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Abstract

We define Dynnikov coordinates on virtual braid groups. Wavprthat they are faithful invariants
of virtual 2-braids, and present evidence that they are s powerful invariants for general
virtual braids.
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1. Virtual braid groups

The group of virtual braid¥ B,, n > 2, onn strings was introduced by Kéiman [3] as a
generalization of the classical braid groBp The most useful system of generators and defining
relations ofV B, was introduced by Vershinin ifi][5]. The generatord/d, are

Ul,---,o-n—l,pl,---,pn—l, (1)

and the defining relations are the following:

Oi0is1 0 = 0i41 0 041, oioj=ojo; if |i-j|>1, (2)
pt=Lli=1....n—-1 pipiap =papipic. pip;=pip it li—jl>1, 3)
opj=pjoi if li—jl>1  pipi10i = Ti1piPis. (4)

Thus, the group generated by, ..., o1 with relations [R) is the braid group,; the group
generated by, ..., pn_1 With relations [B) is the symmetric groufy,; the relations[(4) will be
referred asnixed relations The last presented relation is equivalent to

Pi+1 Pi Tir1 = T Pis1 Pi- (5)
We remark that the relations

PiTi+1 0 = Ti+1 0 Pi+1, Pi+1 0 Tit1 = Pi Ti+1 T (6)
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do not hold inV B, and these relations will be referred tofagbiddenrelations.
There is a natural epimorphism: VB, — S,, defined by

n(o) =n(o) =pi, 1=21....,n=-1

The kernel kert) is called thevirtual pure braid groupand is denoted by P,. Generators and
relations forV P, are described in[J1]. It is easy to see tNdB, is a semidirect productV B, =
VP, xS,.

2. Coordinateson braid groups

In [@, Ch. 8], an action of the braid grou, on the integer lattic&?" by piecewise-linear
bijections is defined. This action is induced by tBgaction on integer laminations. For the
reader’s convenience we recall the definition. ¥arZ denotex® = max0, x} andx™ = min{x, 0}.
Define actions

o, ot 7 578

on (@, b, c,d) € Z* as follows:

(ab,cd)-c=(@+b"+(d" -e",d-€e",c+d +(b"+€7, b+e"), (7)
(abcd)-ct=(@-b - +f),d+f,c—d —-(b" - ), b- 1), (8)

where
e=a-b -c+d", f=a+b —-c-d". 9)
For a given vectordy, b, . . ., a,, by) € Z?" we define the action by’ € B, wherei = 1,...,n-1:
(&g, by,...,an,bp) - of = (a3, b, ..., &, b)), (10)

wherea, = a,, b = bif k#i,i+ 1, and

(aia bia ai+l’ bi+l) - g, If €= 1,
b a ., = - 11
(@0 8Bl { (&, b, a1, bi) -0t if &= -1 ()
For a wordw in the alphabetoi?, ..., o1 } we define an action by:
. if w=1
(al, bl, o an’ bn) CW = (ala bla an, bn), I W » (12)
(. by ... a0 by) - 0F) - W, if w=otw.

It can be shown that the above action Byon Z?" is correctly defined, i.e. if two words,
andw, present the same element of the braid grBgthen

(al,bl,---,an,bn)'wl:(al,bl,---,an,bn)'wz

for any vector &4, by, ..., an, by) € Z?". By Dynnikov coordinatesf a wordw we will mean the
vector (Q1,...,0,1)-w.
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It is also shown in [[2] that Dynnikov coordinates are faithfiovariants of braids, i.e. if
0,1,...,0,1)-w; =(0,1,...,0,1) - w, thenw; = w;, in By; thus, Dynnikov coordinates are very
useful for solving the words problem B,. The proof uses the fact that the vector¥Q..,0, 1)
encodes a certain lamination of thgimes punctured disk whose complement consists only of
disks and once-punctured disks.

Example 1. Actions by some elements & on (0, 1,0, 1) € Z? are as follows:
(0,1,0,1)- 01 = (1,0,0, 2), (0,1,0,1)- 071 = (-1,0,0,2),
(0,1,0,1)- 05 = (1,-1,0,3), (0,1,0,1)- 072 = (-1,-1,0,3),
(0,1,0,1)- a'{ =(1,-k+1,0,k+1), (0,1,0,1)- a;" =(-1,-k+1,0,k+ 1),

wherek € N. Also, acting by some elementsBf on (0, 1,0, 1,0, 1) € Z® we have

(0,1,0,1,0,1) - o405 = (1,0,-2,0,0,3),
(0,1,0,1,0,1) 01001 = (2,0,1,0,0,3).

Question 1. As mentioned above, two braigsandg’ from B, are equal if and only if their actions
on the vector (01, ...,0, 1) coincide. Which other vectors have this property? Fotamse, the
vector (90,0, 1) € Z does not have it, becausg € B, acts trivially on it. Is it true that any vector
(X1, Y1, - - - » Xn, Yn) Which does not have subvectoss, ;) of the form (Q 0) has this property?

3. Coordinateson virtual braid groups

Let us define an action by elements\oB, on Z2". Consider the actions df* by o ando*
as defined in[{7) and](8), and define the actiomlas the following permutation of coordinates:

(ab,c.d)-p=(cd ab) (13)
For a given vectordy, by, . . ., a,, by) € Z" we define the action by, ¢ VB,,i=1,...,n—1:
(a, by, ..., a0 bn) - pi = (@, by, ..., &, b)), (14)
wherea, = a,, b, = b fork#i,i+1, and
(&, bf,a,,,b,,) = (&, b, &1, 1) - p. (15)

The action byr? € VB, onZ*" is defined according t¢ (10) and[11).
Suppose thaw is a word in the alphabét-i?, ..., o, p1, ..., pn-1) representing an element
of the groupV B,. Then we define

((al’ bl,---,an, bn)p|)W, if W:PiW,

16
(. by,..., 80 b) - 02) - W, ifw= oW, (16)

(al,b]_,...,an,bn).wz{
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To show that the action by B, on Z?" is correctly defined we will verify that the defining
relations of the group/B, are satisfied. Sincg; acts by permuting pairs of coordinates, the
relations of the grouf, are obviously satisfied. The fact that relations of the giByare satisfied
follows from [B]. So, we need to check only the case of mixddtiens, i.e. that for any € Z
the relations

V-(gip)) =V-(pjoi), li—jl>1, (17)
V- (pi pis107) = V- (Tis10i Pis1) (18)
hold. Relations[(]7) hold obiously, becausects non-trivial only on the subvecta; (b;, a,1, bi.1)
andp; acts non-trivially only on the subvecta;(b;, a;.1, bj.1). In order to verify [IB) it is enough
to consider the cade= 1 in the groupV B;. Denote
(Xy.zt)-o=(@(xy,zt),b(xy.zt).c(xy,zt),d(xy,zt))

From
(a4, by, &2, by, a3, b3) - (01 0201) = (az, by, &, by, a3, bs) - (0201)

= (ap, by, @z, b, a3, b1) - 071 = ((az, bz, 83, b3) - 0, @1, by)

and
(8, b1, a2, by, 83, b3) - (020102) = (a1, by, (B2, 02, @3, 03) - ) - P12

= (&' (&g, by, as, b3), b'(ay, by, as, bs), &y, by, ¢'(az, by, as, bs), d'(ay, by, as, bs)) - p2
= (@' (ag, by, as, bs), b'(ay, by, @z, bs), €' (&, by, as, bs), d'(ay, by, as, bs), ai, by)
= ((ag, by, @, bg) - 0, a1, by)
we see that[(18) holds.
Example 2. Actions by some elements ®B, on (Q 1,0, 1) € Z* are as follows:

(0,1,0,1)- 0101 = (0,2,1,0),
(0,1,0,1): 010101 = (3,0,0, 2),
(0,1,0,1)- o1p107t = (-2,-1,1,3).

Let us demonstrate that the forbidden relations are natfsati More exactly, show that for
v=(0,1010,1)we get
V- (p10201) #V- (020102), (19)

V- (p20102) #V- (0102p1). (20)
Indeed, [I9) holds because
(0,1,0,1,0,1)- (p10201) =(0,1,0,1,0,1)- 0201 =(0,1,1,0,0,2)- 01 = (2,0,0, 1,0, 2),

but
(0,1,0,1,0,1)- (c20102) = (2,0,0,1,0,2) - p, = (2,0,0, 2,0, 1).

Analogously, [2D) holds because
(0,1,0,1,0,1)- (020102) =(0,1,0,1,0,1)- 0,02, =(1,0,0,2,0,1)- 0> = (1,0,2,0,0, 3),

but
(0,1,0,1,0,1)- (o1 02p1) = (1,0,2,0,0,3)- p1 = (2,0,1,0,0, 3).
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Question 2. Is there any relation between our coordinates\d, and the invariant of virtual
braids defined by Manturov ifi|[4]?

4. Faithfulness of the VB-action on Z2"

In this section we will be concerned with the following

Question 3. Is the VB,-action onZ?" faithful? In other words, is it true that only the trivial
element ofV B, acts as the identity oA?"?

In computer experiments, we have tested several billiof) (Ehdom virtual braids with 3, 4
and 5 strands, but failed to find one that would provide a meganswer. The programs used for
these tests (written in Scilab) can be obtained from B. iestb page[[6].

It should be stressed that nontrivial element¥ &, may very well act trivially on individual
vectors. Let us, for instance, look at th@s-action on (01,0,1,0,1). The actions op; andp;
obviously fix this vector, but those of many other braids do, tHere is one particularly striking
example:

Example 3. The virtual 3 strand braid
B = 0'1p20'10'§10'10'20'11p10'2p10'1p20'11p20'§10'110'20'11;)20'11

acts trivially on the vector (@, 0, 1,0, 1), and indeed in computer experiments, we found that it
acted nontrivially on only about 25% of randomly generated vectors Af with integer coéi-
cients betweer 100 and 100. In this senggis “nearly a negative answer” to Questidn 3. Another
one is the virtual braid-, 0102020105 p20 102020105 101 05 p207 1> which also moves only
about 06% of random vectors.

We now turn our attention to the case- 2.

Example4. Itis known [4] thatg = (c3p107 p107%01)? € VB, and the identity elememte VB,
can not be distinguished by the Burau presentation. Consglactions by these elements on
(0,1,0,1) we get (01,0,1) - B8 = (85,49,-90,-47), while (01,0,1)- e=(0,1,0,1). Thus, these
elements are distinguished by Dynnikov coordinates.

In fact, in the cas@ = 2 we have a positive answer to Quesf{ipn 3.

Theorem 1. The VB-action onZ* given by the above formulae is faithful.

Proor. We will, in fact show a stronger result than Theorgm 1, ngniieht the only element of
V B, which acts trivially on a vector (&, 0, y), wherex andy are diferent positive integers, is the
trivial one. As a simplest vector of this type one can tak&(0, 1).

Consider the set of symbos = {0, +,—, +0,-0}. With s € S we associate the following
subset ofZ:

S=0—>{xeZ : x=0}, s=+«—>{XeZ : x>0}, s=-««—>{XeZ:x<0},
5



S=+0—>{XxeZ : x>0}, s=-0«—>({xeZ . x<0}.

A quadruple €, S5, S3, S4), Wheres € S, indicates the set all quadruples iy, ¢, d) € Z* such
thata, b, ¢, d belongs to subset df associated with symbols;, s,, s3, S, respectively. For
example,

(+,40,0,-) = {(a,b,c,d)eZ* : a>0,b>0,c=0,d < 0}.

For instance, the vector(, —1, 0, 4) belongs to sets associated with £, 0, +) and &, -0, +0, +),
as well as with some other quadruples of symbols.

Let 0,07t p : Z* — Z* be the transformations defined by (7, (8),](13). Let us a@ply
sequence of such transformations (without fragmemtst, or o~1c, or pp) to the initial vector,
say (02,0,1). The statement of the theorem will follow from the factttige trace out a path
in the diagram shown in Figufé 1, where an arrow with lajpededi.3, wherei € {1,2,...,14}
andg € {o, o1, p} from box (s, S, S, S4) t0 box (4, t, t3, t4) means that the image of any element
of the subset of* associated withg, s,, S3, S4) under tranformatio belongs to the subset of
Z* associated witht(, t,, t3,t;). The numbering of arrows by, 2, ..., 14 is done for the reader’s
convenience in the further discussion of cases.

Figure 1: The diagram of actions 9fB,.

It is easy to see fron{|7)[](8) and [13) that for ghy VB, there is the following invariant: if
(a, b, c,d*) = (a,b,c,d) - gthenb* + d* = b + d. In particular, if the initial vector is taken to be
(0,2,0,1) then for any vector in the diagram the sum of its second audti coordinates is equal
to 3.

Below to simplify expressions we will use the following ntitas:

@.b,¢,d)=@bocd-o, (@b, d)=(abcd- o
6



By (4 ) and [B) we have

a=a+b"+(-a+b +0)", a’=a-b*-(a+b -0,
b=d-(a-b —-c+d")*, b”=d+(a+b —-c-d"), (21)
c=c+d +(@-c+d"), ¢’=c-d -(-a+c+d¥),
d=b+(@-b -c+d")*, d’=b-(a+b —-c-d"),

First of all we remark that the arrows of the diagram relatethé action by hold obviously.
The other actions we are considering case by case accoalihg humeration of arrows.

1. Consider the action by~ on (Q +, 0, +). Each element of (G-, 0, +) has a form (0b, O, d)
for someb,d > 0. Since its image (®,0,d) - o = (=b,0,0,b + d) belongs to £, 0,0, +), the
corresponding arrow of the diagram is proven.

2. Consider the action by on (Q +,0, +). Each element of (&, 0, +) has a form (0b, O, d)
for someb,d > 0. Since its image (®,0,d) - o = (b,0,0,b + d) belongs to {,0,0, +), the
corresponding arrow of the diagram is proven.

3. Consider the action by~ on (-,0,0,+). Leta< 0,d > 0then ,0,0,d)- o' = (a,d +
(@a-d),0,—(a-d))=(a,a0,-a+d) e (-,-,0,+) c (-,—, +0, +).

4. Consider the action by on (+,0,0, +). Leta,d > 0then §,0,0,d)- o = (a,—-a,0,a+d) €
(+,-,0,4) c (+,—,-0,+).

5. Consider the action by~* on (Q +,—,0). Letb > 0,c < 0 then (Qb,c,0)- o1 = (-b -
(-9*,0,c—(c),b=(-¢)) =(-b+¢,0,0,b) € (-,0,0, +).

6. Consider the action by on (Q +, +,0). Letb,c > 0 then (Qb,c,0)- o = (b+¢,0,0,b) €
(+,0,0,+).

7.Consider the action by on (Q +, —, 0). Letb > 0,c < 0 then (Qb,c,0)-0 = (b,c,c,b—-c) €
(+, - —+) c (+,—,-0,+).

8. Consider the action by~ on (Q +, +, 0). Letb,c > 0 then (Qb,c,0)- o~ = (-b,—c,c,b+
ce(-—,++)C (- —+0,+).

9. Let us demonstrate that(—, +0,+) - 0t € (-, -, +0,+). Sincea< 0,b < 0,c > 0,d > 0,
the action is given by formulae

a’=a-(a+b-0),

b"=d+(@a+b-c-d),

c’=c—-(-a+c+d),

d’=b-(a+b-c-d).
Moreovera+b—c < 0 anda+b-c—d < 0Oimplythat@,b,c,d)-c~! = (a,a+b-c,c,—a+c+d) €
(=, =, +0, +).

10.Let us demonstrate thatQ, +, —, —)-o~! € (-, —, +0, +). Sincea > 0,b> 0,c < 0,d < 0,

the action is given by formulae

a’=a-b-(a-0)",

b”=d+((@-c,
¢’=c-d-(-a+c0),
d’=b-(a-c)".
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Moreovera—c > 0 impliesthat§, b, c,d)-o* = (=b+c,d,a-d,b) € (-, —, +,+) c (-, =, +0, +).
11.Let us demonstrate thatQ, +,—,-) - o € (+,—, -0, +). Sincea > 0,b> 0,c < 0,d < 0,
the action is given by formulae

a=a+b+(-a+c0)",

b=d-(a-0)*,
¢=c+d+(a-c),
d=b+(a-c)".
Moreover,a—c > 0 implies that§ b,c,d)-c = (a+b,d-a+c,c+d,b+a-c) e (+,-,—,+) C

(+,—,-0,+).
12.Let us demonstrate that(—, -0, +) - o = (+,—,-0,+). Sincea> 0,b < 0,c < 0,d > 0,
the action is given by formulae

a=a+(-a+b+0*,

bb=d-(a-b-c+d)*,

¢ =c+(@a-c+d),

d=b+(@-b-c+d)*.
Moreover,—a+b+c < 0,a—-b-c+d > 0,anda-c+d > 0 imply that @ b,c,d) - o =
(a—a+b+cca-c+d)e(+—-,-0,+).

13.Let us demonstrate thatQ, +,+,-) - o € (+,—,-0,+). Sincea< 0,b>0,c> 0,d < 0,

the action is given by formulae

a=a+b+(-a+0)",

b=d-(a-0)",
¢=c+d+(a-c),
d=b+(a-c)".

Moreovera— c < O implies thaté,b,c,d)- o = (b+c,d,d+a,b) e (+,-,—,+) c (+,—, -0, +).
14. Let us demonstrate thatQ, +,+,-) - ot = (-,—,+0,+). Sincea < 0,b > 0,¢c > 0,
d < 0, the action is given by
a’=a-b-(a-0)*,

b”=d+((@-c, (22)
¢’=c-d-(-a+0),
d'=b-(a-0)".

Moreovera—c < 0 impliesthat§,b,c,d)-c* = (a-b,d+a-c,c-d,b-a+c) e (-, —,+,+) C
(-, —, 40, +). The proof is completed.

Remark 1. Theorenm]L allows us to introduce MB, various “coordinates systems”. For exam-
ple, taking (02,0,1) as the initial vector, for ang € VB, one can define (2,0,1) - 8 as its
coordinates. In this sense Theorgm 1 gives an anolog of Rgmmioordinates originally defined
for braid groups.
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Remark 2. Itis shown in the proof of Theoref 1 that theB,-action is faithful on any vector of
the form (Q x, 0, y), wherex andy are diferent positive integers. Note that the action on some other
vectors ofZ* can fail to be faithful. For example, (0,0,1)- o = (0,0,0,1) and (01,0,1)-p =
(0,1,0,1).

Remark 3. Let us define the norm of a quadrugli@, b, c,d)|| = |al + |b] + |c| + |d]. Obviously,
the norm is invariant under theaction. One can easily see from the proof of Theofem 1 that al
the arrows labelled- or o~ in Figure[l increase the norm. For example, considering tasene
gets||(a,b,c,d)-of| = |[(b+c,d,d+a,b)||=|b+c +|d +|d+al+ b > |a + |b] + |c| + |d|, because
a<0,b>0,c>0,d < 0. However, this property doesn't hold if one takes an aabjtvector
from Z*: ||(7,4,1,1)|| = 13, but||(7,4,1,1) - o] = ||(3, 1, 6,1)|| = 11.
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