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The logic of Bunched Implications, through its intuitionistic version (BI) as well as one

of its classical versions called Boolean BI (BBI), serves as a logical basis to spatial or

separation logic frameworks. In BI, the logical implication is interpreted intuitionistically

whereas it is generally interpreted classically in spatial or separation logics like in BBI. In

this paper, we aim at giving some new insights w.r.t. the semantic relations between BI

and BBI. Then we propose a sound and complete syntactic constraints based framework

for Kripke semantics of both BI and BBI, a sound labelled tableau proof system for BBI,

and a representation theorem relating the syntactic models of BI to those of BBI. Finally

we deduce, as main and unexpected result, a sound and faithful embedding of BI

into BBI.

1. Introduction

Spatial logics for dynamic processes, static spatial logics for trees or processes, context

logic, separation logic, resource and processes logic share a common core language for

expressing logical properties that is the language of BI, the Logic of Bunched Impli-

cations (Pym 1999; Pym 2002) mixing multiplicative connectives ∗, −∗ with additive

connectives ∧,∨, → and its Kripke sharing interpretation of the multiplicative connec-

tives:

m  A ∗ B iff there exist a, b such that a ◦ b ⊲ m and a  A and b  B

The ternary relation −◦− ⊲ − has different interpretations depending on various semantic

frameworks: process composition/interaction (for ◦) and structural congruence (for ⊲) in

spatial logics (Cardelli and Gordon 2000; Caires and Lozes 2006), finite edge-labelled

tree/process composition and structural equivalence for static spatial logics (Calcagno

et al. 2005; Lozes 2004), contexts composition and structural equivalence for context

logic (Calcagno et al. 2007), disjoint heap union and equality (or inclusion) for separation
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logic (Ishtiaq and O’Hearn 2001) denoted SL here, and the product of resource and process

composition for SCRP/MBI (Pym and Tofts 2006).

Even if they are based on the same language together with the sharing interpretation,

these logics differ because the underlying models do not have the same properties: the set

of valid formulae differ from one logic to the other, some have decidable model-checking

and others not, etc. Moreover, nearly all of these logics use a classically or pointwise

defined Kripke semantics for the additive implication →, thereby favoring Boolean BI

(BBI) whereas the logic BI has an intuitionistically defined additive implication. It should

be noted however that there is an attempt to model intuitionistic implication in (Ishtiaq

and O’Hearn 2001) but the authors quickly dismiss it as a particular case of the classical

implication: the reason for this could be viewed as a rather restrictive choice for the order

relation, map inclusion in this case. In this article, we aim at giving some new insights

w.r.t. the relation between BI and BBI in the general case.

The model theoretic properties of these logics, based on BBI, have been widely studied:

decidability (Calcagno et al. 2005) and undecidabilty (Caires and Lozes 2006), quantifier

and adjunct elimination (Lozes 2004), and expressivity (Brochenin et al. 2008). However,

even if the proof-theory of BI has been extensively explored with natural deduction and

sequent style proof systems (Pym 2002) and labelled tableau proof systems (Galmiche

and Méry 2003; Galmiche et al. 2005), the proof-theory of BBI is either missing or heavily

based on model-checking methods like in (Calcagno et al. 2005).

The relations between BI and BBI are often misunderstood. Whereas classical logic CL

(the additive fragment of BBI) can be faithfully embedded into intuitionistic logic IL (the

additive fragment of BI) by the Gödel translation for example, this result has no known

extension when linear operators are added. Moreover, in this article we show that the

reverse is true: it is possible to faithfully embed BI into BBI. This result suggests that

proof and counter-model search in BBI is certainly not easier than in BI and might in

fact be much more difficult that in BI.

Our approach to BI and BBI and their relations is not model-oriented. We aim at

studying the formulae of BI/BBI which hold in all of these particular models, propose

proof-systems to prove or refute these formulae and compare the provability relation of

BI and BBI. We consider BI and BBI defined by the abstract Kripke semantics, namely

partially ordered partial monoids for BI and partial monoids for BBI. We use the models

generated by the syntactic constraints occuring in tableau proof-search. Soundness and

completeness of our tableau systems ensure that the sub-class of models generated by

syntactic constraints is complete w.r.t. the abstract Kripke semantics and thus, these

syntactic constraints and their solutions grasp the semantic properties of these logics.

In this article we provide the following results: a sound and complete syntactic con-

straints based framework for Kripke semantics of both BI and BBI, a sound labelled

tableau proof system for BBI, a representation theorem linking the syntactic models of

BI to those of BBI and as a consequence, a faithful embedding of BI into BBI. We also

discuss some expressivity properties of BI that can be deduced from our results.

As for the potential consequences and later developments of this work (more fully de-

scribed in the conclusion of this article), we list the following items: a sound and complete

proof and counter-model search method for BI based on partial monoidal constraints as
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opposed to the existing resource graph method (Galmiche et al. 2005); a concrete and

complete class of separation logic style models for BI based on the distinction between

observable and unobservable resources; hopefully a characterization of the full class of

BBI-generated constraints and explicit forms for constraint extensions; more expressivity

properties for BBI as well as for BI.

We now detail the contents of sections leading to the result that the function G 7→
(I ∧ H) → G◦ constitutes a sound and faithful embedding of BI into BBI. Here, the BBI-

formula G◦ is an image of the BI-formula G defined by (linear) structural induction using

two spare logical variables L and K. H is some given fixed BBI-formula only depending

on the logical variables L and K. I is the multiplicative unit of BBI.

In Section 2, we recall the monoidal Kripke semantics of BI and BBI. We point out

different semantic frameworks for interpreting the monoidal relation like spatial logics,

separation logics or abstract monoidal Kripke semantics. We also stress the difference

between the intuitionistic and classical interpretation of the additive implication →, and

the properties required for those models.

In Section 3, we describe a common framework for dealing with the Kripke semantics

of BI and BBI. This framework is based on particular binary relations between words

(which are in fact multisets in this article) expressed by sets of constraints of the form

m −·····− n where m and n are two words. An atomic constraint m −·····− n is the syntactic

expression of a semantic relation between the words/labels m and n that should hold

in all the interpretations of m and n that satisfy the constraint m −·····− n. From a finite

or infinite set of (atomic) constraints, we generate particular relations by closure. These

particular relations obtained by closure are themselves the “least” models of the syntatic

constraints from which they originate. These (closed) relations are called partial monoidal

orders (PMOs) for BI and partial monoidal equivalences (PMEs) for BBI. They are char-

acterized as being closed under some particular deduction rules. We introduce a Kripke

interpretation within this PMO/PME framework and prove that the corresponding se-

mantics is equivalent to the abstract Kripke semantics of BI and BBI respectively: up

to some quotient by an equivalence relation, the PMO ⊑ is in fact a partially ordered

partial monoid and the PME ∼, a partial monoid. Then, we show how to build PMOs and

PMEs by closure from arbitrary sets of constraints and derive some properties linking

sets of constraints and their closures, like for example a compactness property or how

the constraints involving the empty word ǫ behave in the closure.†

In Section 4, we present a link between PMOs (models of BI) and PMEs (models of

BBI). Indeed, we describe a map ∼ 7→ ⊑L,K
∼ which associates a PMO ⊑L,K

∼ to any PME ∼,

given some alphabets L and K. The idea of the map is that the words of L⋆ are Kripke-

interpreted in both BI and BBI, whereas the words of K⋆ are only Kripke-interpreted in

BBI. Thus we say that the words of K⋆ are unobservable by BI. The relation m ⊑L,K
∼ n

holds whenever m, n ∈ L⋆ belong to the observable words of L⋆ and are equivalent up

to some unobservable word δ ∈ K⋆, i.e. δm ∼ n holds. We show how this idea extends

† The empty word ǫ plays a particular role because it is the only word which can be squared or erased
a priori.
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the intuitionistic interpretation of the implication → by heap inclusion in intuitionistic

Separation Logic SL (Ishtiaq and O’Hearn 2001). To any formula G of BI, we associate a

formula G◦ of BBI such that the Kripke semantics of G in the model defined by ⊑L,K
∼ is

equivalent to the Kripke semantics of G◦ in the model defined by ∼.

In Section 5, we introduce the labels and constraints based tableau proof system TBI

which is sound and complete for BI. We also define a tableau proof system for BBI

called TBBI and prove its soundness w.r.t. BBI (completeness also holds but for reasons

explained later, this result is not proved in this article). Elementary PMOs are generated

from finite sequences of constraints of the form ab −·····− m, am −·····− b, m −·····− b or ǫ −·····− m where

a and b are new letters and m is already defined by previous constraints. The sequence

can be infinite for simple PMOs. We prove that the constraints occuring in TBI-tableaux

are elementary PMOs for finite tableaux and simple PMOs for infinite tableaux branches

and thus simple PMOs form a complete sub-class of models for BI. Hence every invalid

formula of BI has a counter-model which is a simple PMO.

In Section 6, we define the notions of elementary and simple PME as generated by

sequences of constraints of the form ab −·····− m, am −·····− b, m −·····− b or ǫ −·····− b where a and b are

new letters and m is already defined. We show that the map ∼ 7→ ⊑L,K
∼ is surjective on

simple PMOs, its “reverse map” being described as an algorithm transforming a simple

PMO ⊑ into a simple PME ∼ such that ⊑ = ⊑L,K
∼ . The validity of this algorithm can

be considered as the main technical result of the article and is based on the notion of

elementary representation which is basically a PMO/PME pair (⊑,∼) that verifies some

specific conditions including ⊑ = ⊑L,K
∼ . The proof of the validity of the algorithm requires

to establish some properties about free PME extensions like for example the extension of

the PME ∼ with the constraint ab −·····− m where a and b are new letters and m is already

defined. We also need to prove that simple PMEs have no square, i.e. for a simple PME

∼, the relation mm ∼ mm only holds when m ∼ ǫ.

In Section 7, we describe a tableau transformation algorithm of a TBI-proof of some

BI-formula G into a TBBI-proof of the formula (I∧H)→G◦, hence establishing that the

map G 7→ (I∧H)→G◦ is a sound embedding of BI into BBI. As tableau proofs proceed by

branch expansion, we show how to map any TBI-branch expansion into a combination of

TBBI-branch expansions. The soundness of the transformation is based on the properties

of elementary representations. Starting from a closed TBI-tableau (i.e. a proof) for G, the

obtained TBBI-tableau for (I ∧ H) → G◦ is not necessarily closed, but it is pseudo-closed

and we later show that pseudo-closed tableaux can be expanded into closed tableaux in

TBBI.

In Section 8, we show that the formula (I ∧ H) → G◦ is BBI-invalid whenever G is

BI-invalid by counter-model transformation. The result is based on the fact that if a

BI-formula G is invalid then it has a BI-counter-model based on a simple PMO ⊑, the

class of simple PMOs being complete for BI. As ⊑ is a simple PMO, there exists a PME ∼
such that ⊑ = ⊑L,K

∼ and we prove that ∼ provides a BBI-counter-model to (I∧H)→G◦.

We present this counter-model transformation on the example of the intuitionistically

invalid formula X ∨ (X →⊥) (excluded middle).

In Section 9, we introduce some basic applications of our results to the expressivity of

BI. For example, the property ǫ ⊑ m is trivially expressed by the logical constant I. On
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the contrary, neither the property m ⊑ ǫ nor the property mm ⊑ mm can be expressed

by formulae of BI.

2. Sharing interpretation and monoidal Kripke semantics for BI and BBI

The logics BI and BBI are syntactically defined by the following grammar (Pym 2002)

where Var is a set of propositional variables and X ranges over Var:

BI : A, B ::= X | ⊥ | ⊤ | A ∧ B | A ∨ B | A → B | I | A ∗ B | A −∗ B

BBI : A, B ::= X | ⊥ | ⊤ | A ∧ B | A ∨ B | A → B | ¬A | I | A ∗ B | A −∗ B

2.1. The monoidal Kripke semantics of BI and BBI

Before we introduce the Kripke semantics of BI and BBI, we recall the general semantic

framework under which the Kripke interpretation is going to be defined.

Definition 2.1. A partial monoid is a triple (M, ◦, e) where e ∈ M and ◦ : M×M−⇀M
is a partial map for which the following conditions hold:

1. ∀a ∈ M, e ◦ a↓ ∧ e ◦ a = a (identity)

2. ∀a, b ∈ M, a ◦ b↓ ⇒ b ◦ a↓ ∧ a ◦ b = b ◦ a (commutativity)

3. ∀a, b, c ∈ M, a ◦ (b ◦ c)↓ ⇒ (a ◦ b) ◦ c↓ ∧ a ◦ (b ◦ c) = (a ◦ b) ◦ c (associativity)

We write x ◦ y↓ when the composition of x and y by ◦ is defined. Note that a ◦ (b ◦ c)

can only be defined if b ◦ c is itself defined, hence a ◦ (b ◦ c)↓ implies b ◦ c↓. We also

assume the reader does not confuse the meta-logical connectives ⇒, ∧ and ∨ with the

logical connectives of BI/BBI even though the conjunction and disjunction have the same

denotation.

A binary relation ⊲ ⊆ M×M is a partial order if it is reflexive, antisymmetric and

transitive. To give a Kripke interpretation to the formulae of BI (resp. BBI), we start

from a given structure (M, ◦, e, ⊲) where (M, ◦, e) is a partial monoid of resources, ⊲ is

a partial order on M (resp. the identity relation ⊲ ≡ = on M) such that composition is

monotonic:

∀k, x, y ∈ M, (k ◦ y↓ ∧ x ⊲ y) ⇒ (k ◦ x↓ ∧ k ◦ x ⊲ k ◦ y)

The structure (M, ◦, e, ⊲) is thus a partially ordered partial monoid for the case of BI

formulae and a partial monoid for the case of BBI formulae. The Kripke interpretation

on the set of logical variables Var is given by a forcing relation  ⊆ M × Var which

verifies the monotonicity condition:

∀X ∈ Var,∀m, n ∈ M, (m ⊲ n ∧ m  X) ⇒ n  X

For BBI, both the monotonicity of composition and the monotonicity condition trivially

hold because the order ⊲ is the identity =.

The Kripke interpretation is inductively extended to the compound formulae of BI

(resp. BBI) by the equations of Figure 1. We may write ◦,⊲ to denote this forcing

relation extended to the whole BI (resp. BBI).
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m  I iff e ⊲ m m  ¬A iff m 1 A

m  ⊥ iff never m  A ∨ B iff m  A or m  B

m  ⊤ iff always m  A ∧ B iff m  A and m  B

m  A → B iff ∀x ∈ M, (m ⊲ x and x  A) ⇒ x  B

m  A ∗ B iff ∃x, y ∈ M, x ◦ y↓ and x ◦ y ⊲ m and x  A and y  B

m  A −∗ B iff ∀x, y ∈ M, (x ◦ m↓ and x ◦ m ⊲ y and x  A) ⇒ y  B

Fig. 1. The Kripke semantics of BI and BBI.

Definition 2.2. Given a Kripke structure (M, ◦, e, ⊲,), a formula F of BI (resp. BBI)

is valid in M if e ◦,⊲ F (resp. ∀m ∈ M, m ◦,⊲ F ) and we say that M is a BI-model

(resp. BBI-model) of F . If F is not valid, then it is invalid and M is a BI-counter-model

if e 1◦,⊲ F (resp. BBI-counter-model if m 1◦,⊲ F for some m ∈ M).

Within this framework, it is possible to prove (see (Pym 2002) for example) that

the monotonicity condition extends to any formula of BI (resp. BBI) and that the log-

ical rules of the natural deduction proof theory of BI and BBI (Pym 2002) are sound

with respect to this Kripke interpretation. Moreover, if ⊲ is symmetric (which is a

property fulfilled when ⊲ is the identity relation as required for BBI) it is possible to

show that the logical implication → is in fact interpreted classically (or pointwise), i.e.

m  A → B iff m  A ⇒ m  B. This classical Kripke semantics for the additive impli-

cation → is one of the reasons why BI is sometimes called intuitionistic BI whereas BBI

is called Boolean BI. Without the linear connectives ∗ and −∗, the distinction between

intuitionistic and classical Kripke interpretation for the connective → gives rise to propo-

sitional intuitionistic logic IL and propositional classical logic CL which have relations but

also have huge differences. On the one hand, it is possible to faithfully embed CL into

IL using the well known Gödel translation. On the other hand, the decision of validity

in IL is PSPACE-complete (Statman 1979) whereas it is coNP-complete for CL, leading

to the very unlikely existence of some (low complexity) reverse faithful embedding of IL

into CL. This article aims at establishing a new relation between BI and BBI which may

naively be viewed as respectively IL and CL enriched with the linear connectives ∗ and

−∗. We claim that the embedding relation we establish tells us that this naive view is not

very accurate.

2.2. Overview of various instances of the monoidal Kripke semantics

To present some of the different existing frameworks for interpretation of BI and BBI, we

single out the sharing interpretation of the ∗ operator:

m  A ∗ B iff ∃x, y ∈ M, x ◦ y↓ ∧ x ◦ y ⊲ m ∧ x  A ∧ y  B

A ∗ B is forced at m if there is composition a ◦ b somehow related to m by a ◦ b ⊲ m

such that A is forced at a and B is forced at b. So the semantics of A ∗ B depends on

the particular interpretation we provide for the composition ◦ and the relation ⊲. The
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language of BI/BBI gives thus rise to different logics (where universally valid formulae

differ) depending on how (◦, ⊲) are interpreted:

— what we call BI is the logic defined by abstract Kripke models, i.e. M can be any

partially ordered partial monoid. There exists a proof system for this logic (Galmiche

et al. 2005). Similarly, what we call the logic BBI is defined by partial monoids without

further restrictions and we will present a proof system for it in Section 5;

— if we restrict models so that M is the set of heaps where heaps are partially and

finitely defined functions Loc −⇀fin Val mapping locations to values, and ◦ ≡ (·) is

the disjoint union of heaps (undefined when domains overlap), we obtain Separation

Logic SL (Ishtiaq and O’Hearn 2001). The relation ⊲ ≡ = is interpreted as identity

in SL giving rise to models of BBI formulae. Starting from SL, if ⊲ ≡ ⊆ is interpreted

as partial map inclusion instead of identity, we obtain models of BI-formulae (Ishtiaq

and O’Hearn 2001) and the corresponding logic is called intuitionistic SL;

— if M is the set of finite unordered resource trees and ◦ is the composition of resource

trees, we obtain resource tree logic (Biri and Galmiche 2007) which can be viewed as

models of BI or BBI.

The logics arising from these different interpretations are not necessarily identical:

indeed, weakening A ∗ B → A is universally valid in intuitionistic SL whereas it has an

obvious counter-model in partially ordered partial monoids thus in the version of BI we

favor in this article. The study of the faithful embeddings between some of these logics

and some of their sub-logics has already provided results:

— the modal translation of intuitionistic SL into classical SL provides a faithful embed-

ding. As suggested in (Ishtiaq and O’Hearn 2001), this embedding is not so surprising

because map inclusion ⊲ ≡ ⊆ is a very restrictive interpretation for the relation ⊲;

— a faithful embedding of the modal logic S4 and hence intuitionistic logic IL into

BBI has also been established (Galmiche and Larchey 2006) where BBI is given a

non-deterministic monoidal semantics. The same argument applies as is with partial

monoidal semantics for BBI (instead of non-deterministic monoidal semantics), so

that the embedding of S4 into BBI is also faithful with the (partial and deterministic)

interpretation of BBI we favor in this article;

— the well known Gödel translation provides a faithful embedding of classical proposi-

tional logic CL into intuitionistic logic IL. However, to the knowledge of the authors,

there is no extension of this translation providing a faithful embedding of BBI into BI.

In this article, we will establish the existence of a faithful embedding of BI into BBI in

the context of their general abstract semantics, namely partially ordered partial monoids

for BI and partial monoids for BBI. By faithful embedding, we mean a map that preserves

both validity and invalidity. Even as a faithful embedding from intuitionistic SL into

classical SL already exists (Ishtiaq and O’Hearn 2001), that embedding is based on a

restrictive interpretation of ⊲ which arguably gives rise to a denatured BI where weakening

is valid (i.e. the formula A∗B→A is valid in intuitionistic SL). Of course, this is not the

case in BI. So our faithful embedding of BI into BBI is a much more unexpected result.
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3. A complete semantics for BI and BBI based on words and constraints

We will now introduce a framework of labels and constraints to establish an original

semantic relation between the abstract models of BI and BBI. This framework is useful

because it provides a unifying view of both the models of BI and BBI and the proofs

in BI and BBI. The main idea here is that restricting monoidal composition to word

combination does not alter validity in the Kripke interpretation of BI (resp. BBI).

3.1. Words, constraints, PMOs and PMEs

Let L be a (potentially infinite) alphabet of letters. We consider the set of words L⋆ where

the order of letters is not taken into account, i.e. we consider words as finite multisets

of letters. The composition of words is denoted multiplicatively and the empty word is

denoted ǫ.

We denote x ≺ y when x is a subword of y, i.e. when there exists a word k such

that kx = y. If x ≺ y, there is only one k such that xk = y and it is denoted y/x,

hence y = x(y/x). The (carrier) alphabet of a word m is the set of letters of which it is

composed: Am = {l ∈ L | l ≺ m}. We may view the alphabet L or any of its subsets

X ⊆ L as a subset X ⊂ L⋆, i.e. we identify letters and one-letter words.

Definition 3.1. Let L be an alphabet. A constraint is a ordered pair (m, n) of words in

L⋆ × L⋆ denoted m −·····− n.

We represent binary relations R ⊆ L⋆ × L⋆ between words of L⋆ as set of constraints

through the logical equivalence: x R y iff x−·····− y ∈ R. We view constraints as syntatic ob-

jects whereas relations between words can either be viewed as syntatic or semantic. When

C = {. . . , xi −·····− yi, . . .} represents a finite or infinite collection of individual constraints,

it is viewed as a syntatic notion and we write x −·····− y ∈ C for example. When R represent

a relation between words, it is viewed as a semantic notion and we rather write x R y.

But the very nature of C and R is the same, that of a set of constraints. So we will use

both terminologies for the same objects throughout this article depending on whether we

interpret them more as syntatic objects or semantic objects. We will consider particular

sets of constraints closed under some deduction rules and their corresponding relations.

Because closed relations/sets of constraints can themselves be viewed as models, they

are most of the time considered as semantic objects rather than syntatic ones.

Definition 3.2. Let L be an alphabet. The language of a binary relation R ⊆ L⋆ × L⋆

denoted LR is defined by LR = {x ∈ L⋆ | ∃m, n ∈ L⋆ s.t. xm R n ∨ m R xn}. The

carrier alphabet of R denoted AR is defined by AR =
⋃{Am ∪ An | m R n}.

A word m ∈ L⋆ is said to be defined in R if m ∈ LR and is undefined otherwise.

A letter l ∈ L is new to R if l 6∈ AR. The language LR is downward closed w.r.t. the

subword order ≺. The inclusion LR ⊆ A
⋆
R and the identity AR = LR ∩L hold. If R1 and

R2 are two relations such that R1 ⊆ R2 then the inclusions AR1
⊆ AR2

and LR1 ⊆ LR2

hold. Let us define the particular sets of constraints/relations we are interested in.

Definition 3.3 (PMO/PME). Consider the rules of Table 1. A partial monoidal order
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PMOs PMEs PMOs & PMEs

x −·····− y

x −·····− x
〈l〉

x −·····− y

y −·····− x
〈s〉

ǫ −·····− ǫ
〈ǫ〉

ky −·····− ky x −·····− y

kx −·····− ky
〈c〉

x −·····− y

y −·····− y
〈r〉

xy −·····− xy

x −·····− x
〈d〉

x −·····− y y −·····− z

x −·····− z
〈t〉

Table 1. Rules for the definition of PMOs and PMEs.

(PMO) ⊑ over the alphabet L is a binary relation ⊑ ⊆ L⋆ × L⋆ which is closed under

the rules 〈ǫ, l, r, d, c, t〉. A partial monoidal equivalence (PME) ∼ over the alphabet L is

a binary relation ∼ ⊆ L⋆ × L⋆ which is closed under the rules 〈ǫ, s, d, c, t〉.

Proposition 3.4. Rules 〈l〉 and 〈r〉 can be derived from rules 〈s〉 and 〈t〉. Hence any

PME is also a PMO.

Proof. We provide the two following deduction trees:

x −·····− y

x −·····− y
〈s〉

y −·····− x
〈t〉

x −·····− x

x −·····− y
〈s〉

y −·····− x x −·····− y
〈t〉

y −·····− y

Let us informally discuss the meaning of rules of Table 1. Let R be either a PMO

R = ⊑ or a PME R = ∼. By upcoming Proposition 3.6, a word m is defined in R if and

only if m R m holds. Thus, rule 〈d〉 ensures that subwords of defined words are defined.

Rule 〈ǫ〉 ensures that ǫ is always defined (even when nothing else is). Rules 〈l, r〉 ensure

that words that are related to other words by R are defined. Rule 〈t〉 ensures that R is

transitive and rule 〈s〉 that it is symmetric. Rule 〈c〉 states that word composition should

be monotonic w.r.t. the relation R.

We provide some derived rules which will be more suitable for proving properties of

PMOs/PMEs throughout this article.

Proposition 3.5. Rules 〈pl, pr, el〉 can be derived from rules 〈l, r, d, c, t〉 and rule 〈er〉 can

be derived from rules 〈s, d, c, t〉. Hence PMOs and PMEs are closed under rules 〈pl, pr, el〉
and PMEs are closed under rule 〈er〉.

kx −·····− y

x −·····− x
〈pl〉

x −·····− ky

y −·····− y
〈pr〉

x −·····− y yk −·····− m

xk −·····− m
〈el〉

x −·····− y m −·····− yk

m −·····− xk
〈er〉

Proof. Rule 〈pl〉 (resp. 〈pr〉) is a trivial combination of rules 〈l, d〉 (resp. 〈r, d〉). For
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rules 〈el〉 and 〈er〉, we provide the two deduction trees:

yk −·····− m
〈l〉

yk −·····− yk x −·····− y
〈c〉

xk −·····− yk yk −·····− m
〈t〉

xk −·····− m

x −·····− y

m −·····− yk
〈s〉

yk −·····− m
〈el〉

xk −·····− m
〈s〉

m −·····− xk

Rule 〈pl〉 (resp. 〈pr〉) is a left (resp. right) projection rule, a kind of generalised version

of 〈l〉 (resp. 〈r〉). Rules 〈el〉 and 〈er〉 express the capacity to exchange R-related subwords

inside R-relations, either on the left (for PMOs and PMEs) or on the right (only for PMEs).

Proposition 3.6. Whether R is a PMO (R = ⊑) or a PME (R = ∼) over L, the identities

LR = {x ∈ L⋆ | x R x} and AR = {l ∈ L | l R l} hold.

Proof. We prove the properties for R = ⊑. The same properties will then hold with a

PME ∼ because any PME is also a PMO. First, it is obvious that {x ∈ L⋆ | x ⊑ x} ⊆ L⊑.

For the converse, if xm ⊑ n (resp. m ⊑ xn) then x ⊑ x by rule 〈pl〉 (resp. rule 〈pr〉).
Hence, L⊑ ⊆ {x ∈ L⋆ | x ⊑ x}. As A⊑ = L⊑ ∩ L, we get A⊑ = {l ∈ L | l ⊑ l}.

3.2. PMO/PME based Kripke semantics

We introduce a Kripke interpretation of BI and BBI formulae based on PMOs and PMEs.

The framework for BI and BBI is thus common and this facilitates the building of both

semantic and proof-theoretic bridges between those logics.

Definition 3.7. A BI-frame (resp. BBI-frame) is a triple (L, R,) where L is an alpha-

bet, R is a PMO (resp. PME) over L, and  is a forcing relation  ⊆ LR × Var which

verifies the monotonicity property :

∀X ∈ Var, ∀m, n ∈ LR, (m R n ∧ m  X) ⇒ n  X

We extend the forcing relation to R ⊆ LR × BI (resp. LR × BBI) by induction on

formulae:

m R I iff ǫ R m m R ¬A iff m 1R A

m R ⊥ iff never m R A ∨ B iff m R A or m R B

m R ⊤ iff always m R A ∧ B iff m R A and m R B

m R A → B iff ∀x ∈ LR, (m R x and x R A) ⇒ x R B

m R A ∗ B iff ∃x, y ∈ LR, xy R m and x R A and y R B

m R A −∗ B iff ∀x, y ∈ LR, (xm R y and x R A) ⇒ y R B

We may write  for R when the relation R is obvious from the context.

Proposition 3.8. If R is a PMO (resp. a PME) then the extended relation R ⊆ L⊑×BI

(resp. R ⊆ L∼ × BBI) is monotonic.
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Proof. Monotonicity holds when for any F ∈ BI (resp. F ∈ BBI) and any m, n ∈ LR,

the condition (m R n ∧ m R F ) ⇒ n R F holds. It is standard to prove monotonicity

by induction on the formula F . When F is a logical variable, the monotonicity condition

holds as a direct consequence of Definition 3.7. For the additive operators ⊥, ⊤, ∨ and

∧, the induction step is trivial. For operators I, →, and ∗, the induction step involves the

use of rule 〈t〉. For operator −∗, the induction step involves the use of rule 〈el〉. For the

Boolean negation ¬, the induction step involves the use of rule 〈s〉, but as the operator

¬ only exists in BBI, the relation R is thus a PME, hence is closed under rule 〈s〉.

When R is a PME, symmetry (rule 〈s〉) ensures that the additive implication → is

interpreted pointwise or classically.

Proposition 3.9. If R = ∼ is a PME then for any m ∈ L∼, m ∼ A→B if and only if

m ∼ A ⇒ m ∼ B.

Proof. Here we just write  for ∼. As ∼ is a reflexive relation when restricted to

L∼, the only if part is trivial. For the if part, we use monotonicity. Let us suppose

m  A ⇒ m  B. Let m ∼ n and n  A. Then by rule 〈s〉, n ∼ m, hence by

monotonicity, m  A hence m  B. By monotonicity again, n  B. So for any n such

that m ∼ n we have n  A ⇒ n  B. Thus m  A → B.

Definition 3.10. A formula F ∈ BI is valid in the BI-frame (L,⊑,) if the relation

ǫ ⊑ F holds. A formula F ∈ BBI is valid in the BBI-frame (L,∼,) if for every m ∈ L∼

the relation m ∼ F holds.

As a complement, we briefly state the relation between ǫ  F and ∀m ∈ L∼ m  F in

BBI-frames.

Proposition 3.11. For any BBI-frame (L,∼,) and any formula F ∈ BBI:

1. ǫ  F iff ∀m ∈ L∼ m  I → F ;

2. ∀m ∈ L∼ m  F iff ǫ  ⊤−∗ F .

Proof. For property 1, the if part is trivial since ǫ ∈ L∼ and ǫǫ ∼ ǫ. For the only if

part, we use Proposition 3.9. Let m ∈ L∼ such that m  I. Then ǫ ∼ m. As ǫ  F , by

monotonicity we obtain m  F . Hence, m  I → F . For property 2, the only if part is

trivial whereas for the if part, just use the fact that mǫ ∼ m for any m ∈ L∼.

Remarks: property 2 holds also for BI but not the only if part of property 1. Prop-

erty 2 is used in (Calcagno et al. 2005) to establish an equivalence between validity and

satisfaction problems in the spatial logic for trees.

Theorem 3.12 (Completeness of PMOs w.r.t. BI). A formula F of BI is valid in

every partially ordered partial monoid Kripke structure if and only if it is valid in every

BI-frame.

Proof. This is an obvious but tedious proof based on quotients by equivalence relations.

We give a brief sketch of the proof but leave the details to the reader. Let us first prove

that if a formula of BI has a Kripke counter-model of the form of a partially ordered
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partial monoid then it has a counter-model of the form of a BI-frame. Then we will prove

the converse result.

Let us consider a partially ordered partial monoid Kripke structure (M, ◦, e, ⊲,◦,⊲).

We take the elements of M as letters of the language L = M. A word of k letters

m = m1 . . . mk ∈ L⋆ is (partially) mapped to an element m◦ = m1 ◦ · · · ◦ mk ∈ M. The

fact that m◦ is defined or its value does not depend on the order upon which we perform

the compositions of the letters of m because of the associativity and commutativity

axioms of partial monoids. By definition, for the empty word, ǫ◦ is defined and ǫ◦ = e.

The binary relation ⊑ over L⋆ defined by m ⊑ n iff m◦ ↓ ∧ n◦ ↓ ∧ m◦ ⊲ n◦ is thus a PMO

over L. We define the BI-frame (L,⊑,⊑) by m ⊑ X iff m◦ ↓ ∧ m◦ ◦,⊲ X. Then, by

straightforward induction on BI formulae, it is possible to prove that m ⊑ F iff m◦ ↓ ∧
m◦ ◦,⊲ F . As ǫ◦ = e, if M is a Kripke counter-model of the formula F (i.e. e 1◦,⊲ F )

then (L,⊑,⊑) is also counter-model of the F (i.e. ǫ 1⊑ F ).

For the converse, let us consider a BI-frame (L,⊑,⊑). We define the partial equiva-

lence relation on L⋆ by ∼ = ⊑∩⊑−1, i.e. m ∼ n iff m ⊑ n ∧ n ⊑ m. We insist on the fact

that ∼ is not necessarily reflexive. Then we define M as the set of partial equivalence

classes of L⋆. Let [m] = {x ∈ L⋆ | m ∼ x} and M = {[m] | m ∈ L⋆ ∧ [m] 6= ∅}. The unit

e is the class [ǫ] which is not empty by rule 〈ǫ〉. The partial composition ◦ is defined by

[m]◦ [n] = [mn] and the partial order ⊲ is defined by [m] ⊲ [n] iff m ⊑ n. Then (M, ◦, e, ⊲)
is a partially ordered partial monoid. We define the Kripke structure (M, ◦, e, ⊲,◦,⊲) by

[m] ◦,⊲ X iff m ⊑ X. By straightforward induction on BI formulae, it is possible to

show that [m] ◦,⊲ F iff m ∈ L⊑ ∧ m ⊑ F . Hence, if (L,⊑,⊑) is a counter-model of

the formula F (i.e. ǫ 1⊑ F ) then M is a counter-model of F (i.e. [ǫ] 1◦,⊲ F ).

Theorem 3.13 (Completeness of PMEs w.r.t. BBI). A formula F of BBI is valid

in every partial monoid Kripke structure if and only if it is valid in every BBI-frame.

Proof. Straightforward adaptation of the previous proof to PMEs and BBI.

According to these two theorems, we can define universal validity and counter-models.

A BI-counter-model for F ∈ BI is a BI-frame in which ǫ 1⊑ F . A BI formula F is

universally valid (or BI-valid) when it has no BI-counter-model. A BBI-counter-model

for F ∈ BBI is a BBI-frame in which there exists m ∈ L∼ such that m 1∼ F . F is

universally valid (or BBI-valid) when it has no BBI-counter-model.

3.3. Sets of constraints and other properties of PMOs/PMEs

Defined by closure under some deduction rules, the classes of PMOs and PMEs are thus

closed under arbitrary intersection. Thus, given a binary relation R between words de-

scribed by a set of constraints, there exists a least PMO (resp. PME) containing R.

We are especially interested in PMOs/PMEs generated by some finite or infinite set of

constraints.
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Definition 3.14. Let L be an alphabet and C be a set of constraints over the alphabet

L.‡ The PMO generated by C is the least PMO denoted ⊑C such that the inclusion C ⊆ ⊑C

holds between those two sets of constraints. We also denote by ∼C the PME generated

by C which is the least PME such that C ⊆ ∼C .

For example, the PMO ⊑0 generated by the singleton constraint C0 = {ǫ −·····− a} is

⊑0 = {ǫ −·····− ǫ, ǫ −·····− a, a −·····− a} whereas the PMO ⊑1 generated by the singleton constraint

C1 = {a −·····− ǫ} is ⊑1 = {ai −·····− aj | i > j}. The PME generated by the singleton constraint

C0 = {ǫ −·····− a} is ∼0 = {ai −·····− aj | i, j ∈ N}. Proofs are left to the reader. By rule 〈s〉, ∼0

is also the PME generated by the singleton constraint C1 = {a−·····− ǫ}. Obviously, ⊑0 ⊂ ∼0

and ⊑1 ⊂ ∼0 and the inclusion is strict.

Considering two sets of constraints C ⊆ D, we have ⊑C ⊆ ⊑D and ∼C ⊆ ∼D. Also

⊑C ⊆ ∼C because ∼C contains C as a subset and, being a PME, is also a PMO.

Definition 3.15. Let R = ⊑ (resp. R = ∼) be a PMO (resp. PME). Let C be a set of

constraints. We denote by R + C the extension of R by the constraints of C which is the

least PMO (resp. PME) containing R ∪ C.

Let us insist on the fact that the meaning of the extension R + C depends whether

R is viewed as a PMO or a PME, especially since PMEs are also PMOs. Let R be a

PMO or a PME over the alphabet L and C1 and C2 be two sets of constraints over L then

(R+C1)+C2 = (R+C2)+C1 = R+(C1∪C2). These identities hold both for PMO extensions

and PME extensions and their proofs are trivial and left to the reader. Moreover, for any

m, n ∈ L⋆, the relation m R n holds if and only if the identity R + {m −·····− n} = R holds;

in particular R + {ǫ −·····− ǫ} = R.

Proposition 3.16. If C is a set of constraints over L then the inclusion ⊑C ⊆ ∼C and

the identity AC = A⊑C
= A∼C

hold.

Proof. For the first property, ∼C is a PME containing C hence also a PMO containing

C. For the second property, as C ⊆ ⊑C ⊆ ∼C as relations, we derive AC ⊆ A⊑C
⊆ A∼C

.

Thus it is a sufficient to prove that A∼C
⊆ AC . Let ∼ be defined by m ∼ n iff m, n ∈ A

⋆
C .

Then, A∼ = AC , C ⊆ ∼ and ∼ is a PME. Hence ∼C ⊆ ∼ and thus A∼C
⊆ A∼ = AC .

Proposition 3.17 (Compactness). Let C be a possibly infinite set of constraints over

the alphabet L. Let m, n ∈ L⋆ be such that m ⊑C n (resp. m ∼C n) holds. There exists

a finite subset Cf ⊆ C such that m ⊑Cf
n (resp. m ∼Cf

n) holds.

Proof. We do the proof for PMOs. It is similar for PMEs. Let C be a set of constraints.

Let the relation Rf be (the finite approximation of ⊑C) defined by m Rf n if and only

if there exists D ⊆ C such that D is finite and m ⊑D n. Obviously C ⊆ Rf ⊆ ⊑C . If we

show that Rf is a PMO then we get Rf = ⊑C which proves the proposition.

So let us prove that Rf is a PMO. For rule 〈ǫ〉, we have ǫ ⊑∅ ǫ and ∅ is a finite subset

of C, hence ǫ Rf ǫ. Thus Rf is closed under rule 〈ǫ〉. If x Rf y then, for some finite subset

‡ As C is also a relation, the alphabet of C is AC =
S

{Am ∪ An | m −·····− n ∈ C}, i.e. the set of letters

which occur in at least one of the constraints of C.
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D of C we have x ⊑D y. Then, as ⊑D is a PMO, we have x ⊑D x by rule 〈l〉 and y ⊑D y

by rule 〈r〉. Hence x Rf x and y Rf y and Rf is closed under rules 〈l〉 and 〈r〉. The same

reasoning applies to the unary rule 〈d〉. We consider the binary rule 〈t〉. If x Rf y and

y Rf z then there exist D and E , two finite subsets of C such that x ⊑D y and y ⊑E z.

Let F = D∪E . Then F is a finite subset of C and x ⊑F y and y ⊑F z, because ⊑D ⊆ ⊑F

and ⊑E ⊆ ⊑F . Thus x ⊑F z as ⊑F is closed under rule 〈t〉 and then x Rf z. Hence

the relation Rf is closed under rule 〈t〉. The same reasoning applies to the other binary

rule 〈c〉. Hence, the relation Rf is indeed a PMO.

This compactness property is not related to the particular nature of rules defining PMOs

or PMEs but solely to the fact that these rules only have a finite number of premisses.

Apart generating PMOs/PMEs from sets of constraints, we provide another basic way to

build them from sub-alphabets and derive a interesting property from it.

Proposition 3.18. Let L be an alphabet and X ⊆ L be a subset of L. Then:

1. ⊑X is a PMO over L where ⊑X is defined by m ⊑X n iff (n ∈ X⋆ ⇒ m ∈ X⋆);

2. ∼X is a PME over L where ∼X is defined by m ∼X n iff (n ∈ X⋆ ⇔ m ∈ X⋆).

Proof. The relation ⊑X is reflexive because the meta-logical implication ⇒ of its def-

inition is reflexive. So it is obviously closed under rules 〈ǫ, l, r, d〉. It is also transitive

because the meta-logical implication is transitive, hence ⊑X is closed under rule 〈t〉.
As mn ∈ X⋆ if and only if m, n ∈ X⋆, ⊑X is closed under rule 〈c〉: indeed, let m, n ∈ L⋆

such that m ⊑X n. If kn ∈ X⋆ then k, n ∈ X⋆. As n ∈ X⋆ and m ⊑X n, we deduce

m ∈ X⋆. Hence, k, m ∈ X⋆ and so km ∈ X⋆.

The inverse relation (⊑X)−1 is also a PMO for identical reasons. Then ∼X = ⊑X ∩
(⊑X)−1 is a PMO as intersection of two PMOs. The relation R∩R−1 is always symmetric

hence closed under rule 〈s〉. So ∼X is closed under rule 〈s〉, hence is a PME.

Proposition 3.19. Let C be a set of constraints on the alphabet L:

1. if no constraint of C is of the form m−·····− ǫ (with m 6= ǫ), then for any m ∈ L⋆, m ⊑C ǫ

only if m = ǫ;

2. if no constraint of C is of the form m−·····− ǫ or ǫ−·····−m (with m 6= ǫ), then for any m ∈ L⋆,

m ∼C ǫ only if m = ǫ.

Proof. We use Proposition 3.18 in the particular case where X = ∅ is the empty sub-

alphabet. For property 1, let us first prove that C ⊆ ⊑∅. Let m, n ∈ L⋆ be such that

m−·····−n ∈ C. Let us prove m ⊑∅n. As ∅⋆ = {ǫ}, if n ∈ ∅⋆ then n = ǫ and hence m−·····− ǫ ∈ C.

By the hypothesis on C, we must have m = ǫ and as a consequence m ∈ ∅⋆. So m ⊑∅ n

and we have proved that C ⊆ ⊑∅. As ⊑C is the least PMO containing C and ⊑∅ is a PMO

by property 1 of Proposition 3.18, we have ⊑C ⊆ ⊑∅. Now let us consider m ∈ L⋆ such

that m ⊑C ǫ. We deduce m ⊑∅ ǫ. As ǫ ∈ ∅⋆, we must have m ∈ ∅⋆ by definition of ⊑∅.

Thus we obtain m = ǫ.

For property 2, the reasoning is similar: we prove the inclusion C ⊆ ∼∅ from which we

deduce ∼C ⊆ ∼∅. Thus no m ∈ L⋆ such that m ∼C ǫ can exist unless m = ǫ.
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For the moment, we stop our investigation on the different methods to build PMOs

and PMEs. We will come back to it later when we will describe precisely how to compute

“freely generated” PMEs in Section 6.3. We have enough material to present the first

building block of our embedding of BI into BBI.

4. Linking PMOs/PMEs and the Kripke semantics of BI and BBI

We define the relation between PMOs and PMEs which is at the core of the embedding

of BI into BBI. First let us give an intuition of the design of this relation between PMOs

and PMEs.

The basic idea can be viewed as a variant of the embedding of intuitionistic SL into

classical SL. Indeed, in (Ishtiaq and O’Hearn 2001), the order relation chosen to interpret

implication intuitionistically is graph inclusion ⊆ between heaps:

m  A → B iff ∀h′ (h ⊆ h′ ∧ h′  A) ⇒ h′  B

But as composition is the disjoint union of graphs, we have the following relation:

h ⊆ h′ iff ∃g, g · h = h′

Thus h is below h′ if it is possible to compose h with something (g here), obtaining h′. Or

stated otherwise, h′ is identical to h upto some unspecified part (g here). We generalise

this idea in the following way: we restrict the choice of the missing part g to a space of

heaps which might be disjoint from the space of observable heaps, observable meaning

observable through the Kripke semantics.

4.1. Building PMOs with PMEs

In our words and constraints based semantics, heaps are abstracted by words. To dis-

tinguish observable words from potentially unobservable words, we divide the alphabet

L′ into two sub-alphabets L and K which may be disjoint, L⋆ representing observable

words and K⋆ unobservable words.

Definition 4.1. Let ∼ be a PME over L′ and L, K be two subsets of L′, i.e. L∪K ⊆ L′.

We define the relation ⊑L,K
∼ ⊆ L⋆ × L⋆ by:

m ⊑L,K
∼ n iff ∃δ ∈ K⋆, δm ∼ n

Thus, m is below n if m can be completed into n by some unobservable part δ. Then

we prove that the relation ∃δ ∈ K⋆, δm ∼ n defines a PMO over L provided the relation

∼ is a PME over L′. Obviously, if ∼ and ∼′ are two PMEs over L′ such that ∼ ⊆ ∼′ then

⊑L,K
∼ ⊆ ⊑L,K

∼′ .

Lemma 4.2. If ∼ is a PME over L′ then the relation ⊑ = ⊑L,K
∼ is a PMO over L, and

the identities A⊑ = A∼ ∩ L and L⊑ = L∼ ∩ L⋆ hold.

Proof. First, we remark that for any m ∈ L⋆, m ⊑ m if and only if m ∼ m: indeed,

δm ∼ m implies m ∼ m by rule 〈r〉. Thus, by Proposition 3.6, L⊑ = L∼ ∩ L⋆ and

A⊑ = A∼ ∩ L. Let us prove that ⊑ is a PMO.
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As m ⊑ m iff m ∼ m and ∼ is a PME, ⊑ is obviously closed under rules 〈ǫ〉 and 〈d〉.
If x ⊑ y then δx ∼ y for some δ ∈ K⋆. Then x ∼ x by rule 〈pl〉, and thus x ⊑ x. Hence

⊑ is closed under rule 〈l〉. With rule 〈pr〉 for ∼, we also show that ⊑ is closed under

rule 〈r〉. Let us consider rule 〈t〉. If x ⊑ y and y ⊑ z then δx ∼ y and δ′y ∼ z for some

δ, δ′ ∈ K⋆. Then δδ′ ∈ K⋆ and δδ′x ∼ z by application of rule 〈el〉, hence x ⊑ z. So ⊑
is closed under rule 〈t〉. Let us consider rule 〈c〉. If qy ⊑ qy and x ⊑ y then qy ∼ qy and

δx ∼ y for some δ ∈ K⋆. By rule 〈c〉, we get δqx ∼ qy. Then we have qx ⊑ qy. So ⊑ is

closed under rule 〈c〉.

Since we have a way to build PMOs starting from PMEs, several questions arise. For

example, is this construction process general enough to represent any PMO, i.e. is the map

(∼, L,K) 7→ ⊑L,K
∼ a surjective one ? Is it semantically compatible with some embedding

of BI into BBI, i.e. does it preserve Kripke semantics ? Let us first answer the second

question.

In the next two sections, we present a map F 7→ F ◦ from BI-formulae to BBI-formulae

and show that this map preserves the Kripke semantics provided the PMO ⊑ = ⊑L,K
∼

comes from a PME ∼.

4.2. An intuitive description of the map of BI-formulae to BBI-formulae

Before we introduce the map, we single out two logical variables L and K which behave

as the syntactical counterpart of the distinction between observable and unobservable

words. We point out that we have intentionally chosen to give the two variables L and

K the same name (i.e. same letters) as the sub-alphabets L and K which occur in the

definition of ⊑L,K
∼ , leaving the distinction in the choice of the font L/L and K/K. The link

between the (semantic) set of observable words and the (syntactic) variable L is enforced

by choosing ∼ such that x ∈ L⋆ iff x ∼ L. The same holds for K/K: x ∈ K⋆ iff x ∼ K

holds for any word x.

Let us informally explain the idea of the encoding of BI into BBI and its link between

observable and unobservable words. Let us suppose that the PMO ⊑ is of the form

⊑ = ⊑L,K
∼ for some PME ∼. The Kripke interpretation of m ⊑ A ∗ B is thus

∃a, b ∈ L⋆, ab ⊑ m ∧ a ⊑ A ∧ b ⊑ B

Using ⊑ = ⊑L,K
∼ , we transform this formula into

∃a, b ∈ L⋆, ∃δ ∈ K⋆, δab ∼ m ∧ a ⊑ A ∧ b ⊑ B

As we have chosen to encode the set L⋆ with the logical variable L in the Kripke semantics

∼, then we can exchange a ∈ L⋆ with a ∼ L (same for b/L/L and δ/K/K) and obtain

∃δ, a, b, δab ∼ m ∧ δ ∼ K ∧ a ∼ L ∧ a ⊑ A ∧ b ∼ L ∧ b ⊑ B

Now suppose (recursively) that there are two BBI-formulae A◦ and B◦ such that for any

x ∈ L⊑, x ⊑ A iff x ∼ A◦ and x ⊑ B iff x ∼ B◦. Exchanging a ⊑ A by a ∼ A◦

and b ⊑ B by b ∼ B◦ we obtain

∃δ, a, b, δab ∼ m ∧ δ ∼ K ∧ a ∼ L ∧ a ∼ A◦ ∧ b ∼ L ∧ b ∼ B◦
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or stated otherwise

m ∼ K ∗ (L ∧ A◦) ∗ (L ∧ B◦)

We see that we have to coerce a and b to range over observable words in L⋆ by stating

a ∼ L and b ∼ L (L⋆ are the words on which the BI formula A∗B is Kripke-interpreted)

whereas we coerce δ to range over unobservable words in K⋆ by stating δ ∼ K.

4.3. Formal definition of the embedding map of BI-formulae to BBI-formulae

We formalize these ideas into the recursively defined map F 7→ F ◦. The formulae on

which the map (·)◦ is applied should not contain occurences of either L or K to enforce

the distinction between observable and unobservable words.

Definition 4.3 (Embedding map). Let L and K be two different spare logical variables

in Var. Given F ∈ BI containing neither L nor K, we define by induction on F the formula

F ◦ ∈ BBI as follows:

X◦ =K ∗ X for X ∈ Var\{L,K} I◦ = K ∗ I ⊥◦ = ⊥ ⊤◦ = ⊤
(A � B)

◦
=A◦

� B◦ for � ∈ {∧,∨} (A ∗ B)
◦
=K ∗

(

(L ∧ A◦) ∗ (L ∧ B◦)
)

(A → B)
◦
=K −∗

(

(L ∧ A◦) → B◦
)

(A −∗ B)
◦
=

(

K ∗ (L ∧ A◦)
)

−∗ (L → B◦)

In fact, the formula F ◦ also belongs to the language of BI but it will be interpreted as

a BBI-formula, not as a BI-formula. We now state and prove that the map (·)◦ preserves

the Kripke semantics provided the PMO is of the form ⊑L,K
∼ .

Theorem 4.4. Let ∼ be a PME over L′ and L ∪ K ⊆ L′. Let (L,⊑,⊑) be a BI-frame

on Var\{L,K} such that ⊑ = ⊑L,K
∼ . We define the relation ∼ ⊆ L∼ × Var, by

m ∼ X iff ∃l ∈ L⋆, l ∼ m ∧ l ⊑ X for X ∈ Var\{L,K}
m ∼ K iff ∃δ ∈ K⋆, δ ∼ m

m ∼ L iff ∃l ∈ L⋆, l ∼ m

Then (L′,∼,∼) is a BBI-frame on Var and for any formula F of BI containing neither

K nor L and any m ∈ L⊑, the equivalence m ⊑ F iff m ∼ F ◦ holds.

Proof. We remind the reader that L⊑ = L∼ ∩ L⋆ (see Lemma 4.2). Let us first prove

that (L′,∼,∼) is a BBI-frame, i.e. that ∼ is monotonic. Let m, n ∈ L∼ such that

m ∼ n. If X ∈ Var\{L,K} and m ∼ X then there exists l ∈ L⋆ such that l ∼ m and

l ⊑ X. By rule 〈t〉, we obtain l ∼ n, hence n ∼ X. If m ∼ K then there exists δ ∈ K⋆

such that δ ∼ m. Then δ ∼ n hence n ∼ K. If m ∼ L then there exists l ∈ L⋆ such

that l ∼ m. Then l ∼ n hence n ∼ L. So ∼ is indeed monotonic.

We prove the equivalence of semantic interpretations by induction on F . The cases for

F of the form ⊥, ⊤, A ∧ B or A ∨ B are trivial because the Kripke interpretations are

obviously the same. We list the non-trivial cases:

F = X with X ∈ Var\{L,K}. Let m ∈ L⊑. On the one hand, if m ⊑ X then, as m ∈ L⋆

and m ∼ m, we have m ∼ X. As ǫ ∼ K and ǫm ∼ m, we obtain m ∼ K ∗ X,

hence m ∼ X◦. On the other hand, if m ∼ K ∗ X then there exist x, y such that

xy ∼ m, x ∼ K and y ∼ X. Then there exists δ ∈ K⋆ such that δ ∼ x and there
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exists l ∈ L⋆ such that l ∼ y and l ⊑ X. Then, by two applications of rule 〈el〉,
δl ∼ m, hence l ⊑ m. As l ⊑ X and ⊑ is monotonic, we obtain m ⊑ X;

F = I We have m ∼ K ∗ I iff m ∼ K iff ∃δ ∈ K⋆ δ ∼ m iff ǫ ⊑ m iff m ⊑ I;

F = A → B Let us suppose m ⊑ A → B with m ∈ L⊑ and prove m ∼ K −∗ ((L ∧
A◦) → B◦). Let k, c such that km ∼ c, k ∼ K and c ∼ L ∧ A◦. Let us prove

c ∼ B◦. From k ∼ K, we obtain δ ∈ K⋆ such that δ ∼ k. From c ∼ L, we get

l ∈ L⋆ such that l ∼ c. By monotonicity of ∼ and rule 〈s〉, from c ∼ A◦, we

deduce l ∼ A◦, hence l ⊑ A by induction hypothesis. As δm ∼ l, hence m ⊑ l, and

m ⊑ A → B, we deduce l ⊑ B, hence again by induction hypothesis, l ∼ B◦. As

l ∼ c, by monotonicity of ∼, we obtain c ∼ B◦. So from m ⊑ A → B, we deduce

m ∼ (A → B)
◦
.

Let us prove the converse implication. Let us suppose m ∼ K −∗ ((L ∧ A◦) → B◦).

Let x ∈ L⊑ such that m ⊑ x and x ⊑ A. Let us prove x ⊑ B. From x ⊑ A, we

deduce x ∼ A◦ by induction hypothesis. As x ∈ L⋆ and x ∼ x (x ∈ L⊑ ⊆ L∼), we

deduce x ∼ L ∧ A◦. As ǫ ∼ K and ǫx ∼ x, we deduce x ∼ B◦, hence x ⊑ B by

induction hypothesis. Hence m ⊑ A → B;

F = A ∗ B let us suppose m ⊑ A ∗ B with m ∈ L⊑. There exist x, y ∈ L⊑ such that

xy ⊑ m, x ⊑ A and y ⊑ B. As x, y ∈ L⋆, by induction hypothesis, we obtain

x ∼ L ∧ A◦ and y ∼ L ∧ B◦. Then, as xy ⊑ m, there exists δ ∈ K⋆ such that

δxy ∼ m. Then δ ∼ K, hence m ∼ K ∗ ((L ∧ A◦) ∗ (L ∧ B◦)).

On the other hand, let us suppose m ∼ K ∗ ((L∧A◦) ∗ (L∧B◦)). Then, there exists

k, a, b such that kab ∼ m, k ∼ K, a ∼ L ∧ A◦ and b ∼ L ∧ B◦. Then a ∼ L and

b ∼ L and there exists δ ∈ K⋆ and x, y ∈ L⋆ such that δ ∼ k, x ∼ a and y ∼ b.

By three applications of rule 〈el〉, δxy ∼ m, hence xy ⊑ m. By monotonicity of ∼

and rule 〈s〉, as a ∼ A◦ and b ∼ B◦, we obtain x ∼ A◦ and y ∼ B◦, hence by

induction hypothesis, x ⊑ A and y ⊑ B. Thus m ⊑ A ∗ B;

F = A −∗ B let us suppose m ⊑ A −∗ B with m ∈ L⊑. Let us prove m ∼ (K ∗ (L ∧
A◦))−∗ (L→B◦). So let c, d such that cm ∼ d, c ∼ K ∗ (L ∧A◦) and d ∼ L. Let us

prove that d ∼ B◦. There exist k, a such that ka ∼ c, k ∼ K, a ∼ L and a ∼ A◦.

Then there exists δ ∈ K⋆ and x ∈ L⋆ such that δ ∼ k and x ∼ a. By monotonicity,

x ∼ A◦, hence by induction hypothesis, we obtain x ⊑ A. Moreover δxm ∼ d by

three applications of rule 〈el〉. As d ∼ L, let y ∈ L⋆ such that y ∼ d. Then δxm ∼ y

by rule 〈er〉. Thus we have xm ⊑ y and m ⊑ A−∗B, and then y ⊑ B. By induction

hypothesis, we obtain y ∼ B◦ and by monotonicity d ∼ B◦. We have proved that

m ∼ (K ∗ (L ∧ A◦)) −∗ (L → B◦);

On the other hand, let us suppose m ∼ (K ∗ (L ∧ A◦)) −∗ (L → B◦). Let x, y ∈ L⊑

such that xm ⊑ y and x ⊑ A. Let us prove y ⊑ B. There exists δ ∈ K⋆ such

that δxm ∼ y. As x ∈ L⋆ and x ∼ A◦ (by induction hypothesis), we then obtain

x ∼ L ∧ A◦. As δ ∼ K and δx ∼ δx (by rule 〈pl〉), we get δx ∼ K ∗ (L ∧ A◦).

As δxm ∼ y, we derive y ∼ L → B◦. But y ∈ L⋆ thus y ∼ L, hence y ∼ B◦, so

y ⊑ B by induction hypothesis. We have proved that m ⊑ A −∗ B.

So we have inductively proved that for any m ∈ L⊑ and any formula F of BI containing

neither L nor K, m ⊑ F if and only if m ∼ F ◦.
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With this result, we have established the first step of our embedding of BI into BBI.

Indeed, provided a BI-counter-model of F can be chosen of the form ⊑L,K
∼ for some PME

∼, then we automatically obtain a BBI-counter-model of F ◦. So we are now going to study

more precisely the counter-models of BI based on PMOs to show that this condition is

not restrictive.

5. Tableau Proof Systems for BI and BBI

Tableau systems are refutation based procedures that produces statements like TA or FA.

Sometimes statements may also be written A or ¬A like in the reference textbook (Fitting

1990). The statement TA expresses the fact that the tableau refutation process tries to

build a model of the formula A whereas the statement FA expresses the fact that the

refutation process tries to build a counter-model of A.

Tableaux for a formula G are finite trees indexed with statements obtained by some

branch expansion process described by expansion rules and starting from the one node

tree FG. So a tableau for G contains the trace of a process that tries to refute G. The

formula A occuring in the statements TA or FA produced by the branch expansion

process are usually sub-formulae of the initial formula G, although it is not always the

case for some non-classical logics.

The expansion process works as following: to refute a branch γ0 = [. . . , FA ∨ B, . . .]

containing a statement FA ∨ B, γ0 is expanded into one branch [γ0, FA, FB] whereas to

refute a branch γ1 = [. . . , TA ∨ B, . . .] containing a statement TA ∨ B, γ1 is expanded

into two branches, [γ1, TA] and [γ1, TB]. These two instances of the branch expansion

process are represented by the two following branch expansion rules, F∨ on the left hand

side and T∨ on the right hand side:

FA ∨ B

FA

FB

TA ∨ B
❜
❜

✧
✧

TA TB

The justification of these rules corresponds to the following semantic arguments: for A∨B

to be invalid, it is required that A and B are invalid whereas for A ∨ B to be valid, it is

sufficient that either A or B is valid.

The expansion process stops either when branch expansion does not generate new

statements, and then the branch is called saturated ; or when a contradiction occurs like

in the branch [. . . , FA, . . . , TA, . . .], in which case the branch is called closed. It is not

possible to refute such a closed branch because the formula A cannot be both valid and

invalid. A tableau for G which only has closed branches is called a closed tableau and is

generally a witness of the universal validity of G, depending of course on the soundness

theorem for the tableau method.

When considering non-classical logics, it is sometimes useful to enrich statements with

labels like TA : m or FA : m. In TA : m, the label m carries some semantic information

about the world in which the Kripke forcing relation m  A holds. For intuitionistic logic

IL for example, labelled statements and unification of prefixes are sufficient to provide a
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sound and complete proof system (Otten and Kreitz 1996), although the system is based

on Wallen’s matrix characterization rather than the tableau method.

Unfortunately, labels alone do not carry enough information to provide a sound and

complete tableau proof system for BI. The statements also have to be enriched with con-

straints of the form m ⊑ n which are relations that are supposed to hold between labels.

A sound and complete labelled tableau proof system was proposed for BI in (Galmiche

and Méry 2003) and we briefly recall it in the next section. We also adapt the proof

system to BBI and prove its soundness. In fact, we propose a common framework to

describe BI- and BBI-tableaux.

5.1. Labelled tableaux with constraints for BI and BBI

We define the notion of tableau with constraints for BI (resp. BBI) providing a proof

system called TBI (resp. TBBI). We warn the reader that the following definition refers

to tableaux expansion rules, rules which are described a bit later and that he should not

jump on them before he is actually prepared to read them.

Definition 5.1 (TBI- and TBBI-tableaux). Let L be an alphabet. A TBI- (resp.

TBBI-) tableau with constraints for a formula G is a finite tree with nodes labelled either

by statements of the form SA : m where S ∈ {T, F}, A ∈ BI (resp. A ∈ BBI) and m ∈ L⋆

or by assertions which are constraints of the form m−·····−n where m, n ∈ L⋆, built according

to the following rules:

— the single node tree [FG : ǫ] is a TBI-tableau for G;

— the two nodes tree [a −·····− b, FG : a] is a TBBI-tableau for G whenever a 6= b ∈ L;

— any (maximal) branch of a tableau for G can be expanded according to the tableau

expansion rules of TBI (resp. TBBI).

We might speak of a tableau T without specifying formula G, simply meaning that T
is a tableau for some formula G (which can be recovered by reading at the root of the

tableau tree).

The tableau expansion rules for both TBI and TBBI are described in Tables 2 and 3. The

rules in Table 2 are common to both TBI and TBBI ({T, F}{∧,∨, ∗,−∗} and TI). Table 3

contains rules either specific to TBI ({T, F}→ on the left part) or TBBI ({T, F}{→,¬}
on the right part).

In these expansion rules, existing statements (like TA ∗ B : m in rule T∗) are decom-

posed into new statements (e.g. TA : a and TB : b) and new assertions (e.g. ass : ab−·····−m).

These are the products of the decomposition rule. Rules T∗ and F−∗ have a side condi-

tion: the letters a and b should be chosen new in the current tableau branch. Rule F∗
(resp. T−∗) has another kind of side condition: the words x and y should be chosen such

that the relation xy Rγ m (resp. xm Rγ y) holds with Rγ being either the PMO ⊑γ (for

TBI) or PME ∼γ (for TBBI) generated by the assertions of the current tableau branch γ.

For the rules which are specific to either TBI or TBBI, the side conditions are: in rule

F→, the letter b should be new; in rule T→, the word x should verify relation m ⊑γ x

where ⊑γ is the PMO generated by the current branch γ.
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TA ∧ B : m

TA : m

TB : m

TA ∨ B : m
❛
❛❛

✦
✦✦

TA : m TB : m

FA ∧ B : m
❛
❛❛

✦
✦✦

FA : m FB : m

FA ∨ B : m

FA : m

FB : m

TI : m

ass : ǫ −·····− m

TA ∗ B : m

ass : ab −·····− m

TA : a

TB : b

TA −∗ B : m

req : xm R y
❛
❛❛

✦
✦✦

FA : x TB : y

FA ∗ B : m

req : xy R m
❛
❛❛

✦
✦✦

FA : x FB : y

FA −∗ B : m

ass : am −·····− b

TA : a

FB : b

Table 2. Tableaux expansion rules which are common in TBI and TBBI, for the

additives (∧, ∨) in the upper part and for the multiplicatives ( I, ∗, −∗) in the

lower part.

TA → B : m

req : m ⊑ x
❛
❛❛

✦
✦✦

FA : x TB : x

TA → B : m
❛
❛❛

✦
✦✦

FA : m TB : m

T¬A : m

FA : m

FA → B : m

ass : m −·····− b

TA : b

FB : b

FA → B : m

TA : m

FB : m

F¬A : m

TA : m

Table 3. Tableaux expansion rules specific to TBI (on the left part) and tableaux

expansion rules specific to TBBI (on the right part).

The build process in tableau systems is based on the notion of branch expansion. This

process is explained in full details in Section 5.2, as well as how tableaux expansion rules

are supposed to be applied. We also explain how to build the PMO ⊑γ (resp. PME ∼γ)

generated by a branch γ of a tableau. The expansion process may stop when a closure

condition is fulfilled.

Definition 5.2 (Closure conditions). A branch γ of a TBI- or TBBI-tableau is closed

if one of the following condition is fulfilled for some propositional variable X ∈ Var and

some m, n ∈ L⋆:
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1. TX : m ∈ γ, FX : n ∈ γ and m Rγ n

2. FI : m ∈ γ and ǫ Rγ m

3. T⊥ : m ∈ γ

4. F⊤ : m ∈ γ

where Rγ is either ⊑γ or ∼γ depending on whether we consider a TBI- or TBBI-tableau.

If a branch is not closed, then it is open. A tableau is closed if all its branches are closed.

5.2. Explanations on tableau proof rules and the branch expansion process

Each branch γ of a tableau tree contains a sequence of assertions and statements. Asser-

tions are constraints and we collect them in a sequence or set of constraints Cγ (the order

or potential duplication of constraints is indifferent). The PMO ⊑γ = ⊑Cγ
(resp. PME

∼γ = ∼Cγ
) is associated to the branch γ: hence ⊑γ/∼γ is the PMO/PME generated by

the assertions of γ (see Section 6.2 for an example). We also denote by Aγ the alphabet

A⊑γ
(resp. A∼γ

) of the relation ⊑γ (resp. ∼γ), which is exactly the set of letters that

occur in the assertions of Cγ (see Proposition 3.16).

As explained in the previous section, some of the rules of the two systems are common

(see Table 2) while others are different (see Table 3). The rules which differ are T→,

F→,§ and of course T¬ and F¬ because ¬A is not a BI formula. The fact that some rules

have the same shape for TBI and TBBI does not imply that they can always be used

when the constraints in the branch are identical: the corresponding PMO ⊑γ and PME

∼γ may differ, implying different situations for the side conditions. Indeed, some rules

have a requirement x R y that imposes the condition x ⊑γ y (R = ⊑γ) in TBI, whereas

the condition is x ∼γ y (R = ∼γ) in TBBI. And of course, ⊑γ and ∼γ are generally not

identical relations. Let us further comment on the assertions x−·····− y and the requirements

x R y that occur in the tableaux expansion rules:

— the former assertion x−·····− y indicates that the constraint x−·····− y should be added to the

branch as well. The concerned rules are TI : m, TA ∗ B : m, FA −∗ B : m (for both

TBI and TBBI) and also FA → B : m (but just for TBI). Let us consider the example

of rule TA ∗ B : m for TBI. It can be applied to a branch γ of a tableau provided

the statement TA ∗ B : m occurs in γ (not necessarily at the leaf of γ) and, as a side

condition, the letters a 6= b ∈ L are new to γ, i.e. a, b 6∈ Aγ . Then γ is expanded into

§ The TBI-rules T→ and F→ are also valid and even complete for BBI but they are profitably replaced

with simpler rules because A→B is logically equivalent to ¬A∨B in BBI (see Proposition 3.9) whereas
this equivalence does not hold in BI.
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the one branch [γ, ab −·····− m, TA : a, TB : b] as displayed below:

...√
α TA ∗ B : m

...
γ

assα : ab −·····− m

TA : a

TB : b

— the latter requirement x R y is just a side condition that should be fulfilled so that

the expansion rule could be applied. For example in the case of TBBI, to apply rule

TA −∗ B : m to the branch γ, the statement TA −∗ B : m should occur in γ and the

chosen words x, y ∈ L⋆ should verify xm ∼γ y, R being interpreted as R = ∼γ . Then

the branch γ can be expanded into the two branches [γ, FA : x] and [γ, TB : y] as

displayed below:

...√
β TA −∗ B : m

...
γ

reqβ : xm ∼γ y
❛
❛❛

✦
✦✦

FA : x TB : y

We point out that we generally tag the tableau trees with requirements (like reqβ

generally displayed in a grey box ) and history information (like
√

α,
√

β and α, β in

assα and reqβ) so that it is easier for the reader to check which rule is applied and why

the conditions for its application are fulfilled. Formally, requirements and history are not

part of tableau trees. On the other hand, assertions are not boxed but displayed prefixed

with ass. Contrary to requirements, assertions are critical bits of semantic information,

not just a guideline for checking that the tableau tree is well formed. Finally, statements,

which also constitute critical bits of information, are not prefixed because they always

start with either T or F.

Proposition 5.3. For any branch γ in a TBI- (resp. TBBI-) tableau, if the statement

SF : m occurs in γ then the relation m ⊑γ m (resp. m ∼γ m) holds.

Proof. By induction on the tableau expansion process using rules 〈pl, pr〉. The only

tableaux rules that introduce statements with new labels are:

— T∗ (resp. F−∗) but in this case the labels a and b are defined by the assertion ab−·····−m

(resp. am−·····− b), i.e. if R′ = R + {ab−·····−m} (resp. R′ = R + {am−·····− b}) then a R′ a and

b R′ b whether R ≡ ⊑ is a PMO (for TBI) or R ≡ ∼ is a PME (for TBBI). Simply

apply the rules 〈pl, pr〉;
— F∗ (resp. T−∗) but in this case the labels x and y must already be defined because
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xm R y (resp. xm R y) implies x R x and y R y whether R is a PMO (for TBI) or

PME (for TBBI);

— T→ (for TBI) but in this case the label x must already be defined because m ⊑ x

implies x ⊑ x;

— F→ (for TBI) but in this case the label b is defined by the assertion m −·····− b, i.e. if

⊑′ = ⊑ + {m −·····− b} then b ⊑′ b.

The other tableau expansion rules introduce statements with labels that must already

exist in a previous statement in the branch γ, hence we must already have m ⊑γ m (resp.

m ∼γ m) by induction hypothesis. For example, for rule ∨, the statement TA ∨ B : m

must already occur in the branch γ before the rule is applied producing the two branches

[γ, TA : m] and [γ, TB : m].

5.3. Elementary and simple PMOs/BI frames

The TBI-tableau method provides some insights into the semantics of BI. Indeed, the

TBI-tableau rules which introduce assertions, namely F→, TI, T∗ and F−∗, do not intro-

duce constraints of arbitrary form. We collect all the possible forms into the following

definitions and Proposition 5.7 proves that our gathering is adequate.

Definition 5.4. Given a PMO ⊑ over L, a constraint is BI-elementary w.r.t. ⊑ when it

is of one of the five following forms:

1. ab −·····− m with m ⊑ m, m 6= ǫ and a 6= b ∈ L\A⊑;

2. am −·····− b with m ⊑ m and a 6= b ∈ L\A⊑;

3. m −·····− b with m ⊑ m and b ∈ L\A⊑;

4. ǫ −·····− m with m ⊑ m and m 6= ǫ;

5. ǫ −·····− ǫ.

Let (xi −·····− yi)i<k be a sequence of constraints with k ∈ N ∪ {∞} and Cp be the set of

constraints Cp = {xi−·····−yi | i < p} for p < k. We suppose that for any p < k, the constraint

xp −·····− yp is BI-elementary with respect to ⊑Cp
(resp. ∼Cp

). If k < ∞ then the sequence

(xi −·····− yi)i<k is called BI-elementary. This definition implies in particular that the empty

sequence of constraints is BI-elementary. If k = ∞ then the sequence (xi −·····− yi)i<∞ is

called BI-simple.

Definition 5.5. A PMO is BI-elementary (resp. BI-simple) if it is of the form ⊑C where

C = {xi −·····− yi | i < k} and (xi −·····− yi)i<k is a BI-elementary (resp. BI-simple) sequence of

constraints.

We make the obvious following remark. According to those definitions, if ⊑ is a BI-

elementary PMO and the constraint x −·····− y is BI-elementary w.r.t. ⊑ then the PMO

extension ⊑ + {x −·····− y} is a BI-elementary PMO.

Using case 5 (ǫ −·····− ǫ) of Definition 5.4, any finite BI-elementary sequence can be com-

pleted into a infinite BI-simple sequence by repeated use of the constraint ǫ −·····− ǫ. Since

adding this constraint does not change the corresponding PMO (because of rule 〈ǫ〉),
BI-elementary PMOs are also BI-simple. Of course, the converse is not true. Indeed, the
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language of a BI-elementary PMO is always finite whereas the language of a BI-simple

PMO can be infinite. So the difference between BI-elementary and BI-simple PMOs is

that in the later case, the underlying sequence can be infinite whereas it must be finite

for BI-elementary PMOs.

Let us now prove that the PMOs occuring in the branches of TBI-tableau are BI-

elementary. But we must first establish that m ⊑ ǫ never holds for BI-elementary PMOs

unless of course m = ǫ.

Proposition 5.6. If ⊑ is a BI-elementary or BI-simple PMO over L, then for any m ∈ L⋆,

m ⊑ ǫ only if m = ǫ.

Proof. According to the definition of BI-elementary constraints, they can be of the

form m −·····− ǫ only if m = ǫ (case 5 of Definition 5.4). So we can apply property 1 of

Proposition 3.19.

Proposition 5.7. Statements of the form TF : ǫ for some F ∈ BI never occur in a

TBI-tableau and for every branch γ of a TBI-tableau the sequence of assertions occurring

in γ is BI-elementary.

Proof. The proof of these two properties is done by mutual induction on the TBI-

tableau construction process for G. Of course, the properties are valid for the single node

TBI-tableau [FG : ǫ]. Indeed there is only one branch γ = [FG : ǫ] which has no assertion,

the empty sequence of constraints is BI-elementary, and TF : ǫ does not occur in γ.

Then we consider tableau expansion rules. The only rules that may introduce a state-

ment of the form TF : ǫ are T∧, T∨, T→ and T−∗:
— For T∧ (resp. T∨) it would mean that TA ∧ B : ǫ (resp. TA ∨ B : ǫ) already occurs

in the branch which is false by induction;

— For TA → B : m, it would mean that m ⊑γ ǫ holds. But by Proposition 5.6, since

⊑γ is BI-elementary by induction hypothesis, we must have m = ǫ, hence TA → B : ǫ

occurs in γ which contradicts the induction hypothesis;

— For TA −∗ B : m, it would mean that xm ⊑γ ǫ holds and then xm = ǫ which implies

m = ǫ and thus TA −∗ B : ǫ occurs in γ, contradiction.

So we have proved that branch expansion cannot introduce TF : ǫ in a branch. We now

prove that the sequences of assertions remain BI-elementary in the expanded branches.

Four rules introduce new assertions: T∗, F−∗, F→ and TI. The corresponding constraints

are respectively ab −·····− m, am −·····− b, m −·····− b and ǫ −·····− m. It is not a coincidence that these

are exactly the four first constraint types BI-elementary w.r.t. ⊑γ , see Definition 5.4. In

the case of ab −·····− m or ǫ −·····− m, we have m ⊑γ m by Proposition 5.3 and we have m 6= ǫ

because otherwise TA ∗ B : ǫ or TI : ǫ would occur in γ which contradicts the induction

hypothesis.

So we have singled out a sub-class of PMOs, namely BI-elementary PMOs and their

limits BI-simple PMOs, which are those that occur in the branches of TBI-tableau trees.

In the following sections, we will exploit this sub-class and its properties to establish a

direct link between the models of BI and those of BBI.
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5.4. Soundness and completeness of the TBI-tableau system

We state the completeness of the TBI-tableau method for BI. We also state that the class

of BI-simple PMOs is complete for BI and hence, BI-counter-models can always be chosen

BI-simple. The proof of the following theorems can be found in (Galmiche et al. 2005)

and in Daniel Méry’s thesis (Méry 2004).

Theorem 5.8 (Soundness and completeness of TBI). Provided the alphabet L is

infinite, there exists a closed TBI-tableau for the formula G if and only if G is a BI-valid

formula.

Theorem 5.9 (Completeness for simple PMOs). Every invalid formula of BI has a

BI-counter-model of the form of the BI-frame (L,⊑,) where ⊑ is a BI-simple PMO.

The idea is that the counter-model is extracted from an open, satured and potentially

infinite branch of a TBI-tableaux sequence. This counter-model is composed of the infinite

sequence of assertions occurring the branch and is thus a BI-simple PMO.

5.5. Soundness of the TBBI-tableau system

Soundness and completeness also hold for the TBBI-tableau system. However, there is

no published proof of these results for the moment. In this section, we give a soundness

proof for the TBBI-tableau system w.r.t. BBI-frames. We do not provide the proof of

completeness for two reasons:

— first reason: we do not need completeness for our purpose of embedding BI into BBI,

we only need soundness of the TBBI-tableau system;

— second reason: the completeness proof is much more complicated than the soundness

proof. In particular, it involves the manipulation of infinite branches of tableaux. In

this article, we have chosen a definition of tableaux as finite trees because the defini-

tion suits better for graphical representation as in Section 7.1. For the formalization

of the completeness proof, it is much easier to represent tableaux as sets of branches,

the branches being finite or infinite sets of statements.

The soundness proof is decomposed as usual into two parts. First, we prove that branch

expansion preserves realizability. Then we show that closed branches are not realizable.

We consider TBBI-tableaux over the alphabet L and BBI-frames over the alphabet K

where L and K are not necessarily identical. So in statements SF : m or assertions m−·····−n,

m, n belong to L⋆ whereas the relation q  F or q 1 F in the frame (K,∼,) involves

q belonging to K⋆. Given a total map ρ : L −→ K⋆, for m = m1 . . . mp ∈ L⋆, we define

mρ = ρ(m1) . . . ρ(mp) and obtain a morphism of (commutative) monoids (·)ρ : L⋆−→K⋆.

Given K = (K,∼,, ρ), we say that the statement TA : m (resp. FA : m) is satistisfied

in K if mρ ∈ L∼ and mρ  A (resp. mρ 1 A). We say that the assertion m −·····− n is

satistisfied in K if mρ ∼ nρ.

Definition 5.10. We say that a branch of a tableau is satisfied in K = (K,∼,, ρ) if

all its statements and all its assertions are satisfied in K. We say a tableau T for G is

realizable if there exists K such that at least one of the branches of T is satisfied in K.
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Proposition 5.11. If a branch γ of T is satisfied in K = (K,∼,, ρ) and m, n ∈ L⋆

verify m ∼γ n then mρ ∼ nρ.

Proof. As all the assertions of γ are satisfied in K, the binary relation ∼′ ⊆ L⋆ ×
L⋆ defined by m ∼′ n iff mρ ∼ nρ contains all the assertions of γ. Moreover, it is

straightforward to prove that the relation ∼′ is a PME over L from the fact that ∼ is a

PME over K and m 7→ mρ is a morphism of monoids. Hence, since ∼γ is the least PME

containing all the assertions of γ, we have ∼γ ⊆ ∼′.

If a branch γ is satisfied in K then all of its requirements, i.e. all the constraints in the

PME ∼γ , are also satisfied in K. Moreover, if SA : m ∈ γ then, by Proposition 5.3 we

have m ∼γ m, hence mρ ∼ mρ.

Proposition 5.12. Closed TBBI-tableaux are not realizable.

Proof. We prove that a closed branch γ cannot be satisfied in any (K,∼,, ρ). Let us

suppose the contrary and proceed by case analysis on the closure condition:

— if TX : m ∈ γ, FX : n ∈ γ and m ∼γ n then, as γ is satisfied in K, we have

mρ ∼ nρ by Proposition 5.11. Moreover, both TX : m and FX : n are satisfied and

thus mρ  X and nρ 1 X. As mρ ∼ nρ, we obtain a contradiction by monotonicity

of ;

— if FI : m ∈ γ and ǫ ∼γ m then, as γ is satisfied in K, we have ǫ = ǫρ ∼ mρ and mρ 1 I.

But then, we should have ǫ ≁ mρ. Thus we obtain a contradiction;

— if T⊥ : m ∈ γ then, as γ is satisfied in K, we have mρ ∼ mρ and mρ  ⊥ which is

impossible;

— if F⊤ : m ∈ γ then, as γ is satisfied in K, we have mρ ∼ mρ and mρ 1 ⊤ which is

impossible.

So we obtain a contradiction in any case. A closed branch cannot be satisfied. Thus closed

TBBI-tableaux are not realizable.

Lemma 5.13. TBBI-tableaux expansion rules preserve realizability.

Proof. Let T be a realizable BBI-tableau and let K = (K,∼,, ρ) be such that at least

one branch of T is satisfied in K. We consider the expansion of one of the branches of T
by one of the rules of the TBBI-tableau system. If the expanded branch is not among the

satisfied ones then the satisfied branches are unchanged by the application of the rule

and the obtained tableau T ′ is thus still realizable.

So we consider the case when the branch γ we expand is among the satisfied ones. We

proceed by case analysis depending on the rule applied:

T¬A : m is satisfied in K hence mρ ∈ L∼ and mρ  ¬A. Thus mρ 1 A and FA : m is

satisfied in K. So the new branch [γ, FA : m] of T ′ is satisfied in K;

F¬A : m similar to case T¬;

TA ∧ B : m is satisfied in K hence mρ ∈ L∼ and mρ  A∧B. Then mρ  A and mρ  B

hence TA : m and TB : m are satisfied in K. So the new branch [γ, TA : m, TB : m]

of T ′ is satisfied in K;
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FA ∧ B : m is satisfied in K hence mρ ∈ L∼ and either mρ 1 A or mρ 1 B. Hence

either FA : m or FB : m is satisfied in K. So at least one of the two new branches of

T ′ (namely [γ, FA : m] or [γ, FB : m]) is satisfied in K;

TA ∨ B : m similar to case F∧;

FA ∨ B : m similar to case T∧;

TA → B : m similar to case F∧;

FA → B : m similar to case T∧;

TI : m is satisfied in K hence mρ ∈ L∼ and mρ  I. Thus ǫ ∼ mρ. As ǫρ = ǫ, we obtain

ǫρ ∼ mρ and thus the assertion ǫ −·····− m is satisfied in K. So the new branch [γ, ǫ −·····− m]

of T ′ is satisfied in K;

TA ∗ B : m is satisfied in K hence mρ ∈ L∼ and mρ  A ∗B. So there exists x, y ∈ L∼

such that xy ∼ mρ, x  A and y  B. We define ρ′ = ρ[a 7→ x, b 7→ y] (possible

because a 6= b). Then for any m, n ∈ L⋆ s.t. m ∼γ n we have m, n ∈ A
⋆
γ and thus

mρ′ = mρ and nρ′ = nρ (ρ and ρ′ are identical maps when restricted to Aγ because

a, b 6∈ Aγ). Thus γ is satisfied in K′ = (K,∼,, ρ′). Moreover, ab−·····−m is satisfied in K′

(because (ab)ρ′ = xy, mρ′ = mρ and xy ∼ mρ), TA : a is satisfied (because aρ′ = x

and x  A), and TB : b is satisfied (because bρ′ = y and y  B). So the (new) branch

[γ, ab −·····− m, TA : a, TB : b] of T ′ is satisfied in K′;

FA ∗ B : m is satisfied in K hence mρ ∈ L∼ and mρ 1 A ∗ B. γ is expanded into

two branches [γ, FA : x] and [γ, FB : y] with xy ∼γ m. Then xρyρ ∼ mρ and thus

xρ, yρ ∈ L∼. So either xρ 1 A or yρ 1 B. Thus at least one of the two new branches

of T ′ (namely [γ, FA : x] and [γ, FB : y]) is satisfied in K;

TA −∗ B : m similar to case F∗;
FA −∗ B : m similar to case T∗.

So in any case, there exists a satisfiable branch in T ′ and thus T ′ is realizable.

Theorem 5.14 (Soundness of TBBI). If there exists a closed TBBI-tableau for the

formula G then G is a valid BBI formula.

Proof. Let us suppose that G has a counter-model (K,∼,), i.e. there exists m ∈ L∼

such that m 1 G. Then, for c0 6= d0 ∈ L, the unique branch of the TBBI-tableau

[c0 −·····− d0, FG : c0] is satisfied in (K,∼,, ρ) where ρ = x 7→ m (in particular ρ(c0) =

ρ(d0) = m). Any initial TBBI-tableau for G is thus realizable. Hence, as branch expansion

preserves realizability, all the TBBI-tableaux for G are realizable. Thus G cannot have a

closed TBBI-tableau.

6. Representing simple PMOs by PMEs

In Section 4.1, we have presented the map ∼ 7→ ⊑L,K
∼ which transforms a PME into a

PMO. We asked ourself the question of whether this transformation is general enough to

produce any PMO. We do not know the answer to this question yet and won’t provide

an answer in this article. But we have a positive answer in the case of BI-simple PMOs.

This is what we develop in this section.
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6.1. Elementary and simple PMEs

We introduce the notion of BBI-elementary and BBI-simple PMEs similary to the case

of PMOs. But there is a major difference between the two cases. BI-elementary (and

BI-simple) PMOs were designed to capture those PMOs occuring in TBI-tableau proofs.

BBI-elementary (and BBI-simple) PMEs are not designed to capture the PMEs occuring

in TBBI-tableau proofs. They do not fit for such a goal as explained later in Section 6.2.

The study of the properties of PMEs occuring in TBBI-tableau proofs is way off the scope

of this article.

BBI-elementary (and BBI-simple) PMEs are in fact specifically designed to represent

BI-elementary (and BI-simple) PMOs through the map ∼ 7→ ⊑L,K
∼ and the notion of

(L, K,M) elementary representation defined in Section 6.5.

Definition 6.1. Given a PME ∼ over L, a constraint is BBI-elementary w.r.t. ∼ when

it is of one of the five following forms:

1. ab −·····− m with m ∼ m, m ≁ ǫ and a 6= b ∈ L\A∼;

2. am −·····− b with m ∼ m and a 6= b ∈ L\A∼;

3. m −·····− b with m ∼ m, m ≁ ǫ and b ∈ L\A∼;

4. ǫ −·····− b with b ∈ L\A∼;

5. ǫ −·····− ǫ.

Let (xi −·····− yi)i<k be a sequence of constraints with k ∈ N ∪ {∞} and Cp be the set

of constraints Cp = {xi −·····− yi | i < p} for p < k. We suppose that for any p < k, the

constraint xp −·····− yp is BBI-elementary with respect to ⊑Cp
(resp. ∼Cp

). If k < ∞ then the

sequence (xi −·····− yi)i<k is called BBI-elementary. If k = ∞ then the sequence (xi −·····− yi)i<∞

is called BBI-simple.

Definition 6.2. A PME is BBI-elementary (resp. BBI-simple) if it is of the form ∼C

where C = {xi −·····− yi | i < k} and (xi −·····− yi)i<k is a BBI-elementary (resp. BBI-simple)

sequence of constraints.

We make the obvious following remark. According to those definitions, if ∼ be a BI-

elementary PME and the constraint x −·····− y is BBI-elementary w.r.t. ∼ then the PME

extension ∼ + {x −·····− y} is BBI-elementary. Using case 5 of Definition 6.1, any finite BBI-

elementary sequence can be completed into a infinite BBI-simple sequence by repeated

use of the constraint ǫ −·····− ǫ. Hence, BBI-elementary PMEs are also BBI-simple.

6.2. A PME occuring in a TBBI-tableau which is not simple

Let us present an example of PME which is not BBI-simple, but nevertheless coming

from a branch of a TBBI-tableau: we remind the reader that contrary to BI-elementary

and BI-simple PMOs, BBI-elementary and BBI-simple PMEs are not designed to capture

those PMEs generated by TBBI-tableaux.

Consider the set of constraints C = {c0 −·····− d0, ǫ −·····− c0, ab −·····− c0}. In the given order,

it is obvious that this sequence of contraints is not BBI-elementary: ǫ −·····− c0 is not BBI-

elementary w.r.t. ∼{c0−·····−d0} = {ǫ−·····− ǫ, c0 −·····− c0, d0 −·····− d0, c0 −·····− d0} because c0 is not new. But
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this does not prove that the corresponding PME ∼C is not BBI-elementary or BBI-simple.

This sequence of constraints arise as the sequence of assertions of the unique branch of

the following TBBI-tableau for ¬(I ∧ A ∗ B):

ass0 : c0 −·····− d0√
1

F¬
(

I ∧ (A ∗ B)
)

: c0

√
2

TI ∧ (A ∗ B) : c0

√
3

TI : c0√
4

TA ∗ B : c0

ass3 : ǫ −·····− c0

ass4 : ab −·····− c0

TA : a

TB : b

It is possible to compute the form of the PME ∼C explicitly. Indeed, the reader can check

the following identity by double inclusion:

∼C =
{

ai0bj0x −·····− ai1bj1y | i0 + j1 = i1 + j0 and x, y ∈ {c0, d0}⋆
}

arguably after a certain amount of work. Then, it is obvious to check that a2 ∼C a2 and

a ≁C ǫ. The one letter word a is squarable in ∼C but nevertheless not equivalent to ǫ.

Then, according to Corollary 6.10 (coming later), the PME ∼C cannot be BBI-simple. It

is nevertheless associated to some branch of a TBBI-tableau.

This example points out the conceptual differences between BI-elementary PMOs which

capture those PMOs occuring in TBI-tableaux and BBI-elementary PMEs which do not

capture those PMEs occuring in TBBI-tableaux. The role played by BBI-elementary PMEs

and the justification of the introduction of this concept will become clearer when elemen-

tary representations will be introduced in Section 6.5.

6.3. Free PME extensions

To be able to prove further properties of BBI-elementary and BBI-simple PMEs, we now

introduce general results which explicitly compute “free” PME extensions like ∼+ {ab−·····−
m} or ∼ + {am −·····− b} where m is already defined in ∼ (i.e. m ∼ m) and a 6= b are two

letters new to ∼ (i.e. a ≁ a and b ≁ b).

The three following results are essential as a basis for reasoning about those “free”

PME extensions. The case ∼+ {α−·····−m} covers both the extension ∼+ {ab−·····−m} (where

a and b are new) and ∼+ {m−·····− b} (where b is new). Apart for the first one ∼+ {ǫ−·····− b},
neither the shape of ∼ + {α −·····− m} nor that of ∼ + {αm −·····− b} nor the hypotheses on m,

α and b are obvious.

Their tedious proofs are done by basic arguments. They are provided to be complete,

but are postponed in Appendix A because they are quite long and we feel that they

would distract the reader at this point.
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Proposition 6.3 (∼ + {ǫ −·····− b}). Let ∼ be a PME over L and b be new to ∼, i.e.

b ∈ L\A∼. Then ∼ + {ǫ −·····− b} = ∼′ with ∼′ =
{

bpx −·····− bqy | x ∼ y ∧ p, q > 0
}

and

A∼′ = A∼ ∪ {b}.

Lemma 6.4 (∼ + {α −·····− m}). Let ∼ be a PME over L. Let m ∈ L⋆ and α ∈ L⋆ such

that m ∼ m, mm ≁ mm, α 6= ǫ and Aα ∩ A∼ = ∅. Then ∼ + {α −·····− m} = ∼′ with

∼′ = ∼ ∪
{

δx −·····− δy | x ∼ y ∧ mx ∼ my ∧ δ ≺ α ∧ δ 6∈ {ǫ, α}
}

∪
{

αx −·····− αy | mx ∼ my
}

∪
{

αx −·····− y | mx ∼ y
}

∪
{

x −·····− αy | x ∼ my
}

and A∼′ = A∼ ∪ Aα.

Lemma 6.5 (∼ + {αm −·····− b}). Let ∼ be a PME over L. Let m ∈ L⋆, α ∈ L⋆, b ∈ L

such that m ∼ m, α 6= ǫ, Aα ∩ A∼ = ∅ and b 6∈ A∼ ∪ Aα. Then ∼ + {αm −·····− b} = ∼′ with

∼′ = ∼ ∪
{

δx −·····− δy | x ∼ y ∧ ǫ 6= δ ≺ α ∧ ∃k xk ∼ m
}

∪
{

αx −·····− jb | x ∼ jm ∧ ∃k jkm ∼ m
}

∪
{

ib −·····− αy | y ∼ im ∧ ∃k ikm ∼ m
}

∪
{

ib −·····− jb | ∃k (ikm ∼ m ∧ jkm ∼ m)
}

and A∼′ = A∼ ∪ Aα ∪ {b}.

6.4. No square in simple PMEs

We remark that one of the hypothesis on m in the free PME extension ∼ + {ab −·····− m} is

that the square of m is not defined in ∼, i.e. mm ≁ mm, see Lemma 6.4 with α = ab.

To be able to use the equation of this lemma to compute BBI-elementary PMEs, we first

establish that they do not contain squares, in a kind of relaxed way.

Definition 6.6. Let ∼ be a PME over L. We define I∼ = {i ∈ L | i ∼ ǫ}. We say that

∼ has no square if for any letter c ∈ L, cc ∼ cc only if c ∼ ǫ.

This is not exactly the same as stating that no word can be squared unless it is ǫ. But

this amounts to stating that no word m can be squared unless it is equivalent to ǫ (i.e.

m ∼ ǫ). The set I∼ is the set of letters which are equivalent to ǫ as one letter words.

Proposition 6.7. If the PME ∼ over L has no square then the following properties hold:

1. for any m ∈ L⋆, we have mm ∼ mm iff m ∈ I
⋆
∼ iff m ∼ ǫ;

2. for any i, k, m ∈ L⋆, if m ∼ m then ikm ∼ m iff i ∼ ǫ ∧ k ∼ ǫ;

3. for any i, j ∈ I
⋆
∼, m, n ∈ L⋆, we have im ∼ jn iff m ∼ n.

Proof. Let us define I = I∼. For property 1, let m ∈ L⋆. If mm ∼ mm, let us consider

two cases: m = ǫ and m 6= ǫ. If m = ǫ then m ∈ I⋆. If m 6= ǫ, let c be a letter of m. Then

cm′ = m for some m′ ∈ L⋆. We get cm′cm′ ∼ cm′cm′, hence cc ∼ cc by rule 〈d〉. So

c ∈ I. As c ∈ I for any letter of m, we deduce m ∈ I⋆. Hence, mm ∼ mm only if m ∈ I⋆.

Let us now suppose m ∈ I⋆. We prove that m ∼ ǫ by induction on the length of m. If

m = ǫ then m ∼ ǫ by rule 〈ǫ〉. Otherwise m = cm′ with c ∈ I and m′ ∈ I⋆. By induction
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we have m′ ∼ ǫ. As c ∈ I, we have c ∼ ǫ. By rule 〈el〉, from ǫm′ ∼ ǫ we deduce cm′ ∼ ǫ

hence m ∼ ǫ. So m ∈ I⋆ only if m ∼ ǫ.

Let us now suppose m ∼ ǫ. Then from ǫm ∼ ǫ we deduce mm ∼ ǫ by rule 〈el〉. Hence

mm ∼ mm by rule 〈l〉. So we have proved property 1.

For property 2, let i, k, m ∈ L⋆ such that m ∼ m. On the one hand, if ikm ∼ m

then ik(ikm) ∼ m by rule 〈el〉. Hence (ik)(ik) ∼ (ik)(ik) by rule 〈pl〉. Thus ik ∈ I⋆ by

property 1. Thus i, k ∈ I⋆ and then i ∼ ǫ and k ∼ ǫ. On the other hand, if i ∼ ǫ and

k ∼ ǫ, then from ǫǫm ∼ m, we get ikm ∼ m by two applications of rule 〈el〉.
For property 3, we have both i ∼ ǫ, j ∼ ǫ, ǫ ∼ i and ǫ ∼ j by property 1 and rule 〈s〉.

The equivalence is obtained by application of rules 〈el〉 and 〈er〉.

When ∼ has no square, the explicit form of the PME extension ∼ + {am −·····− b} can be

simplified a bit.

Proposition 6.8. Let ∼ be a PME over L, m ∼ m and a 6= b ∈ L\A∼. If ∼ has no

square then the following identity holds:

∼ + {am −·····− b} = ∼ ∪ {ax −·····− ay | x ∼ y ∧ ∃k xk ∼ m}
∪ {ax −·····− jb, jb −·····− ax | x ∼ m ∧ j ∼ ǫ}
∪ {ib −·····− jb | i ∼ ǫ ∧ j ∼ ǫ}

Proof. Starting from the identity of Lemma 6.5, as ∼ has no square, with property 2 of

Proposition 6.7, we can simplify the condition x ∼ jm ∧ ∃k jkm ∼ m into the equivalent

x ∼ m ∧ j ∼ ǫ. We can also simplify ∃k (ikm ∼ m ∧ jkm ∼ m) into the equivalent

i ∼ ǫ ∧ j ∼ ǫ.

Now we prove than BBI-elementary extensions preserve the property of “having no

square” and compute the sets I∼ accordingly.

Proposition 6.9. If the PME ∼ has no square and x −·····− y is BBI-elementary w.r.t. ∼
then ∼′ = ∼ + {x −·····− y} has no square. Moreover I∼′ = I∼ in all cases except case 4

(∼′ = ∼ + {ǫ −·····− b}) where I∼′ = I∼ ∪ {b}.

Proof. Let A = A∼, I = I∼, ∼′ = ∼ + {x −·····− y}, A′ = A∼′ , I ′ = I∼′ . Then, as ∼ ⊆ ∼′,

we deduce A ⊆ A′ and I ⊆ I ′. We consider each case for x−·····−y according to Definition 6.1,

using Proposition 6.3, Lemma 6.4 and Proposition 6.8:

ab −·····− m where m ∼ m, m ≁ ǫ, a 6= b ∈ L\A. As ∼ has no square, from m ≁ ǫ we

deduce mm ≁ mm (see property 1 of Proposition 6.7) and thus by Lemma 6.4:

∼′ = ∼ + {ab −·····− m} = ∼ ∪ {ax −·····− ay, bx −·····− by | x ∼ y ∧ mx ∼ my}
∪ {abx −·····− aby | mx ∼ my}
∪ {abx −·····− y, y −·····− abx | mx ∼ y}

Let c be a letter such that cc ∼′ cc. As a and b are two different letters not occuring

in A = A∼, from the form of ∼′ it is obvious that the only option is cc ∼ cc, hence

c ∼ ǫ because ∼ has no square. Thus c ∼′ ǫ. We have proved that ∼′ has no square

and I ′ ⊆ I hence I ′ = I;
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am −·····− b where m ∼ m and a 6= b ∈ L\A. As ∼ has no square, by Proposition 6.8, we

obtain the identity:

∼′ = ∼ + {am −·····− b} = ∼ ∪ {ax −·····− ay | x ∼ y ∧ ∃k xk ∼ m}
∪ {ax −·····− jb, jb −·····− ax | x ∼ m ∧ j ∼ ǫ}
∪ {ib −·····− jb | i ∼ ǫ ∧ j ∼ ǫ}

Let c be a letter such that cc ∼′ cc. From the form of ∼′ it is obvious that the only

option is cc ∼ cc, hence c ∼ ǫ because ∼ has no square. Thus c ∼′ ǫ. Hence ∼′ has no

square and I ′ = I;

m −·····− b where m ∼ m, m ≁ ǫ, b ∈ L\A. As ∼ has no square, from m ≁ ǫ we deduce

mm ≁ mm and thus by Lemma 6.4:

∼′ = ∼ + {b −·····− m} = ∼ ∪ {bx −·····− by | mx ∼ my}
∪ {bx −·····− y, y −·····− bx | mx ∼ y}

But ∼′ = ∼+{m−·····− b} = ∼+{b−·····−m} by rule 〈s〉. Let c be a letter such that cc ∼′ cc.

From the form of ∼′ = ∼+{b−·····−m} it is obvious that the only option is cc ∼ cc, hence

c ∼ ǫ because ∼ has no square. Thus c ∼′ ǫ. Hence ∼′ has no square and I ′ = I;

ǫ −·····− b with b ∈ L\A. By Proposition 6.3:

∼′ = ∼ + {ǫ −·····− b} =
{

bpx −·····− bqy | x ∼ y ∧ p, q > 0
}

Let c ∈ L. There are two options for cc ∼′ cc: either cc ∼ cc or c = b. In case cc ∼ cc,

we obtain c ∼ ǫ because ∼ has no square, hence c ∼′ ǫ. In case c = b, we get c = b ∼′ ǫ

by rule 〈s〉. Hence ∼′ has no square and I ′ = I ∪ {b};
ǫ −·····− ǫ then ∼′ = ∼ + {ǫ −·····− ǫ} = ∼ has no square and I ′ = I.

In any case, we have proved that ∼′ has no square and computed I∼′ accordingly.

Corollary 6.10. BBI-elementary and BBI-simple PMEs have no square.

Proof. We prove the result for BBI-simple PMEs as BBI-elementary PMEs are also BBI-

simple PMEs. Let ∼ be a BBI-simple PME. Then there exists (xi −·····− yi)i<∞, a BBI-simple

sequence of constraints such that ∼ = ∼C with C = {xi −·····− yi | i < ∞}. Let ∼p = ∼Cp

with Cp = {xi −·····− yi | i < p} for p ∈ N ∪ {∞}. Then ∼ = ∼∞.

For p = 0, we have ∼0 = ∼∅ = {ǫ −·····− ǫ} which of course has no square. With

Proposition 6.9, it is trivial to prove the induction step, i.e. ∼p has no square implies

∼p+1 = ∼p + {xp −·····− yp} has no square, because xp −·····− yp is BBI-elementary w.r.t. ∼p. By

induction, for any p < ∞, the PME ∼p has no square.

Let c ∈ L such that cc ∼∞ cc. By compactness (see Proposition 3.17), there exists

p < ∞ such that cc ∼p cc. Hence, as ∼p has no square, we deduce c ∼p ǫ. Hence, as

∼p ⊆ ∼∞, we have c ∼∞ ǫ. Thus ∼ = ∼∞ has no square.

Let us now briefly discuss the incremental computation of BBI-elementary PMEs. This

problem consists in the computation of BBI-elementary extensions of ∼ where ∼ is it-

self a BBI-elementary PME. Hence, ∼ has no square and thus, since cases 1 and 3 of

Definition 6.1 contain the condition m ≁ ǫ, by Proposition 6.7, we deduce mm ≁ mm.

Hence, it is legitimate to use the equation of Lemma 6.4 to compute the BBI-elementary
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extensions ∼+{ab−·····−m} and ∼+{m−·····−b} as already done in the proof of Proposition 6.9.

To complete the description, for case 2, we use Proposition 6.8 and for case 4, we use

Proposition 6.3.

6.5. Elementary representations

Having defined BI-elementary PMOs and BBI-elementary PMEs, having described how

to compute BBI-elementary PMEs, we are now in position to state and prove the funda-

mental lemma of this article. It describes how BI-elementary extensions of BI-elementary

PMOs are related to BBI-elementary extensions of BBI-elementary PMEs. From this, we

deduce a procedure that, given a BI-simple PMO ⊑ over L, computes a BBI-simple PME

∼ over L ∪ K ∪ M such that ∼ represents ⊑, i.e. ⊑ = ⊑L,K
∼ .

Lemma 6.13 is the fundamental brick on which the adequacy and the faithfulness of

our embedding of BI into BBI relies.

Definition 6.11. Let L, K and M be three mutually disjoint alphabets. We say that

the pair (⊑,∼) is a (L, K,M) elementary representation if the following properties hold:

1. ⊑ is a BI-elementary PMO over L;

2. ∼ is a BBI-elementary PME over L ∪ K ∪ M ;

3. the inclusion I∼ ⊆ M holds;

4. for any d ∈ M , if d ∼ d then xα ∼ d for some x ∈ L⋆ and α ∈ K⋆;

5. the identity ⊑ = ⊑L,K
∼ holds.

Thus, if (⊑,∼) is a (L, K,M) elementary representation and m ∈ L⋆ then m ⊑ m if

and only if m ∼ m (see Lemma 4.2).

Proposition 6.12. If the pair (⊑,∼) is a (L, K,M) elementary representation then

A⊑ = A∼ ∩L, L⊑ = L⋆ ∩L∼ and for any k ∈ (L ∪ K ∪ M)⋆ such that k ∼ k there exists

x ∈ L⋆ and α ∈ K⋆ such that xα ∼ k.

Proof. The identity A⊑ = A∼ ∩ L and L⊑ = L⋆ ∩ L∼ are a direct consequence of

Lemma 4.2. Let k ∈ (L ∪ K ∪ M)⋆. There exist l ∈ L⋆, δ ∈ K⋆ and m ∈ M⋆ such that

lδm = k. Let m = d1 . . . dp where d1, . . . , dp ∈ M are the letters of m.

As k ∼ k, we get lδm ∼ lδm hence m ∼ m by rule 〈d〉. Thus d1 . . . dp ∼ d1 . . . dp and

for any i ∈ [1, p], we have di ∼ di. As (⊑,∼) is a (L, K,M) elementary representation,

for any i ∈ [1, p] there exist xi ∈ L⋆ and αi ∈ K⋆ such that xiαi ∼ di.

From lδd1 . . . dp ∼ k, we get lδ(x1α1) . . . (xpαp) ∼ k by p applications of rule 〈el〉.
Hence we have xα ∼ k with x = lx1 . . . xp ∈ L⋆ and α = δα1 . . . αp ∈ K⋆.

Lemma 6.13. Let L, K and M be three mutually disjoint alphabets. Let (⊑,∼) be a

(L, K,M) elementary representation. Let m, a, b, δ and c such that m ⊑ m, a 6= b ∈ L\A⊑,

δ ∈ K\A∼ and c ∈ M \A∼. Then in each of the following cases, (⊑′,∼′) is a (L, K,M)
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elementary representation:

1 . ⊑′ = ⊑+ {ab −·····− m} and ∼′ = ∼+ {δc −·····− m, ab −·····− c} when m 6= ǫ

2 . ⊑′ = ⊑+ {am −·····− b} and ∼′ = ∼+ {cm −·····− b, δa −·····− c}
3 . ⊑′ = ⊑+ {m −·····− b} and ∼′ = ∼+ {δm −·····− b}
3′. ⊑′ = ⊑+ {m −·····− b} and ∼′ = ∼+ {δm −·····− b, ǫ −·····− ǫ}
4 . ⊑′ = ⊑+ {ǫ −·····− m} and ∼′ = ∼+ {δc −·····− m, ǫ −·····− c} when m 6= ǫ

4′. ⊑′ = ⊑+ {ǫ −·····− m} and ∼′ = ∼+ {ǫ −·····− c, m −·····− δ} when m 6= ǫ

Proof. Here we only provide the proof of case 2 as an illustration of the type of argu-

ments which are involved. The rest of the proof (cases 1, 3, 3’, 4 and 4’) is postponed in

Appendix B because of the overall length of the argument.

In the case of line 2 where ⊑′ = ⊑ + {am −·····− b} and ∼′ = ∼ + {cm −·····− b, δa −·····− c}. First

⊑′ is clearly BI-elementary. The constraint cm−·····− b is obviously BBI-elementary w.r.t. ∼.

Then, by Proposition 6.9, ∼′′ = ∼ + {cm −·····− b} has no square and I∼′′ = I∼. As c 6∈ I∼

(because c 6∈ A∼) then c 6∈ I∼′′ , hence c ≁
′′ ǫ. Thus δa −·····− c is BBI-elementary w.r.t. ∼′′.

Then ∼′ = ∼′′ + {δa −·····− c} is BBI-elementary, has no square and I∼′ = I∼′′ = I∼ ⊆ M .

We have A∼′ = A∼ ∪ {a, b, δ, c}. Let d ∈ M such that d ∼′ d. Then, either d ∈ A∼ or

d = c. On the one hand, if d ∈ A∼ then d ∼ d and let x ∈ L⋆ and α ∈ K⋆ such that

xα ∼ d. Hence xα ∼′ d because ∼ ⊆ ∼′. On the other hand, if d = c then aδ ∼′ d with

a ∈ L⋆ and δ ∈ K⋆.

As cm ∼′ b and δa ∼′ c, by rule 〈el〉 we obtain δam ∼′ b, hence am ⊑L,K
∼′ b. As

⊑ = ⊑L,K
∼ ⊆ ⊑L,K

∼′ , we get ⊑ ∪ {am −·····− b} ⊆ ⊑L,K
∼′ and obtain ⊑′ ⊆ ⊑L,K

∼′ .

Let us now consider the converse inclusion ⊑L,K
∼′ ⊆ ⊑′ which is the tricky part of

the proof. We have the following identities according to Proposition 6.8 and Lemma 6.4

(c ≁
′′ ǫ and thus cc ≁

′′ cc):

∼′′ = ∼ + {cm −·····− b} = ∼ ∪ {cx −·····− cy | x ∼ y ∧ ∃k xk ∼ m}
∪ {cx −·····− jb, jb −·····− cx | x ∼ m ∧ j ∼ ǫ}
∪ {ib −·····− jb | i ∼ ǫ ∧ j ∼ ǫ}

∼′ = ∼′′ + {δa −·····− c} = ∼′′ ∪ {δx −·····− δy, ax −·····− ay | x ∼′′ y ∧ cx ∼′′ cy}
∪ {δax −·····− δay | cx ∼′′ cy}
∪ {δax −·····− y, y −·····− δax | cx ∼′′ y}

Let γ ∈ K⋆ and x, y ∈ L⋆ such that γx ∼′ y. Let us prove that x ⊑′ y. We study each

case depending on the form of (γx, y):

— if γx ∼′′ y then according to the equations for ∼′′, the only two possibilities are

when γx ∼ y or (γx, y) = (ib, jb) with i ∼ ǫ and j ∼ ǫ (indeed, otherwise the letter

c 6∈ L∪K occurs either on the left or on the right). Clearly if γx ∼ y then x ⊑ y hence

x ⊑′ y. Let us study the case where (γx, y) = (ib, jb) with i ∼ ǫ and j ∼ ǫ. Then

i, j ∈ I
⋆
∼. As I∼ ⊆ M and i ≺ γx ∈ (L ∪ K)⋆, we must have i = ǫ. As j ≺ y ∈ L⋆, we

must have j = ǫ. Hence (γx, y) = (b, b). Thus γ = ǫ and (x, y) = (b, b). As am ⊑′ b,

by rule 〈r〉 we get b ⊑′ b, so x ⊑′ y;

— (γx, y) = (δx′, δy′) is impossible because δ 6≺ y (δ 6∈ L);

— (γx, y) = (ax′, ay′) with x′ ∼′′ y′ and cx′ ∼′′ cy′. The only possibility for cx′ ∼′′ cy′

is when x′ ∼ y′ and x′k ∼ m for some k. Thus y′k ∼ m by rules 〈s〉 and 〈el〉 and
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k ∼ k by rule 〈pl〉. By Proposition 6.12, there exists z ∈ L⋆ and α ∈ K⋆ such that

zα ∼ k. Hence, y′zα ∼ m by rule 〈el〉. As y′ ≺ y ∈ L⋆, we get y′z ⊑ m. As γx = ax′

and a 6∈ Aγ ⊆ K then a ≺ x and let ax′′ = x. Hence x′ = γx′′, thus γx′′ ∼ y′ and

we obtain x′′ ⊑ y′. As ⊑ ⊆ ⊑′, we get y′z ⊑′ m and x′′ ⊑′ y′. Consider the following

deduction tree:

y′z ⊑′ m am ⊑′ b
〈el〉

ay′z ⊑′ b
〈pl〉

ay′ ⊑′ ay′ x′′ ⊑′ y′

〈c〉
ax′′ ⊑′ ay′

Hence x = ax′′ ⊑′ ay′ = y;

— (γx, y) = (δax′, δay′) is impossible because δ 6≺ y;

— (γx, y) = (δax′, y) with cx′ ∼′′ y. The only option according to the equations for

∼′′ is (cx′, y) = (cx′, jb) with x′ ∼ m and j ∼ ǫ. Then j ∈ I
⋆
∼ hence j ∈ M⋆. But

j ≺ y ∈ L⋆. So j = ǫ and y = b. As γx = δax′, then δ ≺ γ and a ≺ x. Let ax′′ = x

and δγ′ = γ. Then δγ′ax′′ = δax′ thus x′ = γ′x′′. So γ′x′′ ∼ m. As γ′ ≺ γ ∈ K⋆,

x′′ ≺ x ∈ L⋆ and m ∈ A
⋆
⊑ ⊆ L⋆, we deduce x′′ ⊑ m. Hence x′′ ⊑′ m. As am ⊑′ b, we

obtain ax′′ ⊑′ b by rule 〈el〉. But ax′′ = x and b = y. We obtain x ⊑′ y;

— (γx, y) = (γx, δay′) is impossible because δ 6≺ y;

We have proved that for any γ ∈ K⋆ and x, y ∈ L⋆, if γx ∼′ y then x ⊑′ y. Thus

⊑L,K
∼′ ⊆ ⊑′. So, in case of line 2, we have indeed proved that ⊑′ = ⊑L,K

∼′ .

Remark: even if in case 4, ∼′ does not “look” BBI-elementary (because c is not new to

∼+ {δc−·····−m}), it is in fact BBI-elementary when viewed in the form of case 4’ (see proof

in Appendix B).

6.6. From simple PMOs to simple PMEs

The notion of elementary representation is thus a useful tool to maintain the relation

⊑ = ⊑L,K
∼ between the BI-elementary PMO ⊑ and the BBI-elementary ∼ when ⊑ is

enriched with new BI-elementary constraints. What happens with the limit of increasing

sequences of BI-elementary PMOs, i.e. BI-simple PMOs ? The following theorem provides

an answer to this question.

Theorem 6.14. Let L be an alphabet and ⊑ be a BI-simple PMO over L. There exist

two alphabets K and L′ and a BBI-simple PME ∼ over L′ such that L ∪ K ⊆ L′ and

⊑ = ⊑L,K
∼ .

Proof. Let ⊑ be described by the BI-simple sequence of constraints (xi −·····− yi)i<∞ over

the alphabet L: we have ⊑ = ⊑C with C = {xi −·····− yi | i < ∞}. Let ⊑p = ⊑Cp
with

Cp = {xi −·····− yi | i < p} for p ∈ N ∪ {∞}. Then ⊑ = ⊑∞.

Let K = {δ0, δ1, . . .} and M = {c0, c1, . . .} be two infinite, countable and disjoint sets

such that (K ∪ M) ∩ L = ∅. Let L′ = L ∪ K ∪ M . We build the sequence (x′
i −·····− y′

i)i<∞

of constraints over L′ according to the following table (the case column refers to the



Embedding Intuitionistic BI into Boolean BI 37

terminology of Lemma 6.13):

case xi −·····− yi x′
2i −·····− y′

2i x′
2i+1 −·····− y′

2i+1

1 ab −·····− m δici −·····− m ab −·····− ci

2 am −·····− b cim −·····− b δia −·····− ci

3′ m −·····− b δim −·····− b ǫ −·····− ǫ

4′ ǫ −·····− m ǫ −·····− ci m −·····− δi

ǫ −·····− ǫ ǫ −·····− ǫ ǫ −·····− ǫ

Let Dp = {x′
i−·····−y′

i | i < p} with p ∈ N∪{∞} and let ∼p = ∼Dp
. By Lemma 6.13, the reader

can check by induction on p that for any p < ∞, (⊑p,∼2p) is a (L, K,M) elementary

representation. Hence ∼2p is a BBI-elementary PME, I∼2p
⊆ M and ⊑p = ⊑L,K

∼2p
.

Let us prove that ⊑∞ = ⊑L,K
∼∞

. If x ⊑∞ y then by compactness (see Proposition 3.17),

there exists p < ∞ such that x ⊑p y. Then x ⊑L,K
∼2p

y. So there exists δ ∈ K⋆ such that

δx ∼2p y. Then δx ∼∞ y as ∼2p ⊆ ∼∞. Hence x ⊑L,K
∼∞

y. Conversely, if x ⊑L,K
∼∞

y then

there exists δ ∈ K⋆ such that δx ∼∞ y. By compactness again, there exists q < ∞ such

that δx ∼q y. Then, as ∼q ⊆ ∼2q (because Dq ⊆ D2q), we have δx ∼2q y hence x ⊑q y.

Thus x ⊑∞ y as ⊑q ⊆ ⊑∞.

So we have proved that ⊑ = ⊑∞ = ⊑L,K
∼∞

where ∼∞ = ∼D∞
and D∞ = {x′

i −·····− y′
i |

i < ∞}. The sequence (x′
i −·····− y′

i)i<∞ is a BBI-simple sequence of constraints because for

each p < ∞, xp −·····− yp is BBI-elementary w.r.t. ∼p (indeed, p < 2p + 2 and ∼2p+2 is

BBI-elementary). Thus ∼∞ is a BBI-simple PME.

7. Soundness of the embedding of BI into BBI

The map F 7→ F ◦ looks like a good candidate for embedding BI into BBI. Indeed, given

an invalid formula F of BI, by Theorem 5.9 it is possible to obtain a counter-model of F of

the form of a BI-simple PMO ⊑ over some langage L, i.e. ǫ 1⊑ F . Then by Theorem 6.14,

there exists a (BBI-simple) PME ∼ such that ⊑ = ⊑L,K
∼ . Thus, by Theorem 4.4, we obtain

ǫ 1∼ F ◦, hence we obtain a counter-model of F ◦.

It may seem that we have our embedding but unfortunately, F ◦ is not necessarily

BBI-valid when F is BI-valid. The mapping F 7→ F ◦ is not exactly the embedding we are

looking for. It preserves counter-models but does not preserve provability.

Indeed, nothing in F ◦ captures the special roles played by the two spare variables L

and K. We have to incorporate some information on L and K that logically encodes the

way they are interpreted in the particular model of Theorem 4.4 where they are forced

by words belonging to sub-languages generated by a sub-alphabets, respectively L⋆ and

K⋆. So let H be the following formula:

H ≡ (L ∧ K) ∧
(

(⊤−∗ (L ∗ L → L)) ∧ (⊤−∗ (K ∗ K → K))
)

For example, the sub-formula ⊤−∗(L∗L→L) encodes the property that the decomposition

of words forcing L yields words forcing L, a subword property typical of sub-languages

generated by sub-alphabets.

We are going to state and prove that (I∧H)→G◦ is BBI-valid whenever G is BI-valid.

And then we will prove that (I ∧ H) → G◦ is BBI-invalid whenever G is BI-invalid.
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7.1. From TBI-tableaux to TBBI-tableaux

In this section we describe how to process a TBI-tableau for G and obtain a corresponding

TBBI-tableau for (I−∗(I∧H))→(I∗G◦). We have chosen this translation instead of simpler

(I ∧ H) → G◦ (those two formulae are logically equivalent in BBI, see Proposition 7.5)

because for the former one, we can provide a direct tableau translation procedure as

described in the following results.

Lemma 7.1. Let L′ = L∪K ∪M be a partition of L′ where K and M are two disjoint

infinite sets of spare letters. Let T be a TBI-tableau for G ∈ BI over L. There exists a

TBBI-tableau T ′ for (I −∗ (I ∧ H)) → (I ∗ G◦) over L′ and an injective map ϕ from the

branches of T to the branches of T ′ such that:

1. each branch γ′ of T ′ either contains FI : ǫ or the following set of statements:

{TL : ǫ, T⊤−∗ (L ∗ L → L) : ǫ} ∪ {TK : ǫ, T⊤−∗ (K ∗ K → K) : ǫ}
∪

{

TL : a | a ∈ L ∩ Aγ′

}

∪
{

TK : δ0 | δ0 ∈ K ∩ Aγ′

}

2. for each branch γ of T , with γ′ = ϕ(γ), the two following conditions hold:

2.1. (⊑γ ,∼γ′) is a (L, K,M) elementary representation;

2.2. for every statement SA : m of γ, the statement SA◦ : m occurs in γ′;

3. for each other branch γ′ of T ′ (i.e. which is not the image ϕ(γ) of some branch γ of

T ), at least one of the following conditions hold:

3.c.1. FI : ǫ ∈ γ′;

3.c.2. FL : l ∈ γ′ for some l ∈ L⋆;

3.c.3. FK : δ ∈ γ′ for some δ ∈ K⋆.

Proof. We build T ′ and ϕ by following the construction process of T , the TBI-tableau of

G. Let us consider the initial TBI-tableau [FG : ǫ]. Let us choose two letters c0 6= d0 ∈ M .

Here is a TBBI-tableau for (I−∗ (I∧H))→ (I ∗G◦) which fulfills the conditions 1, 2 and 3.

It is split into two parts for a reasonable display and these two parts should be glued at
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point γ′
0 by the reader:

ass0 : c0 −·····− d0√
1

F
(

I −∗ (I ∧ H)
)

→ (I ∗ G◦) : c0

√
2,5 TI −∗ (I ∧ H) : c0√

10
FI ∗ G◦ : c0

req2 : ǫc0 ∼ c0

P
PP

✏
✏✏

FI : ǫ

3.c.1

√
3

TI ∧ H : c0

√
4

TI : c0

TH : c0

ass4 : ǫ −·····− c0

γ′
0

γ′
0

req5 : ǫc0 ∼ ǫ
❳❳❳❳

✘✘✘✘

FI : ǫ

3.c.1

√
6

TI ∧ H : ǫ

TI : ǫ
√

7,8,9

...

TL : ǫ

TK : ǫ

T⊤−∗ (L ∗ L → L) : ǫ

T⊤−∗ (K ∗ K → K) : ǫ

req10 : ǫǫ ∼ c0

❛
❛❛

✦
✦✦

FI : ǫ

3.c.1

FG◦ : ǫ

γ′

The reader is invited to check that this is indeed a valid TBBI-tableau. We point out that

the formula H ≡ (L∧K)∧ ((⊤−∗ (L ∗L→L))∧ (⊤−∗ (K ∗K→K))) is developed at history

checkpoints 7, 8 and 9 by three applications of expansion rule T∧ (actually not displayed

in the TBBI-tableau to shorten its length). This TBBI-tableau has four branches, three

of which stopping at FI : ǫ (hence fulfilling conditions 1 and 3.c.1), and the last one

containing FG◦ : ǫ as required by condition 2.2. This is the branch γ′ = ϕ(γ) associated

through ϕ to the unique branch γ of the one node TBI-tableau [FG : ǫ]. γ′ obviously fulfills

condition 1 because Aγ′ = {c0, d0} ⊆ M hence Aγ′ ∩ (L∪K) = ∅. It fulfills condition 2.1

for the following reasons: for C = {ǫ −·····− c0, ǫ −·····− d0} and Cγ′ = {c0 −·····− d0, ǫ −·····− c0}, we have

∼C = ∼Cγ′
. Hence, ⊑γ = ⊑∅ = {ǫ −·····− ǫ} and ∼γ′ = ∼C where C = {ǫ −·····− c0, ǫ −·····− d0} and

c0, d0 ∈ M . Thus ∼γ′ = {x −·····− y | x, y ∈ {c0, d0}⋆} and we can check that ⊑γ = ⊑L,K
∼γ′

. So

(⊑γ ,∼γ′) forms a (L, K,M) elementary representation.

If T is a TBI-tableau of G obtained by expansion using rule T∧, F∧, T∨ or F∨, we

trivially use the same expansion rule for T ′ and fix the mapping ϕ accordingly.

If T is obtained by expansion of TA → B : m in branch γ, then the requirement m ⊑γ x

must hold and then there exists δ ∈ K⋆ such that δm ∼γ′ x holds. We extend γ′ the
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following way:

...
TA → B : m

...
γ

req : m ⊑ x
❛
❛❛

✦
✦✦

FA : x

γA

TB : x

γB

...√
1

TK −∗ ((L ∧ A◦) → B◦) : m
...

γ′

req1 : δm ∼ x
❵❵❵❵❵❵

✥✥✥✥✥✥

FK : δ

3.c.3

√
2

T(L ∧ A◦) → B◦ : x
❳❳❳❳
✘✘✘✘√

3
FL ∧ A◦ : x

❛
❛❛

✦
✦✦

FL : x

3.c.2

FA◦ : x

ϕ(γA)

TB◦ : x

ϕ(γB)

and we extend ϕ so that the branch containing FA : x (resp. TB : x) in T corresponds

to the branch of FA◦ : x (resp. TB◦ : x) in T ′. No assertion is generated so (⊑γ ,∼γ′)

does not change on either branches (γA, ϕ(γA)) or branches (γB , ϕ(γB)) and is thus

still an elementary representation. We also see that the two remaining branches contain

respectively FK : δ with δ ∈ K⋆ and FL : x with x ∈ L⋆ fulfilling condition 3.c.3 and 3.c.2

respectively.

If T is obtained by expansion of FA → B : m in branch γ, then b ∈ L \Aγ . As

Aγ = Aγ′ ∩ L we deduce b ∈ L\Aγ′ . Let us choose δ1 ∈ K \Aγ′ (possible because K

is infinite and Aγ′ is finite as ∼γ′ is BBI-elementary) and apply the following expansion

rules to the branch γ′:

...
FA → B : m

...
γ

ass : m −·····− b

TA : b

FB : b

γ→

...√
1

FK −∗ ((L ∧ A◦) → B◦) : m
...

γ′

ass1 : δ1m −·····− b

TK : δ1√
2

F(L ∧ A◦) → B◦ : b

√
3

TL ∧ A◦ : b

FB◦ : b

TL : b

TA◦ : b

ϕ(γ→)

Then (⊑γ + {m −·····− b},∼γ′ + {δ1m −·····− b}) is an elementary representation according to
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Lemma 6.13 case 3 and ϕ is extended in the obvious way. We also observe that TK : δ1

and TL : b are introduced fulfilling condition 1.

If T is a TBI-tableau of G obtained by expanding TI : m on branch γ, then let γ′ = ϕ(γ)

and choose δ1 ∈ K\Aγ′ and c1 ∈ M\Aγ′ and then apply the following expansion rules to

the branch γ′:

...
TI : m

...
γ

ass : ǫ −·····− m

γI

...√
1

TK ∗ I : m
...

γ′

ass1 : δ1c1 −·····− m

TK : δ1√
2

TI : c1

ass2 : ǫ −·····− c1

ϕ(γI)

Then (⊑γ + {ǫ −·····− m},∼γ′ + {δ1c1 −·····− m, ǫ −·····− c1}) forms an elementary representation

according to Lemma 6.13 case 4 because m 6= ǫ (Proposition 5.7 applied to T ). We also

observe that the statement TK : δ1 is introduced which fulfills condition 1.

If T is obtained by expansion of TA ∗ B : m in branch γ then a, b must have been

chosen such that a 6= b ∈ L\Aγ . As (⊑γ ,∼γ′) is an elementary representation, we have

Aγ = Aγ′ ∩L (see Proposition 6.12) and hence a 6= b ∈ L\Aγ′ . Let us choose δ1 ∈ K\Aγ′

and c1 ∈ M\Aγ′ and apply the following expansion rules (on the right hand side) to the



Dominique Larchey-Wendling and Didier Galmiche 42

branch γ′:

...
TA ∗ B : m

...
γ

ass : ab −·····− m

TA : a

TB : b

γ∗

...√
1

TK ∗
(

(L ∧ A◦) ∗ (L ∧ B◦)
)

: m
...

γ′

ass1 : δ1c1 −·····− m

TK : δ1√
2

T(L ∧ A◦) ∗ (L ∧ B◦) : c1

ass2 : ab −·····− c1√
3

TL ∧ A◦ : a√
4

TL ∧ B◦ : b

TL : a

TA◦ : a

TL : b

TB◦ : b

ϕ(γ∗)

Then (⊑γ +{ab−·····−m},∼γ′ +{δ1c1−·····−m, ab−·····−c1}) is an (L, K,M) elementary representation

according to Lemma 6.13 case 1, having checked that m 6= ǫ (Proposition 5.7 applied to

T ). The injective map ϕ is extended the obvious way since there is only one new branch

and this branch fulfills condition 2. We also observe that TK : δ1, TL : a and TL : b are

introduced fulfilling condition 1.

If T is obtained by expansion of FA ∗ B : m in branch γ then the requirement xy ⊑γ m

must hold. As ⊑γ = ⊑L,K
∼γ′

, there exists δ ∈ K⋆ such that δxy ∼γ′ m. We extend γ′ the
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following way (on the right hand side):

...
FA ∗ B : m

...
γ

req : xy ⊑ m
❛
❛❛

✦
✦✦

FA : x

γA

FB : y

γB

...√
1

FK ∗
(

(L ∧ A◦) ∗ (L ∧ B◦)
)

: m
...

γ′

req1 : δ(xy) ∼ m
❤❤❤❤❤❤

✭✭✭✭✭✭

FK : δ

3.c.3

√
2

F(L ∧ A◦) ∗ (L ∧ B◦) : xy

req2 : xy ∼ xy
❵❵❵❵❵
✥✥✥✥✥

FL ∧ A◦ : x
❛
❛❛

✦
✦✦

FL : x

3.c.2

FA◦ : x

ϕ(γA)

FL ∧ B◦ : y
❛
❛❛

✦
✦✦

FL : y

3.c.2

FB◦ : y

ϕ(γB)

Then, whichever new branch is considered, no new assertion is introduced hence condi-

tion 1 is fulfilled and (⊑γ ,∼γ′) is unchanged and thus still an elementary representation.

We extend ϕ so that the branch containing FA : x (resp. FB : y) in T corresponds to the

branch of FA◦ : x (resp. FB◦ : y) in T ′. Hence condition 2 is fulfilled. We also observe

that the three remaining branches contain respectively FK : δ with δ ∈ K⋆, FL : x with

x ∈ L⋆ and FL : y with y ∈ L⋆ fulfilling condition 3.

If T is obtained by expansion of TA −∗ B : m in branch γ then the requirement xm ⊑γ y

must hold. Then there exists δ ∈ K⋆ such that δxm ∼γ′ y. We extend γ′ the following

way:

...
TA −∗ B : m

...
γ

req : xm ⊑ y
❛
❛❛

✦
✦✦

FA : x

γA

TB : y

γB

...√
1

T
(

K ∗ (L ∧ A◦)
)

−∗ (L → B◦) : m
...

γ′

req1 : (δx)m ∼ y
❤❤❤❤❤❤❤

✭✭✭✭✭✭✭√
2

FK ∗ (L ∧ A◦) : δx

req1 : δx ∼ δx
P
P
PP

✏
✏

✏✏

FK : δ

3.c.3

√
3

FL ∧ A◦ : x
❛
❛❛

✦
✦✦

FL : x

3.c.2

FA◦ : x

ϕ(γA)

√
4

TL → B◦ : y
❛
❛❛

✦
✦✦

FL : y

3.c.2

TB◦ : y

ϕ(γB)
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Then (⊑γ ,∼γ′) is unchanged and still an elementary representation. We extend ϕ so that

the branch containing FA : x (resp. TB : y) in T corresponds to the branch of FA◦ : x

(resp. TB◦ : y) in T ′. We also see that the three remaining branches contain respectively

FK : δ with δ ∈ K⋆, FL : x with x ∈ L⋆ and FL : y with y ∈ L⋆ fulfilling condition 3.c.3,

3.c.2 and 3.c.2 respectively.

If T is obtained by expansion of FA −∗ B : m in branch γ, then a 6= b ∈ L\Aγ . As

(⊑γ ,∼γ′) is an elementary representation, we deduce a 6= b ∈ L\Aγ′ . Let us choose

δ1 ∈ K\Aγ′ and c1 ∈ M \Aγ′ and apply the following expansion rules to γ′:

...
FA −∗ B : m

...
γ

ass : am −·····− b

TA : a

FB : b

γ−∗

...√
1

F
(

K ∗ (L ∧ A◦)
)

−∗ (L → B◦) : m
...

γ′

ass1 : c1m −·····− b√
2

TK ∗ (L ∧ A◦) : c1√
4

FL → B◦ : b

ass2 : δ2a −·····− c1

TK : δ2√
3

TL ∧ A◦ : a

TL : a

TA◦ : a

TL : b

FB◦ : b

ϕ(γ−∗)

Then (⊑γ +{am−·····−b},∼γ′ +{c1m−·····−b, δ1a−·····−c1}) is an elementary representation according

to Lemma 6.13 case 2, having checked that m 6= ǫ (Proposition 5.7 applied to T ). ϕ is

extended the obvious way. We also observe that TK : δ1, TL : a and TL : b are introduced

fulfilling condition 1.

7.2. From BI-proofs to BBI-proofs

We showed how a TBI-tableau can be transformed into a TBBI-tableau. Now we show

that a closed TBI-tableau (i.e. a proof) can be transformed into a closed TBBI-tableau,

thus obtaining the soundness part of our embedding. This is done in two steps, first

obtain a pseudo-closed TBBI-tableau and then close the pseudo-closed TBBI-tableau.

Definition 7.2. A (L, K) pseudo-closed TBBI-tableau is a TBBI-tableau T in which

every open branch γ verifies the two following conditions:

1. γ contains the following set of statements:
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{TL : ǫ, T⊤−∗ (L ∗ L → L) : ǫ} ∪ {TK : ǫ, T⊤−∗ (K ∗ K → K) : ǫ}
∪

{

TL : a | a ∈ L ∩ Aγ

}

∪
{

TK : δ0 | δ0 ∈ K ∩ Aγ

}

3. γ verifies at least one of the two following conditions:

3.c.2 FL : l ∈ γ for some l ∈ L⋆;

3.c.3 FK : δ ∈ γ for some δ ∈ K⋆.

Remark: notice that we have conserved the same terminology as in Lemma 7.1 for the

conditions that remain. This explains the hole in the numbering of the conditions.

Proposition 7.3. If the formula G ∈ BI has a closed TBI-tableau over the alphabet L

then the formula (I−∗ (I∧H))→ (I ∗G◦) ∈ BBI has a (L, K) pseudo-closed TBBI-tableau

for some alphabet K.

Proof. Let T be a closed TBI-tableau for G. According to Lemma 7.1, we build a

corresponding TBBI-tableau T ′ for G′ = (I −∗ (I ∧ H)) → (I ∗ G◦) over L ∪ K ∪ M and

the injective map ϕ from (maximal) branches of T to (maximal) branches of T ′. Since

T ′ verifies condition 1 of Lemma 7.1, then each branch γ′ of T ′ verifies condition 1 of

Definition 7.2 because FI : ǫ ∈ γ′ is a closure condition for TBBI-tableaux branches.

There are two kinds of branches in T ′. Those which are images γ′ = ϕ(γ) of branches

of T and those which are not. Let us consider the latter case. According to condition 3

of Lemma 7.1, such a branch is either closed by FI : ǫ ∈ γ′ or satisfies conditions 3.c.2

or 3.c.3. In any case, the open branches which are not of the form γ′ = ϕ(γ) verify

condition 3.c.2 or 3.c.3 of Definition 7.2.

Let us consider the former case which are branches of the form γ′ = ϕ(γ). Since T is

closed, each of its branches are closed, γ in particular. The branch γ is closed by one of

the following conditions:

— if T⊥ : m ∈ γ then T⊥◦ : m ∈ γ′ and as ⊥◦ = ⊥, the branch γ′ is closed;

— for the same reason, if F⊤ : m ∈ γ then F⊤ : m ∈ γ′ and γ′ is closed;

— if FI : m ∈ γ and ǫ ⊑γ m then FK ∗ I : m ∈ γ′ (because I◦ = K ∗ I) and there exists

δ ∈ K⋆ such that δǫ ∼γ′ m. Then we apply the following branch expansion rules:

...√
1

FK ∗ I : m
...

γ′

req1 : δǫ ∼ m
❍
❍❍

✟
✟✟

FK : δ

3.c.3

FI : ǫ

×
and we replace γ′ with two branches, one of which is closed by FI : ǫ and the other

one satisfying condition 3.c.3 of Definition 7.2. We also observe that condition 1 is

still fulfilled by the left branch because, should it remain open, no new assertion is

introduced, and thus the alphabet of the branch is left unchanged;
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— if TX : m ∈ γ, FX : n ∈ γ and m ⊑γ n then TK ∗ X : m ∈ γ, FK ∗ X : n ∈ γ and

there exists δ ∈ K⋆ such that δm ∼γ′ n. We choose δ1 ∈ K\Aγ′ and c1 ∈ M\Aγ′ and

then apply the following branch expansion rules:

...√
1

TK ∗ X : m
...√

2
FK ∗ X : n

...

req : δm ∼ n
...

γ′

ass1 : δ1c1 −·····− m

TK : δ1

TX : c1

req2 : (δδ1)c1 ∼ n
❛
❛❛

✦
✦✦

FK : δδ1

3.c.3

FX : c1

×

We check that (δδ1)c1 ∼γ′′ n by rule 〈el〉 with γ′′ = [γ′, δ1c1 −·····− m, TK : δ1, TX : c1].

γ′ is replaced by two branches γ′
l = [γ′′, FK : δδ1] and γ′

r = [γ′′, FX : c1], the latter

γ′
r being closed by TX : c1 and FX : c1, the former γ′

l satisfying condition 3.c.3

of Definition 7.2, should it be open. We also remark that the statement TK : δ1 is

introduced in γ′′. So condition 1 is fulfilled because the alphabet Aγ′

l
of the left branch

verifies the equation Aγ′

l
= Aγ′ ∪ {δ1, c1}.

Applying those transformations for every branch γ′ = ϕ(γ) of T ′, we obtain a TBBI-

tableau T ′′ in which every open branch satisfies condition 1 and either condition 3.c.2

or 3.c.3 of Definition 7.2. Hence T ′′ is a (L, K) pseudo-closed TBBI-tableau.

Proposition 7.4. If a formula of BBI has a (L, K) pseudo-closed TBBI-tableau then it

has a closed TBBI-tableau.

Proof. Let us define the weight of a branch γ′ by 0 for a closed branch and the length

of the shortest word x ∈ A
⋆
γ′ such that either (x ∈ L⋆ and FL : x ∈ γ′) or (x ∈ K⋆ and

FK : x ∈ γ′) otherwise. The weight exists because condition 3.c.2 or 3.c.3 is fulfilled for

any open branch of a (L, K) pseudo-closed TBBI-tableau. The weight of a whole (L, K)

pseudo closed TBBI-tableau is the sum of the weights of all its branches.

Let us prove that any (L, K) pseudo-closed TBBI-tableau can be expanded into a closed

TBBI-tableau by induction on the weight of the tableau:

— if the weight of the tableau is 0. Let us consider any branch γ′. γ′ must have weight 0
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(because weights are positive numbers) and then, either γ′ is closed or FL : ǫ ∈ γ′ or

FK : ǫ ∈ γ′, ǫ being the only word of length 0. Reasoning by contradiction, if γ′ is not

closed then by condition 1, TL : ǫ and TK : ǫ occur in γ′. Hence γ′ is closed because

either FL : ǫ or FK : ǫ occur in γ′. So if the weight of the tableau is 0 then the tableau

is closed because all its branches are closed. Thus there is no need to expand it;

— if the weight of the tableau is not 0. Let us choose a branch γ′ of strictly positive

weight p > 0. Then γ′ is an open branch and let FL : l occur in γ′ with l ∈ L⋆ of

length p (the case FK : δ with δ ∈ K⋆ of length p is treated similarly). As p > 0, we

write l = al′ with a ∈ L and l′ ∈ L⋆. As FL : l occurs in γ′, we must have l ∼γ′ l

by Proposition 5.3, hence al′ ∼γ′ al′. Then a ∈ L ∩ Aγ′ and by condition 1, the

statements TL : a and T⊤−∗ (L ∗ L → L) : ǫ both occur in γ′. We apply to the branch

γ′ the expansion rules described by:

...√
1

T⊤−∗ (L ∗ L → L) : ǫ
...

TL : a
...

FL : al′
...

γ′

req1 : (al′)ǫ ∼ al′
❵❵❵❵❵❵

✥✥✥✥✥✥

F⊤ : al′

×

√
2

TL ∗ L → L : al′
❳❳❳❳

✘✘✘✘√
3

FL ∗ L : al′

req3 : al′ ∼ al′

❛
❛❛

✦
✦✦

FL : a

×

FL : l′

3.c.2

TL : al′

×

The order in which the statements T⊤−∗ (L ∗ L → L) : ǫ, TL : a and FL : al′ occur

in the branch γ′ is of no importance. The branch γ′ is expanded into four branches,

three of which are closed, thus of weight 0, and the last one containing FL : l′, thus of

weight lower than p−1 which is the length of l′. The TBBI-tableau obtained after such

branch expansion thus has a strictly lower weight. It is also an (L, K) pseudo-closed

TBBI-tableau because no assertion is inserted, hence condition 1 is still fulfilled, and

the only new branch which is potentially open verifies condition 3.c.2. By induction

hypothesis, this TBBI-tableau can itself be expanded into a closed TBBI-tableau.

Thus, we have proved by induction on the weight that any (L, K) pseudo-closed TBBI-

tableau can be expanded into a closed TBBI-tableau.
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Proposition 7.5. For any two BBI-formulae A and B, the formulae A → B and (I −∗
A) → (I ∗ B) are logically equivalent in BBI.

Proof. Let (L,∼,) be a BBI-frame. For any m ∈ L∼, by monotonicity of  we can

show that m  A holds if and only if m  I−∗A holds, and and that m  B holds if and

only if m  I ∗ B. Thus m  A → B holds if and only if m  (I −∗ A) → (I ∗ B) holds.

Theorem 7.6 (Soundness of the embedding). Let G be a BI-formula not containing

the spare logical variables L and K. If G is BI-valid then (I ∧ H) → G◦ is BBI-valid.

Proof. Let G′ = (I −∗ (I ∧ H)) → (I ∗ G◦). If G is BI-valid then, by completeness of the

TBI-tableau system (see Theorem 5.8), G has a closed TBI-tableau. Then, according to

Proposition 7.3, G′ has a (L, K) pseudo-closed TBBI-tableau. So, by Proposition 7.4, G′

has a closed TBBI-tableau, hence is BBI-valid by soundness of the TBBI-tableau system

(see Theorem 5.14). Hence (I ∧ H) → G◦ is BBI-valid because it is BBI-equivalent to G′

by Proposition 7.5 (with A = I ∧ H and B = G◦).

8. Faithfulness by counter-model transformation

We have proved that if the BI-formula G is BI-valid then the formula (I ∧ H) → G◦ is

BBI-valid. Let us show that if G has a BI-counter-model then (I ∧ H) → G◦ has a BBI-

counter-model.

8.1. From BI-counter-models to BBI-counter-models

Theorem 8.1 (Faithfulness). Let G be a formula of BI not containing the variables L

or K. If G has a BI-counter-model then the BBI-formula (I∧H)→G◦ has a BBI-counter-

model.

Proof. Let us suppose that G has a BI-counter-model. Then it is BI-invalid and by

Theorem 5.9, it is possible to obtain a counter-model of G of the form of a BI-simple

PMO ⊑ over some langage L. So let (L,⊑,⊑) be a BI-frame where ⊑ is a BI-simple PMO

and such that ǫ 1⊑ G. By Theorem 6.14, there exists a BBI-simple PME ∼ over L′ such

that L∪K ⊆ L′ and ⊑ = ⊑L,K
∼ . Thus, by Theorem 4.4, in the BBI-frame (L′,∼,∼), we

have ǫ 1∼ G◦.

In the frame (L′,∼,∼), we observe that ǫ ∼ L and ǫ ∼ K. Let us prove that

ǫ ∼ ⊤−∗ (L ∗ L → L). Let xǫ ∼ y, x ∼ ⊤ and y ∼ L ∗ L. Let us prove y ∼ L. There

exists y1, y2 such that y1y2 ∼ y, y1 ∼ L and y2 ∼ L. Thus, by definition of (·) ∼ L,

there exists l1, l2 ∈ L⋆ such that l1 ∼ y1 and l2 ∼ y2. Hence by two applications of

rule 〈el〉, we obtain l1l2 ∼ y. As l1l2 ∈ L⋆, we conclude y ∼ L. We have proved that

ǫ ∼ ⊤−∗ (L ∗ L → L). By an identical argument, we show that ǫ ∼ ⊤−∗ (K ∗ K → K).

So, we have ǫ ∼ H. To finish, we get ǫ 1∼ (I∧H)→G◦ thus (L′,∼,∼) is the desired

BBI-counter-model.
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8.2. Example of counter-model transformation

In this section, we explain how a BI-counter-model of X ∨ (X →⊥) is transformed into a

BBI-counter-model of F = (I∧H)→(K∗X∨K−∗((L∧K∗X)→⊥)) which is the BBI-formula

associated to X∨(X→⊥). We recall that H = (L∧K)∧
(

(⊤−∗(L∗L→L))∧(⊤−∗(K∗K→K))
)

.

One possible BI-counter-model for X ∨ (X → ⊥) is based on the PMO ⊑ = ⊑C over

the langage L = {b} with C = {ǫ −·····− b}. We can check that:

⊑ = ⊑C = {ǫ −·····− ǫ, b −·····− b, ǫ −·····− b}

We complete the BI-frame (L = {b},⊑,⊑) with ǫ 1⊑ X and b ⊑ X and we check

the monotonicity of the relation ⊑. Then we verify that we have a BI-counter-model of

X ∨ (X → ⊥). Indeed, b 1⊑ ⊥ and thus, as ǫ ⊑ b, we get ǫ 1⊑ X → ⊥. Hence, ǫ 1⊑

X ∨ (X →⊥). This is the usual Kripke counter-model of the intuitionistic propositional

formula X ∨ (X →⊥).

The PMO ⊑ is clearly BI-elementary (case 3 of Definition 5.4 with m = ǫ). According

to Lemma 6.13 case 3, we compute D = {δ −·····− b} with δ ∈ K: (⊑∅,∼∅) is a (L, K,M)

elementary representation and thus (⊑C ,∼D) is a (L, K,M)-elementary representation.

Let ∼ = ∼D. Then we can check the following identity:

∼ = ∼D = {ǫ −·····− ǫ, b −·····− b, δ −·····− δ, δ −·····− b, b −·····− δ}

As A∼ ∩ L = {b}, A∼ ∩ K = {δ} and A∼ ∩ M = ∅, we can verify ⊑ = ⊑L,K
∼ .

As ({b},⊑,⊑) is a BI-counter-model for X ∨ (X →⊥), let us complete ({b, δ},∼,∼)

into a BBI-counter-model for the translation F of X ∨ (X →⊥). The forcing relation ∼

is given by Theorem 4.4: ǫ ∼ L,K, ǫ 1∼ X, b ∼ X, L,K and δ ∼ X, L,K.

We check that we indeed have a BBI-counter-model of F . We have ǫ, b, δ ∼ L ∗ L→ L

and ǫ, b, δ ∼ K ∗ K → K. Thus ǫ ∼ ⊤ −∗ (L ∗ L → L) and ǫ ∼ ⊤ −∗ (K ∗ K → K). We

obtain ǫ ∼ H and thus ǫ ∼ I ∧ H. We also have b, δ ∼ K ∗ X and ǫ 1∼ K ∗ X. Thus

b, δ ∼ L∧K∗X and ǫ 1∼ L∧K∗X. Thus b, δ 1∼ (L∧K∗X)→⊥ and ǫ ∼ (L∧K∗X)→⊥.

Hence, ǫ 1∼ K −∗ ((L ∧ K ∗ X) →⊥), because δ ∼ K and δǫ 1∼ (L ∧ K ∗ X) →⊥. Thus

ǫ 1∼ K ∗X ∨K−∗ ((L∧K ∗X)→⊥) and then ǫ 1∼ F and we indeed have a BBI-counter-

model of the formula F which is the translation of X ∨ (X →⊥).

8.3. Faithfully embedding BI into BBI

We conclude with the central result of this article. If we add two spare logical variables

L and K to the language of BI, we can provide a map from BI-formulae (without L and

K) to BBI-formulae which preserves both validity and invalidity.

Theorem 8.2. Let L and K be two different spare logical variables, the map G 7→
(I ∧ H) → G◦, where H ≡ (L ∧ K) ∧ ((⊤−∗ (L ∗ L → L)) ∧ (⊤−∗ (K ∗ K → K))), is a sound

and faithful embedding of BI into BBI.

Proof. Direct combination of Theorems 7.6 and 8.1.
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9. Application to the expressive power of BI

We briefly present one possible application of some of the semantical results of this article

related to the expressivity of BI on BI-frames. These results can trivially be transferred

to partially ordered partial monoids.

The property of “being squarable” in a BI-frame can be expressed by the first order

logic atomic formula H ′(x) = xx ⊑ xx. We show that it cannot be represented by any

BI-formula: there is no formula F of BI such that for any BI-frame (L,⊑,⊑) and for

any m ∈ L⊑, H ′(m) holds if and only if m ⊑ F .

Proposition 9.1. BI-simple PMOs do not have square words, except of course ǫ.

Proof. Let ⊑ be a BI-simple PMO over L. We want to show that for any m ∈ L⋆,

if mm ⊑ mm then m = ǫ. According to Theorem 6.14, let L′, K and ∼ where ∼ is a

BBI-simple PME over L′ such that L ∪ K ⊆ L′ and ⊑ = ⊑L,K
∼ . Let m ∈ L⋆ such that

mm ⊑ mm. Then we have δmm ∼ mm for some δ ∈ K⋆. Then, mm ∼ mm by rule 〈r〉.
By Corollary 6.10 and property 1 of Proposition 6.7, we obtain m ∼ ǫ. Hence ǫm ∼ ǫ

with ǫ ∈ K⋆ and, as ⊑ = ⊑L,K
∼ , we obtain m ⊑ ǫ. Thus by Proposition 5.6, we get m = ǫ.

Proposition 9.2. Let H(⊑) be a property ranging over PMOs verifying:

1. H(⊑) is true for every BI-simple PMO ⊑;

2. H(⊑0) is false for some (other) PMO ⊑0.

Then, the property H(⊑) cannot be represented by a BI-formula, i.e. there is no formula

F of BI such that for any BI-frame (L,⊑,), H(⊑) holds if and only ǫ ⊑ F .

Proof. Let us suppose that such a formula F exists and deduce a contradiction. Then

H(⊑) holds if and only if ǫ ⊑ F . Thus ǫ ⊑ F holds in every BI-simple PMO. Hence,

F cannot have a BI-simple counter-model and is thus BI-valid by Theorem 5.9.

On the other hand, let (L,⊑,) be a (not simple) PMO such that H(⊑) does not hold.

Then in this frame we have ǫ 1⊑ F . Hence F has a BI-counter-model which contradicts

its validity.

Corollary 9.3. The property mm ⊑ mm (“being squarable”) is not BI-definable.

Proof. Let H ′(x) = xx ⊑ xx which expresses the property being squarable. Let us

suppose that the BI-formula F represents H ′, i.e. for any m ∈ L⊑, H ′(m) holds if and

only m  F . Let us prove that the existence of F leads to a contradiction. Let us consider

the property H(⊑) = ∀m ∈ L⊑ (H ′(m) ⇒ ǫ ⊑ m) which is represented by the formula

F −∗ I, i.e. H(⊑) holds if and only if ǫ ⊑ F −∗ I.

By Proposition 9.1, H(⊑) is true for every BI-simple PMO ⊑. On the other hand, let

⊑0 = {ǫ −·····− ǫ, a −·····− a, aa −·····− aa} where a is an arbitrary letter. It is obvious to check that

⊑0 is a PMO but H(⊑0) does not hold because a ∈ L⊑
0 , aa ⊑0 aa and ǫ 6⊑0 a. Thus, by

Proposition 9.2, H(⊑) cannot be represented by F −∗ I. Contradiction.

Corollary 9.4. The property m ⊑ ǫ is not BI-definable.
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Proof. Let us suppose H ′(x) = x ⊑ ǫ is expressed by the BI-formula F , i.e. m ⊑ ǫ

holds if and only if m  F . Let us consider H(⊑) = ∀m ∈ L⊑ (m ⊑ ǫ ⇒ ǫ ⊑ m). H(⊑)

holds if and only if ǫ ⊑ F −∗ I. If ⊑ is a BI-simple PMO then m ⊑ ǫ holds for no word

m other than ǫ, see Proposition 5.6. Thus H(⊑) holds whenever ⊑ is a BI-simple PMO.

On the other hand, let ⊑0 = {ai −·····− aj | i > j} be the PMO generated by the singleton

constraint {a −·····− ǫ}, which of course is not BI-elementary. H(⊑0) does not hold because

a ⊑0 ǫ but ǫ 6⊑0 a. Contradiction.

10. Conclusion and perspectives

In this article, we have proved that there exists a sound and faithful embedding of in-

tuitionistic BI logic into Boolean BI. The result is based on the study of the relations

between constraints based models of BI and BBI, namely PMOs and PMEs, the com-

pleteness of the class of simple PMOs w.r.t. intuitionistic BI, and the soundness of the

TBBI-tableau method for BBI. We also point out some immediate consequences of our

intermediary results on the expressivity of BI.

Another quite direct application of our results would be a new proof and counter-model

search method for BI, derived from our embedding and based on partial monoidal con-

straints (PMEs) instead of the existing resource graphs (Galmiche et al. 2005). Resource

graphs are mainly a graphical representation for PMOs. The embedding we obtain was

quite unexpected and is based on the intuition to represent the order relation m ⊑ n

by composition with some unobservable word δ such that δm ∼ n. There may be some

pratical applications of this idea to distinguish observable and unobservable words. In

particular we aim at describing a concrete and complete class of separation logic style

models for (intuitionistic) BI.

Of course, the proof of the completeness theorem of the TBBI-tableau method (com-

pleteness only, not the already achieved soundness) is one of our immediate goals. The

complete study and characterization of constraints based models of BBI is a natural evo-

lution of our work. In particular, the TBBI-tableau method may introduce constraints

like ǫ −·····− ab in which case a and b become invertible words. We aim at a generalization

of the notion of resource graph to take invertible elements into account. This potentially

constitutes a major evolution because invertible elements do not occur in the TBI-tableau

method.

The characterization of TBBI-constraints can lead to an effective decision procedure

for those partial monoidal constraints. We wish to compute the explicit form of the

extension ∼ + {ǫ −·····− m}, not only when m is a new letter (as in the present article), but

when m is any defined word. Combined with the other explicit forms (∼ + {ab −·····− m}
and ∼ + {am −·····− b}) described in the present article, this can lead to specific properties

of TBBI-generated constraints and then to expressivity results for BBI. For example we

think that in a TBBI-generated PME ∼, no word m is squarable (mm ∼ mm) unless it

is invertible (∃a am ∼ ǫ). As invertibility is BBI-defined by the formula ¬(⊤ −∗ ¬I), the

consequence would be that, as with BI, “being squarable” is not BBI-definable.
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Appendix A. Proofs of free PME extensions identities

Proposition 6.3. Let ∼ be a PME over L and b be new to ∼, i.e. b ∈ L\A∼. Then

∼ + {ǫ −·····− b} = ∼′ with ∼′ =
{

bpx −·····− bqy | x ∼ y ∧ p, q > 0
}

and A∼′ = A∼ ∪ {b}.

Proof. First it is obvious that A∼′ = A∼ ∪ {b} (see Proposition 3.16). Then, let ∼′′ =

∼+{ǫ−·····−b}. We prove that ∼′ ⊆ ∼′′, and that ∼′ is a PME, which is sufficient to establish

∼′′ = ∼′, because obviously ∼ ∪ {ǫ −·····− b} ⊆ ∼′ (we have b0ǫ ∼′ b1ǫ).

As b ∼′′ ǫ (by rule 〈s〉), for any p > 1, by p applications of rule 〈el〉, we can show that

bp ∼′′ ǫ (since b ∼′′ ǫ and ǫp ∼′′ ǫ). Also b0 = ǫ ∼′′ ǫ. Hence, bp ∼′′ ǫ and bq ∼′′ ǫ for any

p, q > 0. Let x, y be such that x ∼ y. Then x ∼′′ y as ∼ ⊆ ∼′′. Thus ǫx ∼′′ ǫy and by

applications of rule 〈el〉 and 〈er〉, we obtain bpx ∼′′ bqy. We have proved that ∼′ ⊆ ∼′′.

The relation ∼′ is obviously closed under rules 〈ǫ, s〉. For rule 〈t〉, let us consider x, y, z

such that x ∼′ y and y ∼′ z. Then (x, y) = (bpx′, bqy′) for some p, q > 0 and some x′, y′

such that x′ ∼ y′. Also (y, z) = (bry′′, bsz′) with r, s > 0 and y′′ ∼ z′. As y′, y′′ ∈ A
⋆
∼

and b 6∈ A∼, from y = bqy′ = bry′′, we deduce q = r and y′ = y′′. Hence y′ ∼ z′ and then

x′ ∼ z′ since ∼ is closed under rule 〈t〉. So x = bpx′ ∼′ bsz′ = z. The relation ∼′ is thus

closed under rule 〈t〉.
For rules 〈d, c〉, the core argument is the same: b 6∈ A∼ so that the decomposition

x = bpx′ with x′ ∈ A
⋆
∼ is unique. Hence, having proved that it is closed under rules 〈d〉

and 〈c〉, the relation ∼′ is a PME. This completes the proof.

Lemma 6.4. Let ∼ be a PME over L. Let m ∈ L⋆ and α ∈ L⋆ such that m ∼ m,

mm ≁ mm, α 6= ǫ and Aα ∩ A∼ = ∅. Then ∼ + {α −·····− m} = ∼′ with

∼′ = ∼ ∪
{

δx −·····− δy | x ∼ y ∧ mx ∼ my ∧ δ ≺ α ∧ δ 6∈ {ǫ, α}
}

∪
{

αx −·····− αy | mx ∼ my
}

∪
{

αx −·····− y | mx ∼ y
}

∪
{

x −·····− αy | x ∼ my
}
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and A∼′ = A∼ ∪ Aα.

Proof. First, it is obvious that A∼′ ⊆ A∼ ∪ Aα. Then A∼ ⊆ A∼′ and α ∼′ α (because

mǫ ∼ mǫ), hence Aα ⊆ A∼′ . Thus, A∼′ = A∼∪Aα. As Aα∩A∼ = ∅ we have the following

property: whenever x ∼′ y holds, x and y can be uniquely decomposed into x = x1x2

and y = y1y2 such that x1, y1 ∈ A
⋆
α and x2, y2 ∈ A

⋆
∼. Let ∼′′ = ∼ + {α −·····− m}. We prove

that ∼′ ⊆ ∼′′, and that ∼′ is a PME, which is sufficient to establish ∼′′ = ∼′, because

obviously ∼ ∪ {α −·····− m} ⊆ ∼′ (we have αǫ ∼′ m).

For ∼′ ⊆ ∼′′, we already have ∼ ⊆ ∼′′ and we provide the following deduction trees:

α ∼′′ m

mx ∼ my
〈r〉

my ∼ my
∼ ⊆ ∼′′

my ∼′′ my
〈el〉

αy ∼′′ my
〈pl〉, δ ≺ α

δy ∼′′ δy

x ∼ y
∼ ⊆ ∼′′

x ∼′′ y
〈c〉

δx ∼′′ δy

α ∼′′ m

mx ∼ y
∼ ⊆ ∼′′

mx ∼′′ y
〈el〉

αx ∼′′ y

α ∼′′ m

α ∼′′ m

mx ∼ my
∼ ⊆ ∼′′

mx ∼′′ my
〈er〉

mx ∼′′ αy
〈el〉

αx ∼′′ αy

α ∼′′ m

x ∼ my
∼ ⊆ ∼′′

x ∼′′ my
〈er〉

x ∼′′ αy

Now let us prove that ∼′ is a PME. ∼′ is obviously closed under rules 〈ǫ〉 and 〈s〉
(observe the symmetry between x and y in the definition of ∼′). Then, let us consider

the case of rule 〈d〉. Let x, y such that xy ∼′ xy. If xy ∼ xy then x ∼ x hence x ∼′ x.

Let us consider the other cases:

— as α 6= ǫ and Aα ∩ A∼ = ∅, it is no possible that (xy, xy) = (αx′, y′) or (xy, xy) =

(x′, αy′);

— hence xy = δz′ with mz′ ∼ mz′ and ǫ 6= δ ≺ α (this covers the cases δ 6= α and δ = α).

As Aα ∩ A∼ = ∅, let x = x1x2 and y = y1y2 with x1, y1 ∈ A
⋆
α and x2, y2 ∈ A

⋆
∼ . From

xy = x1x2y1y2 = δz′, we obtain δ = x1y1 and z′ = x2y2. Then mx2y2 ∼ mx2y2. Thus

mx2 ∼ mx2 and x2 ∼ x2 by rule 〈d〉. If x1 = ǫ then x = x2 ∼ x2 = x hence x ∼′ x.

If x1 6= ǫ then ǫ 6= x1 ≺ x1y1 = δ ≺ α hence, as mx2 ∼ mx2 and x2 ∼ x2, we obtain

x = x1x2 ∼′ x1x2 = x.

Now let us consider rule 〈t〉. Let x, y, z such that x ∼′ y and y ∼′ z. We want to prove

x ∼′ z. In theory, there are 5 × 5 = 25 cases to study for (x, y) and (y, z). But as we

have already proved that ∼′ is symetric, we only need to consider “half” of the matrix

of cases, i.e. 5 + · · · + 1 = 15 cases:

— x ∼ y and y ∼ z. Then x ∼ z hence x ∼′ z;

— x ∼ y and (y, z) = (δy′, δz′) with δ ≺ α and δ 6= ǫ is impossible because δ ∈ A
⋆
α,

δ ≺ y ∈ A
⋆
∼ and Aα ∩ A∼ = ∅;
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— x ∼ y and (y, z) = (αy′, αz′) is impossible by the same argument, α 6= ǫ;

— x ∼ y and (y, z) = (αy′, z) is impossible because α 6= ǫ;

— x ∼ y and (y, z) = (y, αz′) with y ∼ mz′. So x ∼ mz′ and thus x ∼′ αz′ = z;

— (x, y) = (δx′, δy′) and (y, z) = (δ′y′′, δ′z′) with x′ ∼ y′, mx′ ∼ my′, y′′ ∼ z′, my′′ ∼
mz′, δ ≺ α, δ′ ≺ α and δ, δ′ 6∈ {ǫ, α}. From y = δy′ = δ′y′′, we deduce δ = δ′ and

y′ = y′′. Then y′ ∼ z′ and my′ ∼ mz′, hence by rule 〈t〉, x′ ∼ z′ and mx′ ∼ mz′. So,

δx′ ∼′ δz′ hence x ∼′ z;

— (x, y) = (δx′, δy′) and (y, z) = (αy′′, αz′) is impossible because δ 6= α;

— (x, y) = (δx′, δy′) and (y, z) = (αy′′, z) is impossible because δ 6= α;

— (x, y) = (δx′, δy′) and (y, z) = (y, αz′) is impossible because δ 6= ǫ;

— (x, y) = (αx′, αy′) and (y, z) = (αy′′, αz′) with mx′ ∼ my′ and my′′ ∼ mz′. Then

y = αy′ = αy′′ hence y′ = y′′ and my′ ∼ mz′. Thus mx′ ∼ mz′ and we obtain

αx′ ∼′ αz′, hence x ∼′ z;

— (x, y) = (αx′, αy′) and (y, z) = (αy′′, z) with mx′ ∼ my′ and my′′ ∼ z. Then y′ = y′′

and thus mx′ ∼ z hence x = αx′ ∼′ z;

— (x, y) = (αx′, αy′) and (y, z) = (y, αz′) is impossible because α 6= ǫ;

— (x, y) = (αx′, y) and (y, z) = (αy′, z) is impossible because α 6= ǫ;

— (x, y) = (αx′, y) and (y, z) = (y, αz′) with mx′ ∼ y and y ∼ mz′. Then mx′ ∼ mz′

hence αx′ ∼′ αz′ thus x ∼′ z;

— (x, y) = (x, αy′) and (y, z) = (y, αz′) is impossible because α 6= ǫ.

Let us consider rule 〈c〉. Let us consider q, x, y such that qy ∼′ qy and x ∼′ y. We want

to prove qx ∼′ qy. We consider 2 × 5 = 10 cases:

— qy ∼ qy and x ∼ y. Then qx ∼ qy thus qx ∼′ qy;

— qy ∼ qy and (x, y) = (δx′, δy′) is impossible because we would have δ ≺ qy with

ǫ 6= δ ∈ A
⋆
α, qy ∈ A

⋆
∼ and Aα ∩ A∼ = ∅;

— qy ∼ qy and (x, y) = (αx′, αy′) is impossible because α 6≺ qy;

— qy ∼ qy and (x, y) = (αx′, y) with mx′ ∼ y. Then qmx′ ∼ qy by rule 〈c〉. Hence

qx = αqx′ ∼′ qy;

— qy ∼ qy and (x, y) = (x, αy′) is impossible because α 6≺ qy;

— qy = δz′ and x ∼ y with mz′ ∼ mz′, ǫ 6= δ ≺ α. Let q = q1q2 with q1 ∈ A
⋆
α and

q2 ∈ A
⋆
∼. As y, z′ ∈ A

⋆
∼, from qy = q1q2y = δz′ we get q1 = δ and q2y = z′. Hence

mq2y ∼ mq2y. Thus q2y ∼ q2y and we obtain mq2x ∼ mq2y and q2x ∼ q2y by rule 〈c〉.
In either case (δ = α or δ 6= α) we deduce qx = δq2x ∼′ δq2y = qy;

— qy = δz′ and (x, y) = (δ′x′, δ′y′) with mz′ ∼ mz′, ǫ 6= δ ≺ α, x′ ∼ y′, mx′ ∼ my′, δ′ ≺
α and δ′ 6∈ {ǫ, α}. Let q = q1q2 with q1 ∈ A

⋆
α and q2 ∈ A

⋆
∼. From qy = q1q2δ

′y′ = δz′

we obtain q1δ
′ = δ and q2y

′ = z′. As in the previous case, we derive mq2x
′ ∼ mq2y

′

and q2x
′ ∼ q2y

′. And thus qx = q1q2δ
′x′ = δq2x

′ ∼′ δq2y
′ = q1q2δ

′y′ = qy;

— qy = δz′ and (x, y) = (αx′, αy′) with mz′ ∼ mz′, ǫ 6= δ ≺ α and mx′ ∼ my′. Let

q = q1q2 with q1 ∈ A
⋆
α and q2 ∈ A

⋆
∼. From qy = q1q2αy′ = δz′ we obtain q1α = δ

and q2y
′ = z′. Hence q1 = ǫ and α = δ. Thus q = q2 and from mz′ ∼ mz′ we get

mqy′ ∼ mqy′. Combining with mx′ ∼ my′ by rule 〈c〉, we obtain mqx′ ∼ mqy′. Thus

qx = αqx′ ∼′ αqy′ = qy;
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— qy = δz′ and (x, y) = (αx′, y) with mz′ ∼ mz′, ǫ 6= δ ≺ α and mx′ ∼ y. As y ∈ A
⋆
∼,

from qy = δz′ we deduce δ ≺ q. Let δq′ = q. Then q′y = z′. Hence mq′y ∼ mq′y.

Combining with mx′ ∼ y by rule 〈c〉, we derive mq′mx′ ∼ mq′y hence mm ∼ mm by

rule 〈pl〉. This contradicts the overall hypothesis mm ≁ mm;

— qy = δz′ and (x, y) = (x, αy′) with mz′ ∼ mz′, ǫ 6= δ ≺ α and x ∼ my′. Let q = q1q2

with q1 ∈ A
⋆
α and q2 ∈ A

⋆
∼. From qy = q1q2αy′ = δz′ we obtain q1α = δ and q2y

′ = z′.

Hence q1 = ǫ and α = δ. Thus q = q2 and from mz′ ∼ mz′ we get mqy′ ∼ mqy′.

Combining with x ∼ my′ by rule 〈c〉, we obtain qx ∼ qmy′. Hence qx ∼′ αqy′ = qy.

So we have proved that the relation ∼′ is closed under all the rules defining PMEs.

Lemma 6.5. Let ∼ be a PME over L. Let m ∈ L⋆, α ∈ L⋆, b ∈ L such that m ∼ m,

α 6= ǫ, Aα ∩ A∼ = ∅ and b 6∈ A∼ ∪ Aα. Then ∼ + {αm −·····− b} = ∼′ with

∼′ = ∼ ∪
{

δx −·····− δy | x ∼ y ∧ ǫ 6= δ ≺ α ∧ ∃k xk ∼ m
}

∪
{

αx −·····− jb | x ∼ jm ∧ ∃k jkm ∼ m
}

∪
{

ib −·····− αy | y ∼ im ∧ ∃k ikm ∼ m
}

∪
{

ib −·····− jb | ∃k (ikm ∼ m ∧ jkm ∼ m)
}

and A∼′ = A∼ ∪ Aα ∪ {b}.

Proof. First it is obvious that A∼′ ⊆ A∼ ∪ Aα ∪ {b}. Then A∼ ⊆ A∼′ . As m ∼ m, we

obtain b ∼′ b and αm ∼′ b, hence Aα ⊆ A∼′ and b ∈ A∼′ . Thus we get A∼′ = A∼∪Aα∪{b}.
Let ∼′′ = ∼+{αm−·····−b}. We prove that ∼′ ⊆ ∼′′, and that ∼′ is a PME, which is sufficient

to establish ∼′′ = ∼′ because obviously ∼ ∪ {αm −·····− b} ⊆ ∼′ (we have αm ∼′ ǫb because

m ∼ ǫm and ǫǫm ∼ m).

For ∼′ ⊆ ∼′′, we already have ∼ ⊆ ∼′′. Let x, y, δ, k be such that x ∼ y, ǫ 6= δ ≺ α

and xk ∼ m. We provide the following deduction tree, split in two parts:

xk ∼ m
∼ ⊆ ∼′′

xk ∼′′ m

αm ∼′′ b
〈l〉

αm ∼′′ αm
〈el〉

αkx ∼′′ αm

· · ·

x ∼ y
〈s〉

y ∼ x
∼ ⊆ ∼′′

y ∼′′ x

· · ·
〈el〉

αkx ∼′′ αm
〈pl〉, δ ≺ α

δx ∼′′ δx
〈er〉

δx ∼′′ δy

hence we obtain δx ∼′′ δy. Now let x, i, k be such that x ∼ im and ikm ∼ m. We provide

the two following deduction trees:

ikm ∼ m
∼ ⊆ ∼′′

ikm ∼′′ m αm ∼′′ b
〈el〉

αikm ∼′′ b
〈pl〉

iαm ∼′′ iαm

αm ∼′′ b
〈s〉

b ∼′′ αm
〈c〉

ib ∼′′ iαm

· · ·

x ∼ im
∼ ⊆ ∼′′

x ∼′′ im

· · ·
〈c〉

ib ∼′′ iαm
〈er〉

ib ∼′′ αx

hence we obtain ib ∼′′ αx. By rule 〈s〉, we also obtain αx ∼′′ ib. Let us consider the last
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line of the definition of ∼′: let i, j, k be such that ikm ∼ m and jkm ∼ m. Then we can

deduce im ∼ jm:

jkm ∼ m

ikm ∼ m
〈pl〉

im ∼ im
〈er〉

im ∼ ijkm

jkm ∼ m
〈pl〉

jm ∼ jm ikm ∼ m
〈c〉

jikm ∼ jm
〈t〉

im ∼ jm

But we have already proved that we can deduce ib ∼′′ iαm from ikm ∼ m (see first part,

on the left, of a previous deduction tree). Replacing i by j we can deduce jb ∼′′ jαm

from jkm ∼ m. Thus we provide the deduction tree:

· · ·
ib ∼′′ αim

· · ·
im ∼ jm

∼ ⊆ ∼′′

im ∼′′ jm

· · ·
jb ∼′′ αjm

〈er〉
jb ∼′′ αim

〈s〉
αim ∼′′ jb

〈t〉
ib ∼′′ jb

hence ib ∼′′ ib. So for any x, y such that x ∼′ y, we have proved that x ∼′′ y. Thus

∼′ ⊆ ∼′′.

Now let us prove that ∼′ is a PME. We first make the following remark: if x ∼′ x then

either x ∼ x or (x = δx′ with x′ ∼ x′, ǫ 6= δ ≺ α and x′k ∼ m for some k) or (x = ib

with ikm ∼ m for some k). Now let us consider the five rules defining PMEs one by one.

ǫ ∼′ ǫ since ǫ ∼ ǫ. Hence ∼′ is closed under rule 〈ǫ〉. Let us consider rule 〈s〉. Let x, y

such that x ∼′ y. We have fives cases:

— x ∼ y hence y ∼ x and then y ∼′ x;

— (x, y) = (δx′, δy′) with x′ ∼ y′, ǫ 6= δ ≺ α and x′k ∼ m. Then y′ ∼ x′ and thus

y′k ∼ m by rule 〈el〉. Hence y = δy′ ∼′ δx′ = x;

— (x, y) = (αx′, jb) with x′ ∼ jm and jkm ∼ m. Then y = jb ∼′ αx′ = x;

— (x, y) = (ib, αy′) same argument;

— (x, y) = (ib, jb) with ikm ∼ m and jkm ∼ m. Then y = jb ∼′ ib = x.

In any case we obtain y ∼′ x. So ∼′ is closed under rule 〈s〉.

Let us consider rule 〈d〉. Let x, y such that xy ∼′ xy. We have three cases, because

αz′ 6= ib (b 6∈ Aα ∪ A∼):

— xy ∼ xy hence x ∼ x and then x ∼′ x;

— xy = δz′ with z′ ∼ z′, ǫ 6= δ ≺ α and z′k ∼ m for some k. Then x, y ∈ (Aα ∪ A∼)⋆

and let x = x1x2, y = y1y2 with x1, y1 ∈ A
⋆
α and x2, y2 ∈ A

⋆
∼. We thus have δ = x1y1

and z′ = x2y2. From x2y2 = z′ ∼ z′ = x2y2, we deduce x2 ∼ x2 by rule 〈d〉. On the

one hand, if x1 = ǫ then x = x2 ∼ x2 = x, hence x ∼′ x. On the other hand, if x1 6= ǫ,
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as we have x2(y2k) = z′k ∼ m and x1 ≺ x1y1 = δ ≺ α, we obtain x1x2 ∼′ x1x2 hence

x ∼′ x;

— xy = ib with ikm ∼ m. Then either b ≺ x or b 6≺ x. On the one hand, if b 6≺ x then, as

b is a one letter word, b ≺ y hence x(y/b)b = ib, so x(y/b) = i and thus x(y/b)km ∼ m.

By application of rule 〈pl〉, we have x ∼ x thus x ∼′ x. On the other hand, if b ≺ x

then (x/b)y = i hence (x/b)(yk)m ∼ m. Thus, x = (x/b)b ∼′ (x/b)b = x.

In any case we obtain x ∼′ x. So ∼′ is closed under rule 〈d〉.

Let us consider rule 〈t〉. Let x, y, z such that x ∼′ y and y ∼′ z. As we have already

proved that ∼′ is closed under rule 〈s〉, we only need to consider 5 + . . . + 1 = 15 cases:

— x ∼ y and y ∼ z. Then x ∼ z hence x ∼′ z;

— x ∼ y and (y, z) = (δy′, δz′) would imply δ ≺ δy′ = y which is impossible because

ǫ 6= δ ∈ A
⋆
α and A∼ ∩ Aα = ∅;

— x ∼ y and (y, z) = (αy′, jb) is impossible because α 6= ǫ and A∼ ∩ Aα = ∅;
— x ∼ y and (y, z) = (ib, αz′) is impossible because b 6∈ A∼;

— x ∼ y and (y, z) = (ib, jb) is impossible because b 6∈ A∼;

— (x, y) = (δx′, δy′) and (y, z) = (δ′y′′, δ′z′) with x′ ∼ y′, y′′ ∼ z′, ǫ 6= δ ≺ α, ǫ 6= δ′ ≺ α,

x′k ∼ m and y′′k′ ∼ m. Then, as y = δy′ = δ′y′′ and A∼ ∩ Aα = ∅, we have δ = δ′

and y′ = y′′. As x′ ∼ y′ and y′ = y′′ ∼ z′, we obtain x′ ∼ z′. Hence, as x′k ∼ m, we

obtain x = δx′ ∼′ δz′ = z;

— (x, y) = (δx′, δy′) and (y, z) = (αy′′, jb) with x′ ∼ y′, ǫ 6= δ ≺ α, x′k ∼ m, y′′ ∼ jm

and jk′m ∼ m. Then y = δy′ = αy′′, which implies δ = α and y′ = y′′ (A∼∩Aα = ∅).
Thus y′ ∼ jm and hence x′ ∼ jm by rule 〈t〉. So jm ∼ x′ by rule 〈s〉. As x′k ∼ m,

we obtain jmk ∼ m by rule 〈el〉. Hence we have x′ ∼ jm and jkm ∼ m. Thus

x = δx′ = αx′ ∼′ jb = z;

— (x, y) = (δx′, δy′) and (y, z) = (ib, αz′) is impossible because b 6∈ A∼ ∪ Aα;

— (x, y) = (δx′, δy′) and (y, z) = (ib, jb) is impossible because b 6∈ A∼ ∪ Aα;

— (x, y) = (αx′, jb) and (y, z) = (αy′, j′b) is impossible because b 6∈ A∼ ∪ Aα;

— (x, y) = (αx′, jb) and (y, z) = (i′b, αz′) with x′ ∼ jm, jkm ∼ m, z′ ∼ i′m and

i′k′m ∼ m. As y = jb = i′b we obtain j = i′. As x′ ∼ jm and jkm ∼ m, we obtain

x′k ∼ m by rule 〈el〉. As z′ ∼ i′m, we obtain jm = i′m ∼ z′ by rule 〈s〉 and thus

x′ ∼ z′ by rule 〈t〉. Hence, as ǫ 6= α ≺ α, we get x = αx′ ∼′ αz′ = z;

— (x, y) = (αx′, jb) and (y, z) = (i′b, j′b) with x′ ∼ jm, jkm ∼ m, i′k′m ∼ m and

j′k′m ∼ m. As remarked previously, we necessarily have i′m ∼ j′m. Thus j′m ∼ i′m

by rule 〈s〉. As y = jb = i′b, we get j = i′ and thus i′km ∼ m. As j′m ∼ i′m and

(i′m)k ∼ m, we get (j′m)k ∼ m by rule 〈el〉. Hence j′km ∼ m. As x′ ∼ jm = i′m

and i′m ∼ j′m, we get x′ ∼ j′m by rule 〈t〉. Thus x = αx′ ∼′ j′b = z;

— (x, y) = (ib, αy′) and (y, z) = (i′b, αz′) is impossible because b 6∈ A∼ ∪ Aα;

— (x, y) = (ib, αy′) and (y, z) = (i′b, j′b) is impossible because b 6∈ A∼ ∪ Aα;

— (x, y) = (ib, jb) and (y, z) = (i′b, j′b) with ikm ∼ m, jkm ∼ m, i′k′m ∼ m and

j′k′m ∼ m. Then y = jb = i′b hence j = i′ and as remarked previously, we necessarily

have im ∼ jm and i′m ∼ j′m. As jm = i′m we get im ∼ j′m by rule 〈t〉. As
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(j′m)k′ ∼ m, we get (im)k′ ∼ m by rule 〈el〉. Hence ik′m ∼ m and j′k′m ∼ m. Thus

x = ib ∼′ j′b = z;

In any case we obtain x ∼′ z, so we have proved that ∼′ is closed under rule 〈t〉.
Let us consider rule 〈c〉. Let q, x, y be such that qy ∼′ qy and x ∼′ y. We consider

3 × 5 = 15 cases:

— qy ∼ qy and x ∼ y. Then qx ∼ qy and thus qx ∼′ qy;

— qy ∼ qy and (x, y) = (δx′, δy′) would imply δ ≺ qy which is impossible because

ǫ 6= δ ∈ A
⋆
α, qy ∈ A

⋆
∼ and A∼ ∩ Aα = ∅;

— qy ∼ qy and (x, y) = (αx′, jb) is impossible because b 6∈ A∼;

— qy ∼ qy and (x, y) = (ib, αy′) is impossible because α 6= ǫ and A∼ ∩ Aα = ∅;
— qy ∼ qy and (x, y) = (ib, jb) is impossible because b 6∈ A∼;

— qy = δz′ and x ∼ y with z′ ∼ z′, ǫ 6= δ ≺ α and z′k ∼ m. As δ ≺ δz′ = qy, y ∈ A
⋆
∼,

δ ≺ α and A∼ ∩ Aα = ∅, we obtain δ ≺ q. So let q = δq′ hence q′y = z′. Then

q′y ∼ q′y, hence q′x ∼ q′y by rule 〈c〉. As q′yk = z′k ∼ m we obtain (q′x)k ∼ m by

rule 〈el〉. Hence qx = δq′x ∼′ δq′y = qy;

— qy = δz′ and (x, y) = (δ′x′, δ′y′) with z′ ∼ z′, ǫ 6= δ ≺ α, z′k ∼ m, x′ ∼ y′,

ǫ 6= δ′ ≺ α and x′k′ ∼ m. As q ≺ qy = δz′, we have q ∈ (Aα ∪ A∼)⋆. So let q = q1q2

with q1 ∈ A
⋆
α and q2 ∈ A

⋆
∼. From qy = q1q2δ

′y′ = δz′, we obtain q1δ
′ = δ and

q2y
′ = z′. As z′ ∼ z′, we deduce q2y

′ ∼ q2y
′. As x′ ∼ y′, we deduce q2x

′ ∼ q2y
′ by

rule 〈c〉. Also z′k ∼ m i.e. q2y
′k ∼ m. Thus q2x

′k ∼ m by rule 〈el〉. Then, we obtain

qx = q1q2δ
′x′ = δq2x

′ ∼′ δq2y
′ = q1δ

′q2y = qy;

— qy = δz′ and (x, y) = (αx′, jb) is impossible because b 6∈ A∼ ∪ Aα;

— qy = δz′ and (x, y) = (ib, αy′) with z′ ∼ z′, ǫ 6= δ ≺ α, z′k ∼ m, y′ ∼ im and

ik′m ∼ m. Then qy = qαy′ = δz′, hence α ≺ δz′. As A∼ ∩ Aα = ∅ and z′ ∈ A
⋆
∼, we

obtain α ≺ δ. Hence α = δ and thus qy′ = z′. We deduce qy′k ∼ m, hence qy′ ∼ qy′

by rule 〈pl〉. From y′ ∼ im, we derive im ∼ y′ by rule 〈s〉 and then qy′ ∼ q(im)

by rule 〈er〉, hence qim ∼ qy′ by rule 〈s〉. From qy′k ∼ m, we obtain qimk ∼ m by

rule 〈el〉. Hence we have (qy′) ∼ (qi)m and (qi)km ∼ m. Thus qx = (qi)b ∼′ α(qy′) =

qy;

— qy = δz′ and (x, y) = (i′b, j′b) is impossible because b 6∈ A∼ ∪ Aα;

— qy = ib and x ∼ y with ikm ∼ m. We have b 6≺ y because y ∈ A
⋆
∼. As b is a single

letter word, we deduce b ≺ q hence (q/b)y = i. Thus ((q/b)y)km ∼ m and so, as x ∼ y,

we get ((q/b)x)km ∼ m by rule 〈el〉. Thus we have qx = (q/b)xb ∼′ (q/b)yb = qy;

— qy = ib and (x, y) = (δx′, δy′) would imply δ ≺ ib which is impossible because δ 6= ǫ

and Aα ∩ (A∼ ∪ {b}) = ∅;
— qy = ib and (x, y) = (αx′, j′b) with ikm ∼ m, x′ ∼ j′m and j′k′m ∼ m. As qy =

qj′b = ib, we obtain qj′ = i. Hence qj′km ∼ m. So qj′m ∼ qj′m by rule 〈pl〉. As

x′ ∼ j′m, we obtain qx′ ∼ (qj′)m by rule 〈el〉. Since we also have (qj′)km ∼ m, we

conclude qx = α(qx′) ∼′ (qj′)b = qy;

— qy = ib and (x, y) = (ib, αy′) would imply α ≺ ib which is impossible because α 6= ǫ

and Aα ∩ (A∼ ∪ {b}) = ∅;
— qy = ib and (x, y) = (i′b, j′b) with ikm ∼ m, i′k′m ∼ m and j′k′m ∼ m. As

qy = qj′b = ib, we get qj′ = i. Hence qj′km ∼ m. From i′k′m ∼ m and j′k′m ∼ m,
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we deduce i′m ∼ j′m as remarked previously. From qk(j′m) ∼ m, we thus derive

qk(i′m) ∼ m by rule 〈el〉. So (qi′)km ∼ m and (qj′)km ∼ m, and thus qx = (qi′)b ∼′

(qj′)b = qy.

In any case we obtain qx ∼′ qy, so we have proved that ∼′ is closed under rule 〈c〉.

Appendix B. Complete proof of the fundamental lemma

Lemma 6.13. Let L, K and M be three mutually disjoint alphabets. Let (⊑,∼) be a

(L, K,M) elementary representation. Let m, a, b, δ and c such that m ⊑ m, a 6= b ∈ L\A⊑,

δ ∈ K\A∼ and c ∈ M \A∼. Then in each of the following cases, (⊑′,∼′) is a (L, K,M)

elementary representation:

1 . ⊑′ = ⊑+ {ab −·····− m} and ∼′ = ∼+ {δc −·····− m, ab −·····− c} when m 6= ǫ

2 . ⊑′ = ⊑+ {am −·····− b} and ∼′ = ∼+ {cm −·····− b, δa −·····− c}
3 . ⊑′ = ⊑+ {m −·····− b} and ∼′ = ∼+ {δm −·····− b}
3′. ⊑′ = ⊑+ {m −·····− b} and ∼′ = ∼+ {δm −·····− b, ǫ −·····− ǫ}
4 . ⊑′ = ⊑+ {ǫ −·····− m} and ∼′ = ∼+ {δc −·····− m, ǫ −·····− c} when m 6= ǫ

4′. ⊑′ = ⊑+ {ǫ −·····− m} and ∼′ = ∼+ {ǫ −·····− c, m −·····− δ} when m 6= ǫ

Proof. Case 2 was treated as an illustration in the main body of this article. We

consider the remaining cases. Let us consider case 1 where ⊑′ = ⊑ + {ab −·····− m} and

∼′ = ∼ + {δc −·····− m, ab −·····− c} and m 6= ǫ. As m 6= ǫ, ⊑′ is clearly BI-elementary. By

Proposition 6.12, we have m ⊑ m ⇒ m ∈ L⊑ ⇒ m ∈ L∼ ⇒ m ∼ m. As ∼ is has

no square (see Corollary 6.10), by Proposition 6.7 we have m ∼ ǫ ⇒ m ∈ I
⋆
∼ ⇒ m ∈

L⋆ ∩ M⋆ ⇒ m = ǫ. Hence m ≁ ǫ and thus δc −·····− m is BBI-elementary w.r.t. ∼ (δ 6= c and

δ, c 6∈ A∼). Thus ∼′′ = ∼+{δc−·····−m} is BBI-elementary and according to Proposition 6.9,

I∼′′ = I∼. Then we have c ∼′′ ǫ ⇒ c ∈ I∼′′ ⇒ c ∈ I∼ ⇒ c ∈ A∼. Thus from c 6∈ A∼

we deduce c ≁
′′ ǫ. As A∼′′ = A∼ ∪ {δ, c}, we have A∼′′ ∩ L = A∼ ∩ L = A⊑ and thus

L\A∼′′ = L\A⊑. Hence have a 6= b ∈ L\A∼′′ . Thus ab −·····− c is BBI-elementary w.r.t. ∼′′.

Hence, ∼′ = ∼′′ + {ab −·····− c} is BBI-elementary, has no square and I∼′ = I∼′′ . We deduce

I∼′ = I∼ ⊆ M .

Obviously A∼′ = A∼ ∪ {a, b, δ, c}. Let d ∈ M such that d ∼′ d. Then, either d ∈ A∼

or d = c. On the one hand, if d ∈ A∼ then d ∼ d and let x ∈ L⋆ and α ∈ K⋆ such that

xα ∼ d. Thus xα ∼′ d because ∼ ⊆ ∼′. On the other hand, if d = c then (ab)ǫ ∼′ c with

ab ∈ L⋆ and ǫ ∈ K⋆.

Let us prove ⊑′ ⊆ ⊑L,K
∼′ . As δc ∼′ m and ab ∼′ c, by rule 〈el〉 we obtain δab ∼′ m, hence

ab ⊑L,K
∼′ m. As ∼ ⊆ ∼′ we obviously have ⊑ = ⊑L,K

∼ ⊆ ⊑L,K
∼′ . Hence, ⊑∪{ab−·····−m} ⊆ ⊑L,K

∼′ .

We get ⊑′ = ⊑ + {ab −·····− m} ⊆ ⊑L,K
∼′ .

Let us now consider the converse inclusion ⊑L,K
∼′ ⊆ ⊑′. As m ≁ ǫ and c ≁

′′ ǫ hence
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mm ≁ mm and cc ≁
′′ cc, we have the following identities according to Lemma 6.4:

∼′′ = ∼ + {δc −·····− m} = ∼ ∪ {δx −·····− δy, cx −·····− cy | x ∼ y ∧ mx ∼ my}
∪ {δcx −·····− δcy | mx ∼ my}
∪ {δcx −·····− y, y −·····− δcx | mx ∼ y}

∼′ = ∼′′ + {ab −·····− c} = ∼′′ ∪ {ax −·····− ay, bx −·····− by | x ∼′′ y ∧ cx ∼′′ cy}
∪ {abx −·····− aby | cx ∼′′ cy}
∪ {abx −·····− y, y −·····− abx | cx ∼′′ y}

Let γ ∈ K⋆ and x, y ∈ L⋆ such that γx ∼′ y. Let us prove that x ⊑′ y. We study each

case depending on the form of (γx, y):

— if γx ∼′′ y then according to the equations for ∼′′, the only possibility for γx ∼′′ y

is when γx ∼ y: indeed, in the other cases, either δ occurs on the right (impossible

because we would have δ ≺ y with δ 6∈ L) or c occurs on the left or on the right

(impossible because c 6∈ L ∪ K). Since γx ∼ y, we deduce x ⊑ y hence x ⊑′ y;

— (γx, y) = (ax′, ay′) with x′ ∼′′ y′ and cx′ ∼′′ cy′. As γx = ax′ and a 6≺ γ, then a ≺ x

and let x′′ = x/a. Then x′ = γx′′, γx′′ ∼′′ y′ and cγx′′ ∼′′ cy′. According to the

equations for ∼′′, as cx′ ∼′′ cy′ and δ 6≺ y′, we must have x′ ∼ y′ and mx′ ∼ my′.

Hence, γx′′ ∼ y′ and mγx′′ ∼ my′. Thus, x′′ ⊑ y′ and mx′′ ⊑ my′, and as ⊑ ⊆ ⊑′,

we obtain x′′ ⊑′ y′ and mx′′ ⊑′ my′. We produce the following deduction tree:

mx′′ ⊑′ my′

〈r〉
my′ ⊑′ my′ ab ⊑′ m

〈c〉
aby′ ⊑′ my′

〈pl〉
ay′ ⊑′ ay′ x′′ ⊑′ y′

〈c〉
ax′′ ⊑′ ay′

Thus x = ax′′ ⊑′ ay′ = y;

— (γx, y) = (bx′, by′) with x′ ∼′′ y′ and cx′ ∼′′ cy′. The same argument applies using b

instead of a in the last two steps of the left branch of the preceding deduction tree.

Hence x ⊑′ y;

— (γx, y) = (abx′, aby′) with cx′ ∼′′ cy′. As γx = abx′, we define x′′ = x/ab and we

have x = abx′′ and x′ = γx′′. Hence, γcx′′ ∼′′ cy′. As δ 6≺ y′, the only possibility is

when γx′′ ∼ y′ and mγx′′ ∼ my′. Thus, x′′ ⊑ y′ and mx′′ ⊑ my′ and we can repeat

the preceding deduction tree using ab instead of a in the last two steps of the left

branch. Thus x = abx′′ ⊑′ aby′ = y;

— (γx, y) = (abx′, y) with cx′ ∼′′ y. Let x′′ = x/ab. We have x = abx′′ and x′ = γx′′.

Thus cγx′′ ∼′′ y. As c 6≺ y, we must have δ ≺ γx′′ and m(γx′′)/δ ∼ y. As δ 6≺ x′′

(because δ ∈ K and x′′ ∈ L⋆) then δ ≺ γ. We thus have m(γ/δ)x′′ ∼ y. Hence

mx′′ ⊑ y. So mx′′ ⊑′ y. As ab ⊑′ m, with rule 〈el〉, we get x = abx′′ ⊑′ y;

— (γx, y) = (γx, aby′) with γx ∼′′ cy′. As c 6≺ γx, we must have (γx, cy′) = (x′′, δcy′′)

for some x′′, y′′ such that my′′ ∼ x′′. But then y′ = δy′′ hence δ ≺ y′ ≺ aby′ = y.

This is not possible since y ∈ L⋆ and δ ∈ K;
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We have proved that for any γ ∈ K⋆ and x, y ∈ L⋆, if γx ∼′ y then x ⊑′ y. Thus

⊑L,K
∼′ ⊆ ⊑′. So, in case 1, we have indeed proved that (⊑′,∼′) is a (L, K,M) elementary

representation.

Let us consider case 3 where ⊑′ = ⊑ + {m −·····− b} and ∼′ = ∼ + {δm −·····− b}. First

⊑′ is clearly BI-elementary. The constraint δm −·····− b is obviously BBI-elementary w.r.t. ∼
because δ 6= b and δ, b 6∈ A∼ and then ∼′ is BBI-elementary. According to Proposition 6.9,

∼′ = ∼ + {δm −·····− b} has no square and I∼′ = I∼ ⊆ M .

We have A∼′ = A∼ ∪ {b, δ}. Let d ∈ M such that d ∼′ d. Then we must have d ∈ A∼.

Let x ∈ L⋆ and α ∈ K⋆ such that xα ∼ d. Hence xα ∼′ d.

As δm ∼′ b, we deduce m ⊑L,K
∼′ b and thus ⊑′ = ⊑ + {m −·····− b} ⊆ ⊑L,K

∼′ . Let us

consider the converse inclusion ⊑L,K
∼′ ⊆ ⊑′. We have the following identity according to

Proposition 6.8:

∼′′ = ∼ + {δm −·····− b} = ∼ ∪ {δx −·····− δy | x ∼ y ∧ ∃k xk ∼ m}
∪ {δx −·····− jb, jb −·····− δx | x ∼ m ∧ j ∼ ǫ}
∪ {ib −·····− jb | i ∼ ǫ ∧ j ∼ ǫ}

Let γ ∈ K⋆ and x, y ∈ L⋆ such that γx ∼′ y. Let us prove that x ⊑′ y. We study each

case depending on the form of (γx, y):

— if γx ∼ y then x ⊑ y hence x ⊑′ y;

— (γx, y) = (δx′, δy′) is impossible because δ 6≺ y;

— (γx, y) = (δx′, jb) with x′ ∼ m and j ∼ ǫ. Then j ∈ I
⋆
∼ hence j ∈ M⋆. As j ≺ jb = y,

we have j ∈ L⋆. Thus j ∈ L⋆ ∩ M⋆. So j = ǫ and y = b. As δ 6≺ x and δ ≺ δx′ = γx,

we have δ ≺ γ. So let γ′ such that δγ′ = γ. Then γ′x = x′. Hence, we get γ′x ∼ m.

Thus x ⊑ m and so x ⊑′ m. As m ⊑′ b, we obtain x ⊑′ b = y by rule 〈t〉;
— (γx, y) = (ib, δy′) is impossible because δ 6≺ y;

— (γx, y) = (ib, jb) with i ∼ ǫ and j ∼ ǫ. Then i, j ∈ I
⋆
∼, hence, i, j ∈ M⋆. As i ≺ γx

and j ≺ y, we must have i = j = ǫ. Hence x = y = b and γ = ǫ. As m ⊑′ b we have

b ⊑′ b by rule 〈r〉, thus x ⊑′ y;

We have proved that for any γ ∈ K⋆ and x, y ∈ L⋆, if γx ∼′ y then x ⊑′ y. Thus

⊑L,K
∼′ ⊆ ⊑′. So, in case 3, we have indeed proved that ⊑′ = ⊑L,K

∼′ .

Case 3’ is trivial because ∼+{δm−·····−b, ǫ−·····−ǫ} = (∼+{δm−·····−b})+{ǫ−·····−ǫ} = ∼+{δm−·····−b}
and we are thus back to case 3.

We temporarily skip case 4 and instead consider case 4’ where ⊑′ = ⊑ + {ǫ −·····− m}
and ∼′ = ∼ + {ǫ −·····− c, m −·····− δ}. First, ⊑′ is clearly BI-elementary. As c 6∈ A∼, ǫ −·····− c is

BBI-elementary w.r.t. ∼ hence, according to Proposition 6.9, ∼′′ = ∼ + {ǫ −·····− c} has no

square and I∼′′ = I∼ ∪ {c} ⊆ M . We have m ≁
′′ ǫ: otherwise m ∼′′ ǫ ⇒ m ∈ I

⋆
∼′′ ⇒ m ∈

L⋆ ∩ M⋆ ⇒ m = ǫ. Thus m −·····− δ is BBI-elementary w.r.t. ∼′′, so ∼′ = ∼′′ + {m −·····− δ} is

BBI-elementary and according to Proposition 6.9, we have I∼′ = I∼′′ = I∼ ∪ {c} ⊆ M .

By rule 〈s〉 we have δǫ ∼′ m so we deduce ǫ ⊑L,K
∼′ m and thus ⊑′ = ⊑+{ǫ−·····−m} ⊆ ⊑L,K

∼′ .

Let us consider the converse inclusion ⊑L,K
∼′ ⊆ ⊑′. As ∼′′ + {m −·····− δ} = ∼′′ + {δ −·····− m}

by rule 〈s〉, we have the following identities according to Proposition 6.3 and Lemma 6.4
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(as m ≁
′′ ǫ we have mm ≁

′′ mm):

∼′′ = ∼ + {ǫ −·····− c} = {cpx −·····− cqy | x ∼ y ∧ p, q > 0}
∼′ = ∼′′ + {δ −·····− m} = ∼′′ ∪ {δx −·····− δy | mx ∼′′ my}

∪ {δx −·····− y, y −·····− δx | mx ∼′′ y}
Let γ ∈ K⋆ and x, y ∈ L⋆ such that γx ∼′ y. Let us prove that x ⊑′ y. We study each

case depending on the form of (γx, y):

— if γx ∼′′ y then (γx, y) = (cpx′, cqy′) with x′ ∼ y′ and p, q > 0. As c 6∈ L ∪ K, we

must have p = q = 0 and then x′ = γx, y′ = y and γx ∼ y. Thus x ⊑ y and we obtain

x ⊑′ y;

— (γx, y) = (δx′, δy′) is impossible because δ 6≺ y;

— (γx, y) = (δx′, y) with mx′ ∼′′ y. As mx′ ∈ L⋆, y ∈ L⋆ and c 6∈ L, then we must have

mx′ ∼ y. Then δ ≺ γ and let γ′δ = γ. Hence γ′x = x′ and thus mγ′x ∼ y. So we get

mx ⊑ y hence mx ⊑′ y. But ǫ ⊑′ m and we derive x ⊑′ y by rule 〈el〉;
— (γx, y) = (γx, δy′) is impossible because δ 6≺ y;

We have proved that for any γ ∈ K⋆ and x, y ∈ L⋆, if γx ∼′ y then x ⊑′ y. Thus

⊑L,K
∼′ ⊆ ⊑′. So, in case 4’, we have indeed proved that ⊑′ = ⊑L,K

∼′ .

Case 4 is obtained from case 4’. Let ∼′′ = ∼+ {ǫ−·····− c}. As ǫ ∼′′ c, we can easily prove

that ∼′′+{δc−·····−m} = ∼′′+{δ−·····−m}. Thus ∼+{δc−·····−m, ǫ−·····−c} = (∼+{ǫ−·····−c})+{δc−·····−m} =

∼′′+{δc−·····−m} = ∼′′+{δ−·····−m} = ∼′′+{m−·····−δ} = (∼+{ǫ−·····−c})+{m−·····−δ} = ∼+{ǫ−·····−c, m−·····−δ}
and we are back to case 4’.


