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This paper deals with dynamic output feedback control of continuous time Active Fault Tolerant
Control Systems with Markovian Parameters (AFTCSMP) and state-dependent noise. The main
contribution is to formulate conditions for multi-performance design, related to this class of stochas-
tic hybrid systems, that take into account the problematic resulting from the fact that the controller
only depends on the FDI (Fault Detection and Isolation) process. The specifications and objectives
under consideration include stochastic stability, H2 and H∞ (or more generally, Stochastic Integral
Quadratic Constraints) performances. Results are formulated as matrix inequalities. The theoretical
results are illustrated using a classical example from literature.
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1 Introduction

Control engineers are faced with increasingly complex systems where dependability considerations are
sometimes more important than performance. Sensor, actuator or process (plant) failures may dras-
tically change the system behavior, resulting in performance degradation or even instability. Thus,
fault tolerance is essential for modern, highly complex control systems. Fault Tolerant Control Sys-
tems (FTCS) are needed in order to preserve or maintain the performance objectives, or if that turns
out to be impossible, to assign new (achievable) objectives so as to avoid catastrophic failures. FTCS
have been a subject of great practical importance, which has attracted a lot of interest for the last
three decades. A bibliographical review on reconfigurable fault tolerant control systems can be found
in [39].
Active fault tolerant control systems are feedback control systems that reconfigure the control law in
real time based on the response from an automatic fault detection and identification (FDI) scheme.
The dynamic behaviour of active fault tolerant control systems (AFTCS) is governed by stochastic
differential equations (because the failures and failure detection occur randomly) and can be viewed
as a general hybrid system [34]. A major class of hybrid systems is jump linear systems (JLS). In JLS,
a single jump process is used to describe the random variations affecting the system parameters. This
process is represented by a finite state Markov chain and is called the plant regime mode. The theory
of stability, optimal control and H2/H∞ control, as well as important applications of such systems,
can be found in several papers in the current literature, for instance in [5, 6, 7, 8, 9, 12, 13, 14, 22, 23].
To deal with AFTCS, another class of hybrid systems was defined, denoted as active fault tolerant
control systems with Markovian parameters (AFTCSMP). In this class of hybrid systems, two random
processes are defined: the first random process represents system components failures and the second
random process represents the FDI process used to reconfigure the control law. This model was
proposed by Srichander and Walker [34]. Necessary and sufficient conditions for stochastic stability
of AFTCSMP were developed for a single component failure (actuator failures). In [26], the authors
proposed a dynamical model that takes into account multiple failures occurring at different locations
in the system, such as in control actuators and plant components. The authors derived necessary and
sufficient conditions for the stochastic stability in the mean square sense. The problem of stochastic
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stability of AFTCSMP in the presence of noise, parameter uncertainties, detection errors, detection
delays and actuator saturation limits has also been investigated in [26, 29, 30, 31]. Another issue
related to the synthesis of fault tolerant control laws was also addressed by [27, 32, 33]. In [27],
the authors designed an optimal control law for AFTCSMP using the matrix minimum principle to
minimize an equivalent deterministic cost function. The problem of H∞ and robust H∞ control (in
the presence of norm bounded parameter uncertainties) was treated in [32, 33] for both continuous
and discrete time AFTCSMP. The authors defined a single failure process to characterize random
failures affecting the system, and they showed that the state feedback control problem can be solved
in terms of the solutions of a set of coupled Riccati inequalities. The dynamic/static output feedback
counterpart was treated by [1, 2, 3, 4] in a convex programming framework. Indeed, the authors pro-
vide an LMI characterization of dynamical/static output feedback compensators that stochastically
stabilize (robustly stabilize) the AFTCMP and ensures H∞ (robust H∞) constraints. In addition, it
is important to mention that the design problem in the framework of AFTCSMP remains an open
and challenging problematic. This is due, particulary, to the fact that the controller only depends
on the FDI process i.e. the number of controllers to be designed is less than the total number of
the closed loop systems modes by combining both failure an FDI processes. The design problem
involves searching feasible solutions of a problem where there are more constraints than variables to
be solved. Generally speaking, there lacks tractable design methods for this stochastic FTC problem.
Indeed, in [1, 2, 31, 32, 33], the authors make the assumption that the controller must access both
failures and FDI processes. However, this assumption is too restrictive to be applicable in practical
FTC systems. In this note, and inspired by the work of [15] on mode-independent H∞ filtering for
Markovian jumping linear systems, the assumption on the availability of failure processes, for the
synthesis purposes, is stressed. The results are based on a version of the well known Finsler’s lemma
and a special parametrization of the Lyapunov matrices. This note is concerned with dynamic output
feedback control of continuous time AFTCSMP with state-dependent noise. The main contribution
is to formulate conditions for multi-performance design, related to this class of stochastic hybrid sys-
tems, that take into account the problematic resulting from the fact that the controller only depends
on the FDI process. The specifications and objectives under consideration include stochastic stability,
H2 and H∞ (or more generally, Stochastic Integral Quadratic Constraints) performances. Results are
formulated as matrix inequalities. A coordinate descent-type algorithm is provided and its running
is illustrated on a VTOL helicopter example.
This paper is organized as follows: Section 2 describes the dynamical model of the system with appro-
priately defined random processes. A brief summary of basic stochastic terms, results and definitions
are given in Section 3. Section 4 considers the H2/H∞ control problem. In Section 5, a coordinate
descent-type algorithm is provided and its running is illustrated on a classical example from literature.
Finally, a conclusion is given in Section 6.

Notations. The notations in this paper are quite standard. Rm×n is the set of m-by-n real matrices.
AT is the transpose of the matrix A. The notation X ≥ Y (X > Y , respectively), where X and Y
are symmetric matrices, means that X − Y is positive semi-definite (positive definite, respectively);
I and 0 are identity and zero matrices of appropriate dimensions, respectively; E{·} denotes the
expectation operator with respect to some probability measure P ; L2[0,∞) stands for the space of
square-integrable vector functions over the interval [0,∞); ‖ · ‖ refers to either the Euclidean vector
norm or the matrix norm, which is the operator norm induced by the standard vector norm; ‖ · ‖2

stands for the norm in L2[0,∞); while ‖ · ‖E2 denotes the norm in L2((Ω,F , P ), [0,∞)); (Ω,F , P ) is

a probability space. In block matrices, ? indicates symmetric terms:
[

A B
BT C

]
=

[
A ?
BT C

]
=

[
A B
? C

]
.
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2 Dynamical Model of AFTCSMP with State Dependent Noise

To describe the class of linear systems with Markovian jumping parameters that we deal with in this
paper, let us fix a complete probability space (Ω,F , P ). This class of systems owns a hybrid state
vector. The first component vector is continuous and represents the system states, and the second
one is discrete and represents the failure processes affecting the system. The dynamical model of the
AFTCSMP with Wiener Process, defined in the fundamental probability space (Ω,F , P ), is described
by the following differential equations:

ϕ :





dx(t) = A(ξ(t))x(t)dt + B(η(t))u(y(t), ψ(t), t)dt + E(ξ(t), η(t))w(t)dt +
∑v

l=1Wl(ξ(t), η(t))x(t)d$l(t)

y(t) = C2x(t) + D2(ξ(t), η(t))w(t)

z(t) = C1x(t) + D1(η(t))u(y(t), ψ(t), t)

(1)

where x(t) ∈ Rn is the system state, u(y(t), ψ(t), t) ∈ Rr is the system input, y(t) ∈ Rq is the
system measured output, z(t) ∈ Rp is the controlled output, w(t) ∈ Rm is the system external
disturbance, ξ(t), η(t) and ψ(t) represent the plant component failure process, the actuator failure
process and the FDI process, respectively. ξ(t), η(t) and ψ(t) are separable and mesurable Markov
processes with finite state spaces Z = {1, 2, ..., z}, S = {1, 2, ..., s} and R = {1, 2, ..., σ}, respectively.
$(t) = [$1(t) . . . $v(t)]

T is a v-dimensional standard Wiener process on a given probability space
(Ω,F , P ), that is assumed to be independent of the Markov processes. The matrices A(ξ(t)), B(η(t)),
E(ξ(t), η(t)), D2(ξ(t), η(t)), D1(η(t)) and Wl(ξ(t), η(t)) are properly dimensioned matrices which
depend on random parameters.
In AFTCS, we consider that the control law is only a function of the mesurable FDI process ψ(t).
Therefore, we introduce a full order dynamic output feedback compensator (ϕd) of the form:

ϕd :

{
dv(t) = Ac(ψ(t))v(t)dt + Bc(ψ(t))y(t)dt

u(t) = Cc(ψ(t))v(t)
(2)

Applying the controller ϕd to the AFTCSMP ϕ, we obtain the following closed loop system:

ϕcl :





dχ(t) = Λ(ξ(t), η(t), ψ(t))χ(t)dt + Ē(ξ(t), η(t), ψ(t))w(t)dt +
∑v

l=1Wl(ξ(t), η(t))χ(t)d$l(t)

ȳ(t) = C̄2(ψ(t))χ(t) + D̄2(ξ(t), η(t))w(t)

z(t) = C̄1(η(t), ψ(t))χ(t)

(3)

where:

χ(t) = [x(t)T , v(t)T ]T ; ȳ(t) = [y(t)T , u(t)T ]T ; Λ(ξ(t), η(t), ψ(t)) =

[
A(ξ(t)) B(η(t))Cc(ψ(t))

Bc(ψ(t))C2 Ac(ψ(t))

]
;

Ē(ξ(t), η(t), ψ(t)) =

[
E(ξ(t), η(t))

Bc(ψ(t))D2(ξ(t), η(t))

]
; C̄2(ψ(t)) =

[
C2 0
0 Cc(ψ(t))

]
;

D̄2(ξ(t), η(t)) =

[
D2(ξ(t), η(t))

0

]
; C̄1(η(t), ψ(t)) =

[
C1 D1(η(t))Cc(ψ(t))

]
;Wl(ξ(t), η(t)) =

[
Wl(ξ(t), η(t)) 0

0 0

]
.

Our goal is to compute dynamical output feedback controllers ϕd that meet various specifications
on the closed loop behavior. The specifications and objectives under consideration include stochas-
tic stability, H2 performance and H∞ performance (or more generally, Stochastic Integral Quadratic
Constraints (SIQC)).

The FDI and the Failure Processes

ξ(t), η(t) and ψ(t) being homogeneous Markov processes with finite state spaces, we can define the
transition probability of the plant components failure process as [31, 34]:





pij(∆t) = πij∆t + o(∆t) (i 6= j)
pii(∆t) = 1− ∑

i6=j

πij∆t + o(∆t) (i = j)
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The transition probability of the actuator failure process is given by:




pkl(∆t) = νkl∆t + o(∆t) (k 6= l)
pkk(∆t) = 1− ∑

k 6=l

νkl∆t + o(∆t) (k = l)

where πij is the plant components failure rate, and νkl is the actuator failure rate.
Given that ξ = k and η = l, the conditional transition probability of the FDI process ψ(t) is:





pkl
iv(∆t) = λkl

iv∆t + o(∆t) (i 6= v)
pkl

ii (∆t) = 1− ∑
i6=v

λkl
iv∆t + o(∆t) (i = v)

Here, λkl
iv represents the transition rate from i to v for the Markov process ψ(t) conditioned on

ξ = k ∈ Z and η = l ∈ S. Depending on the values of i, v ∈ R, k ∈ Z and l ∈ S, various
interpretations, such as rate of false detection and isolation, rate of correct detection and isolation,
false alarm recovery rate, etc, can be given to λkl

iv [31, 34].
For notational simplicity, we will denote A(ξ(t)) = Ai when ξ(t) = i ∈ Z, B(η(t)) = Bj and
D1(η(t)) = D1j when η(t) = j ∈ S, E(ξ(t), η(t)) = Eij , D2(ξ(t), η(t)) = D2ij and Wl(ξ(t), η(t)) =
Wlij when ξ(t) = i ∈ Z, η(t) = j ∈ S and Ac(ψ(t)) = Ack, Bc(ψ(t)) = Bck, Cc(ψ(t)) = Cck when
ψ(t) = k ∈ R. We also denote x(t) = xt, y(t) = yt, z(t) = zt, w(t) = wt, ξ(t) = ξt, η(t) = ηt,
ψ(t) = ψt and the initial conditions x(t0) = x0, ξ(t0) = ξ0, η(t0) = η0 and ψ(t0) = ψ0.

3 Definitions and Basic Results

In this section, we will first give a basic definition related to stochastic stability notion and then we
will summarize some results about exponential stability in the mean square sense of the AFTCSMP.

3.1 Stochastic Stability

For system (1), when ut ≡ 0 for all t ≥ 0, we have the following definition.

Definition 1: System (1) is said to be internally exponentially stable in the mean square sense
(IESS), if there exist positive constants α and β such that the solution of

dxt = A(ξt)xtdt +
v∑

l=1

Wl(ξt, ηt)xtd$lt

satisfies the following inequality

E {‖xt‖2
} ≤ β‖x0‖2 exp [−α(t− t0)] (4)

for arbitrary initial conditions (x0, ξ0, η0, ψ0).

The following theorem gives a sufficient condition for internal exponential stability in the mean square
sense for the closed loop system (3).

Theorem 1: The closed loop system (3) is IESS for t ≥ t0 if there exists a Lyapunov function
ϑ(χt, ξt, ηt, ψt, t) such that

K1‖χt‖2 ≤ ϑ(χt, ξt, ηt, ψt, t) ≤ K2‖χt‖2 (5)

and
Lϑ(χt, ξt, ηt, ψt, t) ≤ −K3‖χt‖2 (6)
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for some positive constants K1, K2 and K3, where L is the weak infinitesimal operator of the joint
Markov process {χt, ξt, ηt, ψt}.

Remark 1: The proof of the Markovian property of the joint process {χt, ξt, ηt, ψt} is given for
example in [25, 31, 34].

A necessary condition for internal exponential stability in the mean square sense for the closed loop
system ϕcl is given by theorem 2.

Theorem 2: If the system (3) is IESS, then for any given quadratic positive definite function
W (χt, ξt, ηt, ψt, t) in the variables χt which is bounded and continuous ∀t ≥ t0, ∀ξt ∈ Z, ∀ηt ∈ S
and ∀ψt ∈ R, there exists a quadratic positive definite function ϑ(χt, ξt, ηt, ψt, t) in χt that satisfies
the conditions in theorem 1 and is such that Lϑ(χt, ξt, ηt, ψt, t) = −W (χt, ξt, ηt, ψt, t).

Remark 2: The proofs of these theorems follow the same arguments as in [31, 34] for their proposed
stochastic Lyapunov functions, so they are not shown in this paper to avoid repetition.

The following proposition gives a necessary and sufficient condition for internal exponential stability
in the mean square sense for the system (3).

Proposition 1: A necessary and sufficient condition for IESS of the system (3) is that there exists
symmetric positive-definite matrices Pijk, i ∈ Z, j ∈ S and k ∈ R such that:

Λ̃T
ijkPijk + PijkΛ̃ijk +

v∑

l=1

WT
lijPijkWlij +

∑

h∈Z
h6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv < 0 (7)

∀i ∈ Z, j ∈ S and k ∈ R, where

Λ̃ijk = Λijk − 0.5I




∑

h∈Z
h6=i

πih +
∑

l∈S
l 6=j

νjl +
∑

v∈R
v 6=k

λij
kv


 (8)

¤
Proof: The proof of this proposition is easily deduced from theorems 1 and 2. ¥

Proposition 2: If the system (3) is IESS, for every w = {wt; t ≥ 0} ∈ L2[0,∞), we have that
χ = {χt; t ≥ 0} ∈ L2((Ω,F , P ), [0,∞)), i.e., E {∫∞

0 χT
t χtdt

}
< ∞, for any initial conditions

(χ0, ξ0, η0, ψ0). ¤

Proof: The proof of this proposition follows the same lines as for the proof of proposition 4 in [3].¥

We conclude this section by recalling a version of the well known Finsler’s lemma that will be used
in the derivation of the main results of this paper.

Lemma 1 [15]: Given matrices Ψijk = ΨT
ijk ∈ Rn×n and Hijk ∈ Rm×n, ∀i ∈ Z, j ∈ S and k ∈ R,

then
xT

t Ψijkxt < 0, ∀xt ∈ Rn : Hijkxt = 0, xt 6= 0; (9)

if and only if there exist matrices Lijk ∈ Rn×m such that:

Ψijk + LijkHijk + HT
ijkL

T
ijk < 0, ∀i ∈ Z, j ∈ S, k ∈ R. (10)

Note that conditions (10) remain sufficient for (9) to hold even when arbitrary constraints are imposed
to the scaling matrices Lijk.

5



4 The Control Problem

4.1 H∞ Control

Let us consider the system (3) with

zt = z∞t = C∞1xt + D∞1(ηt)u(yt, ψt, t)

z∞t stands for the controlled output related to H∞ performance.
In this section, we deal with the design of controllers that stochastically stabilize the closed-loop
system and guarantee the disturbance rejection, with a certain level µ > 0. Mathematically, we are
concerned with the characterization of compensators ϕd that stochastically stabilize the system (3)
and guarantee the following for all w ∈ L2[0,∞):

‖ z∞ ‖E2= E
{∫ ∞

0
zT
∞tz∞tdt

}1/2

< µ ‖ w ‖2 (11)

where µ > 0 is a prescribed level of disturbance attenuation to be achieved. To this end, we need the
auxiliary result given by the following proposition.

Proposition 3: If there exists symmetric positive-definite matrices P∞ijk, i ∈ Z, j ∈ S and k ∈ R
such that

Λ̃T
ijkP∞ijk + P∞ijkΛ̃ijk +

v∑

l=1

WT
lijP∞ijkWlij + C̄T

∞1jkC̄∞1jk + µ−2P∞ijkĒijkĒ
T
ijkP∞ijk

+
∑

h∈Z
h6=i

πihP∞hjk +
∑

l∈S
l 6=j

νjlP∞ilk +
∑

v∈R
v 6=k

λij
kvP∞ijv < 0 (12)

∀i ∈ Z, j ∈ S and k ∈ R.
then the system (3) is IESS and satisfies

‖ z∞ ‖E2= E
{∫ ∞

0
zT
∞tz∞tdt

}1/2

< µ ‖ w ‖2 (13)

¤
Proof The proof of this proposition follows the same arguments as in [2]. ¥

Remark 3: Given fixed matrices U ≥ 0, V = VT and Q, the previous characterization extends to
more general quadratic constraints on wt and zt of the form

JSIQC = E
{∫ tf

t0

(
zt

wt

)T (
U Q
QT V

)(
zt

wt

)
dt

}
< 0 (14)

These constraints are known as stochastic quadratic integral constraints [11].

The following proposition gives a sufficient condition to (14) to be hold.

Proposition 4: If there exists symmetric positive-definite matrices Pijk, i ∈ Z, j ∈ S and k ∈ R
such that 


Θijk PijkEijk + C

T
1jkQ C

T
1jk∆

? V 0
? ? −Σ


 < 0 (15)
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where




U = ∆Σ−1∆T

Θijk = Λ̃T
ijkPijk + PijkΛ̃ijk +

∑v
l=1W

T
lijPijkWlij +

∑
h∈Z
h6=i

πihPhjk +
∑
l∈S
l 6=j

νjlPilk +
∑
v∈R
v 6=k

λij
kvPijv

then
JSIQC < 0

¤
Proof: Let us consider the following quadratic Lyapunov function

ϑ(χt, ξt, ηt, ψt) = χT
t P(ξt, ηt, ψt)χt (16)

then:

Lϑ(χt, ξt, ηt, ψt) =
(

χt

wt

)T (
Θ(ξt, ηt, ψt) P(ξt, ηt, ψtE(ξt, ηt, ψt

? 0

)(
χt

wt

)
(17)

adding and subtracting E
{∫ tf

t0
Lϑ(χt, ξt, ηt, ψt)dt

}
to JSIQC , we get

JSIQC = E
{∫ tf

t0

(
χt

wt

)T
(

Φ(ξt, ηt, ψt) +
(

C1(ηt, ψt) 0
0 I

)T (
U Q
QT V

)(
C1(ηt, ψt) 0

0 I

)) (
χt

wt

)
dt

}

− E
{∫ tf

t0

Lϑ(χt, ξt, ηt, ψt)dt

}
(18)

where

Φ(ξt, ηt, ψt) =
(

Θ(ξt, ηt, ψt) P(ξt, ηt, ψtE(ξt, ηt, ψt

? 0

)

From Dynkin’s formula, we have

E {
ϑ(χtf , ξtf , ηtf , ψtf )

}− ϑ(χt0 , ξt0 , ηt0 , ψt0) = E
{∫ tf

t0

Lϑ(ξt, ηt, ψt)dt

}
(19)

Assuming, without loss of generality, that ϑ(χt0 , ξt0 , ηt0 , ψt0) = 0, it follows from (18) and (19) that if

Φ(ξt, ηt, ψt) +
(

C1(ηt, ψt) 0
0 I

)T (
U Q
QT V

)(
C1(ηt, ψt) 0

0 I

)
< 0 (20)

then (14) holds.
Finally, by factorizing U ≥ 0 as

U = ∆Σ−1∆T

and by Schur complement property, (20) is equivalent to (15). Hence, the proof is complete. ¥

The H∞ output feedback fault tolerant control method to be developed in this paper is based on
Lemma 1 and with the following parametrization of the Lyapunov matrices P∞ijk:

P∞ijk = MT
kN−1

∞ijkMk > 0 (21)

where N∞ijk are symmetric positive definite matrices and Mk are nonsingular matrices. This
parametrization is inspired by the work of [15] on mode-independent H∞ filtering for Markovian
jumping linear systems.
The next proposition presents the main result of this section, which is derived from proposition 3 with
P∞ijk as in (21) and using Finsler’s lemma together with appropriate parametrization of matrices
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Mk and the dynamical controller matrices.

Proposition 5: If there exists matrices Rk, Sk, Dk, Xk, Yk, Zk and symmetric matrices N∞ijk, i ∈ Z,
j ∈ S and k ∈ R such that




Ωk + ΩT
k ? ? ? ?

Aijk − N∞ijk δijkN∞ijk ? ? ?
0 ET

ijk −µ2I ? ?

Cijk 0 0 −I ?
Ξijk 0 0 0 −Γijk




< 0 (22)

where

Ωk =
[

Rk 0
Sk + Dk Dk

]
(23)

Aijk =
[

RkAi + RkBjZk RkBjZk

SkAi + YkC2 + Xk + SkBjZk Xk + SkBjZk

]
(24)

Eijk =
[

RkEij

SkEij + YkD2ij

]
(25)

Cijk =
[

C∞1 + D∞1Zk D∞1Zk

]
(26)

Γijk = diag {k1ijk,k2ijk,k3ijk,k4ijk} (27)




k1ijk =
[
N∞1jk, . . .N∞(i−1)jk,N∞(i+1)jk, . . .N∞zjk

]

k2ijk =
[
N∞i1k, . . .N∞i(j−1)k,N∞i(j+1)k, . . .N∞isk

]

k3ijk =
[
N∞ij1, . . .N∞ij(k−1),N∞ij(k+1), . . .N∞ijr

]

k4ijk = [N∞ijk, . . . ,N∞ijk]
Ξijk = [z1ijk,z2ijk,z3ijk,z4ijk]

T

z1ijk =
[√

πi1ΩT
k , . . . ,

√
πi(i−1)ΩT

k ,
√

πi(i+1)ΩT
k , . . . ,

√
πizΩT

k

]

z2ijk =
[√

νj1ΩT
k , . . . ,

√
νj(j−1)ΩT

k ,
√

νj(j+1)ΩT
k , . . . ,

√
νjsΩT

k

]

z3ijk =
[√

λij
k1Ω

T
k , . . . ,

√
λij

k(k−1)Ω
T
k ,

√
λij

k(k+1)Ω
T
k , . . . ,

√
λij

krΩ
T
k

]

z4ijk =
[
ΦT

1ijk, . . . , Φ
T
vijk

]

Φlijk =

[
RkWlij 0
SkWlij 0

]

δijk = −


 ∑

h∈Z
h6=i

πih +
∑
l∈S
l 6=j

νjl +
∑
v∈R
v 6=k

λij
kv




(28)

and k4ijk, z4ijk contain v elements. Then, the system (3) is IESS and satisfies (13).
Moreover, the transfer functions matrices of suitable controllers are given by

Hk(s) = Zk

(
sI− D−1

k Xk

)−1D−1
k Yk, ∀k ∈ R. (29)

¤
Proof: It will be shown that if the inequalities (22) hold, then the controllers (29) ensure that
conditions (12) of proposition 3 are satisfied with a matrix P∞ijk > 0 as in (21).
First, note that with a matrix P∞ijk > 0 as in (21), the inequalities (12) are equivalent to

ΠT
ijkΥijkΠijk < 0 (30)
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where

Πijk =




I 0 0 0
N−1
∞ijkMk 0 0 0

0 I 0 0
0 0 I 0
0 0 0 I




(31)

Υijk =




0 ? 0 C
T
∞1jk R∞ijk

MkΛijk δijkN∞ijk MkEijk 0 0
? ? −µ2I 0 0
? ? ? −I 0
? ? ? ? −S∞ijk




(32)





R∞ijk = [R∞1ijk,R∞2ijk,R∞3ijk,R∞4ijk]

R∞1ijk =
[√

πi1MT
k , . . . ,

√
πi(i−1)MT

k ,
√

πi(i+1)MT
k , . . . ,

√
πizMT

k

]

R∞2ijk =
[√

νj1MT
k , . . . ,

√
νj(j−1)MT

k ,
√

νj(j+1)MT
k , . . . ,

√
νjsMT

k

]

R∞3ijk =
[√

λij
k1MT

k , . . . ,
√

λij
k(k−1)MT

k ,
√

λij
k(k+1)MT

k , . . . ,
√

λij
krMT

k

]

R∞4ijk =
[
WT

1ijMT
k , . . . ,WT

vijMT
k

]

S∞ijk = diag [S∞1ijk,S∞2ijk,S∞3ijk,S∞4ijk]
S∞1ijk =

[N∞1jk, . . .N∞(i−1)jk,N∞(i+1)jk, . . .N∞zjk

]

S∞2ijk =
[N∞i1k, . . .N∞i(j−1)k,N∞i(j+1)k, . . .N∞isk

]

S∞3ijk =
[N∞ij1, . . .N∞ij(k−1),N∞ij(k+1), . . .N∞ijr

]

S∞4ijk = [N∞ijk, . . . ,N∞ijk]

(33)

S∞4ijk contains v elements.
Define n × n nonsingular matrices Uk and Vk such that UkVk = Dk and let the matrix Mk be
parameterized as follows

Mk =
[

R−1
k R−1

k VT
k

−U−1
k SkR−1

k U−1
k VT

k − U−1
k SkR−1

k VT
k

]−1

(34)

Moreover, let the transformation matrix

Tk =
[
RT

k ST
k

0 UT
k

]
(35)

Note that

M−T
k Tk = kג =

[
I 0
Vk Vk

]
(36)

and Mk and Tk as defined above are nonsingular. Indeed, from (22) it follows that Ωk + ΩT
k < 0,

which implies that the matrices Rk and Dk are nonsingular. Therefore, in view of the definition of
the matrices Uk and Vk, the matrices Tk and M−T

k Tk are nonsingular and thus M−T
k are nonsingular

matrices as well.
Next, introduce the matrices

Fk = diag
{
,kג ,kג I, I, kג

}
(37)

kג = ,kג} . . . , {kג (38)

where kג contains ((z − 1) + (s− 1) + (r − 1) + v) blocks .kג
Performing the congruence transformation FT

k (·)Fk on Υijk, inequality (30) is equivalent to

κTFT
k ΥijkFkκ < 0, κ = F−1

k Πijkς, ς 6= 0 (39)
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considering that {
κ : κ = F−1

k Πijkς, ς 6= 0
}

= {κ : HijkFkκ = 0, κ 6= 0} (40)

where
Hijk =

[ Mk −N∞ijk 0 0 0
]

(41)

we have that (39) is equivalent to

κTFT
k ΥijkFkκ < 0, ∀κ 6= 0 : HijkFkκ = 0 (42)

By lemma 1, (42) holds iff the following inequalities are feasible for some matrices Lijk of appropriate
dimensions

FT
k ΥijkFk + LijkHijkFk + FT

kHT
ijkL

T
ijk < 0 (43)

Without loss of generality, let the matrices Lijk be rewritten as Lijk = FT
k Lijk, then (43) is equivalent

to
FT

k

(
Υijk + LijkHijk +HT

ijkLT
ijk

)
Fk < 0 (44)

Setting
Lijk =

[
I 0 0 0 0

]
(45)

inequalities (44) become
FT

k ΥijkFk < 0 (46)

where

Υijk =




Mk +MT
k ? ? ? ?

MkΛijk −N T
∞ijk δijkN∞ijk ? ? ?

0 E
T
ijkMT

k −µ2I ? ?

C∞1jk 0 0 −I ?
RT
∞ijk 0 0 0 −S∞ijk




(47)

Consider the following state-space realization for the controllers (2)

Ack = VkD−1
k XkV−1

k , Bck = VkD−1
k Yk, Cck = ZkV−1

k (48)

and let the matrix N∞ijk be defined as

N∞ijk = T T
k M−1

k N∞ijkM−T
k Tk (49)

By performing straightforward matrix manipulations, it can be easily shown that

T T
k ΛijkM−T

k Tk = Aijk, T T
k Eijk = Eijk, C∞1jkM−T

k Tk = Cijk (50)

T T
k M−T

k Tk = Ωk, kגTkR∞ijkג = ΞT
ijk (51)

Tkג S∞ijkגk = Γijk (52)

Next, taking into account (37), (38) and (49)-(52), it can be readily verified that (46) is identical to
(22). Thus (12) is satisfied with P∞ijk = MT

kN−1
∞ijkMk. Finally, the controller transfer matrix of

(29) is readily obtained from (48). ¥

From practical point of view, the controller that stochastically stabilizes the AFTCMP and at the
same time guarantees the minimum disturbance rejection is of great interest. This controller can be
obtained by solving the following optimization problem:

O∞ :





min
τ>0, N∞ijk=NT

∞ijk>0, Rk, Sk, Dk, Xk, Yk, Zk

τ

s.t :


Ωk + ΩT
k ? ? ? ?

Aijk − N∞ijk δijkN∞ijk ? ? ?

0 ET
ijk −τI ? ?

Cijk 0 0 −I ?

Ξijk 0 0 0 −Γijk




< 0
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where the matrices inequalities in the constraints are obtained from (22) by replacing µ2 by τ . This
leads to the following Corollary:

Corollary 1: Let τ > 0, N∞ijk = NT
∞ijk > 0, Rk, Sk, Dk, Xk, Yk, Zk be the solution of the

optimization problem O∞. Then, the controller (2) stochastically stabilizes the AFTCSMP we are
considering and moreover the closed loop system satisfies the disturbance rejection of level

√
τ . ♦

Remark 4: The above result can be easily extended to general SIQ constraints. This is illustrated
by the following corollary:

Corollary 2: If there exists matrices Rk, Sk, Dk, Xk, Yk, Zk and symmetric matrices Nijk, i ∈ Z,
j ∈ S and k ∈ R such that




Ωk + ΩT
k ? ? ? ?

Aijk − Nijk δijkNijk ? ? ?
Cijk ET

ijk V ? ?

Cijk 0 0 −Σ ?
Ξijk 0 0 0 −Γijk




< 0 (53)

where {
Cijk = QTCijk

Cijk = ∆TCijk

Then, the SIQ contraints (14) are verified.
Moreover, the transfer functions matrices of suitable controllers are given by

Hk(s) = Zk

(
sI− D−1

k Xk

)−1D−1
k Yk, ∀k ∈ R. (54)

♦

4.2 H2 Control

Before introducing the main results of this section, let us consider the following definition which repre-
sents a generalization of the H2-norm from Markovian jump linear systems [12, 16, 17] to AFTCSMP.
Let us consider the system (3) with

zt = z2t = C21xt + D21(ηt)u(yt, ψt, t)

z2t stands for the controlled output related to H2 performance.

Definition 2: We define the H2-norm of the IESS system (ϕcl) as

‖ ϕcl ‖2
2=

m∑

d=1

∑

i,j,k

µijk ‖ zd,i,j,k ‖2
E2

where zd,i,j,k represents the output {zt; t ≥ 0} when:

a) the input is given by wt = {wt; t ≥ 0}, wt = edδt, δt the unitary impulse, and ed the m-
dimensional unitary vector formed by 1 at the dth position and zero elsewhere;

b) χ0 = 0, ξ0 = i, η0 = j, ψ0 = k and µ = (µ111, . . . , µszr) is the initial distribution of the joint
Markov process.
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From the definition above and using the same arguments as in [12, 16, 17], we can state the following
corollary.

Corollary 3: Assume that (ϕcl) is IESS then

i) ‖ ϕcl ‖2
2=

∑
i,j,k µijktr(E

T
ijPoijkEij), where Po = {Po111, . . . ,Poszr} denotes the observability

Gramian, i.e., Poijk are the unique positive semidefinite solutions of the following equations

Λ̃T
ijkPoijk +PoijkΛ̃ijk +

v∑

l=1

WT
lijPoijkWlij +

∑

h∈Z
h6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv + C

T
21C21 = 0

(55)
∀i ∈ Z, j ∈ S and k ∈ R.

ii) ‖ ϕcl ‖2
2<

∑
i,j,k µijktr(E

T
ijP2ijkEij), where P2ijk is a positive definite solution of the following

matrix inequality

Λ̃T
ijkP2ijk+P2ijkΛ̃ijk+

v∑

l=1

WT
lijP2ijkWlij +

∑

h∈Z
h6=i

πihP2hjk+
∑

l∈S
l 6=j

νjlP2ilk+
∑

v∈R
v 6=k

λij
kvP2ijv +C

T
21C21 < 0

(56)
∀i ∈ Z, j ∈ S and k ∈ R.

iii) If there exists positive definite matrices P2ijk, and matrices Ack, Bck and Cck such that
∑

i,j,k

µijktr(E
T
ijP2ijkEij) < γ2

Λ̃T
ijkP2ijk+P2ijkΛ̃ijk+

v∑

l=1

WT
lijP2ijkWlij +

∑

h∈Z
h6=i

πihP2hjk+
∑

l∈S
l 6=j

νjlP2ilk+
∑

v∈R
v 6=k

λij
kvP2ijv +C

T
21C21 < 0

∀i ∈ Z, j ∈ S and k ∈ R. Then ϕdk are stabilizing controllers such that ‖ ϕcl ‖2< γ.

iv) The H2 output feedback control problem is solved by the following optimization problem




min
∑

i,j,k µijktr(Zijk)
s.t:
E

T
ijP2ijkEij < Zijk

Λ̃T
ijkP2ijk + P2ijkΛ̃ijk +

∑v
l=1W

T
lijP2ijkWlij +

∑
h∈Z
h6=i

πihP2hjk +
∑
l∈S
l 6=j

νjlP2ilk +
∑
v∈R
v 6=k

λij
kvP2ijv + C

T
21C21 < 0

(57)

♦

From definition 2 and corollary 3, we can state the following result which solves the H2 output feed-
back control problem.

Proposition 6: The H2 output feedback control problem is solved by the following optimization

12



problem

O2 :





min
Zijk, N2ijk, Rk, Sk, Dk, Xk, Yk, Zk

∑
i,j,k µijktr(Zijk)

s.t :[
Zijk ?

Eijk N2ijk

]
> 0




Ωk + ΩT
k ? ? ?

Aijk − N2ijk δijkN2ijk 0 0
Cijk ? −I 0
Ξijk ? ? −Γijk




< 0

(58)

∀i ∈ Z, j ∈ S and k ∈ R.
If (58) hold then ‖ ϕcl ‖2

2<
∑

i,j,k µijktr(E
T
ijP2ijkEij). Moreover, the transfer functions matrices of

suitable controllers are given by

Hk(s) = Zk

(
sI− D−1

k Xk

)−1D−1
k Yk, ∀k ∈ R. (59)

¤
Proof: The proof of this proposition follows the same arguments as for the proof of proposition 5.¥

Remark 5: We can see from definition 2 that the considered H2-norm depends on the the initial
distribution of the joint Markov process. However, these distributions are, in general, unknown. This
inconvenient could be avoided by replacing, for example, the performance criteria by the one as in
(19) in [17] (when the input is the unit variance white noise). Proposition 6 could be then easily
applied for this H2-norm definition. The only difference is that, in the optimization problem (58),
the initial distribution µijk is replaced by εijk =

∑
l,h,v p̃(lhv)(ijk) where

P̃ = [p̃(lhv)(ijk)] = lim
t→∞P (t)

and P (t) is the probability transition matrix of the joint Markov process.
Indeed, the H2-norm definition considered in this case is given by

‖ ϕcl ‖2
2= lim

T→∞

∑

i,j,k

E
[∫ T

0
‖ zs ‖2 ds | ξ0 = i, η0 = j, ψ0 = k

]

Using the same arguments as in [17], the following characterization of the H2-norm in terms of
observability Gramian can be given:

‖ ϕcl ‖2
2=

∑

i,j,k

εijktr(E
T
ijPoijkEij) (60)

4.3 Multi-Objective Synthesis

The multi-objective synthesis problem amounts to find common controllers that stochastically stabi-
lize the system and ensure H2/H∞ performances. This multi-performance synthesis problem can be
stated as follows:

Given positive scalars α2 and α∞, find stabilizing dynamic output feedback controllers ϕd that
solve the following constrained optimization problem





min
γ2,γ∞,Ack,Bck,Cck

α2γ2 + α∞γ∞

s.t :
‖ z∞ ‖E2< γ∞ ‖ w ‖2, ‖ ϕcl ‖2< γ2

(61)
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The result is straightforward. It amounts to the collection of all related matrix inequality constraints.

Remark 6: Notice that the developed synthesis conditions are only sufficient. This is due to the fact
that the controllers only depend on the FDI process, i.e., the number of controllers to be designed
is less than the total number of the closed loop system modes by combining both failures an FDI
processes.

5 Computational Issues and Example

The inequality conditions in propositions 5 and 6 are not linear in the variables and it is difficult to
verify these conditions directly. However, the characterizations given in these propositions have the
following nice properties:

i) The given parametrization enables us to express these norm minimization problems in closed
form, i.e., all variables explicitly appear in constraints (22) and (58), which is not possible with
projection-like conditions;

ii) The H2/H∞ synthesis problem with fixed matrices Cc(ψt) (synthesis problem similar to the one
considered by [36] in the case of linear time invariant systems) is a LMI problem;

iii) With Zk fixed, conditions (22) and (58) are LMIs in Zijk, N2ijk, N∞ijk, Rk, Sk, Dk, Xk, Yk.

iV) With Rk and Sk fixed, conditions (22) and (58) are LMIs in Zijk, N2ijk, N∞ijk, Dk, Xk, Yk, Zk.

From the two last properties, one can see that the synthesis problem is expressed as a BMI (Bilinear
Matrix Inequalities) problem. BMI problems are known to be generally nonconvex and NP-hard [35].
This means that any algorithm which is guaranteed to find a global optimum cannot be expected to
have a polynomial time complexity. There exists different approaches to the solution of this problem,
which can be classified into global [18, 37, 38] and local [20, 21, 19]. Most of the global algorithms to
the BMI problem are varaiations of of the Branch and Bound algorithm [18, 37]. Although the major
focus of global search algorithms is the computational complexity, none of them is polynomial time
due to the NP-hardness of the problem. As a result, these approaches can currently be applied only
to problems with modest size.
Most of the existing local approaches, on the other hand, are computationally fast but, depending on
the initial condition, may not converge to the global optimum. The simplest local approach makes
use of the fact that by fixing some of the variables, x, the BMI problem becomes convex in the
remaining variables y, and vice versa, and iterates between them [21]. The algorithm (coordinate
descent-type algorithm) used in this paper belongs to this class of methods. Nevertheless, these types
of algorithms, called coordinate descent methods in [21], alternating SDP method in [18], and the
dual iteration in [21], are not guaranteed to converge to a local solution [18]. Such an algorithm is
given by Algorithm 1. For the purposes of its initialization, we adopt the same methodology as in
[24]. These can be summarized as follows:

Algorithm 1.

• Step 0. Initialization: Set q = 0. Design state feedback matrices Zkq that solves the following
optimization problem





min
γ2q ,γ∞q ,Zkq

α2γ2q + α∞γ∞q

s.t :
‖ z∞ ‖E2< γ∞q ‖ w ‖2, ‖ ϕcls ‖2< γ2q

(62)

where ϕcls is the closed loop system obtained by applying the controller ϕs given by:

ϕs :
{

ut = Zkqxt
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to the system (1).

• Step 1. Fix the matrices Zkq and search for a solution to the multi-objective control problem,
defined in equation (60), in terms of the remaining unknown matricesZijkq, N2ijkq, N∞ijkq, Rkq,
Skq, Dkq, Xkq, Ykq. Set the current cost value υq = α2γ2q + α∞γ∞q.

• Step 2. Fix the matrices Rkq and Skq and search for a solution to the multi-objective control
problem, defined in equation (60), in terms of the remaining unknown matricesZijkq, N2ijkq, N∞ijkq,
Dkq, Xkq, Ykq, Zkq. Set the current cost value ωq = α2γ2q + α∞γ∞q.

• Step 3. If υq − ωq < ε, ε > 0, Stop. Otherwise, set q ← q + 1 and go back to Step 1.

As in the usual coordinate descent methods, the above algorithm generates a non-increasing sequence
of the objective function values, and thus the convergence is guaranteed. Note, however, that the
limit of the sequence may not be optimal.

A VTOL Example

In this section, the proposed multi-objective dynamic output feedback control of AFTCSMP is illus-
trated using a VTOL helicopter model adapted from [13]. Consider the nominal system with

A =




−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.3681 −0.707 1.4200

0 0 1 0


 , B =




0.4422 0.1761
3.5446 −7.5922
−5.52 4.49

0 0


 , E =




0.0468 0
0.0457 0.0099
0.0437 0.0011
−0.0218 0




W1 =




0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1


 , C2 =

[
1 0 0 0
0 1 0 0

]
, D2 =

[
0.1 0
0 0.1

]
,

C∞1 =

[
0 1 0 0
0 0 0 1

]
, D∞1 =

[
1 0
0 1

]
, C21 =

[
1 0 0 0
0 0 1 0

]
, D21 =

[
0 0
0 1

]
.

The state vector xt ∈ R4 is composed by the following:

x1: longitudinal velocity;

x2: vertical velocity;

x3: rate of pitch;

x4: pitch angle.

and the components of command vector are:

u1: general cyclic command;

u2: longitudinal cyclic command.

For illustration purposes, we will consider two faulty modes:

i) Mode 2: A 50% power loss on the first actuator;

ii) Mode 3: A 50% power loss on both actuators.

From above, we have that S = {1, 2, 3}, where the mode 1 represents the nominal case. The failure
process is assumed to have Markovian transition characteristics. The FDI process is also Markovian
with three states R = {1, 2, 3}.
The actuator failure rates are assumed to be:

[πij ] =



−0.002 0.0010 0.0010
0.0010 −0.002 0.0010
0.0010 0.0010 −0.002



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The FDI conditional transition rates are:

[λ1
ij ] =



−0.02 0.01 0.01
1.00 −1.01 0.01
1.00 0.01 −1.01


 , [λ2

ij ] =



−1.01 1.00 0.01
0.01 −0.02 0.01
0.01 1.00 −1.01


 , [λ3

ij ] =



−1.01 0.01 1.00
0.01 −1.01 1.00
0.01 0.01 −0.02


 .

For the above AFTCSMP, and using Algorithm 1 with α2 = α∞ = 1, we obtain the following H2/H∞
performances from wt to z2 and z∞ respectively: γ2 = 1.3813, γ∞ = 7.0430.
The corresponding dynamical controllers are given as follows:




−4.5605 6.1141 −0.7661 −2.0089
1.2505 −13.949 2.1057 2.8241
−0.8586 9.0361 −3.6110 −6.1882
1.7167 0.8173 0.8173 0.8173

4.6913 −4.9146
−2.0707 10.8691
4.1034 −6.6348
−1.8753 −1.2901

−0.5951 −0.1871 0.3333 0.4416
0.0519 0.8206 −0.6220 −1.5290

0




ψt=1




−1.8554 −0.8810 −0.0395 −0.5837
−2.7850 −8.6549 4.1078 3.8934
0.2180 2.2321 −2.8481 −4.2791
1.3433 3.3313 1.1581 0.1551

1.6635 0.9851
−1.7314 5.2828
3.0771 −1.2354
−1.4002 −3.4934

−0.6729 0.0591 0.1496 0.2176
2.4528 1.4950 −2.1517 −3.1308

0




ψt=2




−2.0190 −0.9464 0.0742 −0.4221
−0.7222 −6.3567 2.2273 1.2006
−0.5881 0.9657 −2.1838 −3.2807
1.3238 3.2111 1.2362 0.1852

1.7047 0.9938
−1.3945 4.5383
2.9401 −0.5600
−1.3741 −3.4574

−0.7787 0.0063 0.2350 0.3908
1.8829 1.2999 −1.9038 −3.0831

0




ψt=3

where [
? ?

? 0

]

ψt=i

is a realization of the controller (ϕd) for ψt = i.
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Figure 1: Failure modes

The state trajectories of the closed loop system resulting from the obtained controllers are shown in
Figure 3. These trajectories represent a single sample path simulation corresponding to a realization
of the failure process ηt and the FDI process ψt given by Figure 1 and Figure 2 respectively. Figure
4 represents the evolution of the controlled outputs z∞t. It can be seen that the closed-loop system
is stochastically stable and that the disturbance attenuation is achieved.
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Figure 2: FDI modes
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Figure 3: State variables evolution: single sample path simulation

6 Conclusion

In this paper, the dynamic output feedback multi-objective control of continuous time AFTCSMP
was considered within a framework that allows to take into account the problematic resulting from
the fact that the controller only depends on the FDI process. The specifications and objectives
considered, include stochastic stability, H2 and H∞ performances. The main results were derived
using a version of the well known Finsler’s lemma and a parametrization of the Lyapunov matrices.
The numerical resolution of the obtained results was done using a coordinate descent-type algorithm.
The effectiveness of the developed method was illustrated on a VTOL helicopter example.
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