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Virtual braid groups

The group of virtual braids V B n , n 2, on n strings was introduced by Kauffman [START_REF] Kauffman | Virtual knot theory[END_REF] as a generalization of the classical braid group B n . The most useful system of generators and defining relations of V B n was introduced by Vershinin in [START_REF] Vershinin | Generalization of braids and homologies[END_REF]. The generators of V B n are σ 1 , . . . , σ n-1 , ρ 1 , . . . , ρ n-1 ,

and the defining relations are the following:

σ i σ i+1 σ i = σ i+1 σ i σ i+1 , σ i σ j = σ j σ i if |i -j| > 1, (1.2) 
ρ 2 i = 1, i = 1, . . . , n -1, ρ i ρ i+1 ρ i = ρ i+1 ρ i ρ i+1 , ρ i ρ j = ρ j ρ i if |i -j| > 1, (1.3) 
σ i ρ j = ρ j σ i if |i -j| > 1, ρ i ρ i+1 σ i = σ i+1 ρ i ρ i+1 . (1.4)
Thus, the group generated by σ 1 , . . . , σ n-1 with relations (1.2) is the braid group B n ; the group generated by ρ 1 , . . . , ρ n-1 with relations (1.3) is the symmetric 1 group S n ; the relations (1.4) will be referred to as mixed relations. The last presented relation is equivalent to

ρ i+1 ρ i σ i+1 = σ i ρ i+1 ρ i . (1.5) 
We remark that the relations

ρ i σ i+1 σ i = σ i+1 σ i ρ i+1 , ρ i+1 σ i σ i+1 = σ i+1 σ i ρ i (1.6)
do not hold in V B n , and these relations will be referred to as forbidden relations.

(Adding these forbidden relations yields the so-called braid permutation group [START_REF] Fenn | The braid-permutation group[END_REF]).

There is a natural epimorphism π : V B n → S n defined by

π(σ i ) = π(ρ i ) = ρ i , i = 1, . . . , n -1.
The kernel ker(π) is called the virtual pure braid group and is denoted by V P n . Generators and relations for V P n are described in [START_REF] Bardakov | The virtual and universal braids[END_REF]. It is easy to see that V B n is a semidirect product: V B n = V P n ⋊ S n .

Coordinates on braid groups

In [2, Ch. 8], an action of the braid group B n on the integer lattice Z 2n by piecewiselinear bijections is defined. For the reader's convenience we recall the definition. For 

(a, b, c, d) • σ -1 = (a -b + -(d + + f ) + , d + f -, c -d --(b --f ) -, b -f -), (2.2) 
where

e = a -b --c + d + , f = a + b --c -d + . (2.3)
For a given vector (a 1 , b 1 , . . . , a n , b n ) ∈ Z 2n we define the action by

σ ε i ∈ B n , where i = 1, . . . , n -1: (a 1 , b 1 , . . . , a n , b n ) • σ ε i = (a ′ 1 , b ′ 1 , . . . , a ′ n , b ′ n ), (2.4) 
where

a ′ k = a k , b ′ k = b k if k = i, i + 1, and 
(a ′ i , b ′ i , a ′ i+1 , b ′ i+1 ) = (a i , b i , a i+1 , b i+1 ) • σ, if ε = 1, (a i , b i , a i+1 , b i+1 ) • σ -1 , if ε = -1. (2.5)
For a word w in the alphabet {σ ±1 1 , . . . , σ ±1 n-1 } we define an action by w:

(a 1 , b 1 , . . . a n , b n ) • w = (a 1 , b 1 , . . . a n , b n ), if w = 1, ((a 1 , b 1 , . . . a n , b n ) • σ ε i ) • w ′ , if w = σ ε i w ′ .
(2.6)

It can be shown that the above action by B n on Z 2n is well defined, i.e. if two words w 1 and w 2 present the same element of the braid group B n then

(a 1 , b 1 , . . . , a n , b n ) • w 1 = (a 1 , b 1 , . . . , a n , b n ) • w 2 for any vector (a 1 , b 1 , . . . , a n , b n ) ∈ Z 2n
. By the Dynnikov coordinates of a braid we will mean the vector (0, 1, . . . , 0, 1) • w, where w is a word representing that braid.

Example 2.1. Actions by some elements of B 2 on (0, 1, 0, 1) ∈ Z 2 are as follows:

(0, 1, 0, 1) • σ 1 = (1, 0, 0, 2), (0, 1, 0, 1) • σ -1 1 = (-1, 0, 0, 2), (0, 1, 0, 1) • σ 2 1 = (1, -1, 0, 3), (0, 1, 0, 1) • σ -2 1 = (-1, -1, 0, 3), . . . . . . (0, 1, 0, 1) • σ k 1 = (1, -k + 1, 0, k + 1), (0, 1, 0, 1) • σ -k 1 = (-1, -k + 1, 0, k + 1)
, where k ∈ N. Also, acting by some elements of B 3 on (0, 1, 0, 1, 0, 1) ∈ Z 6 we have (0, 1, 0, 1, 0, 1) • σ 1 σ -1 2 = (1, 0, -2, 0, 0, 3), (0, 1, 0, 1, 0, 1) • σ 1 σ 2 σ 1 = (2, 0, 1, 0, 0, 3). Remark 2.2. It is also shown in [START_REF] Dehornoy | Ordering braids[END_REF] that Dynnikov coordinates are faithful invariants of braids, i.e. if (0, 1, . . . , 0, 1) • w 1 = (0, 1, . . . , 0, 1) • w 2 then w 1 = w 2 in B n ; thus, Dynnikov coordinates are very useful for solving the words problem in B n .

Here is an outline of the proof: there is a bijection between vectors in Z 2n and integer laminations of a sphere with n + 3 punctures P 0 , P 1 , . . . , P n+1 , P ∞ ; under this bijection, our action of B n on Z 2n corresponds to the B n -action on a disk containing punctures P 1 , . . . , P n . The key observation is that this disk is filled by the lamination encoded by the vector (0, 1, . . . , 0, 1) (i.e. cutting this disk along its intersection with the lamination yields only disks and once-punctured disks).

Coordinates on virtual braid groups

Let us define an action by elements of V B n on Z 2n . Consider the actions on Z 4 by σ and σ -1 as defined in (2.1) and (2.2), and define the action by ρ as the following permutation of coordinates:

(a, b, c, d) • ρ = (c, d, a, b). (3.1)
For a given vector (a

1 , b 1 , . . . , a n , b n ) ∈ Z 2n we define the action by ρ i ∈ V B n , i = 1, . . . , n -1: (a 1 , b 1 , . . . , a n , b n ) • ρ i = (a ′ 1 , b ′ 1 , . . . , a ′ n , b ′ n ), (3.2) 
where

a ′ k = a k , b ′ k = b k for k = i, i + 1, and (a ′ i , b ′ i , a ′ i+1 , b ′ i+1 ) = (a i , b i , a i+1 , b i+1 ) • ρ. (3.3)
The action by σ ε i ∈ V B n on Z 2n is defined according to (2.4) and (2.5).

Suppose that w is a word in the alphabet {σ ±1 1 , . . . , σ ±1 n-1 , ρ 1 , . . . , ρ n-1 } representing an element of the group V B n . Then we define

(a 1 , b 1 , . . . , a n , b n ) • w = ((a 1 , b 1 , . . . , a n , b n ) • ρ i ) • w ′ , if w = ρ i w ′ , ((a 1 , b 1 , . . . , a n , b n ) • σ ε i ) • w ′ , if w = σ ε i w ′ . (3.4)
To show that the action by V B n on Z 2n is correctly defined we will verify that the defining relations of the group V B n are satisfied. Since ρ i acts by permuting pairs of coordinates, the relations of the group S n are obviously satisfied. The fact that relations of the group B n are satisfied follows from [START_REF] Dehornoy | Ordering braids[END_REF]. So, we need to check only the case of mixed relations, i.e. that for any v ∈ Z 2n the relations

v • (σ i ρ j ) = v • (ρ j σ i ), |i -j| > 1, (3.5) v • (ρ i ρ i+1 σ i ) = v • (σ i+1 ρ i ρ i+1 ) (3.6)
hold. Relations (3.5) hold obiously, because σ i acts non-trivial only on the subvector (a i , b i , a i+1 , b i+1 ) and ρ j acts non-trivially only on the subvector (a j , b j , a j+1 , b j+1 ).

In order to verify (3.6) it is enough to consider the case i = 1 in the group

V B 3 . Denote (x, y, z, t) • σ = (a ′ (x, y, z, t), b ′ (x, y, z, t), c ′ (x, y, z, t), d ′ (x, y, z, t)) From (a 1 , b 1 , a 2 , b 2 , a 3 , b 3 ) • (ρ 1 ρ 2 σ 1 ) = (a 2 , b 2 , a 1 , b 1 , a 3 , b 3 ) • (ρ 2 σ 1 ) = (a 2 , b 2 , a 3 , b 3 , a 1 , b 1 ) • σ 1 = ((a 2 , b 2 , a 3 , b 3 ) • σ, a 1 , b 1 )
and

(a 1 , b 1 , a 2 , b 2 , a 3 , b 3 ) • (σ 2 ρ 1 ρ 2 ) = (a 1 , b 1 , (a 2 , b 2 , a 3 , b 3 ) • σ) • ρ 1 ρ 2 = (a ′ (a 2 , b 2 , a 3 , b 3 ), b ′ (a 2 , b 2 , a 3 , b 3 ), a 1 , b 1 , c ′ (a 2 , b 2 , a 3 , b 3 ), d ′ (a 2 , b 2 , a 3 , b 3 )) • ρ 2 = (a ′ (a 2 , b 2 , a 3 , b 3 ), b ′ (a 2 , b 2 , a 3 , b 3 ), c ′ (a 2 , b 2 , a 3 , b 3 ), d ′ (a 2 , b 2 , a 3 , b 3 ), a 1 , b 1 ) = ((a 2 , b 2 , a 3 , b 3 ) • σ, a 1 , b 1 )
we see that (3.6) holds.

Example 3.1. Actions by some elements of V B 2 on (0, 1, 0, 1) ∈ Z 4 are as follows:

(0, 1, 0, 1)

• σ 1 ρ 1 = (0, 2, 1, 0), (0, 1, 0, 1) • σ 1 ρ 1 σ 1 = (3, 0, 0, 2), (0, 1, 0, 1) • σ 1 ρ 1 σ -1 1 = (-2, -1, 1, 3
). Let us demonstrate that the forbidden relations are not satisfied. More exactly, we show that for v = (0, 1, 0, 1, 0, 1) we get

v • (ρ 1 σ 2 σ 1 ) = v • (σ 2 σ 1 ρ 2 ), (3.7) v • (ρ 2 σ 1 σ 2 ) = v • (σ 1 σ 2 ρ 1 ). (3.8)
Indeed, (3.7) holds because (0, 1, 0, 1, 0, 1)•(ρ 1 σ 2 σ 1 ) = (0, 1, 0, 1, 0, 1)•σ 2 σ 1 = (0, 1, 1, 0, 0, 2)•σ 1 = (2, 0, 0, 1, 0, 2), but (0, 1, 0, 1, 0, 1)

• (σ 2 σ 1 ρ 2 ) = (2, 0, 0, 1, 0, 2) • ρ 2 = (2, 0, 0, 2, 0, 1).
Analogously, (3.8) holds because

(0, 1, 0, 1, 0, 1)•(ρ 2 σ 1 σ 2 ) = (0, 1, 0, 1, 0, 1)•σ 1 σ 2 = (1, 0, 0, 2, 0, 1)•σ 2 = (1, 0, 2, 0, 0, 3), but (0, 1, 0, 1, 0, 1) • (σ 1 σ 2 ρ 1 ) = (1, 0, 2, 0, 0, 3) • ρ 1 = (2, 0, 1, 0, 0, 3).
Question 3.2. Is there any relation between our coordinates on V B n and the invariant of virtual braids defined by Manturov in [5]?

Faithfulness of the V B n -action on Z 2n

In this section we will be concerned with the following Question 4.1. Is the V B n -action on Z 2n faithful? In other words, is it true that only the trivial element of V B n acts as the identity on Z 2n ?

In computer experiments, we have tested several billion (10 9 ) random virtual braids with 3, 4 and 5 strands, but failed to find one that would provide a negative answer. The programs used for these tests (written in Scilab) can be obtained from B. Wiest's web page [7].

It should be stressed that nontrivial elements of V B n may very well act trivially on individual vectors. Let us, for instance, look at the V B 3 -action on (0, 1, 0, 1, 0, 1). The actions of ρ 1 and ρ 2 obviously fix this vector, but those of many other braids do, too. Here is one particularly striking example:

Example 4.2. The virtual 3 strand braid

β = σ 1 ρ 2 σ 1 σ -1 2 σ 1 σ 2 σ -1 1 ρ 1 σ 2 ρ 1 σ 1 ρ 2 σ -1 1 ρ 2 σ -1 2 σ -1 1 σ 2 σ -1 1 ρ 2 σ -1
1 acts trivially on the vector (0, 1, 0, 1, 0, 1), and indeed in computer experiments, we found that it acted nontrivially on only about 0.25% of randomly generated vectors of Z 6 with integer coefficients between -100 and 100. In this sense, β is "nearly a negative answer" to Question 4.1. Another one is the virtual braid

σ -1 2 σ 1 ρ 2 σ 2 σ 1 σ -1 2 ρ 2 σ 1 ρ 2 σ 2 ρ 1 σ -1 2 ρ 1 σ -1 1 σ -1 2 ρ 2 σ -1
1 σ 2 which also moves only about 0.6% of random vectors.

We now turn our attention to the case n = 2.

Example 4.3. It is known [5] that β = (σ 2 1 ρ 1 σ -1 1 ρ 1 σ -1 1 ρ 1 ) 2 ∈ V B 2
and the identity element e ∈ V B 2 cannot be distinguished by the Burau representation. Considering actions by these elements on (0, 1, 0, 1) we get (0, 1, 0, 1) • β = (85, 49, -90, -47), while (0, 1, 0, 1)•e = (0, 1, 0, 1). Thus, these elements are distinguished by Dynnikov coordinates.

In fact, in the case n = 2 we have a positive answer to Question 4.1.

Theorem 4.4. The V B 2 -action on Z 4 given by the above formulae is faithful.

Proof. We will, in fact show a stronger result than Theorem 4.4, namely that the only element of V B 2 which acts trivially on a vector (0, x, 0, y), where x and y are different positive integers, is the trivial one. As a simplest vector of this type one can take (0, 2, 0, 1).

Consider the set of symbols S = {0, +, -, +0, -0}. With s ∈ S we associate the following subset of Z: For instance, the vector (-1, -1, 0, 4) belongs to sets associated with (-, -, 0, +) and (-, -0, +0, +), as well as with some other quadruples of symbols.

s = 0 ←→ {x ∈ Z : x = 0}, s = + ←→ {x ∈ Z : x > 0}, s = -←→ {x ∈ Z : x < 0}, s = +0 ←→ {x ∈ Z : x 0}, s = -0 ←→ {x ∈ Z : x 0}. A quadruple (s 1 , s 2 , s 3 , s 4 ),
Let σ, σ -1 , ρ : Z 4 → Z 4 be the transformations defined by (2.1), (2.2), (3.1). Let us apply a sequence of such transformations (without fragments σσ -1 , or σ -1 σ, or ρρ) to the initial vector, say (0, 2, 0, 1). The statement of the theorem will follow from the fact that we trace out a path in the diagram shown in Figure 1, where an arrow with labels β and i.β, where i ∈ {1, 2, . . . , 14} and β ∈ {σ, σ -1 , ρ} from box (s 1 , s 2 , s 3 , s 4 ) to box (t 1 , t 2 , t 3 , t 4 ) means that the image of any element of the subset of Z 4 associated with (s 1 , s 2 , s 3 , s 4 ) under tranformation β belongs to the subset of Z 4 associated with (t 1 , t 2 , t 3 , t 4 ). The numbering of arrows by 1, 2, . . . , 14 is done for the reader's convenience in the further discussion of cases.

It is easy to see from (2.1), (2.2) and (3.1) that for any β ∈ V B 2 there is the following invariant: if (a * , b * , c * , d * ) = (a, b, c, d)•β then b * +d * = b+d. In particular, if the initial vector is taken to be (0, 2, 0, 1) then for any vector in the diagram the sum of its second and fourth coordinates is equal to 3.

Below to simplify expressions we will use the following notations:

(a ′ , b ′ , c ′ , d ′ ) = (a, b, c, d) • σ, (a ′′ , b ′′ , c ′′ , d ′′ ) = (a, b, c, d) • σ -1 .
ρ ? 0,+,0,+ +,0,0,+ ? ? -,0,0,+ ? ?

2.σ 1.σ -1 0,+,+,0 ? By (2.1 ) and (2.2) we have

           a ′ = a + b + + (-a + b -+ c) + , b ′ = d -(a -b --c + d + ) + , c ′ = c + d -+ (a -c + d + ) -, d ′ = b + (a -b --c + d + ) + ,            a ′′ = a -b + -(a + b --c) + , b ′′ = d + (a + b --c -d + ) -, c ′′ = c -d --(-a + c + d + ) -, d ′′ = b -(a + b --c -d + ) -, (4.1) 
First of all we remark that the arrows of the diagram related to the action by ρ hold obviously. The other actions will be considered case by case according to the numbering of the arrows.

1. Consider the action by σ -1 on (0, +, 0, +). Each element of (0, +, 0, +) has a form (0, b, 0, d) for some b, d > 0. Since its image (0, b, 0, d) • σ -1 = (-b, 0, 0, b + d) belongs to (-, 0, 0, +), the corresponding arrow of the diagram is proven.

2. Consider the action by σ on (0, +, 0, +). Each element of (0, +, 0, +) has a form (0, b, 0, d) for some b, d > 0. Since its image (0, b, 0, d) • σ = (b, 0, 0, b + d) belongs to (+, 0, 0, +), the corresponding arrow of the diagram is proven.

3. Consider the action by σ -1 on (-, 0, 0, +). Let a < 0, d > 0 then (a, 0, 0, d) • σ -1 = (a, d+(a-d) -, 0, -(a-d) -) = (a, a, 0, -a+d) ∈ (-, -, 0, +) ⊂ (-, -, +0, +).

4. Consider the action by σ on (+, 0, 0, +). Let a, d > 0 then (a, 0, 0, d) • σ = (a, -a, 0, a + d) ∈ (+, -, 0, +) ⊂ (+, -, -0, +). 9. Let us demonstrate that (-, -, +0, +) • σ -1 ∈ (-, -, +0, +). Since a < 0, b < 0, c 0, d > 0, the action is given by formulae

           a ′′ = a -(a + b -c) + , b ′′ = d + (a + b -c -d) -, c ′′ = c -(-a + c + d) -, d ′′ = b -(a + b -c -d) -. Moreover, a + b -c < 0 and a + b -c -d < 0 imply that (a, b, c, d) • σ -1 = (a, a + b -c, c, -a + c + d) ∈ (-, -, +0, +).
10. Let us demonstrate that (+0, +, -, -) • σ -1 ∈ (-, -, +0, +). Since a 0, b > 0, c < 0, d < 0, the action is given by formulae

           a ′′ = a -b -(a -c) + , b ′′ = d + (a -c) -, c ′′ = c -d -(-a + c) -, d ′′ = b -(a -c) -. Moreover, a-c > 0 implies that (a, b, c, d)•σ -1 = (-b+c, d, a-d, b) ∈ (-, -, +, +) ⊂ (-, -, +0, +).
11. Let us demonstrate that (+0, +, -, -)•σ ∈ (+, -, -0, +). Since a 0, b > 0, c < 0, d < 0, the action is given by formulae

           a ′ = a + b + (-a + c) + , b ′ = d -(a -c) + , c ′ = c + d + (a -c) -, d ′ = b + (a -c) + . Moreover, a -c > 0 implies that (a, b, c, d) • σ = (a + b, d -a + c, c + d, b + a -c) ∈ (+, -, -, +) ⊂ (+, -, -0, +).
12. Let us demonstrate that (+, -, -0, +)•σ = (+, -, -0, +). Since a > 0, b < 0, c 0, d > 0, the action is given by formulae

           a ′ = a + (-a + b + c) + , b ′ = d -(a -b -c + d) + , c ′ = c + (a -c + d) -, d ′ = b + (a -b -c + d) + . Moreover, -a + b + c < 0, a -b -c + d > 0, and a -c + d > 0 imply that (a, b, c, d) • σ = (a, -a + b + c, c, a -c + d) ∈ (+, -, -0, +).
13. Let us demonstrate that (-0, +, +, -)•σ ∈ (+, -, -0, +). Since a 0, b > 0, c > 0, d < 0, the action is given by formulae Remark 4.5. Theorem 4.4 allows us to introduce on V B 2 various "coordinate systems". For example, taking (0, 2, 0, 1) as the initial vector, for any β ∈ V B 2 one can define (0, 2, 0, 1) • β as its coordinates. In this sense Theorem 4.4 gives an anolog of Dynnikov coordinates originally defined for braid groups.

           a ′ = a + b + (-a + c) + , b ′ = d -(a -c) + , c ′ = c + d + (a -c) -, d ′ = b + (a -c) + . Moreover, a -c < 0 implies that (a, b, c, d) • σ = (b + c, d, d + a, b) ∈ (+, -, -, +) ⊂ (+, -, -0, +). 14. Let us demonstrate that (-0, +, +, -) • σ -1 = (-, -, +0, +). Since a 0, b > 0, c > 0, d < 0,
Remark 4.6. It is shown in the proof of Theorem 4.4 that the V B 2 -action is faithful on any vector of the form (0, x, 0, y), where x and y are different positive integers. Note that the action on some other vectors of Z 4 can fail to be faithful. For example, (0, 0, 0, 1) • σ = (0, 0, 0, 1) and (0, 1, 0, 1) • ρ = (0, 1, 0, 1). 

  x ∈ Z denote x + = max{0, x} and x -= min{x, 0}. Define actions σ, σ -1 : Z 4 → Z 4 on (a, b, c, d) ∈ Z 4 as follows: (a, b, c, d) • σ = (a + b + + (d +e) + , de + , c + d -+ (b -+ e) -, b + e + ), (2.1)

  where s i ∈ S, indicates the set all quadruples (a, b, c, d) ∈ Z 4 such that a, b, c, d belongs to subset of Z associated with symbols s 1 , s 2 , s 3 , s 4 , respectively. For example, (+, +0, 0, -) = {(a, b, c, d) ∈ Z 4 : a > 0, b 0, c = 0, d < 0}.

- 1 Fig. 1 .

 11 Fig. 1. The diagram of actions of V B 2 .

5 .

 5 Consider the action by σ -1 on (0, +, -, 0). Let b > 0, c < 0 then (0, b, c, 0)• σ -1 = (-b -(-c) + , 0, c -(c) -, b -(-c) -) = (-b + c, 0, 0, b) ∈ (-, 0, 0, +).6. Consider the action by σ on (0, +, +, 0). Let b, c > 0 then (0, b, c, 0) • σ = (b + c, 0, 0, b) ∈ (+, 0, 0, +).7. Consider the action by σ on (0, +, -, 0). Let b > 0, c < 0 then (0, b, c, 0)• σ = (b, c, c, bc) ∈ (+, -, -, +) ⊂ (+, -, -0, +).8. Consider the action by σ -1 on (0, +, +, 0). Let b, c > 0 then (0, b, c, 0) • σ -1 = (-b, -c, c, b + c) ∈ (-, -, +, +) ⊂ (-, -, +0, +).

a

  ′′ = ab -(ac) + , b ′′ = d + (ac) -, c ′′ = cd -(-a + c) -, d ′′ = b -(ac) -. (4.2) Moreover, ac < 0 implies that (a, b, c, d) • σ -1 = (ab, d + ac, cd, ba + c) ∈ (-, -, +, +) ⊂ (-, -, +0, +). The proof is completed.

Remark 4 . 7 .

 47 Let us define the norm of a quadruple ||(a, b, c, d)|| = |a|+|b|+|c|+|d|. Obviously, the norm is invariant under the ρ-action. One can easily see from the proof of Theorem 4.4 that all the arrows labelled σ or σ -1 in Figure 1 increase the norm. For example, considering case 13, one gets ||(a, b, c, d) • σ|| = ||(b + c, d, d + a, b)|| = |b + c| + |d| + |d + a| + |b| > |a| + |b| + |c| + |d|, because a 0, b > 0, c > 0, d < 0. However, this property doesn't hold if one takes an arbitrary vector from Z 4 : ||(7, 4, 1, 1)|| = 13, but ||(7, 4, 1, 1) • σ|| = ||(3, 1, 6, 1)|| = 11.
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