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In this paper, we propose some alternative denitions of tensor product approximations based on the progressive construction of successive best rank-one approximations, with eventual updates of previously computed elements. In particular, it can be interpreted as a constrained multidimensional singular value decomposition where the constraints are imposed by means a penalty method. A convergence proof of these decompositions is established under some general assumptions on the penalty functional. Heuristic alternated direction algorithms are provided, also denitions and algorithms are detailed for an application of interest consisting in imposing bounds on each tensor component.

Introduction

Tensor product approximation has become a major tool in many domains of scientic computing for the representation of elements in high-dimensional tensor product spaces. It consists in approximating an element u of a tensor product space V = V 1 ⊗ . . . ⊗ V d by a sum of elementary tensors

u ≈ u m = m ∑ i=1 w 1 i ⊗ . . . ⊗ w d i with w k i ∈ V k .
The dimensionality of this type of representation only grows linearly with the dimension d and therefore, it allows to circumvent the so Email addresses: anthony.nouy@ec-nantes.fr (A. Nouy), afalco@uch.ceu.es (A. Falcó) This work is supported by the French Research agency (Grant ANR-2010-COSI-006) Preprint called curse of dimensionality. A rst family of applications using tensor decompositions concerns the extraction of information from complex data. It has been used in many areas such as psychometrics [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF][START_REF] Carroll | Analysis of individual dierences in multidimensional scaling via an n-way generalization of eckart-young decomposition[END_REF], chemometrics [START_REF] Appellof | Strategies for analyzing data from video uorometric monitoring of liquid-chromatographic euents[END_REF], analysis of turbulent ows [START_REF] Berkooz | The proper orthogonal decomposition in the analysis of turbulent ows[END_REF], image analysis and pattern recognition [START_REF] Vasilescu | Multilinear analysis of image ensembles: Tensorfaces[END_REF], data mining... Another family of applications concerns the compression of complex data (for storage or transmission), also introduced in many areas such as signal processing [START_REF] Lathauwer | Dimensionality reduction in higherorder signal processing and rank-(r1,r2, . . . , rn) reduction in multilinear algebra[END_REF] or computer vision [START_REF] Wang | Compact representation of multidimensional data using tensor rank-one decomposition[END_REF]. A survey of tensor decompositions in multilinear algebra and an overview of possible applications can be found in the review paper [START_REF] Kolda | Tensor decompositions and applications[END_REF]. In the above applications, the aim is to compress the best as possible the information or to extract a few modes representing some features to be analyzed. The use of tensor product approximation is also receiving a growing interest in numerical analysis for the solution of problems dened in high-dimensional tensor product spaces, such as PDEs arising in stochastic calculus [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial dierential equations encountered in kinetic theory modelling of complex uids[END_REF][START_REF] Cances | Convergence of a greedy algorithm for high-dimensional convex nonlinear problems[END_REF][START_REF] Falco | Algorithms and numerical methods for high dimensional nancial market models[END_REF]] (e.g. Fokker-Planck equation), stochastic parametric PDEs arising in uncertainty quantication with spectral approaches [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF][START_REF] Doostan | A least-squares approximation of partial dierential equations with high-dimensional random inputs[END_REF][START_REF] Nouy | Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems[END_REF]. In the context of approximation, the aim is to represent the tensor with a given accuracy, without necessarily requiring an optimal compression of the tensor.

Many denitions of tensor product approximations have been proposed. A natural denition of a rank-m tensor product approximation is based on the following best approximation problem

inf um∈Sm ∥u -u m ∥ 2 (1) 
where ∥ • ∥ is the norm on V and S m is an optimization subset of rank-m tensors. For dimension d = 2, and when ∥ • ∥ is a crossnorm on a tensor product Hilbert space V [START_REF] Grothendieck | Produits tensoriels topologiques et espaces nucléaires[END_REF], this denition coincides with the classical truncated singular value decomposition of u, also called Proper Orthogonal Decomposition or Karhunen-Loeve expansion in other contexts. For d ≥ 3, optimization problem

(1) appears to be ill-posed [START_REF] Silva | Tensor rank and ill-posedness of the best lowrank approximation problem[END_REF] if formulated on the whole set of rank-m tensors. This specicity has led to the introduction of various denitions of tensor product approximations based on dierent choices for the optimization sets S m [START_REF] Uschmajew | Well-posedness of convex maximization problems on stiefel manifolds and orthogonal tensor product approximations[END_REF]. They can be considered as multidimensional versions of the singular value decomposition.

In this paper, we propose alternative denitions for tensor product approximations based on successive rank-one best approximations, with eventual updates of previously constructed elements. The main contribution consists in introducing a methodology for constructing tensor product approximation of tensors submitted to additional constraints. The question is: how to modify the classical denitions of tensor product approximations in order to have an approximation which still veries the constraints or at least which veries the constraints better than classical tensor product approximations ? We propose to impose the constraints approximately with a penalty method which consists in dening the decomposition u m with a modied best approximation problem

inf um∈Sm 1 2 ∥u -u m ∥ 2 + j ϵ (u m ) (2) 
where j ϵ is a penalty function associated with the constraints, with suitable properties ensuring the existence of a minimizer. An application of interest which will be detailed and illustrated concerns the case where we want the components of the approximation to be bounded (upper, lower or lower and upper bounded). Let us consider the case where V is a set of functions u : 

Ω → R dened on a cartesian domain Ω = Ω 1 × . . . × Ω d ⊂ R d ,
-∇ • (u(x)∇p(x)) = f (x),
where u denotes the diusion parameter eld. In order to apply eciently solution techniques based on tensor product approximation of the solution p, the diusion operator must be approximated in a separated form. It consists in replacing u by a tensor product approximation u m . However, it requires to verify 0 < a ≤ u(x) ≤ b < ∞ almost everywhere in order to preserve the wellposedness of the diusion equation.

The outline of the paper is as follows. In section 2, we briey recall some denitions about tensor product spaces in innite and nite dimensional Hilbert spaces. In section 3, we recall classical denitions of tensor product approximations and we detail denitions based on progressive constructions of best rank-one approximations, with eventual updates of previously computed elements. In section 4, we introduce new denitions of constrained tensor product approximations based on a penalty method and we propose algorithms for their constructions. Convergence proof of the decompositions are given under some assumptions on the penalty function. In section 5, we apply the previous denitions to the case where we want to impose bounds on tensor product ap-

proximations. An illustration is given for the separated representation of the indicator function of a three-dimensional object. A possible application concerns the coupling of tensor product solvers with ctitious domain formulations for the solution of PDEs [START_REF] Nouy | An extended stochastic nite element method for solving stochastic partial dierential equations on random domains[END_REF][START_REF] Nouy | Proper Generalized Decomposition for the solution of boundary value problems on uncertain parameterized domains[END_REF].

Tensor product spaces 2.1. Tensor product of Hilbert spaces

We consider Hilbert spaces V k , 1 ≤ k ≤ d, equipped with inner products (•, •) k and associated norms ∥ • ∥ k . We dene the set of elementary tensors (or rank-one tensors)

R 1 = {w = w 1 ⊗ . . . ⊗ w d ; w k ∈ V k , 1 ≤ k ≤ d} and the set of rank-m tensors R m = {v m = m ∑ i=1 w i ; w i ∈ R 1 , 1 ≤ i ≤ m} = R m-1 + R 1
The algebraic tensor product space is dened as the span of elementary tensors

a ⊗ d k=1 V k = span{R 1 } For each element v ∈ a ⊗ d k=1 V k , there exists m ∈ N such that v ∈ R m .
The algebraic tensor product space is now equipped with the canonical inner product

(•, •) dened as follows. For elementary tensors w = ⊗ d k=1 w k ∈ R 1 and v = ⊗ d k=1 v k ∈ R 1 , we let (w, v) = (⊗ d k=1 w k , ⊗ d k=1 v k ) = d ∏ k=1 (w k , v k ) k
This denition is then extended by linearity on the whole algebraic tensor product space: for w, v

∈ a ⊗ d k=1 V k , there exists m, m ′ ∈ N such that w = ∑ m i=1 ⊗ d k=1 w k i and v = ∑ m ′ i=1 ⊗ d k=1 v k i , and the inner product (v, w) is dened by (v, w) = m ∑ i=1 m ′ ∑ j=1 (⊗ d k=1 w k i , ⊗ d k=1 v k j ) = m ∑ i=1 m ′ ∑ j=1 d ∏ k=1 (w k i , v k j ) k The norm associated with (•, •) is denoted ∥ • ∥. For an elementary tensor w = ⊗ d k=1 w k ∈ R 1 , the norm veries ∥ ⊗ d k=1 w k ∥ = d ∏ k=1 ∥w k ∥ k
which is the property of a crossnorm. The algebraic tensor product space a ⊗ d k=1

V k is a pre-Hilbert space when equipped with inner product (•, •). A Hilbert space V equipped with inner product (•, •) and associated norm ∥ • ∥ is obtained by the completion of the algebraic tensor product space

V = a ⊗ d k=1 V k ∥•∥
We have the following important topological property of the set of rank-one tensors (see [START_REF] Falco | A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach[END_REF] for a proof ).

Lemma 2.1. The set R 1 is weakly closed in V .

Let us note that equivalent norms induce the same topology on V . Therefore, for any topology associated with a norm equivalent to a crossnorm, the set R 1 is also weakly closed. The connection between the choice of norms and the induced topological properties are detailed in [START_REF] Nouy | Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces[END_REF]. In particular, for the choice of norms leading to a weakly closed set R 1 , it is given weaker conditions than the equivalence with a crossnorm.

Finite dimensional case

In the nite dimensional case, we can assume that V k = R n k , up to an isomorphism. An element w k ∈ V k is then represented by a vector

w k = ∑ n k l=1 w k l e k l ∈ R k , where the {w k l } n k l=1 are the components of w k on the canonical orthonormal basis {e k l } n k l=1 of R n k . Each V k is endowed with the canonical inner product (•, •) k and associated norm ∥ • ∥ k , dened for elementary tensors w = ⊗ d k=1 w k ∈ R 1 and v = ⊗ d k=1 v k ∈ R 1 by (w, v) = d ∏ k=1 (w k , v k ) k = d ∏ k=1 n k ∑ l k =1 w k l k v k l k , ∥w∥ 2 = d ∏ k=1 ∥w k ∥ 2 k = d ∏ k=1 n k ∑ l k =1 (w k l k ) 2
V coincides with the algebraic tensor product space and V = span{R 1 }. V is isomorphic to the set of multidimensional arrays R n1×. 

= ⊗ d k=1 e k l k } l∈L . Components of a rank-1 tensor w = ⊗ d k=1 w k ∈ R 1 are w l1,...,l d = w 1 l1 . . . w d l d Components of a rank-m tensor u = ∑ m i=1 w 1 i ⊗ . . . ⊗ w d i ∈ R m are u l1,...,l d = m ∑ i=1 w 1 l1,i . . . w d l d ,i
For u, v ∈ V , the above denitions yield the following classical denition of the canonical inner product and associated norm on V :

(u, v) = n1 ∑ l1=1 . . . n d ∑ l d =1 u l1,...,l d v l1,...,l d , ∥u∥ 2 = n1 ∑ l1=1 . . . n d ∑ l d =1 (u l1,...,l d ) 2
In the case of nite dimensional Hilbert spaces, all norms induce the same topological vector space V , and therefore, Lemma 2.1 implies that R 1 is a closed set in V , whatever the choice of norm.

Lemma 2.2. For a nite dimensional tensor product Hilbert space V , the set R 1 is closed in V .

Tensor product approximations

An optimal rank-m representation of u ∈ V could be naturally dened by the following best approximation problem:

inf vm∈Rm ∥u -v m ∥ 2 (3) 
For d = 2, it leads to a classical singular value decomposition of u, truncated at rank m. However, for d ≥ 3, R m is not weakly closed in V , even in the nite dimensional case [START_REF] Silva | Tensor rank and ill-posedness of the best lowrank approximation problem[END_REF]. Therefore, the minimization problem (3) is ill-posed since a minimizer in R m does not necessarily exist. A less optimal but well posed rank-m approximation u m can be dened by

∥u -u m ∥ 2 = min vm∈Sm⊂Rm ∥u -v m ∥ 2 (4) 
where S m is a suitable subset in R m which ensures the existence of a minimizer. Of course, depending on the choice of S m , dierent types of decompositions arise. In this section, we recall some classical denitions and investigate dierent alternative denitions which lead to well posed denitions of the approximation.

Tensors sets with orthogonality constraints

The set S m can be dened by imposing suitable orthogonality conditions between rank-1 tensors of the decomposition of a rank-m tensor. Let w = ⊗ d k=1 w k and v = ⊗ d k=1 v k be two rank-one tensors. We dene dierent types of orthogonality:

• Orthogonality: w and v are said orthogonal if and only if

(w, v) = ∏ d k=1 (w k , v k ) k = 0. It is denoted w ⊥ v.
• Strong orthogonality: w and v are said strongly orthogonal if and only if w ⊥ v and for all k ∈ {1, . . . , d}, we have either

(w k , v k ) k = 0 or w k = λ k v k for some λ k ∈ R. It is denoted w ⊥ s v.
• Complete orthogonality: w and v are said completely orthogonal if and only if (w k , v k ) = 0 for all k ∈ {1, . . . , d}. It is denoted w ⊥ c v.

To the above denitions of orthogonality, we associate dierent subsets of rank-

m tensors: • R ⊥ m = { ∑ m i=1 w i ∈ R m ; w i ⊥ w j for i ̸ = j} • R ⊥s m = { ∑ m i=1 w i ∈ R m ; w i ⊥ s w j for i ̸ = j} • R ⊥c m = { ∑ m i=1 w i ∈ R m ; w i ⊥ c w j for i ̸ = j}
We have the following inclusions:

R ⊥c m ⊂ R ⊥s m ⊂ R ⊥ m ⊂ R m .
It is proved in [START_REF] Uschmajew | Well-posedness of convex maximization problems on stiefel manifolds and orthogonal tensor product approximations[END_REF] that the best approximation problem (4) admits a minimizer when choosing for S m the subsets R ⊥c m , R ⊥s m or R ⊥ m . Let us note that for every tensor u ∈ V , there exists a sequence {u m } ⊂ R ⊥ m or {u m } ⊂ R ⊥s m that converges to u. This is due to the fact that the tensor product space admits a strongly orthogonal Hilbertian basis. However, a tensor u ∈ V does not necessarily admits a convergent representation {u m } ⊂ R ⊥c m . Therefore, complete orthogonality has to be imposed with caution.

Another choice for S m consists in taking the Tucker space T r , with r = (r 1 , . . . , r d ) ∈ N d , dened by

T r = { r1 ∑ i1=1 . . . r d ∑ i d =1 α i1,...,i d w 1 i1 ⊗ . . . ⊗ w d i d ; α i1,...,i d ∈ R, w k i ∈ V k , (w k i , w k j ) k = δ ij } (5) 
The set T r is a weakly closed set in V [START_REF] Hackbusch | Minimal subspaces[END_REF] and therefore, the best approximation problem ( 4) is also well posed on the set

S m = T r ⊂ R m , with m = ∏ d k=1 r k . Let us note that we have R 1 = T (1,...,1) and R m ⊂ T (m,...,m) . Remark 3.1. In the Tucker representation (5), α = (α i1,...,i d ) ∈ R r1×...×r d is called the core tensor. Let us note that the number of components m = ∏ d k=1 r k in the core tensor grows exponentially with d, if card{k ∈ {1, . . . , d}; r k ≥ 2} → ∞ as d → ∞.
The reader can refer to [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF][START_REF] Kolda | Orthogonal tensor decompositions[END_REF][START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Uschmajew | Well-posedness of convex maximization problems on stiefel manifolds and orthogonal tensor product approximations[END_REF] for a detailed presentation of the above tensor product approximations and of the related algorithms for their construction.

Let us note that other denitions are also available [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF][START_REF] Hackbusch | A New Scheme for the Tensor Representation[END_REF].

Progressive constructions

We here present alternative denitions of rank-m approximations based on the progressive construction of optimal rank-one elements, with eventual updates of the previously computed vectors. Let us note that they can be interpreted as updated Greedy approximations [START_REF] Devore | Some remarks on greedy algorithms[END_REF][START_REF] Vn Temlyakov | Greedy algorithms and M-term approximation with regard to redundant dictionaries[END_REF] where dictionary is composed by elementary tensors. These denitions appear as particular cases of constrained approximations which are proposed in section 4.

Purely progressive construction

Another way to obtain a well-posed problem (4) is to construct the approximation progressively. Knowing an approximation u m-1 ∈ R m-1 , we dene the set

S m = u m-1 + R 1 ⊂ R m .
Since R 1 is a weakly closed set in V , the above set S m is also a weakly closed set and therefore, the best approximation problem ( 4) is well dened and allows to dene a new element u m = u m-1 + w m ∈ R m , where the new rank-one term w m ∈ R 1 appears as a best approximation in R 1 of the residual uu m-1 . This construction denes a multidimensional version of a singular value decomposition, known in multilinear algebra as the best rank-one decomposition of a tensor [START_REF] De Lathauwer | On the best rank-1 and rank-(R1,R2,...,R-N) approximation of higher-order tensors[END_REF].

Denition 3.2 (MSVD). For an element u ∈ V , the purely progressive multidimensional singular value decomposition is dened as a sequence of rank-m approximations u m = ∑ m i=1 w i ∈ R m dened progressively as follows:

∥u -u m-1 -w m ∥ 2 = min w∈R1 ∥u -u m-1 -w∥ 2 (6) 
We have the following property:

∥u -u m ∥ 2 = ∥u∥ 2 - m ∑ i=1 σ 2 i ----→ m→∞ 0 where σ i = ∥w i ∥ = max w∈R1,∥w∥=1 (u -u i-1 , w) (7) 
σ i can be interpreted as the dominant singular value of u-u i-1 . For convergence results in innite dimensional Hilbert spaces, the reader can refer to [START_REF] Falco | A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach[END_REF]. Note that this denition of singular value has also been introduced in [START_REF] Leibovici | A singular value decomposition of an element belonging to a tensor product of k separable hilbert spaces[END_REF].

Remark 3.3. The map

ε : v ∈ V → ε(v) = max w∈R1,∥w∥=1 (v, w) ∈ R +
is a particular crossnorm called the injective norm [START_REF] Grothendieck | Produits tensoriels topologiques et espaces nucléaires[END_REF]. The dominant singular value σ i dened in [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF] then appears to be the injective norm of the residual

u -u i-1 , i.e. σ i = ε(u -u i-1
). This interpretation can be found in quantum physics [START_REF] Tamaryan | Generalized schmidt decomposition based on injective tensor norm[END_REF]. Remark 3.4. In the case d = 2, Denition 3.2 coincides with the classical singular value decomposition. For d = 2, equation [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF] writes

σ i = max w 1 ⊗w 2 ∈R1,∥w 1 ⊗w 2 ∥=1 (u -u i-1 , w 1 ⊗ w 2 ) For u ∈ V and w 1 ∈ V 1 , we dene {u, w 1 } 1 ∈ V 2 such that ({u, w 1 } 1 , w 2 ) 2 = (u, w 1 ⊗ w 2 ) for all w 2 ∈ V 2 .
In the same way, for u ∈ V and

w 2 ∈ V 2 , we dene {u, w 2 } 2 ∈ V 1 such that ({u, w 2 } 2 , w 1 ) 1 = (u, w 1 ⊗ w 2 ) for all w 1 ∈ V 1 .
Next, we dene the operators U :

w 1 ∈ V 1 → {u -u i-1 , w 1 } 1 ∈ V 2 and U * : w 2 ∈ V 2 → {u -u i-1 , w 2 } 2 ∈ V 1 . U * is the adjoint operator of U , i.e. such that (U w 1 , w 2 ) 2 = (w 1 , U * w 2 ) 1 for all (w 1 , w 2 ) ∈ V 1 × V 2 .
The dominant singular value can then be written:

σ i = max w 1 ∈V1,w 2 ∈V2,∥w 1 ∥1=1,∥w 2 ∥2=1 (U w 1 , w 2 ) 2
After an elimination of w 2 , we obtain w 2 = U w 1 /∥U w 1 ∥ 2 and the previous expression becomes:

σ i = max w 1 ∈V1,∥w 1 ∥1=1 √ (w 1 , U * U w 1 ) 1
which is the classical denition of the dominant singular value of operator U , which is the square root of the dominant eigenvalue of operator U * U . Equivalently, after an elimination of w 1 , we obtain w 1 = U * w 2 /∥U * w 2 ∥ 1 and

σ i = max w 2 ∈V2,∥w 2 ∥2=1 √ (w 2 , U U * w 2 ) 2
This property motivates the interpretation of Denition 3.2 as a multidimensional version of a singular value decomposition.

Remark 3.5. Let us note that the progressive construction could be also dened by replacing R 1 by the Tucker space T r , which is also a weakly closed set in V .

A sequence {u m } m∈N is then dened progressively by letting

u m = u m-1 + z m , with z m ∈ T r dened by ∥u -u m-1 -z m ∥ 2 = min z∈Tr ∥u -u m-1 -z∥ 2
We then have

u m ∈ T r * ⊂ R m * , with r * = (mr 1 , . . . , mr d ) and m * = m d ∏ d k=1 r k . 3.2.

Progressive construction with updates

Convergence properties of the progressive construction can be improved by introducing updates of previously computed tensors. These updates are performed along selected dimensions. Let D ⊂ {1, . . . , d} be a subset of dimensions. For a given k ∈ D and a given

u m = ∑ m i=1 ⊗ d k=1 w k i ∈ R m , let us introduce the space R k m (u m ) = { m ∑ i=1 w 1 i ⊗ . . . ⊗ v k i ⊗ . . . ⊗ w d i ; v k 1 , . . . , v k m ∈ V k } ⊂ R m (8)
where vectors {w 

k ′ i } m i=1 are xed for all k ′ ̸ = k. R k m (u m ) is a linear subspace of R m . We then dene the map F k m : u m ∈ R m → z m = F k m (u m ) ∈ R k m (u m ) which updates the vectors {w k i } m i=1 associated with dimension k.
z m = F k m (u m ) ⇔ ∥u -z m ∥ 2 = min vm∈R k m (um) ∥u -v m ∥ 2 (9) 
Note that the minimization problem on R k m (u m ) is ill-posed if the linear subspace R k m (u m ) is not a closed linear subspace of V . If such a degeneracy is detected, we simply let F k m (u m ) = u m (no update performed). Now, for a given set D of updated dimensions, we dene the map F D m as the composition of maps

{F k m } k∈D : F D m = F d1 m • . . . • F d #D m
where we let D = {d 1 , . . . , d #D }, with #D the cardinal of D. Let us note that dierent orderings of the set D yield dierent denitions of the map F D m .

Denition 3.6 (Updated MSVD). For an element u ∈ V , the updated progressive multidimensional singular value decomposition is dened as a sequence of rank-m approximations u m ∈ R m dened progressively as follows:

for u m-1 = ∑ m-1 i=1 w i ∈ R m-1 given, we dene u ⋄ m ∈ u m-1 + R 1 by ∥u -u ⋄ m ∥ 2 = min w∈R1 ∥u -u m-1 -w∥ 2
and we dene u m by applying N up times the updates along a set of dimensions

D: u m = F D m • . . . • F D m Nup times (u ⋄ m )
3.2.3. Algorithm Alternated direction algorithm for minimization in R 1 . For a given u m-1 ∈ R m-1 , an optimal rank-one element w m ∈ R 1 , dened by [START_REF] Carroll | Analysis of individual dierences in multidimensional scaling via an n-way generalization of eckart-young decomposition[END_REF], can be constructed with the Alternated Direction Algorithm 1.

Algorithm 1 (Alternated Direction Algorithm). 

w := G d m • . . . • G 1 m (w)
z = G k m (w) ⇔ ∥u -u m-1 -z∥ 2 = min z∈R k 1 (w) ∥u -u m-1 -z∥ 2 where for w = ⊗ d k=1 w k , R k 1 (w) is dened by R k 1 (w) = {w 1 ⊗ . . . ⊗ v k ⊗ . . . ⊗ w d ; v k ∈ V k } ⊂ R 1 , (10) 
For w ̸ = 0, R k 1 (w) is a closed linear subspace of rank-1 tensors, such that the minimization on R k 1 (w) is always well-posed and admits a unique solution. Therefore, the map

G k m is well dened. z = G k m (w) is equivalently characterized by z ∈ R k 1 (w), (z, v) = (u -u m-1 , v) ∀v ∈ R k 1 (w) Denoting z = w 1 ⊗ . . . ⊗ z k ⊗ . . . ⊗ w d , the previous equation is formulated as a problem on z k ∈ V k : (z k , v k ) k d ∏ l=1,l̸ =k ∥w l ∥ 2 l = (u -u m-1 , w 1 ⊗ . . . ⊗ v k ⊗ . . . ⊗ w d ) ∀v k ∈ V k
from which we deduce the expression of z k :

z k = {u -u m-1 , w} * k d ∏ l=1,l̸ =k ∥w l ∥ -2 l where for v ∈ V and w ∈ R 1 , {v, w} * k ∈ V k is dened by ({v, w} * k , v k ) k = (v, w 1 ⊗ . . . ⊗ v k ⊗ . . . ⊗ w d ) ∀v k ∈ V k (11)
Finally, the map G k m can be simply dened as follows:

G k m (w) = w 1 ⊗ . . . ⊗ g k m (w) ⊗ . . . ⊗ w d , with g k m (w) = {u -u m-1 , w} * k d ∏ l=1,l̸ =k ∥w l ∥ -2 l
Remark 3.7. Algoritm 1 can be interpreted as a multidimensional extension of a power method for capturing the dominant singular value of a tensor and an associated rank-one tensor (called singular vector), dened by [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF]. In the case d = 2, it exactly coincides with a classical power method yielding the dominant singular value and vector dened in Remark 3.4. For d > 2, this algorithm has already been introduced in multilinear algebra, where it is called Higher Order Power Method [START_REF] De Lathauwer | On the best rank-1 and rank-(R1,R2,...,R-N) approximation of higher-order tensors[END_REF].

Algorithm for rank-m approximation. We now propose the following algorithm for the construction of a rank-m tensor product approximation, introduced in Denition 3.6. This algorithm corresponds to a progressive construction with N up updates along selected directions D ⊂ {1, . . . , d}. Let us note that with N up = 0, this algorithm allows the construction of the purely progressive MSVD introduced in Denition 3.2.

Algorithm 2 (Progressive construction with updates). 1: Set u 0 := 0 2: for i = 1 to m do 3:

Compute

w i ∈ R 1 with Algorithm 1 4:
Set

u i := u i-1 + w i 5:
loop {N up times} 6:

u i := F D i (u i ) 7:
end loop 8: end for We recall that

F D m = F d1 m • . . . • F d #D m
. Let us now detail for a given k ∈ D the application of the map F k m , dened by [START_REF] Silva | Tensor rank and ill-posedness of the best lowrank approximation problem[END_REF]. Let u m =

∑ m i=1 w 1 i ⊗ . . . ⊗ w d i . Since R k m (u m ) is a linear subspace, z m = F k m (u m ) is characterized by z m ∈ R k m (u m ), (z m , v m ) = (u, v m ) ∀v m ∈ R k m (u m ) Let us denote z m = ∑ m i=1 w 1 i ⊗ . . . ⊗ z k i ⊗ . . . ⊗ w d i , with z k i ∈ V k . The pre-
vious equation yields the following characterization of the unknown functions

{z k i } m i=1 ∈ (V k ) m : m ∑ i,j=1 α ij (z k j , v k i ) k = m ∑ i=1 ({u, w i } * k , v k i ) k ∀v k 1 , . . . , v k m ∈ V k , with α ij = ∏ d l=1,l̸ =k (w l i , w l j ) l . Denoting β ∈ R m×m the inverse of matrix α = (α ij ) ∈ R m×m , we have z k i = m ∑ j=1 β ij {u, w j } * k := f k i,m (u m ) ∀i ∈ {1, . . .

, m}

We then have the following expression of map F k m :

F k m (u m ) = m ∑ i=1 w 1 i ⊗ . . . ⊗ f k i,m (u m ) ⊗ . . . ⊗ w d i
Let us note that if we have a complete orthogonality between rank-one elements, i.e. w i ⊥ c w j , then α is a diagonal matrix and the map is well dened. For general non orthogonal elements, a degeneracy of the linear space R k m (u m ) may occur, which leads to a singular (or ill-conditioned) matrix α. When such a degeneracy occurs, the update along dimension k is omitted, letting F k m (u m ) = u m .

Constrained multidimensional tensor product approximation

In this section, we propose a modication of tensor product approximations proposed in section 3 in order to satisfy some desired constraints. The aim is to impose to nite-rank approximations u m of u to stay in an admissible set of tensors K ⊂ V that verify the constraints. In this paper, we propose to enforce the constraints with a penalty method and therefore, the constraints will be veried approximately. We restrict the presentation and the convergence results to the practical case of nite dimensional Hilbert spaces. Under more general assumptions, and following [START_REF] Nouy | Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces[END_REF], the proposed denitions of constrained approximation could be extended to innite dimensional Hilbert spaces. Remark 4.1. When the function u to be approximated veries the constraints, i.e. u ∈ K, the proposed denitions allows to construct a sequence u m which converges to u. A less natural situation which could however be of practical interest, is when u / ∈ K. In this case, the proposed denitions allows to construct a sequence u m which converges to the best approximation of u in K. Both cases are considered in a unique framework.

Set of admissible elements and penalty method

Let us consider that K ⊂ V is a closed subset of elements which verify some desired constraints. We introduce a functional j :

V → R + such that { j(v) = 0 if v ∈ K j(v) > 0 if v / ∈ K Assumption 4.2. Functional j : V → R + is chosen such that: (i) j is convex and coercive (j(v) → ∞ as ∥v∥ → ∞) (ii) j is Fréchet dierentiable, with continuous Fréchet dierential j ′ : V → V .
We now introduce a penalty functional j ϵ : V → R + dened by

j ϵ (v) = ϵj(v)
with ϵ > 0 a penalty parameter, and we introduce a functional J ϵ : V → R dened by

J ϵ (v) = 1 2 ∥u -v∥ 2 + j ϵ (v) (12) 
A suitable subset A ⊂ V being given, a best approximation u A ϵ ∈ A of u ∈ V which veries approximately the constraints can then be dened by the optimization problem

J ϵ (u A ϵ ) = min v∈A J ϵ (v) (13) 
Let us note that for ϵ = 0, u A 0 is the classical best approximation of u in A, with respect to norm ∥ • ∥. Letting ϵ → ∞, j ϵ tends towards the characteristic function of the set K and, under suitable assumptions on A, u A ϵ tends to the

solution u A ∞ of ∥u -u A ∞ ∥ 2 = min v∈A∩K ∥u -v∥ 2 (14) 
Increasing ϵ leads to a better verication of the constraints. We have the following properties of functional J ϵ .

Lemma 4.3. Functional J ϵ : V → R dened in [START_REF] Falco | Algorithms and numerical methods for high dimensional nancial market models[END_REF] veries (i) J ϵ is positive, strictly convex and coercive (ii) J ϵ is continuous and Fréchet dierentiable with continuous Fréchet dierential J ′ ϵ : V → V dened by

(J ′ ϵ (v), w) = (v -u, w) + (j ′ ϵ (v), w) ∀w ∈ V Proof. We have J ϵ (v) = J 0 (v) + j ϵ (v), with J 0 (v) = 1 2 ∥u -v∥ 2 .
In a nite dimensional Hilbert space V , J 0 is a continuous coercive and strictly convex function. J ϵ is then the sum of a convex coercive and positive functional j ϵ and of a strictly convex positive and coercive functional J 0 . Therefore, J ϵ is strictly convex, coercive and positive, which proves (i). Next, as a sum of two Fréchet dierentiable functionals, J ϵ is Fréchet dierentiable. The continuity of J ′ ϵ follows from the assumed continuity of j ′ ϵ . That proves (ii).

We now recall a classical result in optimization [START_REF] Allaire | Numerical Analysis and Optimization[END_REF] which guaranties the wellposedness of minimization problem [START_REF] Falco | A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach[END_REF].

Lemma 4.4. Let A be a closed subset of a nite dimensional Hilbert space V and let J : V → R. If J is a convex continuous and coercive functional, it admits a minimizer on A. Moreover, if J is strictly convex, the minimizer is unique.

We have the following result which characterizes the minimizer of J ϵ in Hilbert space V .

Proposition 4.5. The problem

J ϵ (u ϵ ) = min v∈V J ϵ (v) (15) 
admits a unique solution u ϵ ∈ V , equivalently characterized by

(J ′ ϵ (u ϵ ), v) = (u ϵ -u, v) + (j ′ ϵ (u ϵ ), v) = 0 ∀v ∈ V (16) If u ∈ K or if ϵ = 0, we have u ϵ = u.
Proof. The existence of a unique minimizer u ϵ in the vector space V follows from properties of functional J ϵ given in Lemma 4.3 and from Lemma 4.4 with an optimization set A = V , i.e. the entire Hilbert space. Equation ( 16) is the classical Euler-Lagrange equation which characterizes the minimizer u ϵ . Finally, if u ∈ K, we have J ϵ (u) = 0 and since J ϵ (v) > 0 for all v ̸ = u, we have that u is the unique minimizer. ϵ = 0 corresponds to the case without the penalty term.

It is then a trivial best approximation problem with respect to norm ∥ • ∥, which admits as a unique solution the function u itself.

Constrained tensor product approximations

Optimal constrained tensor product approximations u m could be dened by

J ϵ (u m ) = min vm∈Sm J ϵ (v m ) (17) 
with a suitable choice of nite rank tensors sets S m ensuring the existence of a minimizer. In particular, the dierent choices of section 3.1 could be adopted and yield dierent constrained tensor product approximations. Dedicated algorithms should then be derived for their construction. Here, we propose denitions of constrained nite rank approximations based on the progressive construction of optimal rank-one tensors, with eventual updates of the previously computed vectors. The denitions are natural extensions of denitions of section 3.2, with a modication of the functional to minimize.

Purely progressive construction

We rst propose a purely progressive construction of the tensor product approximation.

Denition 4.6 (C ϵ MSVD). We dene the purely progressive constrained mul- tidimensional singular value decomposition of a tensor u ∈ V as the sequence

u m = ∑ m i=1 w i ∈ R m dened progressively by J ϵ (u m-1 + w m ) = min w∈R1 J ϵ (u m-1 + w) ( 18 
)
The minimization problem [START_REF] Kolda | Orthogonal tensor decompositions[END_REF] can also be written [START_REF] De Lathauwer | On the best rank-1 and rank-(R1,R2,...,R-N) approximation of higher-order tensors[END_REF] and 

J ϵ (u m ) = min vm∈Sm J ϵ (v m ) with S m = u m-1 + R 1 .
F k m : u m ∈ R m → F k m (u m ) ∈ R k m (u m ), with R k m (u m ) ⊂ R m dened by
z m = F k m (u m ) ⇔ J ϵ (z m ) = min vm∈R k m (um) J ϵ (v m ) (19 
F D m = F d1 m • . . . • F d #D m ( 20 
)
We now introduce the following denition.

Denition 4.7 (Updated C ϵ MSVD). For an element u ∈ V , the updated progressive constrained multidimensional singular value decomposition is dened as a sequence of rank-m approximations u m ∈ R m dened progressively as follows:

for u m-1 = ∑ m-1 i=1 w i given, we dene u ⋄ m ∈ u m-1 + R 1 by J ϵ (u ⋄ m ) = min w∈R1 J ϵ (u m-1 + w) ( 21 
)
and we dene u m by applying N up times the updates along a set of dimensions

D: u m = F D m • . . . • F D m Nup times (u ⋄ m )
The convergence of the sequence {u m } m∈N is proved in the following section 4.3. Theorem 4.9 (Convergence). The sequence {u m } m∈N , dened in Denition 4.7, converges towards the unique minimizer u ϵ of J ϵ dened in Proposition 4.5:

∥u ϵ -u m ∥ ----→ m→∞ 0
Proof. {J ϵ (u m )} m≥1 is a non-increasing sequence. Indeed, by denition,

J ϵ (u m ) ≤ J ϵ (u ⋄ m ) = J ϵ (u m-1 + w m ) ≤ J ϵ (u m-1 + w) ∀w ∈ R 1
and in particular, we have J ϵ (u m ) ≤ J ϵ (u m-1 ). If there exists m such that J ϵ (u m ) = J ϵ (u m-1 ), we have J ϵ (u m-1 ) = min w∈R1 J ϵ (u m-1 +w), and by Lemma 4.10, we have that u m-1 = u ϵ , which ends the proof. Let us now suppose that J ϵ (u m ) < J ϵ (u m-1 ) for all m. J ϵ (u m ) is then a strictly decreasing sequence which is bounded below by J ϵ (u ϵ ). Therefore, there exists

J * = lim m→∞ J ϵ (u m ) ≥ J ϵ (u ϵ ) > -∞.
Since J ϵ is coercive, the sequence {u m } m∈N is bounded in V . Then, from any subsequence of the initial sequence, we can extract a further subsequence {u m k } k∈N that converges to some u * ∈ V . Since J ϵ is continuous, we have

J ϵ (u * ) = lim k→∞ J ϵ (u m k ) = J *
By denition of the sequence {u m } m∈N , we have

J ϵ (u m (k+1) ) ≤ J ϵ (u m k +1 ) ≤ J ϵ (u m k + w)
for all w ∈ R 1 . Taking the limit with k and by continuity of J ϵ , we then obtain

J ϵ (u * ) ≤ J ϵ (u * + w) ∀w ∈ R 1 ,
Lemma 4.10 then implies that u * is equal to the minimizer u ϵ of J ϵ . We then have that from any subsequence of the initial sequence, we can extract a further subsequence that converges to u ϵ . It implies that the whole sequence {u m } m∈N converges to u ϵ and by the continuity of J ϵ , we have

lim m→∞ J ϵ (u m ) = J ϵ (u ϵ )
Using the property (24) of J ϵ in Lemma 4.11, we obtain

J ϵ (u m ) -J ϵ (u ϵ ) ≥ (J ′ ϵ (u ϵ ), u m -u ϵ ) + 1 2 ∥u ϵ -u m ∥ 2 = 1 2 ∥u ϵ -u m ∥ 2 , ( 22 
)
where we have used J ′ ϵ (u ϵ ) = 0. We then obtain

lim m→∞ 1 2 ∥u ϵ -u m ∥ 2 ≤ lim m→∞ J ϵ (u m ) -J ϵ (u ϵ ) = 0,
which ends the proof.

Lemma 4.10. Let u * ∈ V satisfying

J ϵ (u * ) = min w∈R1 J ϵ (u * + w). ( 23 
)
Then u * is the unique minimizer u ϵ of J ϵ on V dened in Proposition 4.5.

Proof. For all γ ∈ R + and w ∈ R 1 ,

J ϵ (u * + γw) ≥ J ϵ (u * )
and therefore

(J ′ ϵ (u * ), w) = lim γ→0 + 1 γ (J ϵ (u * + γw) -J ϵ (u * )) ≥ 0 Since -R 1 = R 1 , we obtain (J ′ ϵ (u * ), w) = 0 ∀w ∈ R 1 , and since span(R 1 ) = V , we obtain 2 (J ′ ϵ (u * ), v) = 0 ∀v ∈ V,
and the lemma follows from Proposition 4.5.

Lemma 4.11. Functional J ϵ veries the following property: for all v, w ∈ V ,

J ϵ (v) -J ϵ (w) ≥ (J ′ ϵ (w), v -w) + 1 2 ∥v -w∥ 2 (24) 
Proof.

J ϵ (v) -J ϵ (w) = 1 2 ∥u -v∥ 2 - 1 2 ∥u -w∥ 2 + j ϵ (v) -j ϵ (w) ≥ 1 2 ∥u -v∥ 2 - 1 2 ∥u -w∥ 2 + (j ′ ϵ (w), v -w) (by convexity of j ϵ ) = 1 2 (v, v) - 1 2 (w, w) -(u, v -w) + (j ′ ϵ (w), v -w) = 1 2 (v, v) - 1 2 (w, w) -(w, v -w) + (w -u, v -w) + (j ′ ϵ (w), v -w) = 1 2 ∥v -w∥ 2 + (J ′ ϵ (w), v -w)
Let us note that this last property could have been classically deduced from the strong convexity property of J ϵ :

(J ′ ϵ (v) -J ′ ϵ (w), v -w) ≥ ∥v -w∥ 2
In the innite dimensional case, we have span(R 1 ) dense in V .

Algorithm

Alternated direction algorithm for minimization in R 1 . For a given u m-1 , an optimal rank-one element w m ∈ R 1 , dened by [START_REF] Kolda | Orthogonal tensor decompositions[END_REF], can be constructed with Alternated Direction Algorithm 1 where for k ∈ {1, . . . , d}, the map G k m : R 1 → R 1 is dened as follows:

z = G k m (w) ⇔ J ϵ (u m-1 + z) = min z∈R k 1 (w) J ϵ (u m-1 + z)
where for w = ⊗ d k=1 w k , the linear subspace R k 1 (w) ⊂ R 1 is dened by [START_REF] Devore | Some remarks on greedy algorithms[END_REF]. For w ̸ = 0, R k 1 (w) is a closed linear subspace, such that the minimization of J ϵ on R k 1 (w) is well-posed and admits a unique solution. Therefore, the map

G k m is well dened. z = G k m (w) ∈ R k 1 (w) is characterized by (J ′ ϵ (u m-1 + z), v) = 0 ∀v ∈ R k 1 (w)
or equivalently by

(z, v) + (j ′ ϵ (u m-1 + z), v) = (u -u m-1 , v) ∀v ∈ R k 1 (w) Denoting z = w 1 ⊗ . . . ⊗ z k ⊗ . . . ⊗ w d , the previous equation yields an equation on z k ∈ V k : αz k + B(z k ) = {u -u m-1 , w} * k (25) 
where [START_REF] Doostan | A least-squares approximation of partial dierential equations with high-dimensional random inputs[END_REF] and where B :

α = ∏ d l=1,l̸ =k ∥w l ∥ 2 l , where {•, •} * k ∈ V k is dened by
V k → V k is a nonlinear map dened by B(z k ) = {j ′ ϵ (u m-1 + w 1 ⊗ . . . ⊗ z k ⊗ . . . ⊗ w d ), w} * k
Nonlinear map B, as the dierential of a convex functional, is a monotone map.

Equation ( 25) is a nonlinear equation which admits a unique solution.

Remark 4.12. In practice, if we further assume the dierentiability of j ′ ϵ , and therefore of the map B, we can use a Newton iteration solver for the solution of [START_REF] Nouy | Proper Generalized Decomposition for the solution of boundary value problems on uncertain parameterized domains[END_REF].

Algorithm for rank-m approximation. For the construction of a rank-m tensor product approximation, dened in Denition 4.7, we use Algorithm 2. With N up = 0, this algorithm allows the construction of the purely progressive decomposition introduced in Denition 4.6. Mapping F D m is dened in (20) as the composition of maps F k m , dened in (19). Let us detail the application of map

F k m for a given k ∈ D. Let u m = ∑ m i=1 w i = ∑ m i=1 w 1 i ⊗ . . . ⊗ w d i . Since R k m (u m ) is a linear subspace, z m = F k m (u m ) is characterized by z m ∈ R k m (u m ), (z m , v m ) + (j ′ ϵ (z m ), v m ) = (u, v m ) ∀v m ∈ R k m (u m ) Let us denote z m = ∑ m i=1 w 1 i ⊗ . . . ⊗ z k i ⊗ . . . ⊗ w d i , with z k i ∈ V k .
The previous equation is equivalent to the following system of nonlinear equations dening the unknown functions

{z k i } m i=1 ∈ (V k ) m : m ∑ j=1 α ij z k j + B i (z k 1 , . . . , z k m ) = {u, w i } * k ( 26 
)
where α ij = ∏ d l=1,l̸ =k (w l i , w l j ) l and where B i :

(V k ) m → V k is a nonlinear map dened by B i (z k 1 , . . . , z k m ) =    j ′ ϵ ( m ∑ j=1 w 1 j ⊗ . . . ⊗ z k j ⊗ . . . ⊗ w d j ), w i    * k
Remark 4.13. In practice, if we further assume the dierentiability of j ′ ϵ , and therefore of the maps B i , we can use a Newton iteration solver for the solution of [START_REF] Tamaryan | Generalized schmidt decomposition based on injective tensor norm[END_REF].

Application to the construction of bounded tensor product approximations

We here introduce the application of interest mentioned in the introduction, for imposing bounds on tensor product approximations.

A continuous point of view

Let V be a space of functions u : Ω → R dened on a cartesian domain Ω = Ω 1 × . . . × Ω d . Let us denote by K the admissible set of functions, dened by

K = {v ∈ V ; a(x) ≤ v(x) ≤ b(x), x ∈ Ω} (27)
We can introduce the convex functional [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF] with f (•; x) : R → R a convex and continuously dierentiable function dened by

j(v) = ∫ Ω f (v(x); x)dx
f (y; x) = [a(x) -y] 2 + + [y -b(x)] 2 + ( 29 
)
where [y] + = max{0, y} denotes the positive part of y. We have j(v) = 0 for v ∈ K and j(v) > 0 for v / ∈ K. Letting ϵ → ∞, j ϵ = ϵj tends towards the indicator function of K. Let us note that f is chosen such that j is two times dierentiable, which allows the derivation of specic algorithms for the solution of optimization problem (e.g. Newton solver) associated with the construction of the constrained tensor product approximation.

Remark 5.1. If the constraint has to be imposed only on a subdomain Ω ⊂ Ω, we dene the set of admissible functions

K = {v ∈ V ; a(x) ≤ v(x) ≤ b(x), x ∈ Ω ⊂ Ω} (30)
and we can simply modify the functional f as follows

f (y; x) = ([a(x) -y] 2 + + [y -b(x)] 2 + )I Ω (x), (31) 
where

I Ω (x) = 1 if x ∈ Ω and I Ω (x) = 0 if x / ∈ Ω.
If we want to impose only an upper or a lower bound, we can choose:

• K = {u; a(x) ≤ u(x), x ∈ Ω ⊂ Ω} and f (y; x) = [a(x) -y] 2 + I Ω (x) • K = {u; u(x) ≤ b(x), x ∈ Ω ⊂ Ω} and f (y; x) = [y -b(x)] 2 + I Ω (x)
In practice, the above problem will be discretized and recasted in an algebraic form, with V = R n1×...×n d . A tensor u ∈ V is written u = ∑ l∈L u l e l , using the notations of section 2.2. In the previous context of functions dened on a domain Ω, the components u l can represent the value of the function at some interpolation points {x l } l∈L of a grid contained in domain Ω. The problem is then reformulated in an algebraic setting as follows.

Algebraic setting

We

consider V = R n1×...×n d ≃ R n1 ⊗ . . . ⊗ R n d . A tensor u ∈ V is written u = ∑ l∈L u l e l ,
with the notations of section 2.2. We consider the set K of admissible tensors:

K = {u ∈ V ; a l ≤ u l ≤ b l , l ∈ L} (32)
where a, b ∈ V . Functional j can be chosen as follows

j(v) = ∑ l∈L f (u l ; l) = n1 ∑ l1=1 . . . n d ∑ l d =1 f (u l1,...,l d ; l 1 , . . . , l d ) where for l ∈ L, f (•; l) : R → R is dened by f (y; l) = [a l -y] 2 + + [y -b l ] 2 + ( 33 
)
Remark 5.2. If we want to impose some bounds only on components u l with l belonging to a subset of indices L ⊂ L, we can use

f (y; l) = ([a l -y] 2 + + [y -b l ] 2 + )I L(l), (34) 
where

I L : L → {0, 1} is the indicator function of the set L dened by I L(l) = 1 if l ∈ L and 0 if l / ∈ L.
Functional j admits the dierential j ′ : V → V dened by

(j ′ (u), v) = ∑ l∈L f ′ (u l ; l)v l with f ′ (y; l) = -2[a l -y] + + 2[y -b l ] + Functional j ′ admits a dierential j ′′ : V → (V → V ) dened for u, v, w ∈ V by (j ′′ (u)(w), v) = ∑ l∈L f ′′ (u l ; l)w l v l with f ′′ (y; l) = 2H(a l -y) + 2H(y -b l )
where H is the heaviside function.

Example: separated representation of the indicator function of a domain

We consider the indicator function I : (0, 1) 3 → {0, 1} of the three-dimensional domain O ⊂ (0, 1) 3 plotted on gure 1(a). We denote by ϕ : (0, 1) 3 → R the associated level-set function, whose iso-zero is the boundary ∂O. We then introduce a smoothed version Ĩ of I dened by Ĩ = tanh(30ϕ), plotted in gure 1(b). Finally, we introduce the tensor u ∈ R n+1 ⊗ R n+1 ⊗ R n+1 representing the values of Ĩ on a cartesian uniform grid in (0, 1) 3 , with 25) and [START_REF] Tamaryan | Generalized schmidt decomposition based on injective tensor norm[END_REF], which are solved with a relative precision of 10 -5 with a Newton solver.

u ijk = Ĩ( i-1 n , j-1 n , k-1 n ) for 1 ≤ i, j, k ≤ n + 1.
Unconstrained approximation. We rst construct an unconstrained multidimensional singular value decomposition (MSVD). Figure 2 shows the convergence of u m for dierent numbers N up of updates. We observe that performing one update allows to signicantly improve the convergence. However, additional updates does not bring a signicant further improvement. Figures 3 plots the Constrained approximation. We now construct a constrained multidimensional singular value decomposition (C ϵ MSVD). We consider dierent values of the penalization parameter ϵ ∈ {0, 10 -3 , 10 -1 , 10 1 , 10 3 }. We rst consider the C ϵ MSVD without updates. Figure 5 illustrates the convergence of associated decompositions u m , while Figure 6 plots the minimum and maximum values of these decompositions. Figure 7 illustrates slices of decompositions u m for dierent values of ϵ. We observe that when ϵ is increased, the convergence rate deteriorates but the constraint is better and better veried. Note that with ϵ ≤ 10 -1 , the obtained decomposition is very close to the unconstrained MSVD. We now 

Conclusion

In this paper, we have proposed some denitions of tensor product approximations based on the progressive construction (eventually updated) of successive best rank-one approximations. In particular, we have proposed new denitions of constrained tensor product approximations based on penalty methods, which allow to enforce some desired constraints on the obtained approximation. The obtained decompositions can be interpreted as constrained multidimensional singular value decomposition. A convergence proof of the tensor product approximations has been established under some natural assumptions on penalty functionals. Heuristic alternated direction algorithms have been provided in order to construct these decompositions. The method has been detailed for the enforcing of bounds on the components of a tensor. The method has been validated on a numerical example.

The results of the present paper have illustrated the feasibility of imposing approximately some constraints on tensor product approximations. However, with the proposed denitions, imposing accurately the constraints may yield a significant deterioration of the convergence properties of the decompositions. Further works should be devoted to alternative denitions allowing to impose the constraints more accurately without a signicant deterioration of the convergence.

Ecient solution techniques should also be introduced in order to deal with high dimensional tensors. Indeed, the proposed algorithms leads to relatively high computational times for the computation of constrained decompositions.

In the case where the initial tensor is given in a separated form, the proposed algorithms for the constrained decomposition uses a full representation of the initial tensor. Therefore, it does not allow to deal with really high dimensional tensor product spaces. In the case where we want to impose bounds on the tensors components, specic algorithms should be introduced in order to perform operations (e.g. positive part, heaviside) preserving the separated form.
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 6 Check convergence (on σ)7: end loop 8: Set w m := σw Algorithm 1 involves the application of successive maps G k m : R 1 → R 1 , for k = 1, . . . , d. The application of map G k m to an element w = ⊗ d k=1 w k ∈ R 1 consists in modifying the vector w k ∈ V k by minimizing ∥u -u m-1 -⊗ d l=1 w l ∥ with respect to w k , letting xed the other vectors w l , for l ̸ = k. The map can be dened as follows:
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 48 Let us note that for ϵ = 0, Denition 4.7 (resp. 4.6) coincides with the Denition 3.6 (resp. 3.2) of the unconstrained multidimensional singular value decomposition.4.3. Convergence resultHere, we give a convergence proof of the updated progressive tensor product approximation with constraints {u m } m∈N dened in Denition 4.7. The convergence of the purely progressive construction of Denition 4.6 is obtained as a corollary since it is a particular case of the updated progressive construction (with N up = 0). Let us also note that a convergence result for unconstrained decompositions (Denitions 3.2 and 3.6) is obtained as a corollary of the present result since unconstrained decompositions are particular cases of constrained decompositions, with ϵ = 0 (see remark 4.8). For the denition of the sequence {u m } m∈N , Denition 4.7 introduce an auxiliary sequence u ⋄ m . In the case where no update is performed, we let u m = u ⋄ m .
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 1 Figure 1: Domain O (a) and slices of its smoothed indicator function Ĩ (b) rithm 2 with a set of updated dimensions D = {1, 2, 3}. For the construction of rank-1 elements, we use Algorithm 1 with a random initialization, N alt max = 20 and a convergence criterium of 10 -2 (stagnation criterium on σ). In the case of the constrained approximation, the applications of maps G k m and F k m require the solutions of nonlinear equations (25) and[START_REF] Tamaryan | Generalized schmidt decomposition based on injective tensor norm[END_REF], which are solved with a relative

Figure 2 :

 2 Figure 2: Inuence of the number of updates Nup in MSVD maximum and minimum values of u m . We observe that u m / ∈ (0, 1), even for high rank m.
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 3 Figure 3: MSVD: minimum (left) and maximum (right) values of um for Nup = 0 and Nup = 1.
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 4 Figure 4 illustrates the obtained approximations u m for dierent rank m.
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 4 Figure 4: MSVD: slices of um for dierent m (Nup = 0).
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 55 Figure 5: CϵMSVD: Convergence of um for dierent values of ϵ.
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 6 Figure 6: CϵMSVD: Minimum (a) and Maximum (b) values of um for dierent ϵ.

  improve the constrained decomposition by performing one update (N up = 1).

Figure 8

 8 illustrates the convergence of this decomposition for ϵ = 10 3 . Figure9illustrates the minimum and maximum values of constrained decompositions associated with dierent ϵ.

Figure 10

 10 illustrates slices of u m for m = 40 and ϵ = 10 3 . Performing one update signicantly improved the accuracy for a given rank of decomposition, while preserving the same precision on the verication of the constraint. With one update in the constrained decomposition associated with ϵ = 10 3 , we are able to construct a separated representation having the same accuracy than the unconstrained progressive separated representation, (a) ϵ = 10 -1 , m = 40 (b) ϵ = 10 1 , m = 40 (c) ϵ = 10 3 , m = 40 (d) ϵ = 10 5 , m = 40
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 78 Figure 7: CϵMSVD : slices of um for dierent values of penalization parameter ϵ.
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 9 Figure 9: CϵMSVD with updates: Minimum (a) and Maximum (b) values of um for dierent ϵ, and Nup = 1.

(a) ϵ = 10 3 ,

 3 Nup = 0 (b) ϵ = 10 3 , Nup = 1

Figure 10 :

 10 Figure 10: CϵMSVD : slices of um for m = 40 and ϵ = 10 3 and for dierent Nup.

  and consider a function u which is bounded by two constants a and b, i.e. a ≤ u(x) ≤ b. Classical tensor product approximations do not guaranty that this property is preserved for a truncated approximation u m . Moreover, for general functions u, we may not have a uniform convergence of u m , which means that we can not expect to verify the constraint (almost) everywhere for a given nite rank m.

However, preserving the boundedness properties may be of great importance in some situations.

For example, let us consider a diusion problem

  ..×n k . A tensor u ∈ V , . . . , l d ) ∈ N d ; 1 ≤ l k ≤ n k } isthe set of multi-indices and the u l = u l1,...,l d are the components of u on the canonical basis {e l

	admits a full representation			
	u =	n1 ∑	. . .	n d ∑	u l1,...,l d e 1 l1 ⊗ . . . ⊗ e d l d :=	∑	u l e l
		l1=1		l d =1		l∈L	
	where L = {(l 1						

  1: Initialize w ∈ R 1 with ∥w∥ = 1 2: loop {Maximum number of iterations N alt max }

3:

  From Lemma 2.2, we have that S m is a closed set. Therefore, from Lemma 4.4 and properties of J ϵ , this minimization problem admits a solution and a sequence {u m } m∈N exists. The convergence of this sequence is proved in section 4.3.4.2.2. Progressive construction with eventual updatesFollowing the construction of section 3.2.2, we now propose to include some updates in the previous progressive construction. We denote by D = {d 1 , . . . , d #D } a set of dimensions. For a given dimension k ∈ D, we dene the map

)

  Such as in section 3.2.2, if for a given k ∈ D and a given u m ∈ R m , the set R k m (u m ) is not a closed linear space, F k m (u m ) is not dened and we simply let F k m (u m ) = u m (no update performed). Next, we dene the updating map F D m : R m → R m as the composition of the maps {F k m } k∈D :