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CATEGORICAL REPRESENTABILITY AND INTERMEDIATE JACOBIANS

OF FANO THREEFOLDS

MARCELLO BERNARDARA AND MICHELE BOLOGNESI

Abstract. We define, basing upon semiorthogonal decompositions of Db(X), categorical repre-
sentability of a projective variety X and describe its relation with classical representabilities of
the Chow ring. For complex threefolds satisfying both classical and categorical representability
assumptions, we reconstruct the intermediate Jacobian from the semiorthogonal decomposition.
We discuss finally how categorical representability can give useful information on the birational
properties of X by providing examples and stating open questions.

1. Introduction

These notes arise from the attempt to extend the results of [BB10] to a wider class of complex
threefolds with negative Kodaira dimension. If Y → S is a conic bundle and S is rational, a
semiorthogonal decomposition of Db(Y ) by derived categories of curves and exceptional objects
gives a splitting of the intermediate Jacobian as the direct sum of the Jacobians of the curves [BB10,
Thm 1.1]. This result is based on the relation between fully faithful functors Db(Γ) → Db(Y )
(where Γ is a smooth projective curve) and algebraic cycles on Y . First of all, using the Chow–
Künneth decompositions of the motives of Γ and Y , we get from such functor an isogeny between
J(Γ) and an abelian subvariety of J(Y ). Secondly, using the universal isomorphism between
A2

Z(Y ) and a Prym variety and the incidence property, we prove that such an isogeny is indeed
an injective morphism of principally polarized abelian varieties. Finally, the existence of the
mentioned semiorthogonal decomposition assures the splitting of the intermediate Jacobian. It
turns out that the properties needed to prove this result are enjoyed also by threefolds other
than conic bundles. One of the aims of this paper is to describe certain varieties satisfying those
representability assumptions.

In a generalization attempt, we define a new notion of representability based on semiorthogonal
decompositions, which we expect to carry useful geometrical insights also in higher dimensions.
Let X be a smooth projective variety of dimension n. We define categorical representability in
(co)dimension m forX, roughly by requiring that the derived category Db(X) admits a semiorthog-
onal decomposition by categories appearing in smooth projective varieties of dimension m (resp.
n−m).

The easiest case is of course representability in dimension 0. This is equivalent to say that
X admits a full exceptional sequence of a finite number, say l, of objects. In this case we have
K0(X) = Zl. This is indeed a very strong notion and gives rise to intriguing questions to explore
even for surfaces.

Various notions of representability of the group Ai
Z(X) of algebraically trivial cycles of codi-

mension i on X have appeared throughout the years in the literature, and it seems interesting to
understand their interactions with categorical representability, as our examples suggest. Roughly
speaking, weak representability for Ai

Z(X) is given by an algebraic map J(Γ) → Ai
Z(X) whose

kernel is an algebraic group, for an algebraic curve Γ. Working with rational coefficients (that
is, with Ai

Q) gives the notion of rational representability. Algebraic representability requires the

existence of a universal regular isomorphism Ai
Z(X) → A onto an abelian variety A. Finally, if

dim (X) = 2n+1 is odd, A is the algebraic representative of An
Z(X), and the principal polarization
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2 M. BERNARDARA, M. BOLOGNESI

of A is “well behaved“ with respect to this regular isomorphism we say that A carries an incidence
polarization.

The definition of categorical representability could seem rather disjoint from the classical ones.
It is nevertheless clear that rational representability is strongly related to the structure of the
motive of X. For example, if X is a threefold, then rational representability of all the Ai

Q(X)

is equivalent to the existence of a specific Chow–Künneth decomposition [GG08]. A first point
to note is then that fully faithful functors should hold motivic maps, as stated in the following
conjecture by Orlov.

Conjecture 1.1 ([Orl05]). Let X and Y be smooth projective varieties and Φ : Db(Y ) → Db(X)
be a fully faithful functor. Then the motive h(Y ) is a direct summand of the motive h(X).

In order to get a link between categorical and rational representability, we should consider the
former in dimension 1. Note that being categorically representable in dimension 1 is equivalent to
the existence of a semiorthogonal decomposition by exceptional objects and derived categories of
curves. Orlov conjecture would then imply that if X is categorically representable in dimension 1,
then its motive is a finite sum of abelian and discrete motives, and this would give informations
about rational representability for Ai

Q(X). Being categorically representable in dimension 1 seems
to be in fact a very strong condition. For example a smooth cubic threefold is strongly representable
with incidence property but not categorically representable, otherwise we would have the splitting
of the intermediate Jacobian (see Corollary 3.10). Notice that in [KMM10] the study of the
Abel–Jacobi map for some hypersurfaces and its link with categorical constructions were already
treated.

Algebraic representability and the incidence property can have deep interactions with cate-
gorical representability, and this is indeed the heart of the proof of Theorem 1.1 in [BB10].
Consider a smooth projective threefold X and assume it to be rationally representable, with
h1(X) = h5(X) = 0, and with A2

Z(X) algebraically representable with the incidence property. The
arguments in [BB10] show that if X is categorically representable in dimension 1, then the inter-
mediate Jacobian J(X) splits into Jacobians of curves, namely of those curves of positive genus
appearing in the semiorthogonal decomposition. This result can then be applied to a large class
of complex threefolds with negative Kodaira dimension (see a list in Remark 3.8).

We can then reasonably raise the following question, which also points out how this new def-
inition could be useful in higher dimensions: is categorical representability in codimension 2 a
necessary condition for rationality? This is true for curves (where we have to replace codimension
2 with dimension 0) and for surfaces, since any rational smooth projective surface admits a full ex-
ceptional sequence. Remark 3.12 shows that this is true for a wide class of complex threefods with
negative Kodaira dimension, but we can only argue so far by a case by case analysis. Categorical
representability should moreover hold the vanishing of the Clemens–Griffiths component of Db(X)
mentioned in [Kuz10]. We can wonder if Kuznetsov’s conjecture about rationality of cubic fourfold
([Kuz10, Conj. 1.1]) could then be restated as follows: a cubic fourfold is rational if and only if
it is categorically representable in codimension 2. Finally, we can argue some conjectural relation
between categorical representability and the existence of gaps in the Orlov spectrum defined in
[BFK10].

Notations. Any triangulated category is assumed to be essentially small. Given a smooth pro-
jective variety X, we denote κX its Kodaira dimension, Db(X) the bounded derived category of
coherent sheaves on it, K0(X) its Grothendieck group, CHd

Z(X) the Chow group of codimension

d cycles, and Ad
Z(X) the subgroup of algebraically trivial cycles in CHd

Z(X). If is X pure d-

dimensional, and Y any smooth projective variety, we denote by Corri(X,Y ) := CH i+d
Q (X × Y )

the group of correspondences with rational coefficients. If X =
∐

Xj , with Xj connected, then

Corri(X,Y ) = ⊕Corri(Xj , Y ).
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2. Categorical and classical representabilities for smooth projective varieties

2.1. Semiorthogonal decompositions and categorical representability. We start by recall-
ing some categorical definitions which are necessary to define representability. Let K be a field
and T a K-linear triangulated category. A full triangulated category A of T is called admissible
if the embedding functor admits a left and a right adjoint.

Definition 2.1 ([BK90, BO95]). A semiorthogonal decomposition of T is a sequence of admissible
subcategories A1, . . . ,Al of T such that HomT(Ai, Aj) = 0 for all i > j and for all objects Ai in
Ai and Aj in Aj , and for every object T of T, there is a chain of morphisms 0 = Tn → Tn−1 →
. . . → T1 → T0 = T such that the cone of Tk → Tk−1 is an object of Ak for all k = 1, . . . , l. Such
a decomposition will be written

T = 〈A1, . . . ,Al〉.

Definition 2.2 ([Bon90]). An object E of T is called exceptional if HomT(E,E) = K, and
HomT(E,E[i]) = 0 for all i 6= 0. A collection {E1, . . . , El} of exceptional objects is called excep-
tional if HomT(Ej , Ek[i]) = 0 for all j > k and for all integer i.

If E in T is an exceptional object, the triangulated category generated by E (that is, the smallest
full triangulated subcategory of T containing E) is equivalent to the derived category of a point,
seen as a smooth projective variety. The equivalence Db(pt) → 〈E〉 ⊂ T is indeed given by sending
Opt to E. Given an exceptional collection {E1, . . . , El} in the derived category Db(X) of a smooth
projective variety, there is a semiorthogonal decomposition [BO95]

Db(X) = 〈A, E1, . . . , El〉,

where A is the full triangulated subcategory whose objects are all the A satisfying Hom(Ei, A) = 0
for all i = 1, . . . , l, and we denote by Ei the category generated by Ei. We say that the exceptional
sequence is full if the category A is trivial.

Definition 2.3. A triangulated category T is representable in dimension m if it admits a semiorthog-
onal decomposition

T = 〈A1, . . . ,Al〉,

and for all i = 1, . . . , l there exists a smooth projective variety Yi with dimYi ≤ m, such that Ai

is equivalent to an admissible subcategory of Db(Yi).

Remark 2.4. Notice that we can assume that the categories Ai to be indecomposable, and then
the varieties Yi in the definition to be connected. Indeed, the derived category Db(Y ) of a scheme
Y is indecomposable if and only if Y is connected (see [Bri99, Ex. 3.2]).

Definition 2.5. Let X be a smooth projective variety of dimension n. We say that X is categori-
cally representable in dimension m (or equivalently in codimension n−m) if Db(X) is representable
in dimension m.

Remark 2.6. Suppose that X is not smooth. Then to define categorical representability for
it, we need to use categorical resolution of singularities, as defined by Kuznetsov [Kuz07b]. He

constructs, provided that X has rational singularities, and given a resolution X̃ → X, an admissible

subcategory D̃ of Db(X̃) which is the categorical resolution of singularities of Db(X). Then we

can say that X is categorically representable in dimension m if D̃ is.

Notice that if any fully faithful functor between smooth projective varieties is of Fourier–Mukai
type [Orl97, Orl03]. It is moreover worth noting and recalling the following facts, which are well-
known in the derived categorical setting.

Remark 2.7 ([Bei84]). The derived category of Pn admits a full exceptional sequence.
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Remark 2.8. If Γ is a smooth connected projective curve of positive genus, then Db(Γ) has no
proper admissible subcategory. Indeed any fully faithful functor A → Db(Γ) is an equivalence,
unless A is trivial. Then being categorically representable in dimension 1 is equivalent to admit a
semiorthogonal decomposition by exceptional objects and derived categories of smooth projective
curves.

Remark 2.9. If X and Yi are smooth projective and

Db(X) = 〈Db(Y1), . . . ,D
b(Yk)〉,

then

K0(X) =

k⊕

i=1

K0(Yi)

and the Grothendieck–Riemann–Roch Theorem gives

CH∗
Q(X) =

k⊕

i=1

CH∗
Q(Yi).

Proposition 2.10 ([Orl93]). Let X be smooth projective and Z ⊂ X a smooth subvariety of

codimension d > 1. Denote by ε : X̃ → X the blow up of X along Z. Then

Db(X̃) = 〈ε∗Db(X),Db(Z)1, . . . ,D
b(Z)d−1〉,

where Db(Z)i is equivalent to Db(Z) for all i = 1, . . . , d− 1.

2.2. Classical representabilities and motives. In this Section we outline a list of definitions
of representabilities for the groups Ai

Z(X). This is far for being exhaustive, especially in the
referencing. Indeed, giving a faithful list of all contributions to these questions is out of the aim
of these notes. Chow motives and their properties could give, through Conjecture 1.1, a way to
connect categorical and classical representabilities. We also outline the basic facts needed to stress
the possible interplay between new and old definitions.

Let X as usual be a smooth projective variety over an algebraically closed field K.

Definition 2.11 ([BM79]). The group Ai
Z(X) is said to be weakly representable if there exists a

smooth projective curve Γ, a class z of a cycle in CH i
Z(X×Γ) and an algebraic subgroup G ⊂ J(Γ)

of the Jacobian variety of Γ, such that the induced morphism

z∗ : J(Γ) → Ai
Z(X)

is surjective with kernel G.

When working with coefficients in Q, we have the following definition.

Definition 2.12. The group Ai
Q(X) is rationally representable if there exists a regular surjective

morphism
z∗ : JQ(Γ) → Ai

Q(X).

Rational representability is a name that has been used several times in the literature, so it might
lead to some misunderstanding. We underline that Definition 2.12 is exactly the one from ([GG08],
page 5). In the complex case, we have also a stronger notion, which is called the Abel–Jacobi
property [BM79], which requires the existence of an isogeny (i.e. a regular surjective morphism)
Ai

Z(X) → J i(X) onto the i-th intermediate Jacobian. The Abel-Jacobi property implies weak
representability for smooth projective varieties defined on C.

Definition 2.13 ([Bea77]). An abelian variety A is said to be the algebraic representative of
Ai

Z(X) if there exists an isomorphism G : Ai
Z(X) → A which is universal. That is: for any

morphism g from Ai
Z(X) to an abelian variety B, there exists a unique morphism u : A → B such

that u ◦G = g. In this case we say that Ai
Z(X) is algebraically representable.
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The first examples of algebraic representatives are the Picard variety Pic0(X) or the Albanese
variety Alb(X) if n = 1 or, respectively, n = dim (X).

Definition 2.14. LetX be a smooth projective variety of odd dimension 2n+1 and A the algebraic
representative of An+1

Z (X) via the canonical map G : An+1
Z (X) → A. A polarization of A with

associated correspondence θA in Corr(A), is the incidence polarization with respect to X if for all
algebraic maps f : T → An+1

Z (X) defined by a cycle z in CHn+1
Z (X × T ), we have

(G ◦ f)∗θA = (−1)n+1I(z);

where I(z) in Corr(T ) is the composition of the correspondences z ∈ Corr(T,X) and z ∈ Corr(X,T ).

There are many complex threefolds X with negative Kodaira dimension, for which A2
Z(X) is

strongly represented by a generalized Prym with incidence polarization. For these threefolds, we
will show how categorical representability in dimension 1 gives a splitting of the intermediate
Jacobian. A list of the main cases will be given in Section 3.2.

A more modern approach to representability questions has to take Chow motives into account.
Let us recall their basic definitions and notations. The category MK of Chow motives over K
with rational coefficients is defined as follows: an object of MK is a triple (X, p,m), where X is
a variety, m an integer and p ∈ Corr0(X,X) an idempotent, called a projector. Morphisms from
(X, p,m) to (Y, q, n) are given by elements of Corrn−m(X,Y ) precomposed with p and composed
with q.

There is a natural functor h from the category of smooth projective schemes to the cate-
gory of motives, defined by h(X) = (X, id, 0), and, for any morphism φ : X → Y , h(φ) being
the correspondence given by the graph of φ. We write 1 := (SpecK, id, 0) for the unit motive
and L := (SpecK, id,−1) for the Lefschetz motive, and M(−i) := M ⊗ Li. Moreover, we have
Hom(Ld, h(X)) = CHd

Q(X) for all smooth projective schemes X and all integers d.
If X is irreducible of dimension d, the embedding α : pt → X of the point defines a motivic

map 1 → h(X). We denote by h0(X) its image and by h≥1(X) the quotient of h(X) via h0(X).
Similarly, Ld is a quotient of h(X), and we denote it by h2d(X).

In the case of smooth projective curves of positive genus there exists another factor which
corresponds to the Jacobian variety of the curve. Let C be a smooth projective connected curve,
let us define a motive h1(C) such that we have a direct sum:

h(C) = h0(C)⊕ h1(C)⊕ h2(C).

The upshot is that the theory of the motives h1(C) corresponds to that of Jacobian varieties
(up to isogeny), in fact we have

Hom(h1(C), h1(C ′)) = Hom(J(C), J(C ′))⊗Q.

In particular, the full subcategory of MK whose objects are direct summands of the motive
h1(C) is equivalent to the category of abelian subvarieties of J(C) up to isogeny. Such motives can
be called abelian. We will say that a motive is discrete if it is the direct sum of a finite number of
Lefschetz motives.

The strict interplay between motives and representability for threefolds is shown by Gorchinskiy
and Guletskii. In this case, the rational representability of Ai

Q(X) for i ≥ 2 is known ([Mur83]).

In [GG08] it is proved that A3
Q(X) is rationally representable if and only if the Chow motive of X

has a given Chow-Künneth decomposition.

Theorem 2.15 ([GG08], Thm 8). Let X be a smooth projective threefold. The group A3
Q(X) is

rationally representable if and only if the motive h(X) has the following Chow-Künneth decompo-
sition:

h(X) ∼= 1⊕ h1(X)⊕ L⊕b ⊕ (h1(J)(−1)) ⊕ (L2)⊕b ⊕ h5(X) ⊕ L3,
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where h1(X) and h5(X) are the Picard and Albanese motives respectively, b = b2(X) = b4(X) is the
Betti number, and J is a certain abelian variety, which is isogenous to the intermediate Jacobian
J(X) if K = C.

3. Interactions between categorical and classical representabilities

In this section, we will consider varieties defined over the complex numbers. This restriction is
not really necessary, since most of the constructions work over any algebraically closed field. Any-
way, in the complex case, we can simplify our treatment by dealing with intermediate Jacobians.
Moreover, it will be more simple to list examples without the need to make the choice of the base
field explicit for any case.

3.1. Fully faithful functors and motives. At the end of the last section we have seen that,
in the case of threefolds, rational representability of A3

Q(X) is equivalent to the existence of some
Chow-Künneth decomposition. The first step in relating categorical and rational representability
is exploiting an idea of Orlov about the motivic decomposition which should be induced by a
fully faithful functor between the derived categories of smooth projective varieties. Assuming this
conjecture we get that for threefolds categorical representability in dimension 1 is a stronger notion
than rational representability.

Let us sketch Orlov’s idea [Orl05]. If X and Y are smooth projective varieties of dimension
respectively n and m, and Φ : Db(Y ) → Db(X) is a fully faithful functor, then it is of Fourier–
Mukai type [Orl97, Orl03]. Let E in Db(X ×Y ) be its kernel and F in Db(X ×Y ) the kernel of its
right adjoint Ψ, we have F ≃ E∨ ⊗ pr∗XωX [dimX] (see [Muk81]). Consider e := ch(E)Td(X) and
f := ch(F)Td(Y ), two mixed rational cycles in CH∗

Q(X × Y ). We denote by ei (resp. fi) the i-th

codimensional component of e (resp. f), that is ei, fi ∈ CHi
Q(X × Y ). As correspondences they

induce motivic maps ei : h(Y ) → h(X)(i − n) and fj : h(X)(m − j) → h(Y ). The Grothendieck–

Riemann–Roch Theorem implies that f.e :=
⊕n+m

i=0 fn+m−iei = idh(Y ).

Conjecture 1.1. Let X and Y be smooth projective varieties and Φ : Db(Y ) → Db(X) be a fully
faithful functor. Then the motive h(Y ) is a direct summand of the motive h(X).

The Conjecture is trivially true for Y a smooth point, in which case Φ(Db(Y )) is generated by
an exceptional object of Db(X). In [Orl05], it is proven that the Conjecture holds if X and Y have
the same dimension n and E is supported in dimension n. This already covers some interesting
example: if X is a smooth blow-up of Y , or if there is a standard flip from X to Y . Using the
same methods as in [BB10] we will show that the conjecture holds (up to restricting to all direct
summand of h(Y )) for some more examples, namely the case of Y a curve and X a rationally
representable threefold (i.e., Ai

Q(X) is rationally representable for all i) with h1(X) = h5(X) = 0.
But let us first take a look to the simplest case, that is relating categorical representability in

dimension 0 and discreteness of the motive.

Remark 3.1. If a smooth projective variety X is categorically representable in dimension 0, then
the motive h(X) is discrete.

Proof. Being representable in dimension 0 is equivalent to having a full exceptional sequence. Then
the proof is straightforward, we actually have more, that is K(X) = Zl, where l is the number of
objects in the sequence. �

A way more interesting case relates categorical representability in dimension 1 and rational
representability for threefolds. In this case, in light of Theorem 2.15, we have a more specific
conjecture.

Conjecture 3.2. If a smooth projective threefold X is categorically representable in dimension 1,
then it is rationally representable.



CATEGORICAL REPRESENTABILITY AND INTERMEDIATE JACOBIANS OF FANO THREEFOLDS 7

If X is a standard conic bundle over a rational surface and Γ a smooth projective curve, the
Chow-Künneth decomposition of h(X) (see [NS09]) can be used to show that a fully faithful functor
Db(Γ) → Db(X) gives h1(Γ)(−1) as a direct summand of h(X). In particular, this gives an isogeny
between J(Γ) and an abelian subvariety of J(X), and proves (up to codimensional shfit for each
direct summand of h(Γ)) Conjecture 1.1 in this case. The proof in [BB10] is based on the fact that
the motive h(X) splits into a discrete motive and in a unique abelian motive which corresponds
to J(X). Let us make a first assumption

(⋆) X is a smooth projective rationally representable threefold with h1(X) = 0 and h5(X) = 0.

Theorem 3.3. Suppose X satisfies ⋆. If there is a smooth projective curve Γ and a fully faithful
functor Db(Γ) → Db(X), then there exists an integer ji such that hi(Γ)(ji) is a direct summand
of h(X) for i = 0, 1, 2, and there is an injective morphism J(Γ)Q → J(X)Q, that is an isogeny
between J(Γ) and an abelian subvariety of J(X).

Proof. Let E and F , and e and f as before. Consider h0(Γ) = 1, we have f.e|h0(Γ) = idh0(Γ), which

gives the claim, but not an explicit value of i0. The same argument works for h2(Γ) = L.
For h1(Γ), we only need the case where g(Γ) > 0, and we can use the same argument as in

[BB10] Lemma 4.2 : since all but one addendum of h(X) are discrete, the map f.e|h1(Γ) = idh1(Γ)

is given by f2.e2, which proves that h1(Γ)(−1) is a direct summand of h3(X) = M1(J)(−1). �

Corollary 3.4. Suppose X satisfies ⋆ and let {Γi}
k
i=1 be smooth projective curves of positive genus.

If Db(X) is categorically representable in dimension 1 by the categories Db(Γi) and by exceptional
objects, then J(X) is isogenous to ⊕k

i=1J(Γi).

Proof. Use remark 2.9. �

Remark 3.5. (Threefolds satisfying ⋆). By [GG08, NS09] Fano threefolds, threefolds fibered
in Del Pezzo or Enriques surfaces over P1 with discrete Picard group, and standard conic bundles
over rational surfaces satisfy assumptions of Theorem 3.3.

3.2. Reconstruction of the intermediate Jacobian. The aim of this section is to show how,
under appropriate hypothesis, categorical representability in dimension 1 for a threefold X gives a
splitting of the intermediate Jacobian J(X). Notice that in the case of curves the derived category
carries the information about the principal polarization of the Jacobian [Ber07]. In the case of
threefolds, we need first of all the hypothesis of Theorem 3.3. As we will see, the crucial hypothesis
that will allow us to recover also the principal polarization is that the polarization on J(X) is an
incidence polarization.

(♮) X is a smooth projective rationally and algebraically representable threefold with h1(X) =
0 and h5(X) = 0 and the algebraic representative of A2

Z(X) carries an incidence polariza-
tion.

Theorem 3.6. Suppose X satisfies ♮. Let Γ be smooth projective curve and Db(Γ) → Db(X) fully
faithful. Then there is an injective morphism J(Γ) →֒ J(X) preserving the principal polarization,
that is J(X) = J(Γ)⊕A for some principally polarized abelian variety A.

Proof. From Theorem 3.3 we get an isogeny. As in the proof of [BB10, Prop. 4.4], the incidence
property shows that this isogeny is an injective morphism respecting the principal polarizations. �

Corollary 3.7. Suppose X satisfies ♮ and let {Γi}
k
i=1 be smooth projective curves of positive genus.

If Db(X) is categorically representable in dimension 1 by the categories Db(Γi) and by exceptional
objects, then J(X) is isomorphic to ⊕k

i=1J(Γi) as principally polarized variety.

Remark 3.8. (Threefolds satisfying ♮). The assumptions of Theorem 3.6 seem rather restric-
tive. Anyway, they are satisfied by a quite big class of smooth projective threefolds with κX < 0.
The Chow-Künneth decomposition for the listed varieties is provided by [NS09] for conic bundles
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and by [GG08] in any other case. In the following list the references point out the most general
results about strong representability and incidence property. Giving an exhaustive list of all the
results and contributors would be out of reach (already in the cubic threefold case). We will con-
sider Fano threefolds with Picard number one only. The interested reader could find an exhaustive
treatment in [IP99].

1) Fano of index > 2: X is either P3 or a smooth quadric.
2) Fano of index 2: X is a quartic double solid [Tih80] , or a smooth cubic in P4 [CG72], or

an intersection of two quadrics in P5 [Rei72], or a V5 (in the last case J(X) is trivial).
3) Fano of index 1: X is a general sextic double solid [CV86], or a smooth quartic in P4

[BM79], or an intersection of a cubic and a quadric in P5 [BM79], or the intersection of
three quadrics in P6 [Bea77], or a V10 [Log82, Ili94], or a V12 [IM04] (J(X) is the jacobian
of a genus 7 curve), or a V14 [IM00] (in which case the representability is related to the
birational map to a smooth cubic threefold), or a general V16 [Ili03, Muk97], or a general
V18 [IM07, IP99] (J(X) is the jacobian of a genus 2 curve), or a V22 (and the Jacobian is
trivial).

4) Conic bundles: X → S is a standard conic bundle over a rational surface [Bea77, Bel85],
this is the case examined in [BB10].

5) Del Pezzo fibrations: X → P1 is a Del Pezzo fibration with 2 ≤ K2
X ≤ 5 [Kan83, Kan89].

From the unicity of the splitting of the intermediate Jacobian we can easily infer the following.

Corollary 3.9. Suppose X satisfies ♮ and is categorically representable in dimension 1, with
semiorthogonal decomposition

Db(X) = 〈Db(Γ1), . . . ,D
b(Γk), E1, . . . , El〉.

Then there is no fully faithful functor Db(Γ) → Db(X) unless Γ ≃ Γi for some i ∈ {1, . . . , k}.
Moreover, the semiorthogonal decomposition is essentially unique, that is any semiorthogonal de-
composition of Db(X) by smooth projective curves and exceptional objects is given by all and only
the curves Γi and l exceptional objects.

Corollary 3.10. Suppose X satisfies ♮, Γ is a smooth projective curve of positive genus and there
is no splitting J(X) = J(Γ)⊕A. Then there is no fully faithful functor Db(Γ) → Db(X).

The assumptions of Corollary 3.10 are trivially satisfied if the threefold satisfying ♮ has J(X) = 0.
A way more interesting case is when the intermediate Jacobian is not trivial and has no splitting
at all, in which case the variety is not representable in dimension < 2.

Remark 3.11. (Threefolds not categorically representable in dimension < 2). The
assumptions of Corollary 3.10 are satisfied by smooth threefolds with J(X) 6= 0 for all curve Γ of
positive genus in the following cases:

Either X is a smooth cubic [CG72], or a generic quartic threefold [Let84], or a generic complete
intersection of type (3, 2) in P5 [Bea77] or a symmetric one [Bea11], or the intersection of three
quadrics in P7 [Bea77], or a standard conic bundle X → P2 degenerating along a curve of degree
≥ 6 [Bea77], or a non-rational standard conic bundle X → S on a Hirzebruch surface [Sho84], or
a non-rational Del Pezzo fibration X → P1 of degree four [Ale87].

There are some other cases of Fano threefolds of specific type satisfying geometric assumptions.
For a detailed treatment, see [IP99, Chapt. 8].

Notice that if X is a smooth cubic threefold, the equivalence class of a notable admissible subcat-
egory AX (the orthogonal complement of {OX ,OX(1)}) corresponds to the isomorphism class of
J(X) as principally polarized abelian variety [BMMS09]; the proof is based on the reconstruction
of the Fano variety and the techniques used there are far away from the subject of this paper.

A natural question is if, under some hypothesis, one can give the inverse statement of Corollaries
3.4 and 3.7, that is: suppose that X is a threefold satisfying either ⋆ or ♮, such that J(X) ≃
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⊕J(Γi). Can one describe a semiorthogonal decomposition of Db(X) by exceptional objects and
the categories Db(Γi)? Notice that a positive answer for X implies a positive answer for all the
smooth blow-ups of X.

Remark 3.12. (Threefolds with κX < 0 categorically representable in dimension ≤ 1).
Let X be a threefold satisfying ⋆ or ♮ and with J(X) = ⊕J(Γi). Then if X is in the following
list (or is obtained by a finite number of smooth blow-ups from a variety in the list) we have a
semiorthogonal decomposition

Db(X) = 〈Db(Γ1), . . . ,D
b(Γk), E1, . . . , El〉,

with Ei exceptional objects.

1) Threefolds with a full exceptional sequence: X is P3 [Bei84], or a smooth quadric [Kap88],
or a P1-bundle over a rational surface or a P2-bundle over P1 [Orl93], or a V5 [Orl91], or a
V22 Fano threefold [Kuz96].

2) Fano threefolds without any full exceptional sequence: X is the complete intersection of
two quadrics or a Fano threefold of type V18, and J(Γ) ≃ J(X) with Γ hyperelliptic. The
semiorthogonal decompositions are described in [BO95, Kuz05], and are strikingly related
(as in the cases of V5 and V22 and of the cubic and V14) by a correspondence in the moduli
spaces, as described in [Kuz08a]. X is a V12 Fano threefold [Kuz03], or a V16 Fano threefold
[Kuz05].

3) Conic bundles without any full exceptional sequence: X → S is a rational conic bundle
over a minimal surface [BB10]. If the degeneration locus of X is either empty or a cubic
in P2, then X is a P1-bundle and is listed in 1).

4) Del Pezzo fibrations: X → P1 is a quadric fibration with at most simple degenerations,
in which case the hyperelliptic curve Γ → P1 ramified along the degeneration appears
naturally as the orthogonal complement of an exceptional sequence of Db(X) [Kuz08b].
X → P1 is a rational Del Pezzo fibration of degree four. In this case X is birational to a
conic bundle over a Hirzebruch surface [Ale87] and the semiorthogonal decomposition will
be described in a forthcoming paper [ABB].

Notice that the first two items cover all classes of Fano threefolds with Picard number one whose
members are all rational.

4. Categorical representability and rationality:
further developments and open questions

This last Section is dedicated to speculations and open questions about categorical representabil-
ity and rationality. The baby example of curves is full understood. A smooth projective curve X
over a field K is categorically representable in dimension 0 if and only if it is rational. Indeed, the
only case where Db(X) has exceptional objects is X = P1, and Db(X) = 〈OX ,OX (1)〉.

Let us start with a trivial remark: the projective space Pn over K is categorically representable
in dimension 0. Then if X is given by a finite number of smooth blow-ups of Pn, it is categorically
representable in codimension ≥ 2. This is easily obtained from Orlov’s blow-up formula (see
Prop. 2.10). More generally, if a smooth projective variety X of dimension ≥ 2 is categorically
representable in codimension m, then any finite chain of smooth blow-ups of X is categorically
representable in codimension ≥ min(2,m).

One could naively wonder about the inverse statement: if X → Y is a finite chain of smooth
blow-ups and X is categorically representable in codimension m, what can we say about Y ?
Unfortunately, triangulated categories do not have enough structure to let us compare different
semiorthogonal decomposition. For example, the theory of mutations allows to do this only in a
few very special cases.
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In this Section we present some more example to stress how the interaction between categorical
representability and rationality can be devloped further, and we point out some open question.
We deal with surfaces in 4.1 and with threefolds in 4.2. Then we will discuss in 4.3 how categorical
representability for noncommutative varieties plays an important role in this frame, to deal with
varieties of dimension bigger than 3 in 4.4. Finally, we compare in 4.5 our methods with recent
approaches to birationality problems via derived categories. We will work over the field C for
simplicity, even if many problems and arguments do not depend on that.

4.1. Surfaces. If X is a smooth projective rational surface, then it is categorically representable in
codimension 2. Indeed, X is the blow-up in a finite number of smooth points of a minimal rational
surface, that is either P2 or Fn. Are there any other example of surfaces categorically representable
in codimension 2? Notice that by Proposition 3.1 such a surface would have a discrete motive, and
even more: we would have K0(X) = Zl. In particular, if K0(X) is not locally free, then X is not
categorically representable in dimension 0.

In general, an interesting problem is to construct exceptional sequences on surfaces with pg =
q = 0, and to study their orthogonal complement. Suppose for example that X is an Enriques
surface: a (non-full) exceptional collection of 10 vector bundles on X is described in [Zub97].
Since K0(X) is not locally free, we do not expect any full exceptional collection. The orthogonal
complement AX turns then out to be a very interesting object, related also to the geometry of
some singular quartic double solid [IK10]. Using a motivic trick, we can prove that, under some
assumption, a surface with pg = q = 0 is either categorically representable in codimension 2 or not
categorically representable in positive codimension.

Proposition 4.1. Let X be a surface with h(X) discrete. Then for any curve Γ of positive genus,
there is no fully faithful functor Db(Γ) → Db(X).

Proof. Suppose there is such a curve and such a functor Φ : Db(Γ) → Db(X). Let E denote the
kernel of Φ (which has to be of Fourier–Mukai type) and F the kernel of its adjoint. Consider the
cycles e and f described in Section 3.1, and recall that f.e = ⊕3

i=0f3−i.ei = idh(Γ). Restricting now

to h1(Γ) we would have that idh1(Γ) would factor through a discrete motive, which is impossible. �

Corollary 4.2. Let X be a surface with h(X) discrete and K0(X) not locally free. Then X is not
categorically representable in codimension > 0.

Remark 4.3. (Surfaces with pg = q = 0 not categorically representable in positive
codimension). Proposition 3.1 could be an interesting tool in the study of derived categories of
surfaces with pg = q = 0: notice that many of them have torsion in H1(X,Z) (for an exhaustive
treatment and referencing, see [BCP10]). Anyway the discreteness of the motive is a rather strong
assumption, which for example implies the Bloch conjecture. There are few cases where this is
known.

1) X is an Enriques surface [Coo92].
2) X is a Godeaux surface obtained as a quotient of a quintic by an action of Z/5Z [GP02].

These observations lead to state some deep question about categorical representability of sur-
faces.

Question 4.4. Let X be a smooth projective surface with pg = q = 0.

1) Does Db(X) admit an exceptional sequence?
2) Is the exceptional sequence full? That is, is X representable in codimension 2?
3) If X is representable in codimension 2, is X rational?

4.2. Threefolds. Remark that there are examples of smooth projective non-rational threefolds X
which are categorically representable in codimension 2: just consider a rank three vector bundle E
on a curve C of positive genus and take X := P(E). In [BB10, Sect. 6.3] we provide a conic bundle
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example. Anyway, Corollary 3.7 somehow suggests that categorical representability in codimension
2 should be a necessary condition for rationality.

A reasonable idea is to restrict our attention to minimal threefolds with κX < 0 (recall that this
is a necessary condition for rationality), in particular to the ones we expect to satisfy assumption
♮, in order to have interesting information about the intermediate Jacobian from semiorthogonal
decompositions. The three big families of such threefolds are: Fano threefolds, conic bundles over
rational surfaces and del Pezzo fibrations over P1. Remark 3.12 gives a list of rational threefolds
which are categorically representable in codimension 2, and Remark 3.8 a list of families whose
generic term is non-rational and cannot be categorically representable in codimension > 1.

Question 4.5. Let X be a smooth projective threefold with κX < 0.

1) If X is rational, is X categorically representable in codimension 2?
2) Is X categorically representable in codimension 2 if and only if X is rational?

A positive answer to the second question is provided for standard conic bundles over minimal
surfaces [BB10], but it seems to be quite a strong fact to hold in general: recall that having a
splitting J(X) ≃ ⊕J(Γi) is only a necessary condition for rationality, and Corollary 3.7 shows
that if X satisfies ♮, categorical representability in codimension 2 would give the splitting of the
Jacobian.

Remark 3.12 provides a large list of rational threefolds categorically representable in codimension
2. Is it possible to add examples to this list? In particular in the case of Del Pezzo fibrations over
P1 only the quadric and the degree 4 fibration are described.

A good way to understand these questions is by studying some special rational or non-rational
(that is non generic in their family) threefold. This forces to consider non smooth ones, but we can
use Kuznetsov’s theory of categorical resolution of singularities [Kuz07b] and study the categorical
resolution of Db(X), as we pointed out in Remark 2.6. For example, let X ⊂ P4 be nodal cubic
threefold with a double point, which is known to be rational.

Proposition 4.6. Let X ⊂ P4 be a cubic threefold with a double point and X̃ → X the blow-up of

the singular point. The categorical resolution of singularities D̃ ⊂ Db(X̃) of Db(X) is representable
in codimension two. Indeed there is a semiorthogonal decomposition

D̃ = 〈Db(Γ), E〉,

where E is an exceptional object and Γ a complete intersection of a quadric and a cubic in P3.

Proof. This is shown following step by step [Kuz10, Section 5], where the four dimensional case is

studied. Let us give a sketch of the proof. Let P be the singular point of X, and σ : X̃ → X its

blow-up. The exceptional locus α : Q →֒ X̃ of σ is a quadric surface. The projection of P4 to P3

from the point P restricted to X gives the birational map X 99K P3. The induced map π : X̃ → P3

is the blow-up of a smooth curve Γ of genus 4, given by the complete intersection of a cubic and
a quadric surface. If we denote h := π∗OP3(1) and H := σ∗OX(1), we have that Q = 2h − D,
H = 3h−D, then h = H −Q and D = 2H − 3Q as in [Kuz10, Lemma 5.1]. The canonical bundle
ω
X̃

= −4h+D = −2H +Q can be calculated via the blow-up π.
The same arguments as in [Kuz10] give the decomposition

Db(X̃) = 〈α∗OQ(−h), D̃〉.

Indeed the conormal bundle of Q is OQ(h) and the Lefschetz decomposition with respect to it is:

〈A1(−h),A0〉,

where A1 = 〈OQ〉 and A0 = 〈OQ, S1, S2〉, with S1 and S2 the two spinor bundles. We obtain then
the semiorthogonal decomposition:

(4.1) Db(X̃) = 〈α∗OQ(−h), ÃX ,O
X̃
,H〉,
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where ÃX is the categorical resolution of AX , as in [Kuz10, Lemma 5.8]. The representability of

D̃ relies then on the representability of ÃX .

On the other side, applying the blow-up formula (see Prop. 2.10) to π : X̃ → P3, and choosing
{OP3(−3), . . . ,OP3} as full exceptional sequence for Db(P3), we obtain:

Db(X̃) = 〈ΦDb(Γ),−3h,−2h − h,O
X̃
〉,

where Φ : Db(Γ) → Db(X̃) is fully faithful. Now as in [Kuz10, Lemma 5.3], if we mutate −3h and
−2h to the left with respect to ΦDb(Γ), we get

(4.2) Db(X̃) = 〈−3h+D,−2h+D,B,O
X̃
〉,

where B = 〈ΦDb(Γ),−h〉 is an admissible subcategory of Db(X̃). Finally, one can show that B and

ÃX are equivalent, following exactly the same path of mutations as in [Kuz10, Sect. 5] to compare
the decompositions (4.1) and (4.2). Notice that one can calculate explicitely the exceptional object
E by following the mutations of −h. �

Another special very interesting example is described in [IK10]: a singular double solid X → P3

ramified along a quartic symmetroid. This threefold is non-rational thanks to [AM72], because
H3(X,Z) has torsion. A rough account (skipping the details about the resolution of singularities)
of Ingalls and Kuznetsov’s result is the following: if X ′ is the small resolution of X, there is an
Enriques surface S and a semiorthogonal decomposition

(4.3) Db(X ′) = 〈AS , E1, E2〉,

where Ei are exceptional objects and AS is the orthogonal complement in Db(S) of 10 exceptional
vector bundles on S ([Zub97]). Then we can apply to this set Corollary 4.2.

Corollary 4.7. The threefold X ′ is not categorically representable in codimension > 1.

Proof. Consider the Enriques surface S and the semiorthogonal decomposition

Db(S) = 〈AS , E1, . . . , E10〉,

where Ei are the exceptional vector bundles described in [Zub97]. Then the non-representability
of S in codimension > 0 is equivalent to the non-representability of AS in dimension < 2. The
statement follows then from (4.3). �

Remark that the lack of categorical representability of X ′ (and presumably of X, thinking about
the categorical resolution of singularities) is due to the presence of torsion inK0(S) and in particular
in H1(S,Z), whereas the non-rationality of X is due to the presence of torsion in H3(X,Z). The
relation between torsion in H3(X,Z) and categorical representability needs a further investigation,
for example in the case recently described in [IKP11].

4.3. Noncommutative varieties. The previous speculations and partial results give rise to the
hope of extending fruitfully the study of categorical representability to higher dimensions and to
the noncommutative setting. By the latter, we mean, following Kuznetsov [Kuz08b, Sect. 2], an
algebraic variety Y with a sheaf B of OY -algebras of finite type. Very roughly, the corresponding
noncommutative variety Ȳ would have a category of coherent sheaves Coh(Ȳ ) = Coh(Y,B) and
a bounded derived category Db(Ȳ ) = Db(Y,B). The examples which appear very naturally in
our setting are the cases where B is an Azumaya algebra or the even part of the Clifford algebra
associated to some quadratic form over Y . Finally, if a triangulated category A has Serre functor
such that Sm

A
= [n], for some integers n and m, with m minimal with this property, we will call

it a n
m
-Calabi–Yau category. If m = 1, these categories deserve the name of noncommutative

Calabi–Yau n-folds, even if they are not a priori given by the derived category of some Calabi–Yau
n-fold with a sheaf of algebras.
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If S is any smooth projective variety, X → S a Brauer–Severi variety of relative dimension r,
and A the associated Azumaya algebra in Br(S), then [Ber09]

Db(X) = 〈Db(S),Db(S,A−1), . . . ,Db(S,A−r)〉.

The categorical representability of X would then rely on the categorical representability of (S,A),
which is an interesting object in itself. For example, if Y is a generic cubic fourfold containing a
plane, there are a K3 surface S and an Azumaya algebra A such that the categorical representability
of (S,A) is the subject of Kuznetsov’s Conjecture [Kuz10] about the rationality of cubic fourfolds.

If S is a smooth projective variety and Q → S a quadric fibration of relative dimension r, we
can consider the sheaf B0 of the even parts of the Clifford algebra associated to the quadratic form
defining Q. There is a semiorthogonal decomposition:

Db(Q) = 〈Db(S,B0),D
b(S)1, . . . ,D

b(S)r−1〉,

where Db(S)i are equivalent to Db(S) [Kuz08b]. The categorical representability of (S,B0) should
then be a very important tool in studying birational properties of Q. This is indeed the case for
conic bundles over rational surfaces [BB10].

Finally, let A be an n
m
-Calabi–Yau category. Such categories appear as orthogonal complements

of an exceptional sequence on Fano hypersurfaces in projective spaces [Kuz04, Cor. 4.3]. It is then
natural to wonder about their representability. For example, if X is a cubic or a quartic threefold,
it follows from Remark 3.11 that these orthogonal complements (which are, respectively, 5

3 and
10
4 -Calabi–Yau) are not representable in dimension 1.

Question 4.8. Let A be a n
m
-Calabi–Yau category.

1) Is A representable in some dimension?
2) If yes, is there an explicit lower bound for this dimension?
3) Ifm = 1, isA representable in dimension n if and only if there exist a smooth n-dimensional

variety X and an equivalence Db(X) ≃ A?

4.4. Higher dimensional varieties. Unfortunately, it looks like the techniques used for three-
folds in [BB10] hardly extend to dimension bigger than 3. The examples and supporting evidences
provided so far lead anyway to suppose that categorical representability can give useful informations
on the birational properties of any projective variety. The main case is a challenging Conjecture
by Kuznetsov [Kuz10]. Let X ⊂ P5 be a smooth cubic fourfold, then there is a semiorthogonal
decomposition

Db(X) = 〈AX ,OX ,OX(1),OX (2)〉.

The category AX is 2-Calabi–Yau.

Conjecture 4.9. (Kuznetsov). The cubic fourfold X is rational if and only if AX ≃ Db(Y ) for
a smooth projective K3 surface Y .

This conjecture has been verified in [Kuz10] for singular cubics, pfaffian cubics and Hassett’s
[Has00] examples. When X contains a plane P there is a way more explicit construction: blowing

up P we obtain a quadric bundle X̃ → P2 of relative dimension 2, degenerating along a sextic. If
the sextic is smooth, let S → P2 be the double cover, which is a K3 surface. Then

AX ≃ Db(P2,B0) ≃ Db(S,A),

where B0 is associated to the quadric fibration and A is an Azumaya algebra, obtained lifting
B0 to S. The questions about categorical representability of noncommutative varieties arise then
very naturally in this context. Notice that if AX is representable in dimension 2, then we know
something weaker than Kuznetsov conjecture: we would have a smooth projective surface S′ and
a fully faithful functor AX → Db(S′). Point 3) of Question 4.8 appears naturally in this context.
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Question 4.10. One can then wonder if the Kuzentsov conjecture may be stated in the following
form: the cubic fourfold X is rational if and only if it is categorically representable in codimension
2. This is equivalent to proving that the 2-Calabi–Yau category AX is representable in dimension
2 if and only if there exist a K3 surface Y and an equivalence Db(Y ) ≃ AX .

We can propose some more examples of fourfolds for which a Kuznetsov-type conjecture seems
natural: if X is the complete intersection of three quadrics Q1, Q2, Q3 in P7, then Homological
Projective Duality ([Kuz07a, Kuz08b]) gives an exceptional sequence on X and its complement
AX ≃ Db(P2,B0), where B0 is the even Clifford algebra associated to the net of quadrics generated
by Q1, Q2, Q3. Similarly, if we consider two quadric fibrations Q1, Q2 → P1 of relative dimension
4 and their complete intersection X, there is an exceptional sequence on X, and let AX be its
orthogonal complement. A realtive version of Homological Projective Duality shows that AX

equivalent to Db(S,B0), where S is a P1-bundle over P1 and B0 the even Clifford algebra associated
to the net of quadrics generated by Q1 and Q2. It is natural to wonder if representability in
dimension 2 of the noncommutative varieties is equivalent or is a necessary condition for rationality
of X. A partial answer to the last example will be provided in a forthcoming paper [ABB].

Other examples in dimension 7 are provided in [IM11]. If X is a cubic sevenfold, there is a
distinguished subcategory AX of Db(X), namely the orthogonal complement of the exceptional
sequence {OX , . . . ,OX(5)}. This is a 3-Calabi–Yau category. If X is Pfaffian, it is shown in [IM11]
that AX cannot be equivalent to the derived category of any smooth projective variety. It is also
conjectured that AX is equivalent to the orthogonal complement of an exceptional sequence in the
derived category Db(Y ) of a Fano sevenfold Y of index 3, birationally equivalent to X.

4.5. Other approaches. Of course categorical representability is just one among different ap-
proaches to the study of birational geometry of a variety via derived categories. Nevertheless there
is some common ground.

First of all, Kuznetsov mentions in [Kuz10] the notion of Clemens–Griffiths component of Db(X),
whose vanishing would be a necessary condition for rationality. It seems reasonable to expect
that categorical representability in codimension 2 implies the vanishing of the Clemens–Griffiths
component.

Another recent theory is based on Orlov spectra and their gaps [BFK10]. Let us refrain even to
sketch a definition of it, but just notice that [BFK10, Conj. 2] draws a link between categorical
representability and gaps in the Orlov spectrum (see, in particular [BFK10, Cor. 1.11]). Finally,
conjectures based on homological mirror symmetry are proposed in [Kat09, Kat10], but we cannot
state a precise relation with our construction. A careful study of the example constructed in
[IKP11] would be a good starting point.
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