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Abstract

The time varying empirical spectral measure plays a major role in the treatment of
inference problems for locally stationary processes. The properties of the empirical
spectral measure and related statistics are studied - both when its index function is
fixed or dependent on the sample size. In particular we prove a general central limit
theorem. Several applications and examples are given including semiparametric Whittle
estimation, local least squares estimation and spectral density estimation.
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1 Introduction

In recent years several methods have been derived for locally stationary time series models,
that is for models which can locally be approximated by stationary processes. Out of the
large literature we mention the work of Priestley (1965) on oscillatory processes, Robinson
(1989) on time varying regression models, Dahlhaus (1997) on locally stationary processes,
Neumann and von Sachs (1997) on wavelet estimation of evolutionary spectra, Nason, von
Sachs and Kroisandt (2000) on a wavelet-based model of evolutionary spectra, and more
recent work such as Davis, Lee and Rodriguez-Yam (2005) on piecewise stationary processes,
Fryzlewicz, Sapatinas and Subba Rao (2006) on locally stationary volatility estimation,
Moulines, Priouret and Roueff (2005) on recursive estimation for time varying autoregressive
processes and Sakiyama and Taniguchi (2004) on discriminant analysis for locally stationary
processes.

In this paper we emphasize the relevance of the empirical spectral measure for locally
stationary time series. Here a generalized form of the empirical spectral measure is used
which depends on arbitrary index functions that may even depend on the sample size n.
The empirical spectral measure for fixed index function has been studied in Dahlhaus and
Polonik (2008) where a functional limit theorem and an exponential inequality have been
established. For Gaussian processes some (sometimes stronger) results are contained in
Dahlhaus and Polonik (2006). In this paper we investigate the asymptotic properties of the
empirical spectral measure with index functions depending on n and some related statistics.

In Section 2 we introduce the empirical spectral measure and the empirical spectral process
indexed by functions and give a central limit theorem with fixed index functions. In Section 3
we prove the corresponding result with index functions φn depending on n. In Section 4
related estimates such as sum estimates and shifted esimates are studied.

The paper contains many applications and smaller examples. An overview is given in
Example 2.3 where also additional references may be found.

All proofs are delegated without further reference to Section 5.

2 The time varying empirical spectral measure

For completeness and for a deeper understanding we first present in this section the results
on the time varying empirical spectral measure with fixed index functions (c.f. Dahlhaus
and Polonik, 2008). The presentation includes all necessary assumptions since we will use
them in later sections.
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Locally stationary processes were introduced in Dahlhaus (1997) by using a time varying
spectral representation. In contrast to this we use in this paper a time varying MA(∞)-
representation and formulate the assumptions in the time domain. The assumptions are
much weaker than for example in Dahlhaus (1997) since the parameter curves are allowed to
have jumps (see Remark 2.8 below). As in nonparametric regression we rescale the functions
in time to the unit interval in order to achieve a meaningful asymptotic theory.

Let

V (g) = sup
0≤x0<...<xm≤1, m∈N

m∑

k=1

∣∣g(xk) − g(xk−1)
∣∣ (1)

be the total variation of a function g on [0, 1], and for some κ > 0 let

`(j) :=

{
1, |j| ≤ 1
|j| log1+κ |j|, |j| > 1.

(2)

Assumption 2.1 (Locally stationary processes) The sequence of stochastic processes
Xt,n (t = 1, . . . , n) is called a locally stationary process if Xt,n has a representation

Xt,n =
∞∑

j=−∞
at,n(j) εt−j (3)

satisfying the following conditions:

sup
t,n

|at,n(j)| ≤ K

`(j)
(with K not depending on n), (4)

and there exist functions a(·, j) : (0, 1] → R with

sup
u

|a(u, j)| ≤ K

`(j)
, (5)

sup
j

n∑

t=1

|at,n(j) − a(
t

n
, j)| ≤ K, (6)

V (a(·, j)) ≤ K

`(j)
. (7)

The εt are assumed to be independent and identically distributed with Eεt ≡ 0 and Eε2
t ≡ 1.

In addition we assume in this paper that all moments of εt exist. We set κ4 := cum4(εt).
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The existence of all moments is assumed for the central limit theorems and the exponential
inequality which both are proved via the method of cumulants. Of course it would be very
worthwhile to relax this assumption.

Let
f(u, λ) :=

1
2π

|A(u, λ)|2

with

A(u, λ) :=
∞∑

j=−∞
a(u, j) exp(−iλj)

is the time varying spectral density, and

c(u, k) :=
∫ π

−π
f(u, λ) exp(iλk) dλ =

∞∑

j=−∞
a(u, k + j) a(u, j) (8)

is the time varying covariance of lag k at rescaled time u. Usually cov(Xt,nXt+k,n) =
c( t

n , k) + O(n−1) (see Remark 2.8 below).

A simple example of a process Xt,n which fulfills the above assumptions is Xt,n = φ( t
n)Yt

where Yt = Σj a(j)εt−j is stationary with |a(j)| ≤ K/`(j) and φ is of bounded variation.
Another example are time varying ARMA (tvARMA) processes whose coefficient functions
are of bounded variation (see Dahlhaus and Polonik, 2008, Proposition 2.3). Since we
frequently use the tvAR - case in our examples below we state it explicitly.

Example 2.2 (tvAR-processes) Consider the system of difference equations

p∑

j=0

αj(
t

n
)Xt−j,n = σ(

t

n
) εt (9)

where εt are iid with Eεt = 0, E|εt| < ∞, α0(u) ≡ 1 and αj(u) = αj(0) for u < 0. If
all αj(·) as well as σ2(·) are of bounded variation and

∑p
j=0 αj(u)zj 6= 0 for all u and all

0 < |z| ≤ 1 + δ for some δ > 0 then there exists a solution of the form

Xt,n =
∞∑

j=0

at,n(j) εt−j

which fulfills (4)-(7) of Assumption 2.1. The time varying spectral density is given by

f(u, λ) =
σ2(u)
2π

1
| ∑p

j=0 αj(u) exp(iλj)|2 .

(see Dahlhaus and Polonik, 2008, Proposition 2.3). ¤
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The empirical spectral process is defined by

En(φ) :=
√

n
(
Fn(φ) − F (φ)

)

where

F (φ) :=
∫ 1

0

∫ π

−π
φ(u, λ) f(u, λ) dλ du (10)

is the generalized spectral measure and

Fn(φ) :=
1
n

n∑

t=1

∫ π

−π
φ(

t

n
, λ) Jn(

t

n
, λ) dλ (11)

the empirical spectral measure with the pre-periodogram

Jn

( t

n
, λ

)
:=

1
2π

∑

k:1≤[t+1/2±k/2]≤n

X[t+1/2+k/2],nX[t+1/2−k/2],n exp(−iλk). (12)

If X[t+1/2+k/2],nX[t+1/2−k/2],n is regarded as a (raw-) estimate of c( t
n , k) then Jn( t

n , λ) can
be regarded as a (raw-) estimate of f( t

n , λ) - however, in order to become consistent Jn( t
n , λ)

needs to be smoothed in time and frequency direction. The pre-periodogram Jn was first
defined by Neumann and von Sachs (1997).

Example 2.3 Many statistics occurring in the analysis of locally stationary time series
are of the form Fn(φ). We discuss several examples in this paper. Here we give an overview
(Kn always denotes a kernel function).

1. φ(u, λ) = Kn(u0 −u) cos(λk) local covariance estimator Example 3.5

2. φ(u, λ) = Kn(u0 −u)Kn(λ0 −λ) spectral density estimator Example 4.2

3. φ(u, λ) = Kn(u0 −u) ∇fθ(u, λ)−1 local Whittle estimator Example 3.6

4. φ(u, λ) ≈ Kn(u0 −u) ∇fθ(u, λ)−1 local least squares Example 4.4

5. φ(u, λ) = ∇fθ(u, λ)−1 parametric Whittle estimator Example 3.7
in Dahlhaus and Polonik (2008)

6. φ(u, λ) =
(
I[0,u0](u)−u0

)
I[0,λ0](λ) testing stationarity Example 2.7

7. φ(u, λ) = cos(λk) stationary covariance Remark 2.5

8. φ(u, λ) = ∇fθ(λ)−1 stationary Whittle estimator Remark 2.5

9. φ(u, λ) = Kn(λ0 −λ) stationary spectral density Remark 2.5

4
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More complex examples are nonparametric maximum likelihood estimation under shape
restrictions (Dahlhaus and Polonik, 2006), model selection with a sieve estimator (Van Bel-
legem and Dahlhaus, 2006) and wavelet estimates (Dahlhaus and Neumann, 2001). More-
over Fn(φ) occurs with local polynomial fits (Kim, 2001; Jentsch, 2006) and several statistics
suitable for goodness of fit testing (a goodness-of-fit test based on a different statistic can
be found in Sergides and Paparoditis, 2007). These applications are quite involved.
We mention that examples 1. - 4. are examples with index functions φn depending on n.
The asymptotic properties of Fn(φn) in this case is the main topic of this paper. ¤

We now state a central limit theorem for En(φ) with index functions φ that do not vary with
n. We use the assumption of bounded variation in both components of φ(u, λ). Besides the
definition in (1) we need a definition in two dimensions. Let

V 2(φ) = sup
{ `,m∑

j,k=1

|φ(uj , λk) − φ(uj−1, λk) − φ(uj , λk−1) + φ(uj−1, λk−1)| :

0 ≤ u0 < . . . < u` ≤ 1; −π ≤ λ0 < . . . < λm ≤ π; `,m ∈ N
}

.

For simplicity we set

‖φ‖∞,V := sup
u

V
(
φ(u, ·)

)
, ‖φ‖V,∞ := sup

λ
V

(
φ(·, λ)

)
,

‖φ‖V,V := V 2(φ) and ‖φ‖∞,∞ := sup
u,λ

|φ(u, λ)|.

Theorem 2.4 Suppose Assumption 2.1 holds and let φ1, . . . , φd be functions with ‖φj ‖∞,V ,
‖φj ‖V,∞, ‖φj ‖V,V and ‖φj ‖ ∞,∞ being finite (j = 1, . . . , d). Then

(
En(φj)

)
j=1,...,d

D→
(
E(φj)

)
j=1,...,d

where
(
E(φj)

)
j=1,...,d

is a Gaussian random vector with mean 0 and

cov
(
E(φj), E(φk)

)
= 2π

∫ 1

0

∫ π

−π
φj(u, λ) [φk(u, λ) + φk(u, −λ)] f2(u, λ) dλ du

(13)

+ κ4

∫ 1

0

(∫ π

−π
φj(u, λ1)f(u, λ1) dλ1

)(∫ π

−π
φk(u, λ2)f(u, λ2) dλ2

)
du.

This result is proved in Dahlhaus and Polonik (2008), Theorem 2.5.

5
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Remark 2.5 (Stationary processes/Model misspecification by stationary models)
The classical central limit theorem for the weighted periodogram in the stationary case can
be obtained as a corollary: If φ(u, λ) = φ̃(λ) is time-invariant then

Fn(φ) =
∫ π

−π
φ̃(λ)

1
n

n∑

t=1

Jn(
t

n
, λ) dλ.

We have

1
n

n∑

t=1

Jn(
t

n
, λ) =

1
n

n∑

t=1

1
2π

∑
k

1≤[t+0.5+k/2],[t+0.5−k/2]≤n

X[t+0.5+k/2],nX[t+0.5−k/2],n exp(−iλk)

=
1
2π

n−1∑

k=−(n−1)

(
1
n

n−|k|∑

t=1

XtXt+|k|

)
exp(−iλk)

=
1

2πn

∣∣∣
n∑

s=1

Xs exp(−iλs)
∣∣∣
2

= In(λ) (14)

where In(λ) is the classical periodogram. Therefore Fn(φ) is the classical spectral measure
in the stationary case with the following applications:

(i) φ(u, λ) = φ̃(λ) = cosλk is the empirical covariance estimator of lag k;
(ii) φ(u, λ) = φ̃(λ) = 1

4π ∇f −1
θ (λ) is the score function of the Whittle-likelihood.

Theorem 2.4 gives the asymptotic distribution for these examples - both in the stationary
case and in the misspecified case where the true underlying process is only locally stationary.
If φ(u, λ) = φ̃(λ) is a kernel we obtain an estimate of the spectral density whose asymptotic
distribution is a special case of Theorem 3.2 below (also in the misspecified case). ¤

We now briefly mention an exponential inequality. Since this is a non-asymptotic result it
holds regardless whether φ depends on n. Let

ρ2,n(φ) :=
( 1

n

n∑

t=1

∫ π

−π
φ(

t

n
, λ)2dλ

)1/2
. (15)

Theorem 2.6 (Exponential inequality) Suppose Assumption 2.1 holds with E|εt|k ≤
Ck

ε for all k ∈ N for the εt. Then we have for all η > 0

P
(

|√
n

(
Fn(φ) − EFn(φ)

)
| ≥ η

)
≤ c1 exp

(
− c2

√
η

ρ2,n(φ)

)
(16)

with some constants c1, c2 > 0 independent of n.

6
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This result is proved in Dahlhaus and Polonik (2008), Theorem 2.7. There exist several
variants of this result - for example in the Gaussian case it is possible to omit the

√· in (16)
or to prove a Bernstein-type inequality which is even stronger (cf. Dahlhaus and Polonik,
2006, Theorem 4.1).

Furthermore, a maximal inequality may be proved under conditions on the metric entropy
of the corresponding function class. We refer to Dahlhaus and Polonik (2008), Theorem
2.9. Applications of the maximal inequality are for example uniform rates of convergence
for different type of estimates. We omit details.

By using a maximal inequality tightness of the empirical spectral process may be proved
leading to functional central limit theorem for the empirical spectral process where the
process is indexed by a function class (cf. Dahlhaus and Polonik, 2008, Theorem 2.11).
Furthermore a Glivenko Cantelli type result for the empirical spectral process can be ob-
tained (Theorem 2.12).

Example 2.7 (Testing for stationarity) The idea for a test of stationarity is to test
whether the time varying spectral density f(u, λ) is constant in u. This is for example
achieved by the test statistic

√
n sup

u∈[0,1]
sup

λ∈[0,π]

∣∣∣Fn(u, λ) − uFn(1, λ)
∣∣∣

where

Fn(u, λ) :=
1
n

[un]∑

t=1

∫ λ

0
Jn(

t

n
, µ) dµ

is an estimate of the integrated time frequency spectral density F (u, λ) :=
∫ u
0

∫ λ
0 f(v, µ) dµdv,

and

uFn(1, λ) = u

∫ λ

0
In(µ) dµ

is the corresponding estimate of F (u, λ) under the hypothesis of stationarity where f(v, µ) =
f(µ). Under the hypothesis of stationarity we have

F (u, λ) − uF (1, λ) =
∫ 1

0

∫ λ

0

(
I[0,u](v) − u

)
f(µ) dµ dv = 0

and therefore √
n
(
Fn(u, λ) − uFn(1, λ)

)
= En(φu,λ)

with φu,λ(v, µ) =
(
I[0,u](v) − u

)
I[0,λ](µ). We now need functional convergence of En(φu,λ).

Convergence of the finite dimensional distributions follows from Theorem 2.4 above. Tight-
ness and therefore the functional convergence follows from Theorem 2.11 of Dahlhaus and

7
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Polonik (2008) (it is straightforward to check the conditions of this theorem on the metric
entropy).

As a consequence we obtain under the null hypothesis
√

n
(
Fn(u, λ) − uFn(1, λ)

)
u∈[0,1],λ∈[0,π]

D→ E
(
u, λ

)
u∈[0,1],λ∈[0,π]

where E
(
u, λ

)
is a Gaussian process with mean 0 and covariance structure

cov
(
E(u1, λ1), E(u2, λ2)

)
= 2π

∫ 1

0

(
I[0,u1](v) − u1

) (
I[0,u2](v) − u2

) ∫ min{λ1,λ2}

0
f2(µ) dµ dv

+ κ4

∫ 1

0

(
I[0,u1](v) − u1

) (
I[0,u2](v) − u2

)( ∫ λ1

0
f(µ1) dµ1

)(∫ λ2

0
f(µ2) dµ2

)
dv

=
(
min{u1, u2} − u1u2

)[
2π

∫ min{λ1,λ2}

0
f2(µ) dµ + κ4

(∫ λ1

0
f(µ1) dµ1

)(∫ λ2

0
f(µ2) dµ2

)]
.

If κ4 = 0 (Gaussian case) and f(µ) = c this is the Kiefer-Müller process. However, for
general f it is a difficult and unsolved task to calculate or estimate the limit distribution
and in particular the distribution in (2.7). This may be done by transformations (like Up -
or Tp - type transforms) and/or by finding an adequate bootstrap method.

We conjecture that the same result can be obtained if we use instead of Fn(u, λ) the more
realistic sum statistic

FΣ
n (u, λ) :=

2π

n2

[un]∑

t=1

[λn]∑

j=1

Jn(
t

n
, λj)

with λj = 2πj
n . In this case convergence of finite dimensional distributions follows from

Theorem 4.1 below while the derivation of tightness still is an open problem.

We mention that Paparoditis (2006) has given a complete solution of this testing problem
by using spectral density type statistics. ¤

Remark 2.8 (The bounded variation assumption) The assumption of bounded vari-
ation in time direction (7) of Assumption 2.1 allows for jumps in the parameter curves. We
recall that a function is of bounded variation if it is the difference of two bounded monotone
functions. This implies that the function may have countably many jumps with absolutely
summable jump-sizes. In between the function is continuous. Assumption 2.1 implies
bounded variation for many other curves of interest. For example it has been proved in
Proposition 5.4 of Dahlhaus and Polonik (2008) that the covariances c(u, k) are of bounded
variation in u with

V
(
c(·, k)

)
≤ K

`(k)
.

8
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It can also be shown that f(u, λ) is of bounded variation in u for each λ. Furthermore,
Proposition 5.4 of Dahlhaus and Polonik (2008) implies

n∑

t=1

∣∣∣cov
(
Xt,nXt+k,n

)
− c

( t

n
, k

)∣∣∣ ≤ K. (17)

This result also reflects bounded variation. Heuristically it is due to the following:

cov
(
Xt,nXt+k,n

)
− c

( t

n
, k

)
=





O( 1
n), if c(u, k) is continuous in

[
t
n , t+k

n

]
;

O(1), if c(u, k) has a jump in
[

t
n , t+k

n

]
.

More precisely, it can e.g. be shown that cov
(
Xt,nXt+k,n

)
− c

(
t
n , k

)
= O(1/n) uniformly in

k if all aj fulfill the Lipschitz-continuity assumption

∣∣aj(u) − aj(v)
∣∣ ≤ K |u − v|

`(j)
for all u, v ∈

[ t

n
,
t + k

n

]

(cf. Assumption 2.1). The result (17) also holds for cov
(
X[t+1/2+k/2],n, X[t+1/2−k/2],n

)
.

We do not take full advantage of the bounded variation assumptions in the present paper.
The main results Theorems 2.4, 3.2, 4.1 and 4.3 are proved under these weak assumptions
while nearly all examples deal with local kernel-type-estimates which require additional
smoothness assumptions. Possible applications are estimation of jump-locations and jump-
sizes, testing for breakpoints (in particular the behaviour of tests under the alternative) etc.
These applications need to be investigated in future work. ¤

3 A central limit theorem with index functions depending
on n

We now prove a central limit theorem for Fn(φn)−F (φn) with index functions φn depending
on n. In addition we extend the definitions of Section 2 to tapered data

X
(hn)
t,n := hn

( t

n

)
· Xt,n

where hn : (0, 1] → [0, ∞) is a data taper (with hn(·) = I(0,1](·) being the nontapered case
of Section 2). The main reason for introducing data-tapers is to include segment estimates
- see the discussion below.

As before the empirical spectral measure is defined by

Fn(φ) = F (hn)
n (φ) :=

1
n

n∑

t=1

∫ π

−π
φ(

t

n
, λ) J (hn)

n (
t

n
, λ) dλ (18)

9
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now with the tapered pre-periodogram

J (hn)
n

(
t

n
, λ

)
=

1
2π

∑

k:1≤[t+1/2±k/2]≤n

X
(hn)
[t+1/2+k/2],nX

(hn)
[t+1/2−k/2],n exp(−iλk) (19)

(
we mention that in some cases a rescaling may be necessary for J

(hn)
n (u, λ) to become a

pre-estimate of f(u, λ) - an obvious example for this is hn(u) = (1/2) I(0,1](u)
)
.

F (φ) is the theoretical counterpart of Fn(φ)

F (φ) = F (hn)(φ) :=
∫ 1

0
h2

n(u)
∫ π

−π
φ(u, λ)f(u, λ) dλ du. (20)

We stress that for hn(u) = I(0,1](u) all definitions are the same as in Section 2. This is one
important special case.

Another case of importance is h
(u0)
n ( t

n) := k
(u0−t/n

bn

)
with k having compact support on

[− 1
2 , 1

2 ] and bn → 0. If in addition φ(u, λ) = ψ(λ) we obtain in this case as in (14)

Fn(φ) =
∫ π

−π
ψ(λ)

( 1
n

n∑

t=1

J (hn)
n

( t

n
, λ

))
dλ

=
∫ π

−π
ψ(λ)

1
2πn

∣∣∣
n∑

s=1

X(hn)
s exp(−iλs)

∣∣∣
2
dλ =

H2,n

n

∫ π

−π
ψ(λ) I(hn)

n (λ) dλ (21)

with the tapered periodogram

I(hn)
n (λ) :=

1
2πH2,n

∣∣∣
n∑

s=1

X(hn)
s exp(−iλs)

∣∣∣
2

(22)

and H2,n :=
∑n

t=1 hn(t/n)2 (which is in this example proportional to bnn). This means
that Fn is a weighted mean of the tapered periodogram on the segment (u0 − bn/2)n ≤ t ≤
(u0 + bn/2)n. For k(·) = I[− 1

2
, 1
2
](·) we have the classical nontapered periodogram.

The last example suggests to use 1
H2,n

instead of 1
n in (18) as a norming constant. However,

this is not always the right choice (as can be seen from case (ii) in Remark 3.4).

We need the following assumption.

Assumption 3.1 The data taper hn : (0, 1] → [0, ∞) fulfills supn V (hn) ≤ C and
supu,n hn(u) ≤ C for some C < ∞. log hn(·) is assumed to be concave.

10
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The assumption that log hn(·) is concave is very mild (note that even log(xm) is concave).

It turns out that in the above situation the rate of converge of the empirical spectral measure
becomes

√
n/ρ

(hn)
2 (φn) where

ρ
(hn)
2 (φ) :=

(∫ 1

0
h4

n(u)
∫ π

−π
φ(u, λ)2 dλ du

)1/2
.

Therefore we can embed this case into the situation treated in the last section by studying
the convergence of

E(hn)
n

( φn

ρ
(hn)
2 (φn)

)
=

√
n

ρ
(hn)
2 (φn)

(
Fn(φn) − F (hn)(φn)

)
.

Furthermore, let

c
(hn)
E (φj , φk) := 2π

∫ 1

0
h4

n(u)
∫ π

−π
φj(u, λ)

[
φk(u, λ) + φk(u, −λ)

]
f2(u, λ) dλ du (23)

+ κ4

∫ 1

0
h4

n(u)
(∫ π

−π
φj(u, λ1)f(u, λ1)dλ1

)(∫ π

−π
φk(u, λ2)f(u, λ2)dλ2

)
du.

Theorem 3.2 Suppose Assumptions 2.1 and 3.1 hold. Furthermore, let φn1, . . . , φnd be
functions with

1 + ‖φn‖∞,∞ + (log n) ‖φn‖∞,V + ‖φn‖V,∞ + (log n) ‖φn‖V,V
√

n ρ
(hn)
2 (φn)

= o(1). (24)

If the limit

Σj,k := lim
n→∞

c
(hn)
E (φnj , φnk)

ρ
(hn)
2 (φnj) ρ

(hn)
2 (φnk)

(25)

exists for all j, k = 1, . . . , d then

( √
n

ρ
(hn)
2 (φnj)

(
Fn(φnj) − F (hn)(φnj)

))

j=1,...,d

D→ N (0,Σ). (26)

Remark 3.3
(i) (Bias) In addition there exists the bias term

√
n

ρ
(hn)
2 (φn)

(
F (hn)(φn) − lim

n→∞
F (hn)(φn)

)

11
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(see the examples below). The magnitude of this bias depends on the smoothness of the
time varying spectral density. In this paper we usually require conditions such that this
bias is of lower order. Of course it is an important task to study the relation between bias
and variance and to investigate in that context the problem of adaptation, e.g. the choice
of the bandwidth parameters in the examples below. However, this is beyond the scope of
the present paper.
(ii) (Fixed index functions) Theorem 2.4 for fixed index functions φj follows from the above
result as a corollary.
(iii) (Stationary case) With φn(u, λ) = ψ̃n(λ) the result also covers the stationary case -
e.g. for kernel estimates of the spectral density (see (21)).

Remark 3.4 (Typical applications) A typical application of this result is the case of
(kernel type) local estimators which can be constructed by using kernels, data-tapers or a
combination of both:

(i) φn(u, λ) = 1
bn

K(u0−u
bn

) ψ(λ) hn(·) = I(0,1](·)
(ii) φn(u, λ) = 1

bn
K(u0−u

bn
) ψ(λ) hn(u) = I[u0−bn/2,u0+bn/2](u)

(iii) φn(u, λ) = ψ(λ) hn( t
n) = k

(u0−t/n
bn

)

where K(·) and k(·) are kernel functions and bn is the bandwidth. Dependent on the
function ψ(λ) this leads to different applications (see the examples below). If K(·) = k(·)2
then the resulting estimates all have the same asymptotic properties - see below. However,
they are numerically different and their finite sample behaviour needs to be investigated.
For example the last estimate is a stationary estimate on a segment which uses the classical
tapered periodogram

(
or the nontapered periodogram for k(·) = I[−1/2,1/2](·)

)
.

We now show how Theorem 3.2 leads to the asymptotic distribution for these estimates:

(i) We assume that K is of bounded variation with compact support on [− 1
2 , 1

2 ] and bn → 0,
bnn → ∞. ψ(λ) is also of bounded variation. Since V

(
1
bn

K(u0−·
bn

)
)

= O( 1
bn

) it is obvious
that ‖φn‖∞,V , ‖φn‖V,∞, ‖φn‖V,V and ‖φn‖ ∞,∞ are of order O( 1

bn
). Furthermore,

ρ
(hn)
2 (φn) = ρ2(φn) =

( 1
bn

∫
K2(x) dx

∫
|ψ(λ)|2 dλ

)1/2
(27)

that is (24) is fulfilled if nb À (log n)2. For f(·, λ) continuous at u0 we have

12
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c
(hn)
E (φnj , φnk) = 2π

∫ 1

0

1
b2
n

K
(u0 − u

bn

)2
∫ π

−π
ψj(λ)

[
ψk(λ) + ψk(−λ)

]
f2(u, λ) dλ du

+ κ4

∫ 1

0

1
b2
n

K
(u0 − u

bn

)2(∫ π

−π
ψj(λ1)f(u, λ1)dλ1

)(∫ π

−π
ψk(λ2)f(u, λ2)dλ2

)
du

∼ 1
bn

∫
K2(x) dx

[
2π

∫ π

−π
ψj(λ)

[
ψk(λ) + ψk(−λ)

]
f2(u0, λ) dλ

+ κ4

(∫ π

−π
ψj(λ1)f(u0, λ1) dλ1

)(∫ π

−π
ψk(λ2)f(u0, λ2) dλ2

)]
=:

1
bn

Γjk

that is (25) is also fulfilled and we obtain from (26) the central limit theorem

√
bnn

(
Fn(φnj) − F (hn)(φnj)

)
j=1,...,d

D→ N (0,Γ). (28)

One may also allow for different u0 = uj and u0 = uk. Since
∫

1
bn

K
(uj − u

bn

) 1
bn

K
(uk − u

bn

)
du = o(

1
bn

)

for uj 6= uk we obtain by straightforward calculations that the corresponding covariance
structure tends to 0.

(ii) The additional taper hn(u) = I[u0−bn/2,u0+bn/2](u) implies that we use only data from
the interval [u0 − bn/2, u0 + bn/2]. We obtain in this case

ρ
(hn)
2 (φn) =

(∫ 1

0
h4

n(u)
1
b2
n

K
(u0 − u

bn

)2
du

∫ π

−π
|ψ(λ)|2 dλ

)1/2

=
(∫ 1

0

1
b2
n

K
(u0 − u

bn

)2
du

∫ π

−π
|ψ(λ)|2 dλ

)1/2
,

i.e. we have the same ρ
(hn)
2 (φn) as above. Furthermore, c

(hn)
E (φn, φn) is the same. Thus we

obtain the same asymptotic distribution and the same rate of convergence.

(iii) If K(·) = k(·)2 we obtain in this case

1
bn

ρ
(hn)
2 (φn) =

(∫ 1

0

1
b2
n

K
(u0 − u

bn

)2
du

∫ π

−π
|ψ(λ)|2 dλ

)1/2

i.e. we obtain again the same expression. Furthermore, 1
b2n

c
(hn)
E (φnj , φnk) is the same as

c
(hn)
E (φnj , φnk) above. Thus we have again the same asymptotic distribution and the same

rate of convergence.

13
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Example 3.5 (Local covariance estimator)

If we set ψ(λ) = cos(λk) in the last remark then estimate (i) becomes the kernel covariance
estimator of c(u0, k)

ĉn(u0, k) := Fn(φn,u0,k) =
1
n

n∑

t=1

1
bn

K
(u0 − t/n

bn

) ∫ π

−π
cos(λk) Jn

( t

n
, λ

)
dλ

=
1
n

∑

t

1
bn

K
(u0 − t/n

bn

)
X[t+1/2+k/2],nX[t+1/2−k/2],n. (29)

Apart from the bias (which is treated below) (28) gives

√
bnn

(
ĉn(uk, k) − c(uk, k)

)
k=1,...,d

D→ N (0, Γ) (30)

with

Γk,` = δuk,u`

∫
K2(x)dx

[
2π

∫ π

−π
cos(λk) cos(λ`)f(uk, λ)2 dλ + κ4 c(uk, k) c(uk, `)

]
.

By using Parseval’s formula and cos(λk) = 1
2 [exp(iλk) + exp(−iλk)] the term in the [...] -

brackets is the same as
∑∞

j=−∞
[
c(uk, j) c(uk, j − k − `) + c(uk, j) c(uk, j − k + `)

]
+

κ4 c(uk, k) c(uk, `) which is the usual asymptotic variance of the covariance-estimator (cf.
Fuller (1996), Theorem 6.4.1).

We finally have to treat the bias. We have

F (φn,u0,k) − c(u0, k) =
∫ 1

0

∫ π

−π

1
bn

K
(u0 − u

bn

)(
f(u, λ) − f(u0, λ)

)
cos(λk) dλ du = O(b2

n)

if f(u, λ) is differentiable in u with Lipschitz continuous derivative in some neighborhood
of u0 and the Lipschitz constant is uniform in λ. We therefore obtain (30) if

√
bnn b2

n → 0
(i.e. for bn ¿ n−1/5).

The same follows for the estimates (ii) and (iii). We mention that the estimate (iii) with
ψ(λ) = cos(λk) is just the Fourier transform of the classical tapered periodogram. ¤

Example 3.6 (Curve estimation by local Whittle-estimates)

Whittle estimates were introduced by Whittle (1953) for stationary processes and were gen-
eralized by Dahlhaus (2000) to locally stationary processes. Parametric Whittle estimates
for locally stationary processes have been discussed in Dahlhaus (2000) and in combination
with the empirical spectral measure in Dahlhaus and Polonik (2008), Example 3.1.

14
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Here we consider semiparametric curve estimation where the time varying spectral density
is of the form f(u, λ) = fθ(u)(λ) with θ(u) ∈ Θ ⊆ Rd for all u ∈ [0, 1]. An example are
tvAR-processes. Let

θ̂n(u) := argmin
θ∈Θ

Ln(u, θ)

with

Ln(u, θ) :=
1
4π

1
n

n∑

t=1

1
bn

K
(u − t/n

bn

) ∫ π

−π

{
log 4π2fθ(λ) +

Jn( t
n , λ)

fθ(λ)

}
dλ. (31)

In case of a tvAR(p)-process θ̂n(u) is the solution of the local Yule-Walker equations: Let
Cn(u) = (ĉn(u, 1), . . . , ĉn(u, p))′ and Σn(u) = {ĉn(u, i − j)}i,j=1,...,p with the covariance
estimator ĉn(u, k) as in (29). If θ̂n(u) = (α̂1(u), . . . , α̂p(u), σ̂2(u))′ then it is not difficult to
show that (

α̂1(u), . . . , α̂p(u)
)′ = −Σn(u)−1Cn(u)

and

σ̂2(u) = ĉn(u, 0) +
p∑

k=1

α̂k(u) ĉn(u, k).

The basic steps for proving asymptotic normality of θ̂n(u) are well known. We mention
that the empirical spectral measure plays a key role in the proof since the difference of the
likelihood and its first and second order derivatives can be represented with the spectral
measure. Large parts of the proof (in particular consistency of θ̂n(u)) follow in the same
way as in Dahlhaus and Polonik (2008), Theorem 4.1 where a uniform rate of convergence
for

∥∥θ̂n(u) − θ0(u)
∥∥

2
has been derived. The final step of the proof is to show asymptotic

normality of the score function. We have with ∇i := ∂
∂θi

√
bnn ∇iLn

(
u, θ0(u)

)
=

√
bnn

(
Fn(φn,u,i) − F (φn,u,i)

)
+ O

( 1√
bnn

)
(32)

+
√

bnn
1
4π

∫ 1

0

∫ π

−π

1
bn

K
(u − v

bn

)(
fθ0(v)(λ) − fθ0(u)(λ)

)
∇if

−1
θ (λ)|θ=θ0(u) dλ dv

where φn,u,i(v, λ) := 1
bn

K(u−v
bn

) 1
4π ∇if

−1
θ (λ)|θ=θ0(u) (for tvAR(p)-processes this score func-

tion is simpler - cf. (50)). If θ0(u) is differentiable with Lipschitz continuous derivative
in some neighborhood of u and fθ(λ) is differentiable in θ with uniform Lipschitz continu-
ous derivative in some neighborhood of θ0(u) then the last term is of lower order provided
bn ¿ n−1/5.

As in Remark 3.4 we therefore obtain from Theorem 3.2 (cf.(27))
√

bnn ∇Ln

(
u, θ0(u)

) D→ N
(
0,

∫
K2(x)dx

(
Γ(u) + Λ(u)

))
(33)

15
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with

Γ(u)k,` :=
1
4π

∫ π

−π

{
∇k log fθ(λ)|θ=θ0(u)∇̀ log fθ(λ)|θ=θ0(u)

}
dλ

and

Λ(u)k,` := κ4

( 1
4π

∫ π

−π
∇k log fθ(λ)|θ=θ0(u) dλ

) ( 1
4π

∫ π

−π
∇̀ log fθ(λ)|θ=θ0(u) dλ

)
.

Furthermore, under appropriate smoothness assumptions on f and θ, it can be shown that

∇2Ln

(
u, θ̄n

) P→ Γ(u) for every θ̄n with θ̄n
P→ θ0(u) (34)

which implies with a Taylor expansion and consistency of θ̂n(u)

√
bnn

(
θ̂n(u) − θ0(u)

) D→ N
(
0,

∫
K2(x)dx Γ(u)−1

(
Γ(u) + Λ(u)

)
Γ(u)−1

)
. (35)

Similarly, it can be shown that
√

bnn
(
θ̂n(u) − θ0(u)

)
and

√
bnn

(
θ̂n(v) − θ0(v)

)
are jointly

asymptotically normal with zero limit covariance.

The above estimator corresponds to case (i) in Remark 3.4. Case (iii) in Remark 3.4 leads
instead to the classical tapered Whittle likelihood on the segment, that is

θ̃n(u) := argmin
θ∈Θ

L̃n(u, θ)

with

L̃n(u, θ) :=
1
4π

∫ π

−π

{
log 4π2fθ(λ) +

I
(hu,n)
n (λ)
fθ(λ)

}
dλ.

where hu,n( t
n) := k

(u−t/n
bn

)
. This estimate has the same asymptotic properties provided

k(·)2 = K(·). We omit details. ¤

4 Related estimators

Many estimators are “approximately” of the form discussed in Sections 2 and 3. In this
section we derive the asymptotic properties of such estimators rigorously and give examples
beyond the examples already discussed in the last sections.
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4.1 Sum estimators

We first consider the empirical spectral process with the integral statistic Fn(φ) being
replaced by the sum statistic

FΣ
n (φ) :=

2π

n2

n∑

t=1

n∑

j=1

φ(
t

n
, λj) J (hn)

n (
t

n
, λj) (36)

where λj := 2πj
n . This estimator has already been used in Example 2.7 (testing for station-

arity). The empirical spectral process in this case is defined by

EΣ
n (φ) :=

√
n

(
FΣ

n (φ) − F (φ)
)
. (37)

Theorem 4.1 (i) Suppose Assumptions 2.1 and 3.1 hold. Furthermore, let φn be a function
possibly depending on n. Then

n

ρ
(hn)
2 (φn)2

E
[
FΣ

n (φn) − Fn(φn)
]2 ≤ K

(log n) ‖φn‖2
∞,V

nρ
(hn)
2 (φn)2

. (38)

(ii) (Fixed index functions) Thus under the assumptions of Theorem 2.4
√

n
(
FΣ

n (φ) −
Fn(φ)

) P→ 0 and as a consequence

(
EΣ

n (φj)
)
j=1,...,d

D→
(
E(φj)

)
j=1,...,d

where
(
E(φj)

)
j=1,...,d

has the same Gaussian distribution as in Theorem 2.4.

(iii) (Varying index functions) Thus under the assumptions of Theorem 3.2(
EΣ

n (φj/ρ
(hn)
2 (φnj))

)
j=1,...,d

has the same asymptotic distribution as given in Theorem 3.2.

Example 4.2 (Spectral density estimates)
Consider a kernel estimate of the time-varying spectral density

f̂n(u, λ) :=
2π

n2

n∑

t=1

n∑

j=1

1
bt

Kt

(u − t/n

bt

) 1
bf

Kf

(λ − λj

bf

)
J (hn)

n

( t

n
, λj

)
(39)

with different bandwidths and kernels in frequency and time direction. We have

17
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f̂n(u, λ) = FΣ
n (φn,u,λ)

with φn,u,λ(v, µ) := 1
bt

Kt(u−v
bt

) 1
bf

Kf (λ−µ
bf

). Below we deduce from Theorem 4.1 that

√
nbtbf

(
f̂n(ui, λi) − f(ui, λi)

)
i=1,...,d

D→ N (0,Γ) (40)

with Γi,j = 2π f(u1, λ1)2 δui,uj δλi,λj

∫
K2

t (x) dx
∫

K2
f (x) dx (and an additional factor 2 if

λi = 0). The situation is the same as in Remark 3.4 but in addition with a kernel in
frequency direction, i.e. ψ(µ) = 1

bf
Kf (λ−µ

bf
). In particular we are having again 3 different

choices for constructing estimates (by using kernels and data-tapers). The 3 estimates are
numerically different but with the same asymptotic distribution. Besides (39) we mention
the ordinary smoothed periodogram

f̂n(u, λ) :=
2π

n

n∑

j=1

1
bf

Kf

(λ − λj

bf

)
I

(hu,n)
n (λ) (41)

with data-taper hn( t
n) = k

(u−t/n
bt

)
, k2(·) = Kt(·) and H2,n =

∑n
t=1 h2

n( t
n) ≈ btn.

We now derive (40) by checking the assumptions of Theorem 4.1. We assume that the kernels
Kt,Kf have compact support on [− 1

2 , 1
2 ] and are of bounded variation with

∫ 1/2
−1/2 xK(x) dx =

0 and
∫ 1/2

−1/2 K(x) dx = 1. Furthermore let bt, bf → 0 and nbtbf À (log n)2 as n → ∞. The
kernel Kf is periodically extended (i.e. Kf ( x

bf
) = Kf (x±2π

bf
) due to periodicity of f) to

include estimates for frequencies around ±π.

It is obvious that ‖φn,u,λ‖∞,V , ‖φn,u,λ‖V,∞, ‖φn,u,λ‖V,V and ‖φn,u,λ‖ ∞,∞ are of order O( 1
btbf

).
Furthermore,

ρ2(φn,u,λ)2 =
1

btbf

∫
K2

t (x) dx

∫
K2

f (x) dx

that is (24) is fulfilled if nbtbf À (log n)2. We now check (25). By using

∫
1
bt

Kt

(u1 − v

bt

) 1
bt

Kt

(u2 − v

bt

)
dv = o

( 1
bt

)

for u1 6= u2 (and the same for Kf ) we obtain for continuous f(u, λ) by straightforward
calculations in the case λ1 6= 0

c
(I(0,1])

E (φn,u1,λ1 , φn,u2,λ2) = 2π f(u1, λ1)2 δu1,u2 δλ1,λ2

1
btbf

∫
K2

t (x) dx

∫
K2

f (x) dx + o(
1

btbf
)

18
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(the term with κ4 is of lower order) and therefore

lim
n→∞

c
(I(0,1])

E (φn,u1,λ1 , φn,u2,λ2)
ρ2(φn,u1,λ1) ρ2(φn,u2,λ2)

= 2π f(u1, λ1)2 δu1,u2 δλ1,λ2 .

If λ1 = 0 the same holds with a factor 2 on the right hand side. Thus we obtain
√

nbtbf

(
f̂n(ui, λi) − F (φn,ui,λi)

)
i=1,...,d

D→ N (0, Γ)

with Γ as above. We now treat the bias. We have

F (φn,u,λ) − f(u, λ) =
∫ 1

0

∫ π

−π

1
bt

Kt

(u − v

bt

) 1
bf

Kf

(λ − µ

bf

) (
f(v, µ) − f(u, λ)

)
dµ du.

Suppose f(u, λ) is twice differentiable in u and λ with uniformly bounded derivatives
∂2

∂u2 f(u, λ), ∂2

∂u ∂λf(u, λ) and ∂2

∂λ2 f(u, λ). Then a Taylor expansion yields F (φn,u,λ)−f(u, λ) =
Op(b2

t + b2
f ) and therefore the CLT in (40) holds if

√
nbtbf (b2

t + b2
f ) → 0 (e.g. for bt = bf ¿

n−1/6). ¤

4.2 Shifted estimates

By using Parseval’s equality Fn(φ) can be written in the form

Fn(φ) =
1

2πn

n∑

t=1

∑

k

φ̂(
t

n
, −k)X

(hn)
[t+1/2+k/2],n X

(hn)
[t+1/2−k/2],n (42)

with
φ̂(u, k) :=

∫ π

−π
φ(u, λ) exp(iλk) dλ. (43)

There exist several quadratic forms which are stochastically equivalent to Fn(φ), for example
the statistic

1
2πn

n∑

t=1

∑

k : 1≤t−k≤n

φ̂(
t

n
, −k) X

(hn)
t,n X

(hn)
t−k,n. (44)

This is equal to

F ∗
n(φ) =

1
2πn

n∑

t=1

∑

k

φ̂t,−k X
(hn)
[t+1/2+k/2],n X

(hn)
[t+1/2−k/2],n
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with φ̂t,−k = φ̂( [t+1/2+k/2]
n , −k) which implies

∑

t

∣∣φ̂t,k − φ̂(
t

n
, k)

∣∣ ≤ K min{|k| + 1, n} V (φ̂(·, k)) and sup
t

|φ̂t,k | ≤ K sup
u

|φ̂(u, k)|.

By using Lemma 5.1 we therefore have
∑

t

∣∣φ̂t,k − φ̂(
t

n
, k)

∣∣ ≤ K
min{|k|, n}

|k| ‖φ‖V,V

(
k 6= 0

)
,

∑

t

∣∣φ̂t,0 − φ̂(
t

n
, 0)

∣∣ ≤ K ‖φ‖V,∞,

(45)
and

sup
t

|φ̂t,k | ≤ K

|k| ‖φ‖∞,V

(
k 6= 0

)
, sup

t
|φ̂t,0| ≤ K ‖φ‖∞,∞. (46)

We will use these technical assumptions since they cover several other cases as well.

Let
E∗

n(φ) :=
√

n
(
F ∗

n(φ) − F (φ)
)

(47)

be the corresponding empirical spectral process.

Theorem 4.3 (i) Suppose Assumptions 2.1 and 3.1 hold. Furthermore, let φn be a function
possibly depending on n with Fourier-transform φ̂n(u, k), and φ̂n,t,k be complex numbers such
that (45) and (46) hold (with φ replaced by φn and K independent of n) and

F ∗
n(φn) :=

1
2πn

n∑

t=1

∑

k

φ̂n,t,−k X
(hn)
[t+1/2+k/2],n X

(hn)
[t+1/2−k/2],n . (48)

Then
n

ρ
(hn)
2 (φn)2

E
[
F ∗

n(φn) − Fn(φn)
]2

≤ K

(
1 + ‖φn‖∞,∞

)
‖φn‖V,∞ +

(
1 + log n ‖φn‖∞,V

)
‖φn‖V,V

nρ
(hn)
2 (φn)2

.

(ii) (Fixed index functions) Thus under the assumptions of Theorem 2.4
√

n
(
F ∗

n(φ) −
Fn(φ)

) P→ 0 and as a consequence
(
E∗

n(φj)
)
j=1,...,d

D→
(
E(φj)

)
j=1,...,d

where
(
E(φj)

)
j=1,...,d

has the same Gaussian distribution as in Theorem 2.4.

(iii) (Varying index functions) Thus under the assumptions of Theorem 3.2(
E∗

n(φj/ρ
(hn)
2 (φnj))

)
j=1,...,d

has the same asymptotic distribution as given in Theorem 3.2.
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Example 4.4 (Local least squares estimates)
Suppose we want to fit a tvAR(p)-model

Xt,n +
p∑

j=1

αj(
t

n
)Xt−j,n = σ(

t

n
) εt

by the local least squares estimate

(α̂∗
1(u), . . . , α̂∗

p(u))′ := argmin
αj

1
n

n∑

t=1

1
bn

K
(u − t/n

bn

) (
Xt,n +

p∑

j=1

αjXt−j,n

)2

and

σ̂∗2(u) :=
1
n

n∑

t=1

1
bn

K
(u − t/n

bn

) (
Xt,n +

p∑

j=1

α̂∗
j (u)Xt−j,n

)2/ 1
n

n∑

t=1

1
bn

K
(u − t/n

bn

)
.

Both equations can be summarized with θ(u) =
(
α1(u), . . . , αp(u), σ2(u)

)′ to

θ̂∗
n(u) := argmin

θ
L∗

n

(
u, θ

)

with

L∗
n

(
u, θ

)
=

1
n

n∑

t=1

1
bn

K
(u − t/n

bn

) 1
2

[
log σ2 +

1
σ2

(
Xt,n +

p∑

j=1

αjXt−j,n

)2]
. (49)

As in Example 3.6 the asymptotic distribution is determined by the score function
∇L∗

n

(
u, θ0(u)

)
. Below we show that this is of the form F ∗

n(φn) with (45) and (46) while the
score function of the local Whittle-estimator from Example 3.6 is the corresponding Fn(φn)
from (42). We have in the special situation of tvAR(p)-processes due to Kolmogorov’s
equation (cf. (32))

∇iLn

(
u, θ0(u)

)
=

1
n

n∑

t=1

1
bn

K
(u − t/n

bn

) 1
2

(
∇i log σ2

)
|θ=θ0(u)

+ Fn(φn,u,i) (50)

with φn,u,i(v, λ) := 1
bn

K(u−v
bn

) 1
4π ∇if

−1
θ (λ)|θ=θ0(u). The first term is the same as in ∇iL∗

n

(
u, θ0(u)

)
.

We now calculate Fn(φn,u,i). The time varying spectral density is given by f(u, λ) = fθ(u)(λ)
with

fθ(λ) =
σ2

2π

1∣∣1 +
∑p

j=1 αj exp(iλj)
∣∣2 .
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Therefore we have with α0 = 1, α` = α0,`(u) (` = 1, . . . , p), α` = 0 (` /∈ {0, . . . , p}) and
σ2 = σ2

0(u) for i = 1, . . . , p

φ̂n,u,i(v, −k) =
1
bn

K
(u − v

bn

) 1
4π

∫ π

−π

∂

∂αi
f −1

θ (λ)|θ=θ0(u) exp(−iλk) dλ

=
1
bn

K
(u − v

bn

) 1
2σ2

∫ π

−π

( p∑

j=0

αj

[
exp

(
iλ(j − i)

)
+ exp

(
iλ(i − j)

)])
exp(−iλk) dλ

=
1
bn

K
(u − v

bn

) π

σ2

[
αi−k + αi+k

]
.

Thus for i = 1, . . . , p

∇iLn

(
u, θ0(u)

)
= Fn(φn,u,i) =

1
2πn

∑

t

∑

k

φ̂n,u,i(
t

n
, −k) X[t+1/2+k/2],n X[t+1/2−k/2],n

=
1

2πn

∑

t

∑

k

1
bn

K
(u − t

n

bn

) π

σ2

[
αi−k + αi+k

]
X[t+1/2+k/2],n X[t+1/2−k/2],n.

For the local least squares estimate we have for i = 1, . . . , p

∇iL∗
n

(
u, θ0(u)

)
=

1
n

∑

t

1
bn

K
(u − t

n

bn

) 1
σ2

( p∑

j=0

αjXt−j,n

)
Xt−i,n

=
1
n

∑

t

1
bn

K
(u − t

n

bn

) 1
σ2

∑

k

αi+k Xt−i,n Xt−i−k,n

=
1
n

∑

t

∑

k

1
bn

K
(u − [t+i+1/2+k/2]

n

bn

) 1
σ2

αi+kX[t+1/2+k/2],n X[t+1/2−k/2],n

=
1

2πn

∑

t

∑

k

[ 1
bn

K
(u − [t+i+1/2−k/2]

n

bn

)π αi−k

σ2
+

+
1
bn

K
(u − [t+i+1/2+k/2]

n

bn

)π αi+k

σ2

]
X[t+1/2+k/2],nX[t+1/2−k/2],n

=:
1

2πn

n∑

t=1

∑

k

φ̂n,u,i,t,−k X[t+1/2+k/2],n X[t+1/2−k/2],n =: F ∗
n(φn,u,i).

It is now straightforward to check (45) and (46). Thus Theorem 4.3 implies the equivalence
of Fn(φn,u,i) and F ∗

n(φn,u,i). In a similar way this follows for Fn(φn,u,0) and F ∗
n(φn,u,0)

(the score with respect to σ2). As a consequence the convergence result (33) also holds
for ∇L∗

n

(
u, θ0(u)

)
. In addition convergence of the second derivative as in (34) needs to be

proved for L∗
n which again follows from the convergence of the empirical spectral measure.

This implies that the convergence result (35) also holds for θ̂∗
n(u). ¤
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Example 4.5 (Symmetrized estimator)
We have

Jn(
t

n
, λ) =

1
2π

∑

k even

Xt+k/2 Xt−k/2 exp(−iλk)

+
1
2π

∑

k odd

Xt+(k+1)/2 Xt−(k−1)/2 exp(−iλk).

Of course it is more natural to use a ‘symmetrized pre-periodogram’ with the second sum-
mand being

1
2π

∑

k odd

1
2

[
Xt+(k+1)/2 Xt−(k−1)/2 + Xt+(k−1)/2 Xt−(k+1)/2

]
exp(−iλk)

instead. It is easy to see that the resulting estimator is of the form F ∗
n(φ) with

φ̂t,k =





φ̂( t
n , k), k even

1
2

[
φ̂( t

n , k) + φ̂( t+1
n , k)

]
, k odd,

and it is easy to check assumptions (45) and (46) for this φ̂t,k. Theorem 4.3 now implies
that all results also hold with the symmetrized pre-periodogram.

5 Proofs

Lemma 5.1 If ‖φ‖∞,V < ∞ then we have for k 6= 0

sup
u

|φ̂(u, k)| ≤ K

|k| ‖φ‖∞,V , V
(
φ̂(·, k)

)
≤ K

|k| ‖φ‖V,V

and
sup

u
|φ̂(u, 0)| ≤ 2π ‖φ‖∞,∞, V

(
φ̂(·, 0)

)
≤ 2π ‖φ‖V,∞.

Proof. We have for k 6= 0

φ̂(u, k) =
∫ 2π

0

exp(−ikλ) − 1
ik

φR(u, dλ)

where φR(u, dλ) is the signed measure corresponding to φR(u, λ) := limµ↓λ φ(u, µ) (since
φ is of bounded variation in λ the limit exists; for the same reason φR(u, dλ) is a signed
measure). This implies supu |φ̂(u, k)| ≤ K

|k| supu V
(
φ(u, ·)

)
= K

|k| ‖φ‖∞,V . The other results
follow similarly.
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5.2 (Proof of Theorem 3.2)
The result is established via the method of cumulants. In particular we want to adapt cumu-
lant calculations in Dahlhaus and Polonik (2008) where the cumulants have been calculated
under stronger smoothness assumptions. The trick is to smooth φn(u, λ) in λ - direction
and to prove asymptotic normality instead for the resulting sequence of approximations:
Let k(x) := 1√

2π
exp{− 1

2x2} be the Gaussian kernel, kb(x) := 1
b k(x

b ) and

φ∗
n(u, λ) :=

∫ ∞

−∞
kb(λ − µ)φn(u, µ) dµ

with b = bn → 0 as n → ∞ (where φn(u, µ) = 0 for |µ| > π). We have

φ̂∗
n(u, k) = φ̂n(u, k) k̂b(k) (51)

with φ̂n(u, k) being the Fourier transform as in (43) and k̂b(k) = exp(−k2b2/2). Thus we
obtain from Lemma 5.7(i) in Dahlhaus and Polonik (2008) and Lemma 5.1

n var
[
Fn

( φ∗
n

ρ
(hn)
2 (φn)

)
− Fn

( φn

ρ
(hn)
2 (φn)

)]
≤ K

nρ
(hn)
2 (φn)2

n∑

t=1

∞∑

k=−∞

(
φ̂∗

n(
t

n
, k) − φ̂n(

t

n
, k)

)2

(52)

≤
K ‖φn‖2

∞,V

ρ
(hn)
2 (φn)2

∑

k

[
exp(−k2b2/2) − 1

]2

k2
.

Since |1 − exp(−k2b2/2)| ≤ min{1, k2b2

2 } the sum is bounded by

K
∑

|k|≤1/b

k2b4

4
+ K

∑

|k|>1/b

1
k2

= O(b)

which implies

√
n
[{

Fn

( φ∗
n

ρ
(hn)
2 (φn)

)
− EFn

( φ∗
n

ρ
(hn)
2 (φn)

)}
−

{
Fn

( φn

ρ
(hn)
2 (φn)

)
− EFn

( φn

ρ
(hn)
2 (φn)

)}]
P→ 0 (53)

if
b ‖φn‖2

∞,V

ρ
(hn)
2 (φn)2

= o(1), e.g. for b = 1/n.

We now prove a CLT for
√

n
[
Fn

(
φ∗

nj/ρ
(hn)
2 (φnj)

)
− EFn

(
φ∗

nj/ρ
(hn)
2 (φnj)

)]
j=1...,d

by applying
Lemma 5.6(i) and Lemma 5.7(i) of Dahlhaus and Polonik (2008). We obtain from (51) and
Lemma 5.1 with φ̃(k) := max{supu |φ̂(u, k)|, supu |φ̂(u, −k)|}

24



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

sup
k

|k| φ̃∗
n(k)

ρ
(hn)
2 (φn)

≤ K
‖φn‖ ∞,V

ρ
(hn)
2 (φn)

and sup
k

|k| V
(
φ̂∗

n(·, k)
)

ρ
(hn)
2 (φn)

≤ K
‖φn‖V,V

ρ
(hn)
2 (φn)

.

Furthermore, we have with ρ∞(φ) :=
∑∞

k=−∞ φ̃(k)

ρ∞
( φ∗

n

ρ
(hn)
2 (φn)

)
≤ 2π‖φn‖ ∞,∞

ρ
(hn)
2 (φn)

+ K
‖φn‖∞,V

ρ
(hn)
2 (φn)

∞∑

k=1

1
|k| exp(−k2b2/2)

≤ K
‖φn‖ ∞,∞ + log(b−1)‖φn‖∞,V

ρ
(hn)
2 (φn)

.

For b = 1/n (24) implies that the above terms are all of order o(
√

n). In addition

ρ2,n(φ)2 ≤ ρ2(φ)2 +
1
n

ρ∞(φ) sup
k

V
(
φ̂(·, k)

)

leading to

ρ
(hn)
2,n

( φ∗
n

ρ
(hn)
2 (φn)

)2 ≤ ρ
(hn)
2 (φ∗

n)2

ρ
(hn)
2 (φn)2

+ K
‖φn‖∞,∞ + log(b−1)‖φn‖∞,V

√
nρ

(hn)
2 (φn)

‖φn‖V,V
√

n ρ
(hn)
2 (φn)

≤ K.

Therefore the remainder term Rn in Lemma 5.6(i) and the higher cumulants in Lemma 5.7(i)
in Dahlhaus and Polonik (2008) converge to zero. With (25) this implies the convergence
of all cumulants and therefore

√
n
[
Fn

( φ∗
nj

ρ
(hn)
2 (φnj)

)
− EFn

( φ∗
nj

ρ
(hn)
2 (φnj)

)]
j=1...,d

D→ N (0, Σ)

and with (53) the same CLT for
√

n
[
Fn

(
φnj/ρ

(hn)
2 (φnj)

)
− EFn

(
φnj/ρ

(hn)
2 (φnj)

)]
j=1...,d

.

From Lemma 5.5(i) in Dahlhaus and Polonik (2008) we obtain with `(k) as in (2) and
Lemma 5.1

√
n

∣∣EFn

( φn

ρ
(hn)
2 (φn)

)
− F

( φn

ρ
(hn)
2 (φn)

)∣∣

≤ K
‖φn‖∞,∞ + (log n) ‖φn‖ ∞,V + ‖φn‖V,∞ + ‖φn‖V,V

√
nρ

(hn)
2 (φn)

= o(1)

which finally proves Theorem 3.2.
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We now prove the properties of the sum estimator FΣ
n (φ) from Section 4.1. It is easy to

show that

FΣ
n (φ) =

1
2πn

n∑

t=1

∑

k

φ̂Σ(
t

n
, −k)X

(hn)
[t+1/2+k/2],nX

(hn)
[t+1/2−k/2],n (54)

with

φ̂Σ(
t

n
, −k) :=

2π

n

n∑

j=1

φ(
t

n
, λj) exp{−iλjk}.

Recall that

Fn(φ) =
1

2πn

n∑

t=1

∑

k

φ̂(
t

n
, −k) X

(hn)
[t+1/2+k/2],n X

(hn)
[t+1/2−k/2],n.

We need the following lemma.

Lemma 5.3 We have for |k| < n

max
t

∣∣∣φ̂Σ(
t

n
, −k) − φ̂(

t

n
, −k)

∣∣∣ ≤ K

n − |k| ‖φ‖∞,V .

Proof. The proof can e.g. be found in Dahlhaus (1985), Lemma 3.1.

5.4 (Proof of Theorem 4.1)
(i) As in the proof of Lemma 5.7(i) in Dahlhaus and Polonik (2008) we obtain

(
with φ̂( t

n , −k)
replaced by φ̂Σ( t

n , −k) − φ̂( t
n , −k)

)

n var
[
FΣ

n (φ) − Fn(φ)
]

≤ K

n

∑

t1,t2

∑

k1,k2

∣∣∣φ̂Σ(
t1
n

, −k1) − φ̂(
t1
n

, −k1)
∣∣∣
∣∣∣φ̂Σ(

t2
n

, −k2) − φ̂(
t2
n

, −k2)
∣∣∣

×
[ ∑

i,j

1
`(t+1 − i)`(t−

1 − j)`(t+2 − i)`(t−
2 − j)

+
∑

i,j

1
`(t+1 − i)`(t−

1 − j)`(t+2 − j)`(t−
2 − i)

(55)

+
∑

i

1
`(t+1 − i)`(t−

1 − i)`(t+2 − i)`(t−
2 − i)

]
.

With Lemma 5.3 and the relation
∞∑

j=−∞

1
`(k + j)

1
`(j)

≤ K

`(k)
(56)
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we now obtain as an upper bound for the first term in the
[
. . .

]
- brackets in (55)

K

n
‖φ‖2

∞,V

∑

k1,k2

1
n − |k1|

1
n − |k2|

∑

t1,t2

1
`
(
t1 − t2 + (k1 − k2)/2

)
`
(
t1 − t2 − (k1 − k2)/2

) .

The substitution s = t1 − t2 and the fact that there are at most n − |k2| values of t2 (due
to the restriction 1 ≤ [t2 + 1/2 ± k2/2] ≤ n, see (12)) lead to the bound

K

n
‖φ‖2

∞,V

∑

k1,k2

1
n − |k1|

∑

s

1
`
(
s + (k1 − k2)/2

)
`
(
s − (k1 − k2)/2

) ≤ K log n

n
‖φ‖2

∞,V .

The second term in the
[
. . .

]
- brackets in (55) can be estimated in the same way and the

third term obviously is smaller than the first one.

Furthermore, we have

EFn(φ) =
1

2πn

∑

t, |k|≤n

φ̂(
t

n
, −k) cov

(
X

(hn)
[t+1/2+k/2],n, X

(hn)
[t+1/2−k/2],n

)
. (57)

Since
sup

t

∣∣cov(X(hn)
t,n , X

(hn)
t+k,n)

∣∣ ≤ K

`(k)
(58)

(c.f. Dahlhaus and Polonik (2008), Proposition 5.4) we obtain from (54) and Lemma 5.3

EFΣ
n (φ) − EFn(φ) ≤ K ‖φ‖∞,V

1
n

n∑

t=1

∑

k:1≤[t+1/2±k/2]≤n

1
n − |k|

1
`(k)

≤ K

n
‖φ‖∞,V (59)

which implies assertion (i). (ii) and (iii) are immediate consequences.

5.5 (Proof of Theorem 4.3)
(i) We set φ = φn for short. We obtain from Lemma 5.7(i) in Dahlhaus and Polonik (2008)(
with φ̂t,k − φ̂( t

n , k) instead of φ̂( t
n , k)

)
, (45), (46) and Lemma 5.1

n var
[
F ∗

n(φ) − Fn(φ)
]

≤ K

n

n∑

t=1

∞∑

k=−∞

(
φ̂t,k − φ̂(

t

n
, k)

)2 (60)

≤ K

n

(
‖φ‖∞,∞ ‖φ‖V,∞ + ‖φ‖ ∞,V ‖φ‖V,V

∞∑

k=1

min{|k|, n}
k2

)
(61)

≤ K
‖φ‖∞,∞ ‖φ‖V,∞ + log n ‖φ‖ ∞,V ‖φ‖V,V

n
. (62)
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Furthermore, we obtain from (57), (58) and (46)

n
[
EF ∗

n(φ) − EFn(φ)
]2 ≤ K

n

[ ∑

k

1
`(k)

∑

t

∣∣φ̂t,k − φ̂(
t

n
, k)

∣∣
]2

≤ K
‖φ‖V,∞ + ‖φ‖V,V

n
(63)

that is the result.(ii) and (iii) are immediate consequences.
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