whose dynamics
is governed by a generalized Rutherford equation has been
carried out. However the study neglects the potentially
stabilizing influence of the magnetic structure on the turbulence
thereby precluding any multi-scale interaction between MHD
and turbulence. In this paper we study the dynamics of a
magnetic island in the presence of interchange effects but
limit ourselves to the situation where the interchange modes
in the system are linearly stable. We find that the whole
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system does not generate turbulence in the nonlinear stage but
exhibits a complex dynamics arising mainly due to quasilinear
effects. Our investigations are based on linear and nonlinear
simulations of a set of reduced fluid equations (a three field
model) through which we examine the origin and the influence
of zonal flows on the magnetic island dynamics in the presence
of interchange effects. The magnitude of the pressure gradient
appears to be a key parameter of the dynamics controlling
both the generation of the zonal flow and the development of
a nonlinear transition in the system.

The paper is organized as follows. In section 2, the model
equations are introduced. In section 3, a linear analysis of the
model is done in order to understand the role of the equilibrium
magnetic field in the stabilization of the electromagnetic
interchange modes. In section 4, the description and the
analysis of the dynamics are done. In section 5, the origin of
the island poloidal rotation is investigated. Section 6 presents
a summary and conclusions of the paper.

2. Model system

Our model system is a three fields model corresponding
to a reduced magnetohydrodynamic description of the fluid
equations [10] and which provides a minimal framework
for including both the interchange and the tearing mode
phenomena in a plasma. The model consists of a set of three
coupled equations for the electrostatic potential φ, the pressure
of the electron p and the magnetic flux ψ . We suppose that
the magnetic field is dominated by a constant component B0z

along the z-direction. The time evolution of the three fields
are described by

∂t∇2
⊥φ +

[
φ, ∇2

⊥φ
] = [

ψ, ∇2
⊥ψ

] − κ1∂yp + ν∇4
⊥φ, (1)

∂tp + [φ, p] = −v�

(
(1 − κ2)∂yφ + κ2∂yp

)

+C2
[
ψ, ∇2

⊥ψ
]

+ χ⊥∇2
⊥p, (2)

∂tψ + [φ − p, ψ] = −v�∂yψ + η∇2
⊥ψ, (3)

where v� = βL⊥
2
iτALp

. The sum of the electron and ion
momentum evolution equations leads to the plasma equation
of motion, equation (1), where ν is the viscosity. Equation (2)
comes from the energy conservation equation where χ⊥ is
the diffusivity. Equation (3) is Ohm’s law (electron parallel
momentum equation) with η being the resistivity. β = p0

B2
0z/2µ0

is the ratio of the electron thermal energy to the magnetic
energy (p0 being the amplitude of the equilibrium pressure), Lp

is the pressure gradient length, L⊥ is a magnetic shear length,
R0 is the major plasma radius, 
i = eB0z

mi
is the ion cyclotron

frequency and τa is the Alfvèn time. Equations (1)–(3) are
normalized as follows:

t

τA
→ t,

x

L⊥
→ x, (4)

ψ

L⊥B0z

→ ψ,
φ

L⊥vAB0z

→ φ,
Lp

L⊥p0
p → p, (5)

where vA = B0z/µ0nmi = L⊥/τa is the characteristic Alfvèn
speed. κi parameters are linked to the curvature and to the
pressure gradient (κ1 = 2
iτA

L⊥
R0

and κ2 = 10Lp

3R0
), so these

Table 1. Effect of the β parameter on v� and C.

β v� C2

0.001 2 × 10−3 3.3 × 10−3

0.005 10−2 1.67 × 10−2

0.015 3 × 10−2 5 × 10−2

0.025 5 × 10−2 8.33 × 10−2

parameters control the interchange instability. On the other
hand, in equation (2), the tearing mode dynamics is controlled
by the coupling parameter C2 = 5β

6
2
i τ

2
A

. More precisely,

this parameter controls the coupling between pressure and the
magnetic flux. The nature of the linear and nonlinear dynamics
of the magnetic island depends strongly on the strength of the
coupling. For a high β plasma, since the coupling is strong,
the pressure and the magnetic flux control the island dynamics,
whereas for a low β plasma, the island dynamics is governed
by the interaction between the flow and the magnetic flux. In
our model we assume the electron temperature to be constant
and the ions to be cold. The cold ion limit is physically
realistic since the ion temperature does not significantly affect
the stability of the tearing mode. As a further simplification
we have also neglected the parallel ion dynamics in the
energy balance equation (equation (2)). Equations (1)–(3) are
solved numerically using a finite difference scheme in the x

direction, including an Arakawa algorithm [11] for an accurate
conservation of the Poisson brackets [., .] and a pseudo-spectral
method in the y direction, including an appropriate de-aliasing
scheme.

3. Nature of the tearing modes and the influence of
the curvature parameter κ1

We now study the influence of the interchange mechanism on
the magnetic reconnection when the gradient scale length of
the pressure, Lp, is of the order of the size of the island: we set
Lp = L⊥. We are interested in large islands, i.e. islands with
widths w such that a � w � ρs where a is the minor radius
and ρs is the hybrid Larmor radius (ρs = cs/
i, where cs is
the ion sound velocity), and we have chosen L⊥ = 0.24 m.
The numerical values of other parameters are taken to be
R0 = 2.24 m and 
iτA = 0.5. These numerical values are
typical of the TORE SUPRA device for an island width of about
1/3 the minor radius and lead to κ1 ∼ 0.11 and κ2 ∼ 0.36. The
widths of the numerical integration box are set to Lx = 2πL⊥
and Ly = 5πL⊥. The values of the coefficients C(β) and
ω�(β) = kyv� are determined for four different values of β

in the range of 10−3 to 2.5 × 10−2 (see table 1). Transport
coefficients (ν, η, χ) are all set to 10−4 which correspond
to renormalized coefficients to include effects of microscopic
turbulence [12] . The equilibrium magnetic field B0y = B0ŷ,
based on the Harris current sheet model [13], is chosen to be
of the form,

B0(x) = tanh

(
x − Lx/2

at

)
. (6)

The parameter at = 0.75 controls the width of the profile,
ψ ′

0(x) = B0(x). With such a profile, the parameter �′ (the
tearing mode stability index) can be explicitly computed taking
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Figure 1. Linear growth rate γ [τ−1
A ] versus poloidal mode number ky for a simulation with β = 10−3. (Left) v� = 2 × 10−3,

C = 3.33 × 10−3, κ1 = 0.1071, κ2 = 0.3571 and µ = χ⊥ = η = 10−4. (Right) v� = 10−2, C = 2 × 10−3, κ1 = 5, κ2 = 0.3571,
µ = χ⊥ = 10−5 and η = 10−4.

into account the boundary conditions, for modes evolving
slowly on the Alfvén time scale and further neglecting the
viscous and interchange corrections. Introducing k̂ = atky ,
we have

at�
′ = 2

(
1/k̂ − k̂

)
+ �̂b·c, (7)

where

2�̂−1
b·c = −

∫ Lx/(2at )

0
dy exp(2k̂y)/(1 + tanh(y)/k̂)2 (8)

is a correction linked to the finite radial distance of the walls.
Let us investigate the stability of the modes modelled

by equations (1)–(3) with the given numerical values of the
parameters in the presence of such an equilibrium. Figure 1,
shows the growth rate of the electromagnetic interchange and
the tearing branches, as functions of the poloidal wave number,
for the parameter values given above. The left graph has
been obtained using the parameters chosen in this work with
β = 0.001. Tearing instability has the largest growth rate at
ktear
y = 2π/LY = 0.4, for which �′ = 6 and γtear ∼ 0.0042.

This is clearly smaller than the one we would obtain in the
classical tearing limit, i.e. if we set all the parameters to zero
except η (γtear class = 0.0072). It is instructive to note also
that in this parametric regime the interchange branch is stable
for any wave number. From an electrostatic point of view,
with such parameters, interchange would have been unstable
for ky < 8 and would have given a scale separation between
both instabilities (kint elec

y /ktear
y ∼ 7, γ int elec/γ tear � 1). Let us

focus on the tearing branch. Linearization of equations (1)–(3)
in the vicinity of the resonance shows that curvature effects
weakly modify the growth rate if κ1v�(ky/kx)

2/γ 2 � 1 and
κ2 � 1, which is true in our case. Considering the fact that the
linear regime is also not controlled by viscous phenomena [14],
it follows that, linearly, this system develops approximately
drift tearing modes. The actual nature of these modes is
controlled mainly by the ratio P/Pcr and γ /ω�, where P =
ν/η = 1 is the Prandtl number and Pcr = (�′(η/ky)

1/3)6/5. In
our cases, for any β, the first ratio is always smaller than 1. It
implies that when γ /ω� > 1, one gets the visco-tearing regime
with a growth rate scaling law γvt ∼ 0.47�′η2/3P −1/6k

1/3
y .
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Figure 2. Stability of electromagnetic interchange modes versus ψ ′
0,

far from the resonant surface. Same parameter values as figure 1.

When γ /ω� < 1, we recover the visco-drift tearing regime
with the growth rate γvdt [15]. For instance, for β = 0.001
and ky = 0.4, we have γvt/ω� ∼ 5.5 > 1 and γ = 0.0042 ∼
γvt = 0.0045. For ky = 1.2, we have γvt/ω� ∼ 0.2 < 1 and
γ = 0.00035 ∼ γvdt = 0.0004.

The right graph of figure 1 shows that there exist regimes
where the interchange branch is unstable and has the largest
growth rate at small scales. The study of such regimes is out
of the scope of this paper. We also remark that the instability
does not necessarily develop in the vicinity of a resonant
surface, but in that case, the effect of the magnetic field on
the stability of interchange like modes can be investigated by
setting ψ ′

0 = B0 = Cte and using some Fourier analysis.
Figure 2 shows the linear growth rate of interchange modes
versus ψ ′

0. As is well known [16, 17], the equilibrium magnetic
field stabilizes the interchange modes and, in our case B0 = 1,
this is clearly stable. We can therefore expect that in the initial
phase the growth of the magnetic island is weakly influenced
by interchange parameters.
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Figure 4. Snapshots of the fields ψ , φ and p before transition for β = 0.001, at t = 5000τA.

4. Nonlinear generation of a strong zonal flow

4.1. Description of the nonlinear evolution of the system

To characterize how the pressure gradient affects the evolution
of a magnetic island, linear and nonlinear self-consistent
numerical simulations have been performed. A grid number
of nx = 128 is chosen for the radial direction and ny = 128
for the poloidal direction (equivalent to 48 modes in this
direction, including dealiasing). The energy conservation
relation derived from equations (1)–(3) is

d

dt

(
Em + Ep + Ek

) = −η〈j 2〉 − ν〈�2φ〉 − χ⊥
C2

〈|∇p|2〉 + S,

(9)
where Em = 0.5〈|∇(ψ − ψ0)|2〉, Ep = 0.5〈p2〉/C2 and
Ek = 0.5〈|∇φ|2〉| are, respectively, the magnetic energy, the
pressure energy and the kinetic energy of the fluctuations.
The brackets 〈.〉 mean here an average over the simulation
domain. S is the source term linked to the curvature and
the pressure gradient, proportional to the radial pressure flux,
S = −αS〈p∂yφ〉 with αS = v�

C2 (1 − κ2) + κ1 > 0 because
κ2 < 1. Note that a local flattening of the pressure by
radial exchange of pressure cells, gives a fluctuation δS < 0.
Moreover, the interchange source term S is not modified by the
generation of zonal flow. Figure 3 shows the time evolution
of Em, Ep and Ek for the parameters chosen in this work with
β = 10−3 as well as the corresponding ECT

m and ECT
k , for a

classical tearing mode (i.e. p = 0 and κi = 0). In comparison

with the evolution of a classical tearing mode, four regimes are
observed in the nonlinear simulations of a magnetic island in
the presence of the interchange term. First, there is a linear
regime where the magnetic island is formed. Second, the
system reaches a quasi-plateau phase. Then, a transition occurs
and as will be shown later, this is linked to the interchange
parameters. Finally, the system reaches a new saturated state.
During the first two phases, the evolution of the energies is
not strongly affected by the presence of the curvature terms.
The evolution of the magnetic island closely follows the time
trajectory of an island driven by a tearing instability. However,
at t� = 13 200τA, a transition occurs. Figures 4 and 5 show
snapshots of the fields ψ , φ and p, respectively, before and after
the transition. The two dimensional profiles of the pressure and
the electrostatic potential (represented through isocontours)
are strongly affected by this transition. After this phase, the
structure of the mode changes and a flattening of the pressure
is obtained.

4.2. Origin of the transition

In order to understand the origin of the transition and to
characterize the structure of the electrostatic potential after
the transition, we first assess the importance of small scales.
The spectra before the transition (a) and during the transition
(b) are shown in figure 6. An equipartition between the energy
of the magnetic flux and the energy of the pressure is observed
at large scales 0.8 < ky < 5, whereas there is an equipartition

4



Nucl. Fusion 49 (2009) 055016 M. Muraglia et al

ψ

x

y

 

 

–3.14 0 3.14
0

7.85

15.71

–3

–2.5

–2

–1.5

–1

–0.5

0

φ

x

y

 

 

–3.14 0 3.14
0

7.85

15.71

–0.02

–0.015

–0.01

–0.005

0

p

x

y

 

 

–3.14 0 3.14
0

7.85

15.71

–1.5

–1

–0.5

0

0.5

1

1.5

x 10
–3

Figure 5. Snapshots of the fields ψ , φ and p after transition for β = 0.001, at t = 18000τA.
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Figure 6. Spectra before (a) and during the transition (b), at
respectively t = 12 000τA and t = 14 500τA.

between the energy of the pressure and the kinetic energy at
small scales 8 > ky > 14. We observe that these properties
continue to persist when the transition occurs, the energy level
of the modes ky > 1.2 being roughly unaltered. We also note
that as apparent in figure 6 only the large scales are affected
at the transition. A detailed analysis shows that the transition
occurs when the kinetic energy of the mode ky = 0 becomes
equal to the one of ky = 0.4 (mode 1). This suggests that
the dynamics of the structure of the electrostatic potential is
quasilinear and that the transition occurs when the mode ky = 0
becomes energetically dominant. To delineate the quasilinear

nature of the magnetic island dynamics, we have performed a
simulation with only four poloidal modes and with the same
parameters (β = 10−3). Figure 7 shows the time evolution of
the energies for this simulation. The comparison with figure 3
demonstrates that one needs only four modes to describe the
time evolution of the energies. Therefore the dynamics of
the system is the result of quasilinear effects. Further, the
time evolutions of the kinetic energies of modes 0, 1 and 2 are
presented in the right hand side panel of figure 7 and compared
with the evolution of modes in a classical tearing run, i.e.
without pressure effects (p = 0 and κi = 0). In the latter
case, the growth is driven by mode 1, the transition does not
occur and mode 0 is not generated. Conversely, in the case
where the pressure effects are included, the transition occurs
and the mode ky = 0, i.e. zonal flow, is strongly generated. It
is also the first to be amplified exponentially, at the beginning
of the transition. This suggests that the transition is linked to a
strong amplification of the zonal flow. Nevertheless, when
we perform the same run, suppressing artificially mode 0,
i.e. the zonal flow, we find that the transition still occurs,
roughly at the same time, but with a weaker amplitude. This
suggests that although zonal flows play a predominant role
they are not the sole factor responsible for the destabilizing
mechanism. Indeed we can show from the analysis of the
snapshots of φ, p and ψ given by figure 8 that mode 0 plays
an important role in the triggering mechanism of the transition
phase. We can observe that during the transition, the pressure
cells are crossing the resonant surface at the current sheet in
both directions, producing at the end a modification of the
mode structure. Clearly the potential structure suggests that
the crossing results from an advection by the flow. Let us
stress that during this phase, the classical tearing picture of an
incoming flow from the sheet into the island is no more valid.
Between t = 15 000τA and t = 17 000τA, S(t) decreases
because the reorganization of the cell is radially equivalent to
an exchange of pressure cells with the gradient of the pressure
fluctuations being outward. From an energetic point of view,
see equation (9), κ1 and κ2 have a negligible effect because
the dominant contribution in the interchange source term is
linked to ω�/C2. In figure 7, the results of a simulation with
four modes and without the curvature terms are presented
(κ1 = κ2 = 0). We find that the transition does not occur. At
least, it does not occur at 2.5t�, showing that a more complex
mechanism due to curvature terms might be at play. We next
investigate the origin of the zonal flow.
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4.3. Origin of the strong increase in the zonal flow

We investigate the origin of the zonal flow that is generated
whenever β 
= 0 by considering separately the energy transfer
from the tearing mode to the zonal flow and also from the other
modes, in particular, the small scales.

Following [8], the equation for the flow energy feeding
the mode km = m2π/Ly can be written as

d

dt
Em = T R

m + T M
m + T C

m + T LB
m + T KI

m , (10)

where

T R
m = −

∫
dxφm([φ, ω])m (Reynolds stress contribution),

T M
m =

∫
dxφm([ψ, j ])m (Maxwell stress contribution),

T C
m = − κ1km

∫
dxφmpm (curvature term contribution),

T LB
m =

∫
dxφm([ψ0, j ])m (line bending term contribution),

T KI
m =

∫
dxφm([ψ, j0])m (kink term contribution).

Here φm = φ̂meiky + φ̂−me−iky , where φ̂m is the m Fourier
component of φ.

In order to understand the origin of the generation of
the zonal flow, it is useful to project equation (10) on the
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Figure 9. β = 10−3: Time evolution of T R
0 , T M
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0 .

mode m = 0:

d

dt
E0 = T R

0 + T M
0 + T LB

0 + T KI
0 (11)

The curvature term does not directly feed the zonal flow. In
figure 9, the time evolutions of T R

0 , T M
0 , T LB

0 and T KI
0 for the

simulation with β = 10−3 are presented. The contributions of
the line bending and the kink terms are very weak. However, at
the transition, there is a strong generation of the Reynolds stress
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and the Maxwell stress contributions. To proceed further, it is
useful to separate the contributions from zonal flow (m = 0),
the mode m = 1 and other modes for each of the transfer
functions. Let us introduce φ>1 = ∑

m>1 φm. We can define
three contributions in each transfer function. For instance, in
the case of T R

m , we have

T R
m = T R

0m + T R
1m + T R

>1m, (12)

where T R
0m = ∫

dxφm([φ0, ω0])m, T R
1m = ∫

dxφm([φ1, ω1])m,
and T R

>1m = ∫
dxφm([φ>1, ω>1])m. Clearly, by definition

T R
11 = 0 and T R

0m = T M
0m = 0. Let us focus on the energy

transfer to zonal flow, neglecting the weak contributions of the
line bending and the kink terms. Equation (11) then becomes

d

dt
E0 = T R

10 + T R
>10 + T M

10 + T M
>10. (13)

Using the above prescription we have checked that the main
contribution to the Reynolds and Maxwell stresses comes from
the mode m = 1 while the contributions of the small scales are
weak.

4.4. Effect of the β parameter on the nonlinear dynamics

The left panel of figure 10 presents the transition time and
the time where the first quasi-plateau saturation occurs for
various values of β. We note that the time corresponding to the
first quasi-plateau phase does not depend on the β parameter.
This is in agreement with the results of figure 3, which shows
the time evolution of the energies for two cases, namely the
classical tearing case (β = 0) and the β = 10−3 case. However
the saturation time depends strongly on the β parameter. For
a regime where the pressure effects are strong, i.e. for a high
value of β, the transition occurs quickly whereas, for low β

regimes, the transition occurs later. Further, in the right panel
of figure 10, the effect of the interchange parameter κ2 on the
transition is shown for a simulation with four modes and with
β = 10−3. The transition time clearly depends on the κ2

parameter. It tends to stabilize the first plateau phase.
To summarize, the nonlinear transition results from

quasilinear effects. Zonal flow amplification at the transition
is due to the energy transfer from the mode m = 1 to the
mode m = 0 mainly through the Maxwell stress. The

curvature term κ2 linked to the interchange effect does not
directly feed the growth of the zonal flow. However, we
have shown that this term controls the transition time t�. The
transition leads to an effective radial exchange of pressure cells
generating an outward mean pressure gradient of fluctuations.
The shape of the pressure structure after the transition implies
that a diamagnetic velocity ω̃� has been nonlinearly generated,
driving a rotation of the island. This driving is of course in
competition with the zonal flow. Let us in the next section
analyse quantitatively the island poloidal rotation.

5. Study of the island poloidal rotation

5.1. Model for the island rotation frequency

Following [4] where a study of the rotation frequency of the
island has been done for the case of a drift tearing mode, we
investigate the origin of the magnetic island poloidal rotation.
Let us project Ohm’s law (equation (3)) on the mode m = 1
assuming that for mode ky , ψ̃ky

(x, y, t) = ψky
(x)eikyye−iγ t ,

where the real part of γ is the frequency of the island rotation
and the imaginary part is the linear growth rate of the island.
Neglecting the nonlinear contribution of the modes ky > k1,
we obtain the expression for the rotation frequency ω of the
island

ω = ω� + ω̃� + ω̃E×B + Lψ0 + Lη, (14)

where

ω� = k1v
�,

ω̃� = −k1∂xp0,

ω̃E×B = k1∂xφ0,

Lψ0 = −Re

(
k1ψ

′
0
φk1 (x) − pk1 (x)

ψk1 (x)

)
,

Lη = Re

(
iη

(
∂2
x − k2

1

)
ψk1 (x)

ψk1 (x)

)
,

are respectivly the linear diamagnetic drift, the nonlinear
diamagnetic drift, the contribution of the equilibrium magnetic
field and the contribution of the resistivity. In general, each
term of equation (14) is not a constant inside the current sheet δ,
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Figure 11. Time evolution of the poloidal position of the island:
comparison between the model and numerical data for β = 0.025.

so we consider their radial averages over the current sheet to
contribute to the rotation frequency. Equation (14) becomes:

〈ω〉δ = 〈ω� + ω̃�〉δ + 〈ω̃E×B〉δ + 〈Lψ0〉δ + 〈Lη〉δ, (15)

where 〈.〉δ means an average over the current sheet.
In figure 11, the time evolution of the poloidal position

is presented for a nonlinear simulation with β = 0.025. The
dynamics of the energies for a simulation with β = 0.025
has the same behaviour as the one obtained in figure 3 with
β = 10−3. However, as shown in the left panel of figure 10,
with such a high value of β, the transition occurs earlier around
t = 5600τA. In figure 11 a comparison with the island position
obtained from the model equation (15) is also shown. The
derived model is in agreement with the numerical data and the
dynamics of the island rotation is recovered. We would like
to mention here that the time integration for these results has
been performed on a very long time scale compared with the
Alfvén time.

Equation (15) shows that the effective island frequency is
the result of different contributions. In order to investigate the
effect of the interchange terms on the island rotation, figure 12
presents the evolution of each frequency for a simulation with
β = 0.025 setting κ1 = κ2 = 0 (left panel) and for a simulation
with β = 0.025 including the curvature/interchange terms
(right panel). First, for the two simulations, the contributions
to the rotation of the equilibrium magnetic field Lψ0 and
of the resistivity Lη are weak. Moreover, figure 12 shows
that the frequency dynamics is not affected by the curvature
terms during the linear regime and during the first quasi-
plateau phase. Actually, during the linear formation of the
magnetic island, the rotation is controlled mainly by the linear
diamagnetic drift while ω̃� and ω̃E×B are weak. During the
first quasi-plateau phase, the nonlinear diamagnetic drift and
the E × B poloidal flow are strongly generated, and affect
the island rotation. The E × B poloidal flow is the most
important contribution to the frequency during this regime.
However, after the first quasi-plateau phase, interchange terms
affect the dynamics of the frequency. When the interchange
terms are switched off, the time evolution of the frequencies

is in agreement with previous results found for a drift tearing
mode [4]. After the nonlinear generation of the flows, linear
and nonlinear diamagnetic drifts cancel each other. As a result,
the E ×B poloidal flow controls the effective frequency of the
island, ωt ∼ ω̃E×B . The right panel of figure 12 shows that
when interchange terms are included, such cancelling of the
total diamagnetic frequency does not occur anymore after the
transition. Hence the total diamagnetic drift then provides
the main contribution to the island rotation. However, after
the transition, clearly ∂ωt/∂t ∼ ∂ωE×B/∂t . The asymptotic
island velocity is enhanced by the curvature terms κ1 and κ2.

5.2. Origin of the E × B flow

Nonlinearly, the E×B flow is generated and affects the rotation
of the island. In order to investigate its origin, the flow equation
(equation (1)) is projected on the mode k1 for the limiting case
of ∇2

⊥ ≈ ∂2
x . We obtain

∂t∂
2
xφ0 = − 1

Ly

∫
Ly

[φ, ∇2
⊥φ] dy +

1

Ly

∫
Ly

[ψ, ∇2
⊥ψ] dy

+
µ

Ly

∫
Ly

∂4
xφ dy (16)

We have defined the E × B poloidal flow as ω̃E×B =
k1∂xφ0. So multiplying equation (16) by k1 and averaging
over the current sheet δ, we obtain

∂t 〈ω̃E×B〉δ = R(t) + M(t) + V (t), (17)

where

R(t) = − k1

δLy

∫
δ

∫
Ly

[φ, ∇2
⊥φ] dy dx,

M(t) = k1

δLy

∫
δ

∫
Ly

[ψ, ∇2
⊥ψ] dy dx,

V (t) = µk1

δLy

∫
δ

∫
Ly

∂4
xφ dy dx

with R(t) being the Reynolds stress, M(t) being the Maxwell
stress and V (t) being the viscosity contribution to the E × B

flow.
On the left panel of the figure 13, the time evolutions of

R, M and V are presented for a simulation with β = 0.025.
As expected, the stresses are nonlinearly generated at the
beginning of the first quasi-plateau phase allowing the growth
of the E × B poloidal flow. Except at the end of the linear
regime where the Reynolds stress is not yet generated, the
viscosity term is very weak and does not play an important role
in the generation of the flow. The most important contributions
come from the Reynolds and Maxwell stresses which balance
each other. There is a strong amplification of the amplitude
of the stresses during the transition. On the right panel
of figure 13, a closeup of the temporal dynamics of R, M

and V during the transition time evolutions are presented.
Note that during this transition, whereas the viscosity term
is still weak, the evolutions of the Reynolds and Maxwell
stresses are complementary. The two stresses tend to balance
each other during this phase where the flow is crossing the
separatrices, limiting the level of the generated zonal flow,
even if they are both growing in amplitude. Once the transition

8
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has occurred, the amplitude of the mean nonlinear brackets in
the vicinity of the separatrix, R and M , fall. However, in
the new dynamical equilibrium the resulting E × B poloidal
flow persists asymptotically and is driven by the Maxwell
stress, as a response of the magnetic structure to the new field
distribution.

5.3. Origin of the nonlinear diamagnetic drift

In order to investigate the origin of the nonlinear diamagnetic
drift, we follow the same procedure for the pressure equation
(equation (2)). After projection on mode k1, we obtain:

∂t 〈ω̃�〉δ = dC(t) + dM(t) + D(t), (18)

where

dC(t) = − k1

δLy

∫
δ

∫
Ly

∂x[φ, p] dy dx,

dM(t) = C2k1

δLy

∫
δ

∫
Ly

∂x[ψ, ∇2
⊥ψ] dy dx,

D(t) = k1χ⊥
δLy

∫
δ

∫
Ly

∂3
xp dy dx.

dC is the contribution to the nonlinear diamagnetic drift of the
divergence of the convective term, dM is the contribution of

the divergence of the Maxwell stress and D is the contribution
of the diffusivity.

In the left panel of figure 14, the time evolutions of dC,
dM and D are presented. The three contributions to the
nonlinear diamagnetic drift are generated at the beginning of
the nonlinear regime. During the first quasi-plateau phase, dC,
dM and D participate actively in the generation and growth of
the nonlinear diamagnetic drift ω̃�. At the transition there is
an amplification of the amplitude of the three contributions.
The right panel of figure 14 presents a closeup of the time
evolutions of dC, dM and D during the transition. During this
transition, the contribution of the diffusivity does not grow
and is relatively weak compared with dC and dM . Note
that both the divergence of the convective term and of the
Maxwell stress feed the nonlinear diamagnetic drift. We
observe that in the first phase of the transition, the nonlinear
diamagnetic drift is driven by dC, the term linked to the
advection of the pressure cells. In the following phase this
term is balanced by the Maxwell divergence stress leading
to a stabilization of the island dynamics. This shows the
importance of the coupling parameter C during the transition.
In the saturation phase, the origin of ω̃� comes mainly from
the divergence of the convective term, dM and D becoming
relatively weak.
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5.4. Effect of the β parameter on the island poloidal rotation

In figure 15, the effect of the β parameter on the rotation
frequency is presented. The frequencies have been time
averaged from t = 15 000τA to t = 30 000τA. At low
β, pressure effects are weak and the situation is close to
the classical tearing situation. The competition between
Reynolds and Maxwell stresses produces nonlinearly neither
the zonal flow nor a diamagnetic drift. The asymptotic rotation
frequency ωt increases with β. The nonlinear diamagnetic
frequency increases almost linearly with β, but with a slope
lower than the linear one, allowing a global asymptotic drift of
the island in the electron diamagnetic direction. Let us note,
however, that the direction of the island rotation depends on the
value of the viscosity parameter [4]. For any β, the zonal flow
contribution to the island drift is weaker than the diamagnetic
one. Note also that from β ∼ 0.015, ωE×B decreases, and
this is linked to the transition observed in figure 16 where the
effect of the β parameter on the average stresses is shown (from
t = 15 000τA to t = 30 000τA). The amplification of the
stresses leads to the nonlinear generation of the mean flows
and hence considerably affects the rotation of the magnetic
island. More precisely, it appears that for low β values, the
amplitudes of the stresses are very weak as in the classical
tearing case. This explains why nonlinear diamagnetic drift
and nonlinear E × B poloidal flow do not strongly affect
the rotation of the island in those cases. However, for high
β regimes, the amplitude of the stresses, in particular the
Maxwell and convective contribution become more important.

At β ∼ 0.015, a transition is observed: first, dM ceases
to be negligible compared with dC, second the Reynolds
contribution R starts to grow, weakening the global E × B

flow, as observed in figure 15.

6. Summary

The nonlinear dynamics of a magnetic island in the presence of
pressure gradient effects has been investigated. This nonlinear
dynamics is different from the classical tearing case and
exhibits a bifurcation. After a linear growth of the island and
a first quasi-plateau phase, a transition occurs and the system
reaches a new saturated state characterized by the flattening of
the pressure profile. We have shown that the dynamics of the
island during this bifurcation is due to quasilinear effects. The
strong generation of a zonal flow, due to interchange terms,
allows this transition to occur. We have shown that the time at
which the transition occurs decreases with β while it increases
with the pressure parameter κ2. Regarding the poloidal rotation
of the magnetic island, a model including quasilinear effects
has been tested successfully. Before the transition, the rotation
of the island corresponds to the linear diamagnetic drift.
Then, at the transition, the rotation is strongly affected by
the nonlinear generation of the diamagnetic drift and of the
E × B flow. We have shown that the asymptotic nonlinear
diamagnetic drift is a linear function of β but does not
cancel the linear drift, as previously obtained when curvature
parameters are neglected. The diamagnetic effect appears
to be the dominant contribution to the island rotation. We
have also shown that the β parameter affects the magnetic
rotation through an amplification of the stresses. We have
provided a detailed analysis of their impacts on the E × B and
diamagnetic drifts for both the transition and the asymptotic
regime. At high β, we find that a Reynolds stress is generated
in the vicinity of the island and weakens the influence of the
asymptotic E × B flow on the rotation.
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