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The logic of Bunched Implications, through its intuitionistic version (Bl) as well as one
of its classical versions called Boolean Bl (BBI), serves as a logical basis to spatial or
separation logic frameworks. In Bl, the logical implication is interpreted intuitionistically
whereas it is generally interpreted classically in spatial or separation logics like in BBI. In
this paper, we aim at giving some new insights w.r.t. the semantic relations between Bl
and BBI. Then we propose a sound and complete syntactic constraints based framework
for Kripke semantics of both Bl and BBI, a sound labelled tableau proof system for BBI,
and a representation theorem relating the syntactic models of Bl to those of BBI. Finally
we deduce, as main and unexpected result, a sound and faithful embedding of Bl

into BBI.

1. Introduction

Spatial logics for dynamic processes, static spatial logics for trees or processes, context
logic, separation logic, resource and processes logic share a common core language for
expressing logical properties that is the language of Bl, the Logic of Bunched Impli-
cations (Pym 1999; Pym 2002) mixing multiplicative connectives %, — with additive
connectives A,V, — and its Kripke sharing interpretation of the multiplicative connec-
tives:

mlkF A+« B iff there exist a,b such that aob>m and al- A and bIF B

The ternary relation —o— > — has different interpretations depending on various semantic
frameworks: process composition/interaction (for o) and structural congruence (for &) in
spatial logics (Cardelli and Gordon 2000; Caires and Lozes 2006), finite edge-labelled
tree/process composition and structural equivalence for static spatial logics (Calcagno
et al. 2005; Lozes 2004), contexts composition and structural equivalence for context
logic (Calcagno et al. 2007), disjoint heap union and equality (or inclusion) for separation
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logic (Ishtiaq and O’Hearn 2001) denoted SL here, and the product of resource and process
composition for SCRP/MBI (Pym and Tofts 2006).

Even if they are based on the same language together with the sharing interpretation,
these logics differ because the underlying models do not have the same properties: the set
of valid formulae differ from one logic to the other, some have decidable model-checking
and others not, etc. Moreover, nearly all of these logics use a classically or pointwise
defined Kripke semantics for the additive implication —, thereby favoring Boolean Bl
(BBI) whereas the logic Bl has an intuitionistically defined additive implication. It should
be noted however that there is an attempt to model intuitionistic implication in (Ishtiaq
and O’Hearn 2001) but the authors quickly dismiss it as a particular case of the classical
implication: the reason for this could be viewed as a rather restrictive choice for the order
relation, map inclusion in this case. In this article, we aim at giving some new insights
w.r.t. the relation between Bl and BBI in the general case.

The model theoretic properties of these logics, based on BBI, have been widely studied:
decidability (Calcagno et al. 2005) and undecidabilty (Caires and Lozes 2006), quantifier
and adjunct elimination (Lozes 2004), and expressivity (Brochenin et al. 2008). However,
even if the proof-theory of Bl has been extensively explored with natural deduction and
sequent style proof systems (Pym 2002) and labelled tableau proof systems (Galmiche
and Méry 2003; Galmiche et al. 2005), the proof-theory of BBI is either missing or heavily
based on model-checking methods like in (Calcagno et al. 2005).

The relations between Bl and BBI are often misunderstood. Whereas classical logic CL
(the additive fragment of BBI) can be faithfully embedded into intuitionistic logic IL (the
additive fragment of Bl) by the Godel translation for example, this result has no known
extension when linear operators are added. Moreover, in this article we show that the
reverse is true: it is possible to faithfully embed Bl into BBI. This result suggests that
proof and counter-model search in BBI is certainly not easier than in Bl and might in
fact be much more difficult that in Bl.

Our approach to Bl and BBI and their relations is not model-oriented. We aim at
studying the formulae of BI/BBI which hold in all of these particular models, propose
proof-systems to prove or refute these formulae and compare the provability relation of
Bl and BBI. We consider Bl and BBI defined by the abstract Kripke semantics, namely
partially ordered partial monoids for Bl and partial monoids for BBI. We use the models
generated by the syntactic constraints occuring in tableau proof-search. Soundness and
completeness of our tableau systems ensure that the sub-class of models generated by
syntactic constraints is complete w.r.t. the abstract Kripke semantics and thus, these
syntactic constraints and their solutions grasp the semantic properties of these logics.

In this article we provide the following results: a sound and complete syntactic con-
straints based framework for Kripke semantics of both Bl and BBI, a sound labelled
tableau proof system for BBI, a representation theorem linking the syntactic models of
Bl to those of BBl and as a consequence, a faithful embedding of Bl into BBI. We also
discuss some expressivity properties of Bl that can be deduced from our results.

As for the potential consequences and later developments of this work (more fully de-
scribed in the conclusion of this article), we list the following items: a sound and complete
proof and counter-model search method for Bl based on partial monoidal constraints as
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opposed to the existing resource graph method (Galmiche et al. 2005); a concrete and
complete class of separation logic style models for Bl based on the distinction between
observable and unobservable resources; hopefully a characterization of the full class of
BBI-generated constraints and explicit forms for constraint extensions; more expressivity
properties for BBI as well as for BI.

We now detail the contents of sections leading to the result that the function G +—
(I AH) — G° constitutes a sound and faithful embedding of Bl into BBI. Here, the BBI-
formula G° is an image of the Bl-formula G defined by (linear) structural induction using
two spare logical variables L and K. H is some given fixed BBI-formula only depending
on the logical variables L and K. | is the multiplicative unit of BBI.

In Section 2, we recall the monoidal Kripke semantics of Bl and BBIl. We point out
different semantic frameworks for interpreting the monoidal relation like spatial logics,
separation logics or abstract monoidal Kripke semantics. We also stress the difference
between the intuitionistic and classical interpretation of the additive implication —, and
the properties required for those models.

In Section 3, we describe a common framework for dealing with the Kripke semantics
of Bl and BBI. This framework is based on particular binary relations between words
(which are in fact multisets in this article) expressed by sets of constraints of the form
m — n where m and n are two words. An atomic constraint m — n is the syntactic
expression of a semantic relation between the words/labels m and n that should hold
in all the interpretations of m and n that satisfy the constraint m — n. From a finite
or infinite set of (atomic) constraints, we generate particular relations by closure. These
particular relations obtained by closure are themselves the “least” models of the syntatic
constraints from which they originate. These (closed) relations are called partial monoidal
orders (PMOs) for Bl and partial monoidal equivalences (PMEs) for BBI. They are char-
acterized as being closed under some particular deduction rules. We introduce a Kripke
interpretation within this PMO/PME framework and prove that the corresponding se-
mantics is equivalent to the abstract Kripke semantics of Bl and BBI respectively: up
to some quotient by an equivalence relation, the PMO C is in fact a partially ordered
partial monoid and the PME ~, a partial monoid. Then, we show how to build PMOs and
PMEs by closure from arbitrary sets of constraints and derive some properties linking
sets of constraints and their closures, like for example a compactness property or how
the constraints involving the empty word e behave in the closure.

In Section 4, we present a link between PMOs (models of Bl) and PMEs (models of
BBI). Indeed, we describe a map ~ — C LK which associates a PMO CX to any PME ~,
given some alphabets L and K. The idea of the map is that the words of L* are Kripke-
interpreted in both Bl and BBI, whereas the words of K* are only Kripke-interpreted in
BBI. Thus we say that the words of K* are unobservable by Bl. The relation m T2 % n
holds whenever m,n € L* belong to the observable words of L* and are equivalent up
to some unobservable word § € K*, i.e. dm ~ n holds. We show how this idea extends

T The empty word € plays a particular role because it is the only word which can be squared or erased
a priori.
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the intuitionistic interpretation of the implication — by heap inclusion in intuitionistic
Separation Logic SL (Ishtiaq and O’Hearn 2001). To any formula G of Bl, we associate a
formula G° of BBI such that the Kripke semantics of G in the model defined by CLX is
equivalent to the Kripke semantics of G° in the model defined by ~.

In Section 5, we introduce the labels and constraints based tableau proof system TBI
which is sound and complete for Bl. We also define a tableau proof system for BBI
called TBBI and prove its soundness w.r.t. BBl (completeness also holds but for reasons
explained later, this result is not proved in this article). Elementary PMOs are generated
from finite sequences of constraints of the form ab — m, am — b, m — b or € — m where
a and b are new letters and m is already defined by previous constraints. The sequence
can be infinite for simple PMOs. We prove that the constraints occuring in TBIl-tableaux
are elementary PMOs for finite tableaux and simple PMOs for infinite tableaux branches
and thus simple PMOs form a complete sub-class of models for Bl. Hence every invalid
formula of Bl has a counter-model which is a simple PMO.

In Section 6, we define the notions of elementary and simple PME as generated by
sequences of constraints of the form ab — m, am — b, m — b or € — b where a and b are
new letters and m is already defined. We show that the map ~ — T is surjective on
simple PMOs, its “reverse map” being described as an algorithm transforming a simple
PMO C into a simple PME ~ such that C = CLK The validity of this algorithm can
be considered as the main technical result of the article and is based on the notion of
elementary representation which is basically a PMO/PME pair (C, ~) that verifies some
specific conditions including C = C% ¥, The proof of the validity of the algorithm requires
to establish some properties about free PME extensions like for example the extension of
the PME ~ with the constraint ab — m where a and b are new letters and m is already
defined. We also need to prove that simple PMEs have no square, i.e. for a simple PME
~, the relation mm ~ mm only holds when m ~ e.

In Section 7, we describe a tableau transformation algorithm of a TBI-proof of some
Bl-formula G into a TBBI-proof of the formula (I A H) — G°, hence establishing that the
map G — (IAH)— G° is a sound embedding of Bl into BBI. As tableau proofs proceed by
branch expansion, we show how to map any TBIl-branch expansion into a combination of
TBBI-branch expansions. The soundness of the transformation is based on the properties
of elementary representations. Starting from a closed TBI-tableau (i.e. a proof) for G, the
obtained TBBI-tableau for (I A H) — G° is not necessarily closed, but it is pseudo-closed
and we later show that pseudo-closed tableaux can be expanded into closed tableaux in
TBBI.

In Section 8, we show that the formula (I A H) — G° is BBIl-invalid whenever G is
Bl-invalid by counter-model transformation. The result is based on the fact that if a
Bl-formula G is invalid then it has a Bl-counter-model based on a simple PMO C, the
class of simple PMOs being complete for Bl. As C is a simple PMO, there exists a PME ~
such that C = CZ% and we prove that ~ provides a BBl-counter-model to (I A H) — G°.
We present this counter-model transformation on the example of the intuitionistically
invalid formula X Vv (X — 1) (excluded middle).

In Section 9, we introduce some basic applications of our results to the expressivity of
Bl. For example, the property e = m is trivially expressed by the logical constant I. On
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the contrary, neither the property m C € nor the property mm C mm can be expressed
by formulae of Bl.

2. Sharing interpretation and monoidal Kripke semantics for Bl and BBI

The logics Bl and BBI are syntactically defined by the following grammar (Pym 2002)
where Var is a set of propositional variables and X ranges over Var:

Bl : AB:=X|L|T|AAB|AVB|A—B|I|AxB|A—~B
BBl : A\Bu:=X|L|T|AANB|AVB|A—B|-A|l|AxB|A =B

2.1. The monoidal Kripke semantics of Bl and BBI

Before we introduce the Kripke semantics of Bl and BBI, we recall the general semantic
framework under which the Kripke interpretation is going to be defined.

Definition 2.1. A partial monoid is a triple (M, o, e) wheree € M and o : Mx M—M
is a partial map for which the following conditions hold:

1. Ya € M,eoa| Aeoa=a (identity)
2. Va,be M,aob| =boal Aaob=boa (commutativity)
3. Va,b,c e M,ao(boc)| = (aob)oc| Aao(boc)=(aob)oc (associativity)

We write z oy | when the composition of z and y by o is defined. Note that ao (boc)
can only be defined if b o ¢ is itself defined, hence ao (boc)]| implies boc|. We also
assume the reader does not confuse the meta-logical connectives =, A and V with the
logical connectives of Bl/BBI even though the conjunction and disjunction have the same
denotation.

A binary relation > C M x M is a partial order if it is reflexive, antisymmetric and
transitive. To give a Kripke interpretation to the formulae of Bl (resp. BBI), we start
from a given structure (M, o,e,>) where (M, o, e) is a partial monoid of resources, & is
a partial order on M (resp. the identity relation > = = on M) such that composition is
monotonic:

Vi, x,y e M, (koyl Aaxp>y)= (kox| ANkox>koy)

The structure (M, o,e,>) is thus a partially ordered partial monoid for the case of Bl
formulae and a partial monoid for the case of BBl formulae. The Kripke interpretation
on the set of logical variables Var is given by a forcing relation I C M x Var which
verifies the monotonicity condition:

VX € Var,Vm,n e M, im>pnAmlt X)=>nlk X

For BBI, both the monotonicity of composition and the monotonicity condition trivially
hold because the order > is the identity =.

The Kripke interpretation is inductively extended to the compound formulae of Bl
(resp. BBI) by the equations of Figure 1. We may write |-, to denote this forcing
relation extended to the whole Bl (resp. BBI).
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mliE 1 iff epm m Ik —A if miA
ml- L iff never ml-FAVB iff mlFAorml-B
mlET iff always mlFAAB iff mlFAand mIFB

ml-FA—B iff VxeM, impzandz - A)=zlF B
ml- AxB iff drx,ye M, xoyland zoy>rm and zl- A and yIF B
mlFA—~«B iff Ve,ye M, (xom|andzompyandzlFA)=yl-B

Fig. 1. The Kripke semantics of Bl and BBI.

Definition 2.2. Given a Kripke structure (M, o,e,>, k), a formula F of Bl (resp. BBI)
is valid in M if e lFo F (resp. Vm € M, m ko F) and we say that M is a Bl-model
(resp. BBl-model) of F. If F is not valid, then it is invalid and M is a Bl-counter-model
if e o F (resp. BBl-counter-model if m W, F for some m € M).

Within this framework, it is possible to prove (see (Pym 2002) for example) that
the monotonicity condition extends to any formula of Bl (resp. BBI) and that the log-
ical rules of the natural deduction proof theory of Bl and BBl (Pym 2002) are sound
with respect to this Kripke interpretation. Moreover, if > is symmetric (which is a
property fulfilled when > is the identity relation as required for BBI) it is possible to
show that the logical implication — is in fact interpreted classically (or pointwise), i.e.
ml- A— Biff mIF A= m Ik B. This classical Kripke semantics for the additive impli-
cation — is one of the reasons why Bl is sometimes called intuitionistic Bl whereas BBI
is called Boolean Bl. Without the linear connectives % and —, the distinction between
intuitionistic and classical Kripke interpretation for the connective — gives rise to propo-
sitional intuitionistic logic IL and propositional classical logic CL which have relations but
also have huge differences. On the one hand, it is possible to faithfully embed CL into
IL using the well known Godel translation. On the other hand, the decision of validity
in IL is PSPACE-complete (Statman 1979) whereas it is coNP-complete for CL, leading
to the very unlikely existence of some (low complexity) reverse faithful embedding of IL
into CL. This article aims at establishing a new relation between Bl and BBI which may
naively be viewed as respectively IL and CL enriched with the linear connectives % and
—k. We claim that the embedding relation we establish tells us that this naive view is not
very accurate.

2.2. Owverview of various instances of the monoidal Kripke semantics

To present some of the different existing frameworks for interpretation of Bl and BBI, we
single out the sharing interpretation of the * operator:

ml-AxB iff Jz,yeM, zoy]l Azoy>bmAxzlFAANYyIFB

A x B is forced at m if there is composition a o b somehow related to m by aob > m
such that A is forced at a and B is forced at b. So the semantics of A * B depends on
the particular interpretation we provide for the composition o and the relation >. The
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language of BI/BBI gives thus rise to different logics (where universally valid formulae
differ) depending on how (o,>) are interpreted:

— what we call Bl is the logic defined by abstract Kripke models, i.e. M can be any
partially ordered partial monoid. There exists a proof system for this logic (Galmiche
et al. 2005). Similarly, what we call the logic BBI is defined by partial monoids without
further restrictions and we will present a proof system for it in Section 5;

— if we restrict models so that M is the set of heaps where heaps are partially and
finitely defined functions Loc — g, Val mapping locations to values, and o = (-) is
the disjoint union of heaps (undefined when domains overlap), we obtain Separation
Logic SL (Ishtiaq and O’Hearn 2001). The relation > = = is interpreted as identity
in SL giving rise to models of BBI formulae. Starting from SL, if > = C is interpreted
as partial map inclusion instead of identity, we obtain models of Bl-formulae (Ishtiaq
and O’Hearn 2001) and the corresponding logic is called intuitionistic SL;

— if M is the set of finite unordered resource trees and o is the composition of resource
trees, we obtain resource tree logic (Biri and Galmiche 2007) which can be viewed as
models of Bl or BBI.

The logics arising from these different interpretations are not necessarily identical:
indeed, weakening A * B — A is universally valid in intuitionistic SL whereas it has an
obvious counter-model in partially ordered partial monoids thus in the version of Bl we
favor in this article. The study of the faithful embeddings between some of these logics
and some of their sub-logics has already provided results:

— the modal translation of intuitionistic SL into classical SL provides a faithful embed-
ding. As suggested in (Ishtiaq and O’Hearn 2001), this embedding is not so surprising
because map inclusion > = C is a very restrictive interpretation for the relation ;

— a faithful embedding of the modal logic S4 and hence intuitionistic logic IL into
BBI has also been established (Galmiche and Larchey 2006) where BBI is given a
non-deterministic monoidal semantics. The same argument applies as is with partial
monoidal semantics for BBI (instead of non-deterministic monoidal semantics), so
that the embedding of S4 into BBI is also faithful with the (partial and deterministic)
interpretation of BBl we favor in this article;

— the well known Godel translation provides a faithful embedding of classical proposi-
tional logic CL into intuitionistic logic IL. However, to the knowledge of the authors,
there is no extension of this translation providing a faithful embedding of BBI into BI.

In this article, we will establish the existence of a faithful embedding of Bl into BBI in
the context of their general abstract semantics, namely partially ordered partial monoids
for Bl and partial monoids for BBI. By faithful embedding, we mean a map that preserves
both validity and invalidity. Even as a faithful embedding from intuitionistic SL into
classical SL already exists (Ishtiaq and O’Hearn 2001), that embedding is based on a
restrictive interpretation of > which arguably gives rise to a denatured Bl where weakening
is valid (i.e. the formula A * B — A is valid in intuitionistic SL). Of course, this is not the
case in Bl. So our faithful embedding of Bl into BBI is a much more unexpected result.
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3. A complete semantics for Bl and BBl based on words and constraints

We will now introduce a framework of labels and constraints to establish an original
semantic relation between the abstract models of Bl and BBI. This framework is useful
because it provides a unifying view of both the models of Bl and BBI and the proofs
in Bl and BBI. The main idea here is that restricting monoidal composition to word
combination does not alter validity in the Kripke interpretation of Bl (resp. BBI).

3.1. Words, constraints, PMOs and PMEs

Let L be a (potentially infinite) alphabet of letters. We consider the set of words L* where
the order of letters is not taken into account, i.e. we consider words as finite multisets
of letters. The composition of words is denoted multiplicatively and the empty word is
denoted e.

We denote © < y when x is a subword of y, i.e. when there exists a word k£ such
that kx = y. If * < y, there is only one k such that xk = y and it is denoted y/z,
hence y = x(y/x). The (carrier) alphabet of a word m is the set of letters of which it is
composed: A, = {l € L | | < m}. We may view the alphabet L or any of its subsets
X C L as a subset X C L*, i.e. we identify letters and one-letter words.

Definition 3.1. Let L be an alphabet. A constraint is a ordered pair (m,n) of words in
L* x L* denoted m — n.

We represent binary relations R C L* x L* between words of L* as set of constraints
through the logical equivalence: x R y iff z — y € R. We view constraints as syntatic ob-
jects whereas relations between words can either be viewed as syntatic or semantic. When
C={...,z; — yi,...} represents a finite or infinite collection of individual constraints,
it is viewed as a syntatic notion and we write  — y € C for example. When R represent
a relation between words, it is viewed as a semantic notion and we rather write z R y.
But the very nature of C and R is the same, that of a set of constraints. So we will use
both terminologies for the same objects throughout this article depending on whether we
interpret them more as syntatic objects or semantic objects. We will consider particular
sets of constraints closed under some deduction rules and their corresponding relations.
Because closed relations/sets of constraints can themselves be viewed as models, they
are most of the time considered as semantic objects rather than syntatic ones.

Definition 3.2. Let L be an alphabet. The language of a binary relation R C L* x L*
denoted £ is defined by £F = {z € L* | 3m,n € L* s.t.2m R n V m R zn}. The
carrier alphabet of R denoted Ag is defined by Ag = |[J{Am U A, | m R n}.

A word m € L* is said to be defined in R if m € L and is undefined otherwise.
A letter | € L is new to R if | ¢ Ag. The language £ is downward closed w.r.t. the
subword order <. The inclusion £F C A}/ and the identity Ag = £ N L hold. If R; and
Ry are two relations such that Ry C Ro then the inclusions Ag, C Ag, and LB C LR
hold. Let us define the particular sets of constraints/relations we are interested in.

Definition 3.3 (PMO/PME). Consider the rules of Table 1. A partial monoidal order
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PMOs | PMEs | PMOs & PMEs |
Ty -y ky—ky x—y

(D) () (€) ©
r— Y- €—¢€ kx — ky
-y Ty — Yy Ty Y-z

(r) —(d) (t)
Y~y Tr—x Tr—z

Table 1. Rules for the definition of PMQOs and PMEs.

(PMO) C over the alphabet L is a binary relation C C L* x L* which is closed under
the rules (¢,l,7,d, c,t). A partial monoidal equivalence (PME) ~ over the alphabet L is
a binary relation ~ C L* x L* which is closed under the rules (¢, s, d, c, ).

Proposition 3.4. Rules (I) and (r) can be derived from rules (s) and (t). Hence any
PME is also a PMO.

Proof. We provide the two following deduction trees:

T~y Ty
() (s)
T~y Y—~—<z Y- T~y
— {t)
T - Y-y

O

Let us informally discuss the meaning of rules of Table 1. Let R be either a PMO
R =CLC or a PME R = ~. By upcoming Proposition 3.6, a word m is defined in R if and
only if m R m holds. Thus, rule (d) ensures that subwords of defined words are defined.
Rule (€) ensures that € is always defined (even when nothing else is). Rules (I, r) ensure
that words that are related to other words by R are defined. Rule (¢) ensures that R is
transitive and rule (s) that it is symmetric. Rule {(c) states that word composition should
be monotonic w.r.t. the relation R.

We provide some derived rules which will be more suitable for proving properties of
PMOs/PMEs throughout this article.

Proposition 3.5. Rules (p;, p,, €;) can be derived from rules (I, r, d, ¢, t) and rule (e,.) can
be derived from rules (s, d, ¢, t). Hence PMOs and PMEs are closed under rules (p;, p,, €;)
and PMEs are closed under rule (e,).

kx —y z — ky T -y yk —m T~y m — yk
— ) — ) (er)

-z Y-y xk —m m — xk

(er)

Proof. Rule (p;) (resp. (p,)) is a trivial combination of rules (I,d) (resp. (r,d)). For
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rules (e;) and (e, ), we provide the two deduction trees:

yk —m m -~ yk
(D) (s)
yk — yk r—y r—y yk-—m
(c) — (&)
rk — yk yk —m rk —m
(t) (s)
xk —m m — xk

O

Rule (p;) (resp. (pr)) is a left (vesp. right) projection rule, a kind of generalised version
of (I) (resp. (r)). Rules (e;) and (e,) express the capacity to exchange R-related subwords
inside R-relations, either on the left (for PMOs and PMEs) or on the right (only for PMEs).

Proposition 3.6. Whether R is a PMO (R = C) or a PME (R = ~) over L, the identities
L={rel*|x Rz} and Ag ={l € L|lRI} hold.

Proof. We prove the properties for R = C. The same properties will then hold with a
PME ~ because any PME is also a PMO. First, it is obvious that {z € L* | 2 C 2} C LE.
For the converse, if m C n (resp. m C zn) then @ T z by rule (p;) (resp. rule (p.)).
Hence, LE C{zr € L* |2 Ca}. AsAc = LENL, weget Ac ={l € L|ICI}. Ul

3.2. PMO/PME based Kripke semantics

We introduce a Kripke interpretation of Bl and BBI formulae based on PMOs and PMEs.
The framework for Bl and BBI is thus common and this facilitates the building of both
semantic and proof-theoretic bridges between those logics.

Definition 3.7. A Bl-frame (resp. BBl-frame) is a triple (L, R, IF) where L is an alpha-
bet, R is a PMO (resp. PME) over L, and I is a forcing relation |- C L® x Var which
verifies the monotonicity property:

VX € Var, Vm,n e LE (mRnAml-X)=nl X

We extend the forcing relation to IFgr € L% x Bl (resp. £ x BBI) by induction on
formulae:

mlFr | iff eRm mlkr A iff mW¥FrA

mlFg L iff never mitr AVB iff mlkrAorml-g B

mlkr T iff always mitr ANB iff mlkrr Aand ml-g B

mlrp A— B iff Ve LB (mRzandzlFgr A) = xlFr B
mlkr AxB iff Jx,ye L®, zy Rmand 2l-g A and y IFr B
mlrp A= B iff Va,ye LE (zm RyandzlFr A) =yl B

We may write I for I when the relation R is obvious from the context.

Proposition 3.8. If R is a PMO (resp. a PME) then the extended relation Iz C L= x Bl
(resp. IFr C L~ x BBI) is monotonic.
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Proof. Monotonicity holds when for any F € Bl (resp. F' € BBI) and any m,n € L,
the condition (m Rn Amlrg F) = nlkgr F holds. It is standard to prove monotonicity
by induction on the formula F. When F is a logical variable, the monotonicity condition
holds as a direct consequence of Definition 3.7. For the additive operators L, T, V and
A, the induction step is trivial. For operators |, —, and *, the induction step involves the
use of rule (t). For operator —, the induction step involves the use of rule (e;). For the
Boolean negation —, the induction step involves the use of rule (s), but as the operator
— only exists in BBI, the relation R is thus a PME, hence is closed under rule (s). O

When R is a PME, symmetry (rule (s)) ensures that the additive implication — is
interpreted pointwise or classically.

Proposition 3.9. If R = ~ is a PME then for any m € £L~, m - A — B if and only if
ml-. A= ml-. B.

Proof. Here we just write IF for I-.. As ~ is a reflexive relation when restricted to
L™, the only if part is trivial. For the if part, we use monotonicity. Let us suppose
ml- A= ml B. Let m ~ n and n I+ A. Then by rule (s), n ~ m, hence by
monotonicity, m IF A hence m I B. By monotonicity again, n IF B. So for any n such
that m ~ n we have nlF A = nl- B. Thus mIF A — B. ]

Definition 3.10. A formula F' € Bl is valid in the Bl-frame (L,C,IF) if the relation
€ lFc F holds. A formula F' € BBI is valid in the BBI-frame (L, ~, IFF) if for every m € L~
the relation m I-., F' holds.

As a complement, we briefly state the relation between € I F' and Ym € L~ m IF F in
BBI-frames.

Proposition 3.11. For any BBI-frame (L, ~,IF) and any formula F' € BBI:

1. el F iff Vme L™ mlkl— F;
2. Vme L mIFF iff elrT =F.

Proof. For property 1, the if part is trivial since ¢ € L™~ and ee ~ €. For the only if
part, we use Proposition 3.9. Let m € L™~ such that m |- I. Then ¢ ~ m. As e I+ F', by
monotonicity we obtain m I+ F. Hence, m IF | — F. For property 2, the only if part is
trivial whereas for the if part, just use the fact that me ~ m for any m € L~. L]

Remarks: property 2 holds also for Bl but not the only if part of property 1. Prop-
erty 2 is used in (Calcagno et al. 2005) to establish an equivalence between validity and
satisfaction problems in the spatial logic for trees.

Theorem 3.12 (Completeness of PMOs w.r.t. Bl). A formula F of Bl is valid in
every partially ordered partial monoid Kripke structure if and only if it is valid in every
Bl-frame.

Proof. This is an obvious but tedious proof based on quotients by equivalence relations.
We give a brief sketch of the proof but leave the details to the reader. Let us first prove
that if a formula of Bl has a Kripke counter-model of the form of a partially ordered
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partial monoid then it has a counter-model of the form of a Bl-frame. Then we will prove
the converse result.

Let us consider a partially ordered partial monoid Kripke structure (M, o, e, ko).
We take the elements of M as letters of the language L = M. A word of k letters
m=my...my € L* is (partially) mapped to an element m, = mq o---omy € M. The
fact that m, is defined or its value does not depend on the order upon which we perform
the compositions of the letters of m because of the associativity and commutativity
axioms of partial monoids. By definition, for the empty word, €, is defined and €, = e.
The binary relation C over L* defined by m C n iff mo | A no | A mo > ne is thus a PMO
over L. We define the Bl-frame (L,C,lFc) by m Ik X iff mo | A mo ko X. Then, by
straightforward induction on Bl formulae, it is possible to prove that m IFc F'iff mo | A
Mo oy F. As €, = e, if M is a Kripke counter-model of the formula F' (i.e. e ¥ F)
then (L, C,IFc) is also counter-model of the F' (i.e. e ¥ F).

For the converse, let us consider a Bl-frame (L,C,IFc). We define the partial equiva-
lence relation on L* by ~ = EN Efl, i.e.m~niff m E n AnC m. We insist on the fact
that ~ is not necessarily reflexive. Then we define M as the set of partial equivalence
classes of L*. Let [m] = {z € L* | m ~ z} and M = {[m] | m € L* A [m] # (0}. The unit
e is the class [¢] which is not empty by rule (¢). The partial composition o is defined by
[m]o[n] = [mn] and the partial order > is defined by [m] > [n] iff m C n. Then (M, o,e,>)
is a partially ordered partial monoid. We define the Kripke structure (M, o, e, ko) by
[m] IFop X iff m ko X. By straightforward induction on Bl formulae, it is possible to
show that [m] IFo . F iff m € L5 A m Ik F. Hence, if (L, C,IFc) is a counter-model of
the formula F' (i.e. e ¥ F) then M is a counter-model of F (i.e. [¢] o F). Ul

Theorem 3.13 (Completeness of PMEs w.r.t. BBI). A formula F of BBI is valid
in every partial monoid Kripke structure if and only if it is valid in every BBI-frame.

Proof. Straightforward adaptation of the previous proof to PMEs and BBI. L]

According to these two theorems, we can define universal validity and counter-models.
A Bl-counter-model for F' € Bl is a Bl-frame in which ¢ ¥ F. A Bl formula F is
universally valid (or Bl-valid) when it has no Bl-counter-model. A BBI-counter-model
for F € BBI is a BBI-frame in which there exists m € L~ such that m W F. F is
universally valid (or BBl-valid) when it has no BBI-counter-model.

3.3. Sets of constraints and other properties of PMOs/PMEs

Defined by closure under some deduction rules, the classes of PMOs and PMEs are thus
closed under arbitrary intersection. Thus, given a binary relation R between words de-
scribed by a set of constraints, there exists a least PMO (resp. PME) containing R.
We are especially interested in PMOs/PMEs generated by some finite or infinite set of
constraints.
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Definition 3.14. Let L be an alphabet and C be a set of constraints over the alphabet
L.* The PMO generated by C is the least PMO denoted C¢ such that the inclusion C C C¢
holds between those two sets of constraints. We also denote by ~¢ the PME generated
by C which is the least PME such that C C ~¢.

For example, the PMO T, generated by the singleton constraint Cp = {e — a} is
Co = {€e — ¢,¢ — a,a — a} whereas the PMO C; generated by the singleton constraint
Ci={a—e}isC; ={a’ —a’ | i > j}. The PME generated by the singleton constraint
Co = {e~—a}is ~g = {a* — a’ | i,j € N}. Proofs are left to the reader. By rule (s), ~g
is also the PME generated by the singleton constraint C; = {a — €}. Obviously, Ty C ~g
and C; C ~¢ and the inclusion is strict.

Considering two sets of constraints C C D, we have T, C Cp and ~¢ C ~p. Also
Cc € ~¢ because ~¢ contains C as a subset and, being a PME, is also a PMO.

Definition 3.15. Let R = C (resp. R = ~) be a PMO (resp. PME). Let C be a set of
constraints. We denote by R+ C the extension of R by the constraints of C which is the
least PMO (resp. PME) containing R U C.

Let us insist on the fact that the meaning of the extension R + C depends whether
R is viewed as a PMO or a PME, especially since PMEs are also PMOs. Let R be a
PMO or a PME over the alphabet L and C; and Cy be two sets of constraints over L then
(R+C1)+Cs = (R+C2)+C1 = R+(C1UC2). These identities hold both for PMO extensions
and PME extensions and their proofs are trivial and left to the reader. Moreover, for any
m,n € L*, the relation m R n holds if and only if the identity R + {m — n} = R holds;
in particular R+ {¢ — ¢} = R.

Proposition 3.16. If C is a set of constraints over L then the inclusion C, C ~¢ and
the identity Ac = A, = A, hold.

Proof. For the first property, ~¢ is a PME containing C hence also a PMO containing
C. For the second property, as C C E¢ C ~¢ as relations, we derive Ac C A, C A~..
Thus it is a sufficient to prove that A., C Ac. Let ~ be defined by m ~ n iff m,n € Ag.
Then, A. = Ac, C C ~ and ~ is a PME. Hence ~¢ C ~ and thus A, C AL =Ac. [

Proposition 3.17 (Compactness). Let C be a possibly infinite set of constraints over
the alphabet L. Let m,n € L* be such that m C¢ n (resp. m ~¢ n) holds. There exists
a finite subset Cy C C such that m C¢, n (resp. m ~¢, n) holds.

Proof. We do the proof for PMOs. It is similar for PMEs. Let C be a set of constraints.
Let the relation Ry be (the finite approximation of C¢) defined by m Ry n if and only
if there exists D C C such that D is finite and m Cp n. Obviously C C Ry C Ce. If we
show that Ry is a PMO then we get Ry = T which proves the proposition.

So let us prove that Ry is a PMO. For rule (€), we have € Ty € and () is a finite subset
of C, hence € Ry e. Thus Ry is closed under rule (e). If Ry y then, for some finite subset

¥ As C is also a relation, the alphabet of C is Ac = [J{Am U A, | m — n € C}, i.e. the set of letters
which occur in at least one of the constraints of C.
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D of C we have x Cp y. Then, as Cp is a PMO, we have © Cp 2 by rule () and y Cp y
by rule (r). Hence x Ry « and y Ry y and Ry is closed under rules (I) and (r). The same
reasoning applies to the unary rule (d). We consider the binary rule (t). If z Ry y and
y Rs z then there exist D and &, two finite subsets of C such that z &p y and y C¢ 2.
Let F = DUE. Then F is a finite subset of C and * C» y and y C 7 z, because Cp C Cx
and Cg C Cgr. Thus ¢ Cx 2z as Cx is closed under rule (t) and then = Ry z. Hence
the relation R is closed under rule (t). The same reasoning applies to the other binary
rule (c). Hence, the relation R is indeed a PMO. O

This compactness property is not related to the particular nature of rules defining PMOs
or PMEs but solely to the fact that these rules only have a finite number of premisses.
Apart generating PMOs/PMEs from sets of constraints, we provide another basic way to
build them from sub-alphabets and derive a interesting property from it.

Proposition 3.18. Let L be an alphabet and X C L be a subset of L. Then:

1. E¥Xis a PMO over L where =¥ is defined by m CXniff (ne X*=meX*),
2. ~Xisa PME over L where ~X is defined by m ~Xn iff (n € X* & m € X*).

Proof. The relation C¥ is reflexive because the meta-logical implication = of its def-
inition is reflexive. So it is obviously closed under rules (e,l,r,d). It is also transitive
because the meta-logical implication is transitive, hence C~ is closed under rule ().

As mn € X* if and only if m,n € X*, C¥is closed under rule (c): indeed, let m,n € L*
such that m CX n. If kn € X* then k,n € X*. Asn € X* and m X n, we deduce
m € X*. Hence, k,m € X* and so km € X*.

The inverse relation (ZX)~! is also a PMO for identical reasons. Then ~* = C¥n
(CX)~! is a PMO as intersection of two PMOs. The relation RN R~ 'is always symmetric
hence closed under rule {s). So ~%X is closed under rule (s), hence is a PME. O

Proposition 3.19. Let C be a set of constraints on the alphabet L:

1. if no constraint of C is of the form m — e (with m # €), then for any m € L*, m C¢ ¢
only if m =¢;

2. if no constraint of C is of the form m — € or e —m (with m # €), then for any m € L*,
m ~¢ € only if m =e.

Proof. We use Proposition 3.18 in the particular case where X = () is the empty sub-
alphabet. For property 1, let us first prove that C € C% Let m,n € L* be such that
m —mn € C. Let us prove m C?n. As (* = {e}, if n € §* then n = € and hence m — ¢ € C.
By the hypothesis on C, we must have m = ¢ and as a consequence m € 0*. So m C%n
and we have proved that C C C% As Cc is the least PMO containing C and C%is a PMO
by property 1 of Proposition 3.18, we have Co € C% Now let us consider m € L* such
that m Cc €. We deduce m Cl Ase e 0*, we must have m € 0* by definition of C°
Thus we obtain m = e.

For property 2, the reasoning is similar: we prove the inclusion C C ~? from which we
deduce ~¢ C ~P Thus no m € L* such that m ~¢ € can exist unless m = e. L]
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For the moment, we stop our investigation on the different methods to build PMOs
and PMEs. We will come back to it later when we will describe precisely how to compute
“freely generated” PMEs in Section 6.3. We have enough material to present the first
building block of our embedding of Bl into BBI.

4. Linking PMOs/PMEs and the Kripke semantics of Bl and BBI

We define the relation between PMOs and PMEs which is at the core of the embedding
of Bl into BBI. First let us give an intuition of the design of this relation between PMOs
and PMEs.

The basic idea can be viewed as a variant of the embedding of intuitionistic SL into
classical SL. Indeed, in (Ishtiaq and O’Hearn 2001), the order relation chosen to interpret
implication intuitionistically is graph inclusion C between heaps:

mi-A—B if VYW (hCH ANIFA)=NIB
But as composition is the disjoint union of graphs, we have the following relation:
hCh' iff 3g,9-h="n

Thus h is below A’ if it is possible to compose h with something (g here), obtaining h’. Or
stated otherwise, b’ is identical to h upto some unspecified part (g here). We generalise
this idea in the following way: we restrict the choice of the missing part g to a space of
heaps which might be disjoint from the space of observable heaps, observable meaning
observable through the Kripke semantics.

4.1. Building PMOs with PMEs

In our words and constraints based semantics, heaps are abstracted by words. To dis-
tinguish observable words from potentially unobservable words, we divide the alphabet
L' into two sub-alphabets L and K which may be disjoint, L* representing observable
words and K* unobservable words.

Definition 4.1. Let ~ be a PME over L' and L, K be two subsets of L', i.e. LUK C L.
We define the relation CHE C L* x L* by:

mCLEn if 3se K*, dm~n

Thus, m is below n if m can be completed into n by some unobservable part §. Then
we prove that the relation 39 € K*, dm ~ n defines a PMO over L provided the relation
~ is a PME over L. Obviously, if ~ and ~’ are two PMEs over L’ such that ~ C ~' then
cLEc kK
Lemma 4.2. If ~ is a PME over L’ then the relation C = C%¥ is a PMO over L, and
the identities A = A. N L and LE = £~ N L* hold.

Proof. First, we remark that for any m € L*, m C m if and only if m ~ m: indeed,
dm ~ m implies m ~ m by rule (r). Thus, by Proposition 3.6, L& = £~ N L* and
Ac = A. N L. Let us prove that C is a PMO.
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Asm Cm iff m ~m and ~ is a PME, C is obviously closed under rules (¢) and (d).
If 2 C y then dx ~ y for some § € K*. Then = ~ x by rule (p;), and thus = C x. Hence
C is closed under rule (I). With rule (p,) for ~, we also show that C is closed under
rule (r). Let us consider rule (¢). If z C y and y C z then dz ~ y and §’'y ~ z for some
0,8’ € K*. Then 60’ € K* and 66’z ~ z by application of rule (e;), hence x C z. So C
is closed under rule (t). Let us consider rule {(c). If gy C qy and = C y then qy ~ gy and
dx ~ y for some § € K*. By rule (¢), we get dgx ~ qy. Then we have gz C qy. So C is
closed under rule (c). O

Since we have a way to build PMOs starting from PMEs, several questions arise. For
example, is this construction process general enough to represent any PMO; i.e. is the map
(~, L, K) — CLE a surjective one ? Is it semantically compatible with some embedding
of Bl into BBI, i.e. does it preserve Kripke semantics ? Let us first answer the second
question.

In the next two sections, we present a map F' — F'° from Bl-formulae to BBI-formulae
and show that this map preserves the Kripke semantics provided the PMO C = CLK
comes from a PME ~.

4.2. An intuitive description of the map of Bl-formulae to BBI-formulae

Before we introduce the map, we single out two logical variables L and K which behave
as the syntactical counterpart of the distinction between observable and unobservable
words. We point out that we have intentionally chosen to give the two variables L and
K the same name (i.e. same letters) as the sub-alphabets L and K which occur in the
definition of CL X leaving the distinction in the choice of the font L/L and K /K. The link
between the (semantic) set of observable words and the (syntactic) variable L is enforced
by choosing I such that € L* iff « I, L. The same holds for K/K: 2 € K* iff z IF K
holds for any word .

Let us informally explain the idea of the encoding of Bl into BBI and its link between
observable and unobservable words. Let us suppose that the PMO C is of the form
C = C&X for some PME ~. The Kripke interpretation of m IFc A x B is thus

Ja,be L*, abCmAalkc AANDIFC B
Using C = CXX we transform this formula into
da,be L*, 36 € K*, dab~m Aalrc AANDIFC B

As we have chosen to encode the set L* with the logical variable L in the Kripke semantics
I, then we can exchange a € L* with a l-- L (same for b/L/L and §/K /K) and obtain

36,a,b, sab~m ASIF.KAalFoLAallc AANbIFLLADIC B

Now suppose (recursively) that there are two BBI-formulae A° and B° such that for any
€ LE zlbc Aiff 2 ko A° and z Ik B iff 2 - B°. Exchanging a I-c A by a I A°
and bl B by bl B° we obtain

35,a,b, dab~mAdIFo KAalFoLAalkL A°ADIFLLADIFL B°
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or stated otherwise
mlk. Kx (LA A%) % (LA B°)
We see that we have to coerce a and b to range over observable words in L* by stating

alF. LandblF. L (L* are the words on which the Bl formula Ax B is Kripke-interpreted)
whereas we coerce § to range over unobservable words in K* by stating J IF. K.

4.3. Formal definition of the embedding map of Bl-formulae to BBI-formulae

We formalize these ideas into the recursively defined map F' — F°. The formulae on
which the map (-)° is applied should not contain occurences of either L or K to enforce
the distinction between observable and unobservable words.

Definition 4.3 (Embedding map). Let L and K be two different spare logical variables
in Var. Given F' € Bl containing neither L nor K, we define by induction on F' the formula
F*° € BBI as follows:

X°=K*X for X € Var\{L,K} lP=Ks«l 1l°=1 T°=T
(A@B)’=A°@® B° for ® € {A,V} (AxB)°=Kx((LAA°)x(LAB®))
(A= B)°=K - ((LA A°) — B°) (A= B)°=(Kx (LA A°)) = (L— B°)

In fact, the formula F° also belongs to the language of Bl but it will be interpreted as
a BBI-formula, not as a Bl-formula. We now state and prove that the map (-)° preserves
the Kripke semantics provided the PMO is of the form CXX,

Theorem 4.4. Let ~ be a PME over L’ and LU K C L'. Let (L,C,IFc) be a Bl-frame
on Var\{L, K} such that C = CL K We define the relation I-. € £~ x Var, by

ml. X if AeL* l~mAlllc X  for X € Var\{L,K}
mibo K iff 35 K* §~m
mio L iff A el* l~m

Then (L', ~,IF.) is a BBI-frame on Var and for any formula F' of Bl containing neither
K nor L and any m € L5, the equivalence m I-c F iff m |- F° holds.

Proof. We remind the reader that L5 = £~ N L* (see Lemma 4.2). Let us first prove
that (L', ~,IF.) is a BBI-frame, i.e. that I-. is monotonic. Let m,n € L~ such that
m ~ n. If X € Var\{L,K} and m |- X then there exists [ € L* such that | ~ m and
llFz X. By rule (t), we obtain [ ~ n, hence n I- X. If m IF K then there exists § € K*
such that 6 ~ m. Then § ~ n hence n IF K. If m I L then there exists [ € L* such
that [ ~ m. Then [ ~ n hence n IF L. So I-. is indeed monotonic.

We prove the equivalence of semantic interpretations by induction on F'. The cases for
F of the form L, T, AA B or AV B are trivial because the Kripke interpretations are
obviously the same. We list the non-trivial cases:

with X € Var\{L, K}. Let m € £E. On the one hand, if m ¢ X then, as m € L*
and m ~ m, we have m I X. As e IF. K and em ~ m, we obtain m IF. Kx*x X,
hence m IF. X°. On the other hand, if m IF. K% X then there exist =,y such that
xzy ~m, z IF. Kand y - X. Then there exists § € K* such that § ~ x and there
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exists [ € L* such that [ ~ y and ! IFc X. Then, by two applications of rule (e;),
0l ~ m, hence [ C m. As [ IF X and ¢ is monotonic, we obtain m IFc X;

F=I1| Wehave m - Kxliff mIF, Kiff 36 € K*d ~miff e Cmiff m ¢ |;

F = A— B| Let us suppose m IF- A — B with m € L= and prove m IF K — ((L A

A°) — B°). Let k,c such that km ~ ¢, k Ik K and ¢ IF. L A A°. Let us prove
¢l B°. From k |- K, we obtain § € K* such that § ~ k. From c Ik L, we get
I € L* such that [ ~ ¢. By monotonicity of |- and rule (s), from ¢ I-. A°, we
deduce ! I A°, hence [ IFc A by induction hypothesis. As ém ~ [, hence m C [, and
m Ik A — B, we deduce [ IFc B, hence again by induction hypothesis, I IF B°. As
[ ~ ¢, by monotonicity of I-., we obtain cl-. B°. So from m -z A — B, we deduce
mlF. (A— B)°.
Let us prove the converse implication. Let us suppose m IF K = ((L A A°) — B°).
Let z € LE such that m C z and z I A. Let us prove z b B. From z IF- A, we
deduce z - A° by induction hypothesis. As x € L* and x ~ x (v € LE C L), we
deduce z I LA A°. As elF. K and ex ~ x, we deduce z I-.. B°, hence z I-c B by
induction hypothesis. Hence m - A — B;

let us suppose m IF- A * B with m € £L5. There exist 2,y € L= such that

2y C m, x kg A and y Ik B. As z,y € L*, by induction hypothesis, we obtain
xlko LA A° and y IFo L A B°. Then, as xy C m, there exists § € K* such that
dzy ~m. Then § I-. K, hence m IF. K« ((L A A°) % (L A B®)).
On the other hand, let us suppose m Ik Kx ((L A A°) x (LA B®)). Then, there exists
k,a,b such that kab ~m, k- K, al-o LA A° and blF_ L A B°. Then a - L and
b IF~ L and there exists 6 € K* and z,y € L* such that § ~ k, z ~ a and y ~ b.
By three applications of rule {e;), dzy ~ m, hence zy C m. By monotonicity of IF.
and rule (s), as a - A° and b IF B°, we obtain x IF. A° and y I B°, hence by
induction hypothesis, z -z A and y I-c B. Thus m Ik A * B;

let us suppose m IF- A — B with m € LE. Let us prove m I, (K (L A
A°)) = (L — B®). So let ¢,d such that em ~ d, c¢lF Kx (LA A°) and d I L. Let us
prove that d IF. B°. There exist k,a such that ka ~ ¢, k- K, alF. L and a I A°.
Then there exists 6 € K* and x € L* such that § ~ k and x ~ a. By monotonicity,
x IF~ A°, hence by induction hypothesis, we obtain x - A. Moreover dxm ~ d by

three applications of rule {(e;). As d Ik L, let y € L* such that y ~ d. Then dzm ~ y
by rule (e,). Thus we have xm C y and m Ik A— B, and then y IF- B. By induction
hypothesis, we obtain y I-. B° and by monotonicity d IF. B°. We have proved that
m k. (K% (LA A°)) = (L — B°);

On the other hand, let us suppose m Ik (K (L A A°)) — (L — B°). Let x,y € LE
such that xm C y and = Ik A. Let us prove y |- B. There exists § € K* such
that dzm ~ y. As © € L* and z I A° (by induction hypothesis), we then obtain
zlko LA A° As § Ik K and dz ~ dz (by rule {p;)), we get dz IFo Kx (L A A°).
As dxm ~ y, we derive y IF. L — B°. But y € L* thus y IF. L, hence y IF. B°, so
y IFc B by induction hypothesis. We have proved that m IFc A — B.

So we have inductively proved that for any m € £E and any formula F of Bl containing
neither L nor K, m I-c F'if and only if m I-. F°. ]
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With this result, we have established the first step of our embedding of Bl into BBI.
Indeed, provided a Bl-counter-model of F can be chosen of the form T2 for some PME
~, then we automatically obtain a BBIl-counter-model of F°. So we are now going to study
more precisely the counter-models of Bl based on PMOs to show that this condition is
not restrictive.

5. Tableau Proof Systems for Bl and BBI

Tableau systems are refutation based procedures that produces statements like TA or FA.
Sometimes statements may also be written A or —A4 like in the reference textbook (Fitting
1990). The statement TA expresses the fact that the tableau refutation process tries to
build a model of the formula A whereas the statement FA expresses the fact that the
refutation process tries to build a counter-model of A.

Tableaux for a formula G are finite trees indexed with statements obtained by some
branch expansion process described by expansion rules and starting from the one node
tree FG. So a tableau for G contains the trace of a process that tries to refute G. The
formula A occuring in the statements TA or FA produced by the branch expansion
process are usually sub-formulae of the initial formula G, although it is not always the
case for some non-classical logics.

The expansion process works as following: to refute a branch v = [...,FAV B,.. ]
containing a statement FA V B, 7y is expanded into one branch [yo, FA, FB] whereas to
refute a branch y; = [...,TAV B,...] containing a statement TA V B, ~; is expanded
into two branches, [y1, TA] and [y1, TB]. These two instances of the branch expansion
process are represented by the two following branch expansion rules, FV on the left hand
side and TV on the right hand side:

FAV B TAV B
‘ /\
FA TA TB
FB

The justification of these rules corresponds to the following semantic arguments: for Av B
to be invalid, it is required that A and B are invalid whereas for A V B to be valid, it is
sufficient that either A or B is valid.

The expansion process stops either when branch expansion does not generate new
statements, and then the branch is called saturated; or when a contradiction occurs like
in the branch [...,FA,...,TA,...], in which case the branch is called closed. It is not
possible to refute such a closed branch because the formula A cannot be both valid and
invalid. A tableau for G which only has closed branches is called a closed tableau and is
generally a witness of the universal validity of G, depending of course on the soundness
theorem for the tableau method.

When considering non-classical logics, it is sometimes useful to enrich statements with
labels like TA : m or FA : m. In TA : m, the label m carries some semantic information
about the world in which the Kripke forcing relation m IF A holds. For intuitionistic logic
IL for example, labelled statements and unification of prefizes are sufficient to provide a
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sound and complete proof system (Otten and Kreitz 1996), although the system is based
on Wallen’s matrix characterization rather than the tableau method.

Unfortunately, labels alone do not carry enough information to provide a sound and
complete tableau proof system for Bl. The statements also have to be enriched with con-
straints of the form m C n which are relations that are supposed to hold between labels.
A sound and complete labelled tableau proof system was proposed for Bl in (Galmiche
and Méry 2003) and we briefly recall it in the next section. We also adapt the proof
system to BBl and prove its soundness. In fact, we propose a common framework to
describe Bl- and BBI-tableaux.

5.1. Labelled tableaux with constraints for Bl and BBI

We define the notion of tableau with constraints for Bl (resp. BBI) providing a proof
system called TBI (resp. TBBI). We warn the reader that the following definition refers
to tableauz expansion rules, rules which are described a bit later and that he should not
jump on them before he is actually prepared to read them.

Definition 5.1 (TBI- and TBBI-tableaux). Let L be an alphabet. A TBI- (resp.
TBBI-) tableau with constraints for a formula G is a finite tree with nodes labelled either
by statements of the form SA : m where S € {T,F}, A € Bl (resp. A € BBI) and m € L*
or by assertions which are constraints of the form m—mn where m,n € L*, built according
to the following rules:

— the single node tree [FG : €] is a TBI-tableau for G;

— the two nodes tree [a — b,FG : a] is a TBBI-tableau for G whenever a # b € L;

— any (maximal) branch of a tableau for G can be expanded according to the tableau
expansion rules of TBI (resp. TBBI).

We might speak of a tableau 7 without specifying formula G, simply meaning that 7
is a tableau for some formula G (which can be recovered by reading at the root of the
tableau tree).

The tableau expansion rules for both TBIl and TBBI are described in Tables 2 and 3. The
rules in Table 2 are common to both TBI and TBBI ({T,F}{A, V,*, -} and TI). Table 3
contains rules either specific to TBI ({T,F}— on the left part) or TBBI ({T,F}{—, -}
on the right part).

In these expansion rules, existing statements (like TA * B : m in rule Tx) are decom-
posed into new statements (e.g. TA : « and TB : b) and new assertions (e.g. ass : ab—m).
These are the products of the decomposition rule. Rules T* and F— have a side condi-
tion: the letters a and b should be chosen new in the current tableau branch. Rule Fx
(resp. T—) has another kind of side condition: the words x and y should be chosen such
that the relation xy R, m (resp. zm R, y) holds with R, being either the PMO C, (for
TBI) or PME ~,, (for TBBI) generated by the assertions of the current tableau branch ~.
For the rules which are specific to either TBI or TBBI, the side conditions are: in rule
F—, the letter b should be new; in rule T—, the word z should verify relation m &, =
where T, is the PMO generated by the current branch +.
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TAAB:m TAV B:m
‘ /\
TA:m TA:m TB:m
TB:m
FAAB:m FAV B :m
/\ ‘
FA:m FB:m FA:m
FB:m
Tl :m TAxB:m TA B :m
\ \ \
ass: € —-—m ass: ab—m req: xm Ry
TA:a Py
TB:b FA:x TB:y
FAxB:m FA—=«B:m
| |
req: zy Rm ass: am —b
/\ TA:a
FA:x FB:y FB:b

Table 2. Tableaux expansion rules which are common in TBl and TBBI, for the
additives (N, V) in the upper part and for the multiplicatives (1, x, —) in the
lower part.

TA— B:m TA— B:m T-A:m
| T |
req: mCx FA:m TB:m FA:m

/\
FA:zx TB:xz

FA— B:m FA— B:m F-A:m
\ \ \
ass: m—> TA:m TA:m
TA:b FB:m

FB:b

Table 3. Tableauz expansion rules specific to TBI (on the left part) and tableaux
expansion rules specific to TBBI (on the right part).

The build process in tableau systems is based on the notion of branch expansion. This
process is explained in full details in Section 5.2, as well as how tableaux expansion rules
are supposed to be applied. We also explain how to build the PMO L., (resp. PME ~.)
generated by a branch v of a tableau. The expansion process may stop when a closure
condition is fulfilled.

Definition 5.2 (Closure conditions). A branch v of a TBI- or TBBI-tableau is closed
if one of the following condition is fulfilled for some propositional variable X € Var and
some m,n € L*:
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1. TX :mevy,FX:nevyandm Ry n
2.Fl:mecyand e Rym

3. TL:me~

4. FT :me~n

where R, is either £, or ~, depending on whether we consider a TBI- or TBBI-tableau.
If a branch is not closed, then it is open. A tableau is closed if all its branches are closed.

5.2. Explanations on tableau proof rules and the branch expansion process

Each branch 7 of a tableau tree contains a sequence of assertions and statements. Asser-
tions are constraints and we collect them in a sequence or set of constraints C, (the order
or potential duplication of constraints is indifferent). The PMO C, = C¢ (resp. PME
~, = ~c,) is associated to the branch ~: hence T/~ is the PMO/PME generated by
the assertions of v (see Section 6.2 for an example). We also denote by A, the alphabet
Ac (resp. Ao ) of the relation T, (resp. ~,), which is exactly the set of letters that
occur in the assertions of C, (see Proposition 3.16).

As explained in the previous section, some of the rules of the two systems are common
(see Table 2) while others are different (see Table 3). The rules which differ are T—,
F—.% and of course T— and F— because —A is not a Bl formula. The fact that some rules
have the same shape for TBI and TBBI does not imply that they can always be used
when the constraints in the branch are identical: the corresponding PMO C., and PME
~. may differ, implying different situations for the side conditions. Indeed, some rules
have a requirement x R y that imposes the condition z C, y (R = C,) in TBI, whereas
the condition is x ~, y (R = ~,) in TBBI. And of course, C., and ~, are generally not
identical relations. Let us further comment on the assertions x — y and the requirements
x R y that occur in the tableaux expansion rules:

— the former assertion x — y indicates that the constraint x — y should be added to the
branch as well. The concerned rules are Tl : m, TA* B : m, FA - B : m (for both
TBI and TBBI) and also FA — B : m (but just for TBI). Let us consider the example
of rule TA* B : m for TBI. It can be applied to a branch ~ of a tableau provided
the statement TA % B : m occurs in v (not necessarily at the leaf of ) and, as a side
condition, the letters a # b € L are new to v, i.e. a,b € A,. Then 7 is expanded into

§ The TBIl-rules T— and F— are also valid and even complete for BBI but they are profitably replaced
with simpler rules because A— B is logically equivalent to AV B in BBI (see Proposition 3.9) whereas
this equivalence does not hold in BI.
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the one branch [y,ab— m,TA : a,TB : b] as displayed below:

Vo TAxB:m

ass, : ab—m
TA:a
TB:b

— the latter requirement = R y is just a side condition that should be fulfilled so that
the expansion rule could be applied. For example in the case of TBBI, to apply rule
TA — B : m to the branch ~, the statement TA — B : m should occur in v and the
chosen words x,y € L* should verify xm ~, y, R being interpreted as R = ~,. Then
the branch v can be expanded into the two branches [y,FA : z] and [y,TB : y] as
displayed below:

Vg TA—=B:m

reqg: TmM ~yy

/\
FA:x TB:y

We point out that we generally tag the tableau trees with requirements (like reqg
generally displayed in a grey box ) and history information (like \/,, v/5 and a, 3 in
ass, and reqﬁ) so that it is easier for the reader to check which rule is applied and why
the conditions for its application are fulfilled. Formally, requirements and history are not
part of tableau trees. On the other hand, assertions are not boxed but displayed prefixed
with ass. Contrary to requirements, assertions are critical bits of semantic information,
not just a guideline for checking that the tableau tree is well formed. Finally, statements,
which also constitute critical bits of information, are not prefixed because they always
start with either T or F.

Proposition 5.3. For any branch ~ in a TBI- (resp. TBBI-) tableau, if the statement
SF : m occurs in v then the relation m C., m (resp. m ~. m) holds.

Proof. By induction on the tableau expansion process using rules (p;, p,.). The only
tableaux rules that introduce statements with new labels are:

— T (resp. F—) but in this case the labels a and b are defined by the assertion ab— m

(resp. am —b), i.e. if R = R+ {ab~ m} (resp. R' = R+ {am — b}) then ¢ R’ a and

b R’ b whether R = C is a PMO (for TBIl) or R = ~ is a PME (for TBBI). Simply

apply the rules (p;, p.-);
— Fx (resp. T—) but in this case the labels  and y must already be defined because
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am Ry (resp. xm R y) implies R « and y R y whether R is a PMO (for TBI) or
PME (for TBBI);

— T— (for TBI) but in this case the label z must already be defined because m C z
implies x C x;

— F— (for TBI) but in this case the label b is defined by the assertion m — b, i.e. if
C'=C+ {m —~ b} then b’ b.

The other tableau expansion rules introduce statements with labels that must already
exist in a previous statement in the branch v, hence we must already have m C., m (resp.
m ~~ m) by induction hypothesis. For example, for rule Vv, the statement TAV B : m
must already occur in the branch v before the rule is applied producing the two branches
[v,TA : m] and [y, TB : m]. Ul

5.3. Elementary and simple PMQOs/BI frames

The TBI-tableau method provides some insights into the semantics of Bl. Indeed, the
TBI-tableau rules which introduce assertions, namely F— TI, T* and F—, do not intro-
duce constraints of arbitrary form. We collect all the possible forms into the following
definitions and Proposition 5.7 proves that our gathering is adequate.

Definition 5.4. Given a PMO C over L, a constraint is Bl-elementary w.r.t. C when it
is of one of the five following forms:

1. ab—m with m Cm, m # € and a # b € L\ Ac;
.am—>bwithmCmand a#be€ L\Ac;
. m—bwith m Cm and b € L\Ar;
. € —m with m & m and m # ¢;

T W N

. €~ €.

Let (z; — yi)i<k be a sequence of constraints with £ € NU {oo} and C, be the set of
constraints C, = {x; —y; | i < p} for p < k. We suppose that for any p < k, the constraint
Tp — Yp is Bl-elementary with respect to C¢, (resp. ~c,). If k& < oo then the sequence
(x; — ¥i)i<k 1s called Bl-elementary. This definition implies in particular that the empty
sequence of constraints is Bl-elementary. If k& = oo then the sequence (x; — yi)i<oo 8
called Bl-simple.

Definition 5.5. A PMO is Bl-elementary (resp. Bl-simple) if it is of the form C. where
C={x;—y; | i<k} and (z; — y;)i<k is a Bl-elementary (resp. Bl-simple) sequence of
constraints.

We make the obvious following remark. According to those definitions, if C is a BI-
elementary PMO and the constraint & — y is Bl-elementary w.r.t. C then the PMO
extension C + {x — y} is a Bl-elementary PMO.

Using case 5 (e — ¢€) of Definition 5.4, any finite Bl-elementary sequence can be com-
pleted into a infinite Bl-simple sequence by repeated use of the constraint € — e. Since
adding this constraint does not change the corresponding PMO (because of rule (e)),
Bl-elementary PMOs are also Bl-simple. Of course, the converse is not true. Indeed, the
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language of a Bl-elementary PMO is always finite whereas the language of a Bl-simple
PMO can be infinite. So the difference between Bl-elementary and Bl-simple PMOs is
that in the later case, the underlying sequence can be infinite whereas it must be finite
for Bl-elementary PMOs.

Let us now prove that the PMOs occuring in the branches of TBI-tableau are BI-
elementary. But we must first establish that m C e never holds for Bl-elementary PMOs
unless of course m = e.

Proposition 5.6. If C is a Bl-elementary or Bl-simple PMO over L, then for any m € L*,
m C € only if m =e.

Proof. According to the definition of Bl-elementary constraints, they can be of the
form m — ¢ only if m = € (case 5 of Definition 5.4). So we can apply property 1 of
Proposition 3.19. L]

Proposition 5.7. Statements of the form TF : e for some F' € Bl never occur in a
TBI-tableau and for every branch « of a TBI-tableau the sequence of assertions occurring
in « is Bl-elementary.

Proof. The proof of these two properties is done by mutual induction on the TBI-
tableau construction process for G. Of course, the properties are valid for the single node
TBI-tableau [FG : €]. Indeed there is only one branch v = [FG : €] which has no assertion,
the empty sequence of constraints is Bl-elementary, and TF : € does not occur in .

Then we consider tableau expansion rules. The only rules that may introduce a state-
ment of the form TF : € are TA, TV, T— and T—x:

— For TA (resp. TV) it would mean that TAA B : € (resp. TAV B : ¢€) already occurs
in the branch which is false by induction;

— For TA — B : m, it would mean that m T, € holds. But by Proposition 5.6, since
C, is Bl-elementary by induction hypothesis, we must have m = ¢, hence TA — B : ¢
occurs in v which contradicts the induction hypothesis;

— For TA — B : m, it would mean that zm £, € holds and then xm = e which implies

m = € and thus TA — B : € occurs in v, contradiction.

So we have proved that branch expansion cannot introduce TF' : € in a branch. We now
prove that the sequences of assertions remain Bl-elementary in the expanded branches.
Four rules introduce new assertions: Tx, F—, F— and TI. The corresponding constraints
are respectively ab — m, am — b, m — b and ¢ — m. It is not a coincidence that these
are exactly the four first constraint types Bl-elementary w.r.t. £, see Definition 5.4. In
the case of ab - m or € — m, we have m T, m by Proposition 5.3 and we have m # ¢
because otherwise TA x B : € or Tl : € would occur in v which contradicts the induction
hypothesis. L]

So we have singled out a sub-class of PMOs, namely Bl-elementary PMOs and their
limits Bl-simple PMOs, which are those that occur in the branches of TBI-tableau trees.
In the following sections, we will exploit this sub-class and its properties to establish a
direct link between the models of Bl and those of BBI.
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5.4. Soundness and completeness of the TBl-tableau system

We state the completeness of the TBI-tableau method for Bl. We also state that the class
of Bl-simple PMOs is complete for Bl and hence, Bl-counter-models can always be chosen
Bl-simple. The proof of the following theorems can be found in (Galmiche et al. 2005)
and in Daniel Méry’s thesis (Méry 2004).

Theorem 5.8 (Soundness and completeness of TBI). Provided the alphabet L is
infinite, there exists a closed TBIl-tableau for the formula G if and only if G is a Bl-valid
formula.

Theorem 5.9 (Completeness for simple PMOs). Every invalid formula of Bl has a
Bl-counter-model of the form of the Bl-frame (L, C,I) where C is a Bl-simple PMO.

The idea is that the counter-model is extracted from an open, satured and potentially
infinite branch of a TBI-tableaux sequence. This counter-model is composed of the infinite
sequence of assertions occurring the branch and is thus a Bl-simple PMO.

5.5. Soundness of the TBBI-tableau system

Soundness and completeness also hold for the TBBI-tableau system. However, there is
no published proof of these results for the moment. In this section, we give a soundness
proof for the TBBI-tableau system w.r.t. BBI-frames. We do not provide the proof of
completeness for two reasons:

— first reason: we do not need completeness for our purpose of embedding Bl into BBI,
we only need soundness of the TBBI-tableau system;

— second reason: the completeness proof is much more complicated than the soundness
proof. In particular, it involves the manipulation of infinite branches of tableaux. In
this article, we have chosen a definition of tableaux as finite trees because the defini-
tion suits better for graphical representation as in Section 7.1. For the formalization
of the completeness proof, it is much easier to represent tableaux as sets of branches,
the branches being finite or infinite sets of statements.

The soundness proof is decomposed as usual into two parts. First, we prove that branch
expansion preserves realizability. Then we show that closed branches are not realizable.

We consider TBBI-tableaux over the alphabet L and BBI-frames over the alphabet K
where L and K are not necessarily identical. So in statements SF' : m or assertions m—mn,
m,n belong to L* whereas the relation ¢ |- F or ¢ ¥ F in the frame (K, ~,IF) involves
q belonging to K*. Given a total map p: L — K*, for m = m;...m, € L*, we define
m, = p(m1) ... p(m,) and obtain a morphism of (commutative) monoids (-), : L* — K™*.

Given K = (K, ~,IF, p), we say that the statement TA : m (resp. FA : m) is satistisfied
in K if m, € L~ and m, IF A (resp. m, ¥ A). We say that the assertion m — n is
satistisfied in K if m, ~ n,.

Definition 5.10. We say that a branch of a tableau is satisfied in K = (K, ~,IF, p) if
all its statements and all its assertions are satisfied in K. We say a tableau T for G is
realizable if there exists IC such that at least one of the branches of 7 is satisfied in K.
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Proposition 5.11. If a branch v of 7 is satisfied in K = (K, ~,IF, p) and m,n € L*
verify m ~, n then m, ~ n,.

Proof. As all the assertions of ~y are satisfied in K, the binary relation ~' C L* X
L* defined by m ~" n iff m, ~ n, contains all the assertions of . Moreover, it is
straightforward to prove that the relation ~’ is a PME over L from the fact that ~ is a
PME over K and m + m, is a morphism of monoids. Hence, since ~., is the least PME
containing all the assertions of v, we have ~, C ~/. ]

If a branch + is satisfied in IC then all of its requirements, i.e. all the constraints in the
PME ~,, are also satisfied in K. Moreover, if SA : m € v then, by Proposition 5.3 we
have m ~, m, hence m, ~ m,,.

Proposition 5.12. Closed TBBI-tableaux are not realizable.

Proof. We prove that a closed branch - cannot be satisfied in any (K, ~, I, p). Let us
suppose the contrary and proceed by case analysis on the closure condition:

—if TX : m € v, FX : n € v and m ~, n then, as 7 is satisfied in K, we have
m, ~ n, by Proposition 5.11. Moreover, both TX : m and FX : n are satisfied and
thus m, IF X and n, ¥ X. As m, ~ n,, we obtain a contradiction by monotonicity
of IF;

— if FI : m € v and € ~, m then, as v is satisfied in K, we have e = ¢, ~ m, and m, ¥ |.
But then, we should have € » m,. Thus we obtain a contradiction;

— if TL : m € v then, as v is satisfied in K, we have m, ~ m, and m, IF L which is
impossible;

— if FT : m € v then, as v is satisfied in K, we have m, ~ m, and m, ¥ T which is
impossible.

So we obtain a contradiction in any case. A closed branch cannot be satisfied. Thus closed
TBBI-tableaux are not realizable. ]

Lemma 5.13. TBBI-tableaux expansion rules preserve realizability.

Proof. Let T be a realizable BBI-tableau and let K = (K, ~, I, p) be such that at least
one branch of 7 is satisfied in K. We consider the expansion of one of the branches of 7
by one of the rules of the TBBI-tableau system. If the expanded branch is not among the
satisfied ones then the satisfied branches are unchanged by the application of the rule
and the obtained tableau 7 is thus still realizable.

So we consider the case when the branch v we expand is among the satisfied ones. We
proceed by case analysis depending on the rule applied:

is satisfied in K hence m, € L~ and m,, IF = A. Thus m, ¥ A and FA : m is
satisfied in K. So the new branch [y,FA : m] of 7" is satisfied in K;

F-A :m/| similar to case T—;

TA A B : m| is satisfied in K hence m, € L~ and m, IF AAB. Thenm, IF Aand m, IF B
hence TA : m and TB : m are satisfied in K. So the new branch [y,TA : m,TB : m]
of 7' is satisfied in K;
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is satisfied in K hence m, € £~ and either m, ¥ A or m, ¥ B. Hence

either FA : m or FB : m is satisfied in . So at least one of the two new branches of

7' (namely [y,FA : m] or [v,FB : m]) is satisfied in K;
TAV B :m/| similar to case FA;
FAV B :m/| similar to case TA;

TA — B :m| similar to case FA;
FA — B :m/| similar to case TA;

Tl :m| is satisfied in K hence m, € £~ and m,, IF |. Thus € ~ m,. As €, = ¢, we obtain
€, ~ m, and thus the assertion e — m is satisfied in . So the new branch [y, e — m]
of 7' is satisfied in K;

is satisfied in K hence m, € £~ and m, I A* B. So there exists z,y € L~

such that zy ~ m,,  IF A and y I+ B. We define p’ = pla — z,b — y| (possible

because a # b). Then for any m,n € L* s.t. m ~, n we have m,n € A: and thus
my =m, and n, =n, (p and p’ are identical maps when restricted to A, because

a,b ¢ A,). Thus v is satisfied in K' = (K, ~, I, p’). Moreover, ab—m is satisfied in £’

(because (ab), = xy, my = m, and xy ~ m,), TA : a is satisfied (because a, = x

and x IF A), and TB : b is satisfied (because b, =y and y IF B). So the (new) branch

~v,ab—m,TA:a,TB:b] of T’ is satisfied in K';
is satisfied in K hence m, € L~ and m, ¥ A x B. 7 is expanded into

two branches [y,FA : z] and [y,FB : y] with 2y ~, m. Then z,y, ~ m, and thus

Zp,Yp € L. So either x, ¥ A or y, ¥ B. Thus at least one of the two new branches
of 7' (namely [y,FA: z] and [y,FB : y]) is satisfied in £;
TA — B :m| similar to case Fx;

FA — B : m/| similar to case Tx.

So in any case, there exists a satisfiable branch in 7’ and thus 7" is realizable. O

Theorem 5.14 (Soundness of TBBI). If there exists a closed TBBI-tableau for the
formula G then G is a valid BBI formula.

Proof. Let us suppose that G has a counter-model (K, ~,IF), i.e. there exists m € L™
such that m W G. Then, for ¢ # dy € L, the unique branch of the TBBI-tableau
[co — do,FG : o] is satisfied in (K, ~,IF, p) where p = z — m (in particular p(cy) =
p(dp) = m). Any initial TBBI-tableau for G is thus realizable. Hence, as branch expansion
preserves realizability, all the TBBI-tableaux for G are realizable. Thus G cannot have a
closed TBBI-tableau. J

6. Representing simple PMOs by PMEs

In Section 4.1, we have presented the map ~ — CZ¥ which transforms a PME into a
PMO. We asked ourself the question of whether this transformation is general enough to
produce any PMO. We do not know the answer to this question yet and won’t provide
an answer in this article. But we have a positive answer in the case of Bl-simple PMOs.
This is what we develop in this section.
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6.1. Elementary and simple PMEs

We introduce the notion of BBIl-elementary and BBIl-simple PMEs similary to the case
of PMOs. But there is a major difference between the two cases. Bl-elementary (and
Bl-simple) PMOs were designed to capture those PMOs occuring in TBI-tableau proofs.
BBl-elementary (and BBI-simple) PMEs are not designed to capture the PMEs occuring
in TBBI-tableau proofs. They do not fit for such a goal as explained later in Section 6.2.
The study of the properties of PMEs occuring in TBBI-tableau proofs is way off the scope
of this article.

BBl-elementary (and BBI-simple) PMEs are in fact specifically designed to represent
Bl-elementary (and Bl-simple) PMOs through the map ~ + CL¥ and the notion of
(L, K, M) elementary representation defined in Section 6.5.

Definition 6.1. Given a PME ~ over L, a constraint is BBl-elementary w.r.t. ~ when
it is of one of the five following forms:

. ab—m with m ~m, m»~eand a # b€ L\A-;
..am—bwith m ~m and a #b € L\A-;

.m—>bwithm~m, m~eand be L\A;

. e—bwithbe L\A;

. €~ €.

T W N~

Let (x; — ¥i)i<k be a sequence of constraints with £k € N U {oco} and C, be the set
of constraints C, = {x; — y; | ¢ < p} for p < k. We suppose that for any p < k, the
constraint z, — y, is BBl-elementary with respect to Cc, (resp. ~¢,). If k < oo then the
sequence (x; — y;)i<k is called BBl-elementary. If k = oo then the sequence (z; — ¥;)i<oo
is called BBIl-simple.

Definition 6.2. A PME is BBl-elementary (resp. BBIl-simple) if it is of the form ~¢
where C = {z; —y; | i < k} and (x; — ¥;)i<k is a BBl-elementary (resp. BBI-simple)
sequence of constraints.

We make the obvious following remark. According to those definitions, if ~ be a BI-
elementary PME and the constraint = — y is BBl-elementary w.r.t. ~ then the PME
extension ~ + {x — y} is BBl-elementary. Using case 5 of Definition 6.1, any finite BBI-
elementary sequence can be completed into a infinite BBI-simple sequence by repeated
use of the constraint € — €. Hence, BBI-elementary PMEs are also BBI-simple.

6.2. A PME occuring in a TBBI-tableau which is not simple

Let us present an example of PME which is not BBIl-simple, but nevertheless coming
from a branch of a TBBI-tableau: we remind the reader that contrary to Bl-elementary
and Bl-simple PMOs, BBI-elementary and BBIl-simple PMEs are not designed to capture
those PMEs generated by TBBI-tableaux.

Consider the set of constraints C = {cy — do, € — co,ab — ¢o}. In the given order,
it is obvious that this sequence of contraints is not BBl-elementary: ¢ — ¢y is not BBI-
elementary w.r.t. ~(. 4.} = {e —¢€,¢0 = co,do — dp, co — do} because ¢ is not new. But
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this does not prove that the corresponding PME ~¢ is not BBl-elementary or BBI-simple.
This sequence of constraints arise as the sequence of assertions of the unique branch of
the following TBBI-tableau for =(I A A x B):

assg : cg ~— do
Vi F=(IA(A%B)) :c
|

Vo TIN (A% B) :co
|
V5 Tl:co
V4 TA* B : ¢

assg . € — Cp

assy : ab - ¢
TA:a
TB:b

It is possible to compute the form of the PME ~¢ explicitly. Indeed, the reader can check
the following identity by double inclusion:

~e ={d"Vox —a" by | ig + j1 = i1 + jo and z,y € {co,do}*}

arguably after a certain amount of work. Then, it is obvious to check that a? ~¢ a? and
a ¢ €. The one letter word a is squarable in ~¢ but nevertheless not equivalent to e.
Then, according to Corollary 6.10 (coming later), the PME ~¢ cannot be BBI-simple. It
is nevertheless associated to some branch of a TBBI-tableau.

This example points out the conceptual differences between Bl-elementary PMOs which
capture those PMOs occuring in TBI-tableaux and BBIl-elementary PMEs which do not
capture those PMEs occuring in TBBI-tableaux. The role played by BBIl-elementary PMEs
and the justification of the introduction of this concept will become clearer when elemen-
tary representations will be introduced in Section 6.5.

6.3. Free PME extensions

To be able to prove further properties of BBl-elementary and BBIl-simple PMEs, we now
introduce general results which explicitly compute “free” PME extensions like ~ + {ab —
m} or ~ 4 {am — b} where m is already defined in ~ (i.e. m ~ m) and a # b are two
letters new to ~ (i.e. a = a and b = b).

The three following results are essential as a basis for reasoning about those “free”
PME extensions. The case ~ + {« — m} covers both the extension ~ + {ab — m} (where
a and b are new) and ~ + {m — b} (where b is new). Apart for the first one ~ + {e — b},
neither the shape of ~ 4+ {a — m} nor that of ~ + {am — b} nor the hypotheses on m,
« and b are obvious.

Their tedious proofs are done by basic arguments. They are provided to be complete,
but are postponed in Appendix A because they are quite long and we feel that they
would distract the reader at this point.
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Proposition 6.3 (~ + {€ — b}). Let ~ be a PME over L and b be new to ~, i.e.
b € L\A.. Then ~ + {e — b} = ~/ with ~' = {b”x—-—bqy | 2~y A pq> O} and
Ao =A.U{b}.

Lemma 6.4 (~ 4+ {a — m}). Let ~ be a PME over L. Let m € L* and o € L* such
that m ~ m, mm » mm, a # € and A, N A~ = 0. Then ~ + {a — m} = ~' with

~=~U{z~bylz~yAmz~myAds<and{eal}
U {az — ay | ma ~ my}
U{az —y|mz~y}
U{z~ay|z~my}

and Ao = AL UA,.

Lemma 6.5 (~ + {am - b}). Let ~ be a PME over L. Let m € L*, a € L*, b€ L
such that m ~m, a # ¢, AuNA. =0 and b € AL UA,. Then ~ + {am — b} = ~' with

~=~U{z~by|lz~yNe£d<aATkak~m}
U{ax —jb|z~ jm A 3k jkm ~m}
U {ib—ay |y ~im A Ik ikm ~ m}
U {ib ~ jb | 3k (ikm ~m A jkm ~m)}

and A = AL UA, U{b}.

6.4. No square in simple PMEs

We remark that one of the hypothesis on m in the free PME extension ~ + {ab — m} is
that the square of m is not defined in ~, i.e. mm ~ mm, see Lemma 6.4 with o = ab.
To be able to use the equation of this lemma to compute BBIl-elementary PMEs, we first
establish that they do not contain squares, in a kind of relaxed way.

Definition 6.6. Let ~ be a PME over L. We define /.. = {i € L | i ~ €}. We say that
~ has no square if for any letter ¢ € L, cc ~ cc only if ¢ ~ €.

This is not exactly the same as stating that no word can be squared unless it is e. But
this amounts to stating that no word m can be squared unless it is equivalent to € (i.e.
m ~ €). The set /. is the set of letters which are equivalent to € as one letter words.

Proposition 6.7. If the PME ~ over L has no square then the following properties hold:

1. for any m € L*, we have mm ~ mm iff m € I, if m ~ ¢;
2. for any i,k,m € L*, if m ~ m then ikm ~miff i ~ e A k ~ ¢
3. for any i,j € I, m,n € L*, we have im ~ jn iff m ~ n.

Proof. Let us define I = /. For property 1, let m € L*. If mm ~ mm, let us consider
two cases: m = € and m # €. If m = ¢ then m € I*. If m # ¢, let ¢ be a letter of m. Then
cm’ = m for some m’ € L*. We get cm/cm’ ~ em’em/; hence cc ~ cc by rule (d). So
c € I. As ¢ € [ for any letter of m, we deduce m € I'*. Hence, mm ~ mm only if m € I*.

Let us now suppose m € I*. We prove that m ~ e by induction on the length of m. If
m = € then m ~ € by rule (¢). Otherwise m = ¢m’ with ¢ € I and m’ € I'*. By induction



Dominique Larchey-Wendling and Didier Galmiche 32

we have m’ ~ €. As ¢ € I, we have ¢ ~ e. By rule (¢;), from em’ ~ ¢ we deduce cm’ ~ ¢
hence m ~ €. Som € I* only if m ~ e.

Let us now suppose m ~ €. Then from em ~ e we deduce mm ~ € by rule (e;). Hence
mm ~ mm by rule (I). So we have proved property 1.

For property 2, let i, k,m € L* such that m ~ m. On the one hand, if tkm ~ m
then ik(ikm) ~ m by rule (e;). Hence (ik)(ik) ~ (ik)(ik) by rule {p;). Thus ik € I* by
property 1. Thus i,k € I* and then i ~ € and k ~ e. On the other hand, if i ~ ¢ and
k ~ ¢, then from eem ~ m, we get ikm ~ m by two applications of rule (e;).

For property 3, we have both i ~ €, j ~ €, € ~ i and € ~ j by property 1 and rule (s).
The equivalence is obtained by application of rules (e;) and (e,). L]

When ~ has no square, the explicit form of the PME extension ~ + {am — b} can be
simplified a bit.

Proposition 6.8. Let ~ be a PME over L, m ~ m and a # b € L\ A.. If ~ has no
square then the following identity holds:

~+{am~b} =~U{ax —ay |z ~y A Ik zk ~m}
U{az — jb,jb—azx |z ~mAj~ e}
U{ib—jbli~eAj~e}

Proof. Starting from the identity of Lemma 6.5, as ~ has no square, with property 2 of
Proposition 6.7, we can simplify the condition x ~ jm A 3k jkm ~ m into the equivalent
x ~m A j~ e We can also simplify 3k (tkm ~ m A jkm ~ m) into the equivalent
i~eEN] ~E. ]

Now we prove than BBIl-elementary extensions preserve the property of “having no
square” and compute the sets /. accordingly.

Proposition 6.9. If the PME ~ has no square and x — y is BBl-elementary w.r.t. ~
then ~' = ~ + {& — y} has no square. Moreover /.., = . in all cases except case 4
(~ =~ +{e~b}) where |, = 1. U{b}.

Proof. Let A=A, I=1.,~=~+{x~y}, A=A, I'=1..Then, as ~ C ~/,
we deduce A C A’ and I C I'. We consider each case for x —y according to Definition 6.1,
using Proposition 6.3, Lemma 6.4 and Proposition 6.8:

where m ~ m, m = ¢, a # b € L\ A. As ~ has no square, from m ~ € we

deduce mm ~ mm (see property 1 of Proposition 6.7) and thus by Lemma 6.4:

~=~+{ab-m} =~U{ax —ay,bx — by | x ~y A mx ~ my}
U {abx — aby | mz ~ my}
U {abx — y,y — abz | mx ~ y}

Let ¢ be a letter such that cc ~' cc. As a and b are two different letters not occuring
in A= AL, from the form of ~’ it is obvious that the only option is cc ~ cc, hence
¢ ~ € because ~ has no square. Thus ¢ ~' . We have proved that ~' has no square
and I’ C I hence I’ = I;
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where m ~ m and a # b € L\ A. As ~ has no square, by Proposition 6.8, we
obtain the identity:

~=~+{am—-b}=~U{az—ay |z ~yAIkak~m}
U{ax — jb,jb—ax |z ~mAj~¢€}
U{ib—gbli~eAj~e}

Let ¢ be a letter such that cc ~' cc. From the form of ~’ it is obvious that the only
option is cc ~ cc, hence ¢ ~ € because ~ has no square. Thus ¢ ~' €. Hence ~' has no
square and I’ = I;

where m ~ m, m » ¢, b € L\ A. As ~ has no square, from m » ¢ we deduce
mm ~ mm and thus by Lemma 6.4:

~ =r~+{b-m}=~U/{br ~by| mx~my}
U {bx — y,y — bx | mz ~ y}

But ~ = ~+{m —b} = ~+{b—m} by rule (s). Let ¢ be a letter such that cc ~' cc.
From the form of ~' = ~+{b—m} it is obvious that the only option is cc ~ cc, hence
¢ ~ € because ~ has no square. Thus ¢ ~" €. Hence ~’ has no square and I' = I;

with b € L\ A. By Proposition 6.3:

~ =~ {e~ b} = {VPr by |z ~yAp.q>0}

Let ¢ € L. There are two options for cc ~' cc: either cc ~ cc or ¢ = b. In case cc ~ cc,
we obtain ¢ ~ € because ~ has no square, hence ¢ ~' €. Incasec = b, weget c =b ~' ¢
by rule (s). Hence ~' has no square and I’ = I U {b};

€ — €| then ~' = ~ + {€ — €} = ~ has no square and I’ = I.

In any case, we have proved that ~' has no square and computed /.. accordingly. []
Corollary 6.10. BBl-elementary and BBI-simple PMEs have no square.

Proof. We prove the result for BBl-simple PMEs as BBI-elementary PMEs are also BBI-
simple PMEs. Let ~ be a BBl-simple PME. Then there exists (z; — ¥;)i<oo, & BBl-simple
sequence of constraints such that ~ = ~¢ with C = {z; —y; | i < oo}. Let ~, = ~c¢,
with C, = {x; —y; | i <p} for p € NU {oo}. Then ~ = ~.

For p = 0, we have ~g = ~p = {e — €} which of course has no square. With
Proposition 6.9, it is trivial to prove the induction step, i.e. ~, has no square implies
~pi1 = ~p + {zp — yp} has no square, because z, — y, is BBl-clementary w.r.t. ~,. By
induction, for any p < oo, the PME ~,, has no square.

Let ¢ € L such that cc ~4 cc. By compactness (see Proposition 3.17), there exists
p < oo such that cc ~, cc. Hence, as ~, has no square, we deduce ¢ ~, €. Hence, as
~p € ~oo, we have ¢ ~o €. Thus ~ = ~, has no square. |

Let us now briefly discuss the incremental computation of BBl-elementary PMEs. This
problem consists in the computation of BBl-elementary extensions of ~ where ~ is it-
self a BBl-elementary PME. Hence, ~ has no square and thus, since cases 1 and 3 of
Definition 6.1 contain the condition m ~ €, by Proposition 6.7, we deduce mm ~ mm.
Hence, it is legitimate to use the equation of Lemma 6.4 to compute the BBIl-elementary
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extensions ~+ {ab—m} and ~+ {m —b} as already done in the proof of Proposition 6.9.
To complete the description, for case 2, we use Proposition 6.8 and for case 4, we use
Proposition 6.3.

6.5. Elementary representations

Having defined Bl-elementary PMOs and BBl-elementary PMEs, having described how
to compute BBIl-elementary PMEs, we are now in position to state and prove the funda-
mental lemma of this article. It describes how Bl-elementary extensions of Bl-elementary
PMOs are related to BBl-elementary extensions of BBl-elementary PMEs. From this, we
deduce a procedure that, given a Bl-simple PMO C over L, computes a BBl-simple PME
~ over L U K UM such that ~ represents C, i.e. C = EQ’K.

Lemma 6.13 is the fundamental brick on which the adequacy and the faithfulness of
our embedding of Bl into BBI relies.

Definition 6.11. Let L, K and M be three mutually disjoint alphabets. We say that
the pair (C, ~) is a (L, K, M) elementary representation if the following properties hold:

1. C is a Bl-elementary PMO over L;

. ~ is a BBl-elementary PME over L U K U M,

. the inclusion /.. C M holds;

. for any d € M, if d ~ d then za ~ d for some z € L* and a € K*;
. the identity C = E£7K holds.

T W N

Thus, if (C,~) is a (L, K, M) elementary representation and m € L* then m C m if
and only if m ~ m (see Lemma 4.2).

Proposition 6.12. If the pair (E,~) is a (L, K, M) elementary representation then
Ac = A.NL, L5 = L*N L™ and for any k € (LUK U M)* such that k ~ k there exists
x € L* and o € K* such that za ~ k.

Proof. The identity Ac = A. N L and L= = L* N L™ are a direct consequence of
Lemma 4.2. Let k € (LUK U M)*. There exist [ € L*, 6 € K* and m € M* such that
lom = k. Let m =d; ...dp where dy,...,d, € M are the letters of m.

As k ~ k, we get [dm ~ [dm hence m ~ m by rule (d). Thus dy ...dp ~ di...d, and
for any i € [1,p], we have d; ~ d;. As (C,~) is a (L, K, M) elementary representation,
for any 4 € [1, p|] there exist x; € L* and «; € K* such that z;a; ~ d;.

From 00d; ...d, ~ k, we get I6(z1a1)...(zpayp) ~ k by p applications of rule (e;).
Hence we have za ~ k with x =21 ... 2y € L* and a = do1 ... op € K™ ]

Lemma 6.13. Let L, K and M be three mutually disjoint alphabets. Let (C,~) be a
(L, K, M) elementary representation. Let m, a, b, § and c such that m T m, a # b € L\Ac,
d € K\A. and ¢ € M\ A.. Then in each of the following cases, (C',~') is a (L, K, M)
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elementary representation:

1. ©=C+{ab-—m} and ~' =~+{0c~m,ab~c} whenm#e
2. C=C+{am~>b} and ~'=~+{cm—~0b,da—~c}

3. C=C+ {m—->b} and ~'=~+{m—>}

3. C=C+{m—->b} and ~' =~+{dm—~b,e—~¢}

4. C'=C+ {e-m} and ~'=~+{0c~m,e—~c} when m # €
4. C'=C+ {e-m} and ~' =~+{e~c,m—~4d} when m # €

Proof. Here we only provide the proof of case 2 as an illustration of the type of argu-
ments which are involved. The rest of the proof (cases 1, 3, 3’, 4 and 4’) is postponed in
Appendix B because of the overall length of the argument.

In the case of line 2 where £’ = C + {am — b} and ~' = ~ + {e¢m — b, da — c}. First
C’ is clearly Bl-elementary. The constraint em — b is obviously BBl-elementary w.r.t. ~.
Then, by Proposition 6.9, ~"” = ~ + {em — b} has no square and [..» = [.. Asc & I
(because ¢ € A.) then ¢ & I, hence ¢ »" €. Thus da — c is BBl-elementary w.r.t. ~".
Then ~' = ~" + {§a — ¢} is BBl-elementary, has no square and /.. = ... = 1. C M.

We have A, = A_U{a,b,d,c}. Let d € M such that d ~' d. Then, either d € A. or
d = ¢. On the one hand, if d € A then d ~ d and let x € L* and o € K* such that
zo ~ d. Hence za ~' d because ~ C ~’. On the other hand, if d = ¢ then ad ~' d with
a € L* and § € K*.

As em ~' b and da ~' ¢, by rule (¢;) we obtain dam ~' b, hence am T2 b. As
C=CchKch" weget CU{am ~b} € T and obtain ' € C5K

Let us now consider the converse inclusion Ei’,K C C’ which is the tricky part of
the proof. We have the following identities according to Proposition 6.8 and Lemma 6.4
(¢ »" € and thus cc =" cc):

M=~ {em~bl=~U{cx ~cy|z~yAIkak~m}
U{cx — jb,jb—cx|x~mAj~ e}
Uf{ib—gbli~eAj~e}

/

~ =~ {da—c} =~"U {0z~ dy,ar —ay |z~ y Acx ~ ey}
U {dax — day | cx ~" cy}
U {dax — y,y — dax | cx ~" y}

Let v € K* and x,y € L* such that yz ~’ y. Let us prove that z £’ y. We study each

case depending on the form of (yz,y):

— if yx ~" y then according to the equations for ~” the only two possibilities are
when vz ~ y or (yx,y) = (ib, jb) with i ~ ¢ and j ~ € (indeed, otherwise the letter
¢ ¢ LUK occurs either on the left or on the right). Clearly if vz ~ y then z C y hence
x ' y. Let us study the case where (yz,y) = (ib, jb) with i ~ € and j ~ €. Then
i,jelL. As . C Mandi<~vxe (LUK)*, we must have i = €. As j <y € L*, we
must have j = €. Hence (yz,y) = (b,b). Thus v = € and (z,y) = (b,b). As am C’ b,
by rule {r) we get b C' b, so = T’ y;

— (yx,y) = (62',6y’) is impossible because § £y (§ € L);

— (yz,y) = (ax’,ay’) with 2’ ~" ¢ and cz’ ~" cy’. The only possibility for cz’ ~" cy’

is when 2’ ~ 3 and 2’k ~ m for some k. Thus y'k ~ m by rules (s) and (e;) and
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k ~ k by rule (p;). By Proposition 6.12, there exists z € L* and a € K* such that
zao ~ k. Hence, y'za. ~ m by rule (e;). As y’ <y € L*, we get y'z C m. As vz = aa’
and a € A, C K then a < x and let az” = x. Hence 2’ = ~va”, thus v2"” ~ 3y’ and
we obtain 2/ £ 1'. As C C C’, we get 4’2 T’ m and 2" £’ 4. Consider the following
deduction tree:

yYzC'm amC'b

(er)

ay'zC' b

(pr)

ay/ El ayl I” E/ y/

ax// E/ ay/ <C>
Hence x = az” C' ay’ = y;

— (yz,y) = (dax’, day’) is impossible because d 4 y;

— (yz,y) = (dax’,y) with cx’ ~” y. The only option according to the equations for
~"is (ex’,y) = (ca’,jb) with 2’ ~ m and j ~ e. Then j € I%, hence j € M*. But
j<yelL*Soj=¢€and y=>5b. As yr = dax’, then § < v and a < x. Let az”’ =z
and 47’ = v. Then 6v'ax” = daz’ thus 2’ = v'z”. So y'z"" ~ m. As v < v € K*,
2" < x € L* and m € AL C L*, we deduce " C m. Hence 2" C' m. As am C' b, we
obtain az” T’ b by rule (¢;). But az” = x and b = y. We obtain z T’ y;

— (yx,y) = (yx,day’) is impossible because § 4 y;

We have proved that for any v € K* and z,y € L*, if yo ~' y then © T’ y. Thus
L

Ei’,K C . So, in case of line 2, we have indeed proved that C’ = EN’,K. ]

Remark: even if in case 4, ~' does not “look” BBI-elementary (because c is not new to
~+{dc—m}), it is in fact BBI-elementary when viewed in the form of case 4’ (see proof
in Appendix B).

6.6. From simple PMQOs to simple PMEs

The notion of elementary representation is thus a useful tool to maintain the relation
C = C%E between the Bl-elementary PMO C and the BBIl-elementary ~ when C is
enriched with new Bl-elementary constraints. What happens with the limit of increasing
sequences of Bl-elementary PMOs, i.e. Bl-simple PMOs ? The following theorem provides
an answer to this question.

Theorem 6.14. Let L be an alphabet and C be a Bl-simple PMO over L. There exist
two alphabets K and L’ and a BBI-simple PME ~ over L’ such that L UK C L’ and
C=cCckLK

Proof. Let C be described by the Bl-simple sequence of constraints (z; — ¥;)i<co OVer
the alphabet L: we have & = C¢ with C = {z; — y; | i < oo}. Let C, = T, with
Cp={zi—yi|i<p}forpe NU{oo}. Then C =LC,.

Let K = {dp,01,...} and M = {cg, c1,...} be two infinite, countable and disjoint sets
such that (KUM)NL =0. Let L' = LU K U M. We build the sequence (2} ~ y})i<oo
of constraints over L’ according to the following table (the case column refers to the
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terminology of Lemma 6.13):

| case | Ty~ Y Th; ~ Yy x/21‘+1 *y/2¢+1
1 ab-m 0ic; —m ab - ¢;
2 am—1b c;m —b dia — ¢;
3 m—-2> om—b €—¢€
4 €E~m €~ ¢ m — §;
€—~¢€ €€ €€

Let D, = {z;~y; | i < p} withp € NU{co} and let ~, = ~p . By Lemma 6.13, the reader
can check by induction on p that for any p < oo, (€, ~2p) is a (L, K, M) elementary
representation. Hence ~o, is a BBl-elementary PME, IN2p CMand E, = Eﬁ’;p{.

Let us prove that C_ = Eff If x T, y then by compactness (see Proposition 3.17),
there exists p < oo such that z C, y. Then x Ei’;: y. So there exists § € K* such that
0x ~op y. Then 0z ~oo y as ~op C ~oo. Hence x Eﬁf y. Conversely, if x Eﬂf y then
there exists § € K* such that dz ~, y. By compactness again, there exists ¢ < oo such
that 0z ~4 y. Then, as ~, C ~y, (because D, C Dy, ), we have dx ~34 y hence x C, .
Thus z E yas £, C C.

So we have proved that C = C = Eﬁf where ~o = ~p_ and Do, = {2} — ¥} |
i < 0o}. The sequence (2§ — y})i<co is a BBIl-simple sequence of constraints because for
each p < oo, 2, — yp is BBl-elementary w.r.t. ~, (indeed, p < 2p + 2 and ~gp 1o is
BBl-elementary). Thus ~, is a BBl-simple PME. ]

7. Soundness of the embedding of Bl into BBI

The map F — F*° looks like a good candidate for embedding Bl into BBI. Indeed, given
an invalid formula F' of Bl, by Theorem 5.9 it is possible to obtain a counter-model of F of
the form of a Bl-simple PMO C over some langage L, i.e. e ¥ F. Then by Theorem 6.14,
there exists a (BBl-simple) PME ~ such that = = CL%, Thus, by Theorem 4.4, we obtain
e ¥ F°, hence we obtain a counter-model of F*°.

It may seem that we have our embedding but unfortunately, F’° is not necessarily
BBI-valid when F' is Bl-valid. The mapping F — F*° is not exactly the embedding we are
looking for. It preserves counter-models but does not preserve provability.

Indeed, nothing in F'° captures the special roles played by the two spare variables L
and K. We have to incorporate some information on L and K that logically encodes the
way they are interpreted in the particular model of Theorem 4.4 where they are forced
by words belonging to sub-languages generated by a sub-alphabets, respectively L* and
K™. So let H be the following formula:

H=(LAKA (T (LxL—L)A(T = (KxK—K)))

For example, the sub-formula T —«(LxL—L) encodes the property that the decomposition
of words forcing L yields words forcing L, a subword property typical of sub-languages
generated by sub-alphabets.

We are going to state and prove that (I AH) — G° is BBI-valid whenever G is Bl-valid.
And then we will prove that (I A H) — G° is BBl-invalid whenever G is Bl-invalid.
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7.1. From TBl-tableaux to TBBI-tableauz

In this section we describe how to process a TBI-tableau for GG and obtain a corresponding
TBBI-tableau for (- (IAH))— (IxG°). We have chosen this translation instead of simpler
(I ANH) — G° (those two formulae are logically equivalent in BBI, see Proposition 7.5)
because for the former one, we can provide a direct tableau translation procedure as
described in the following results.

Lemma 7.1. Let L' = LUK U M be a partition of L’ where K and M are two disjoint
infinite sets of spare letters. Let 7 be a TBIl-tableau for G € Bl over L. There exists a
TBBI-tableau 7’ for (I = (I AH)) — (I * G°) over L’ and an injective map ¢ from the
branches of 7 to the branches of 7’ such that:

1. each branch 4/ of 7" either contains FI : € or the following set of statements:

{TL:e,TT =« (LxL—L):e} U {TK:¢,TT =« (KxK—K): €}
U{TLZCL|CLELOA7/} U{TKZ5Q|(50€KQA7/}

2. for each branch ~ of 7, with 4" = ¢(v), the two following conditions hold:

2.1. (E,,~y)isa (L, K, M) elementary representation;
2.2. for every statement SA : m of 7, the statement SA° : m occurs in /;

3. for each other branch +' of 7" (i.e. which is not the image ¢(7) of some branch ~ of
7T), at least one of the following conditions hold:

3.c.l. Fl:ec~;
3.c.2. FL: [ € o' for some [ € L*;
3.c.3. FK: § € v/ for some § € K*.

Proof. We build 77 and ¢ by following the construction process of 7, the TBI-tableau of
G. Let us consider the initial TBI-tableau [FG : €]. Let us choose two letters co # dp € M.
Here is a TBBI-tableau for (I = (I AH)) — (1% G°) which fulfills the conditions 1, 2 and 3.
It is split into two parts for a reasonable display and these two parts should be glued at
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point ~, by the reader:

/

Yo
assq - Co‘do
Vi F(l= (IAH)) = (1% G°) : co reqs : €co ~ €
/\
Vo5 Tl=x(IAH):co Fl: e Ve TIANH : €
Vo FIxG° o | \
\ 3.c.l Tl: e
req, @ €Co ~ Co \/789;
— T 72].“.:6
Fl:e /3 TIANH:co TK :

| |

TT =« (L*xL—L):e

3.c.1 \/4 TI:CO .
TH : ¢ TT—*(K*‘KHK).E

| .

asss @ €~ Cg reql}ico

; Fl: e FG° : ¢
Y0 ‘ ‘

3.c.1 o

The reader is invited to check that this is indeed a valid TBBI-tableau. We point out that
the formula H = (LAK)A((T = (LxL— L)) A (T = (K« K—K))) is developed at history
checkpoints 7, 8 and 9 by three applications of expansion rule TA (actually not displayed
in the TBBI-tableau to shorten its length). This TBBI-tableau has four branches, three
of which stopping at Fl : € (hence fulfilling conditions 1 and 3.c.1), and the last one
containing FG® : € as required by condition 2.2. This is the branch v = ¢(~) associated
through ¢ to the unique branch ~ of the one node TBI-tableau [FG : €]. 4" obviously fulfills
condition 1 because Ay = {cp,do} € M hence Ay, N (LU K) = (). It fulfills condition 2.1
for the following reasons: for C = {e — cg,e — dop} and C = {co — do, € — ¢}, we have
~c = ~c_,. Hence, C, = Cy = {e — €} and ~.,, = ~¢ where C = {€ — cp,e — dp} and
co,dp € M. Thus ~y = {x —y | z,y € {co,do}*} and we can check that T, = Eﬁff So
(E4,~y) forms a (L, K, M) elementary representation.

If 7 is a TBI-tableau of G obtained by expansion using rule TA, FA, TV or FV, we
trivially use the same expansion rule for 7' and fix the mapping ¢ accordingly.

If 7 is obtained by expansion of TA — B : m in branch v, then the requirement m £,
must hold and then there exists 6 € K* such that dm ~. z holds. We extend v’ the
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following way:

Vi TK = (LA A°) = B%) i m

TA—B:m
req; : 6m ~x
|
req: mEbw FK: 4 Vo T(LANA®) = B°:x
FA:«x TB:x 3.c.3 Vs FLAA® :x TB°:x
YA B FL: x FA°: x o(vB)

3.c.2 ¢(va)

and we extend ¢ so that the branch containing FA : z (resp. TB : z) in T corresponds
to the branch of FA® : x (resp. TB® : ) in 7'. No assertion is generated so (C.,,~.)
does not change on either branches (ya,p(va)) or branches (vg,o(yg)) and is thus
still an elementary representation. We also see that the two remaining branches contain
respectively FK : § with § € K* and FL :  with « € L* fulfilling condition 3.c.3 and 3.c.2

respectively.

If 7 is obtained by expansion of FA— B : m in branch v, then b € L\ A,. As
A, = Ay N L we deduce b € L\ Ay/. Let us choose 6; € K\ A, (possible because K
is infinite and A,/ is finite as ~.,/ is BBl-elementary) and apply the following expansion

rules to the branch +:

V1 FK = (LA A°) = B°):m
:
FA— B:m |

assy : 0ym —b

TK : 6y
| Vo F(LAA®) = B°: b

TA:b Vs TLAA®: b
FB:b FB°:b
\
AR TL:b
TA° : b
\
o(v-)

Then (C, + {m - b},~, + {01m — b}) is an elementary representation according to
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Lemma 6.13 case 3 and ¢ is extended in the obvious way. We also observe that TK : §;
and TL : b are introduced fulfilling condition 1.

If 7 is a TBI-tableau of G obtained by expanding TI : m on branch v, then let 4" = ¢(7)
and choose ¢; € K\A, and ¢; € M\ A, and then apply the following expansion rules to
the branch ~':

assy : 01€1 —m

\ TK : 6,
ass:‘e+m Vo Tl ¢y
|
M assy 1 €~
\
©o(m)

Then (E, + {e¢ — m},~y + {01c1 — m,e — c1}) forms an elementary representation
according to Lemma 6.13 case 4 because m # ¢ (Proposition 5.7 applied to 7). We also
observe that the statement TK : §; is introduced which fulfills condition 1.

If 7 is obtained by expansion of TA * B : m in branch « then a,b must have been
chosen such that a # b € L\ A,. As (E,,~y) is an elementary representation, we have
A, = Ay, N L (see Proposition 6.12) and hence a # b € L\A,/. Let us choose ;1 € K\A,/
and ¢; € M\ A, and apply the following expansion rules (on the right hand side) to the
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branch ~':

V1 TK* ((L/\AO).* (LAB®)):m

|

: assy : 01€1 —m
']I'A*Bm TKI(Sl

: Vo T(LAA®) % (LA B°) : ¢
|

‘ assy : ab—c¢;

ass: ab—m \/3'JI‘L/\A°:a
TA:a Vs TLAB®:b
TB:b ‘
TL: a
Y TA° :a
|
TL:b
TB°:b
\
@(7+)

Then (E, +{ab—m}, ~y +{01c1 —m,ab~c1}) is an (L, K, M) elementary representation
according to Lemma 6.13 case 1, having checked that m # e (Proposition 5.7 applied to
7). The injective map ¢ is extended the obvious way since there is only one new branch
and this branch fulfills condition 2. We also observe that TK : §;, TL : @ and TL : b are
introduced fulfilling condition 1.

If T is obtained by expansion of FA x B : m in branch  then the requirement zy E., m
must hold. As C, = Eﬂ’ff, there exists § € K* such that dzy ~,, m. We extend ~' the
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following way (on the right hand side):

V1 FKx ((LAA°) = (LAB®)) :m

[+]
|
: req; : o(zy) ~m
—
| FK: 6 Vs F(LA A°) % (LA B°) : zy
req: zy Cm | ‘
T 3.c.3 redy : Y ~ Y
FA:x FB:y T
\ \ FLA A°: z FLAB® :y
YA VB T T
FL:z FA®: x FL:y FB°:y
| | | |
3.c.2 ©(va) 3.c.2 v(vB)

FAxB:m

Then, whichever new branch is considered, no new assertion is introduced hence condi-
tion 1 is fulfilled and (E.,, ~4/) is unchanged and thus still an elementary representation.
We extend ¢ so that the branch containing FA :  (resp. FB : y) in 7 corresponds to the
branch of FA® : z (resp. FB° : y) in 7. Hence condition 2 is fulfilled. We also observe
that the three remaining branches contain respectively FK : § with § € K*, FL : x with
x € L* and FL : y with y € L* fulfilling condition 3.

If T is obtained by expansion of TA — B : m in branch v then the requirement zm C, y
must hold. Then there exists § € K* such that dxm ~, y. We extend 7 the following
way:

Vi T(K* (LAA%) = (L—B°) :m

TA—=B:m \

_—
| Vo FKx (LA A°) : 0z Vv, TL—B°:y
req: am C y ‘

T req; : 0z ~ 0z FL:y TB®:y
| | FK:6 /3 FLAA®: 2 3.2 ¢lyp)

YA VB ‘ /\
3.c.3 FL:x FA°: x

3.c.2 ©(va)
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Then (E,, ~/) is unchanged and still an elementary representation. We extend ¢ so that
the branch containing FA : x (resp. TB : y) in 7 corresponds to the branch of FA° : x
(resp. TB° : y) in 7'. We also see that the three remaining branches contain respectively
FK: 9§ with § € K*, FL : x with x € L* and FL : y with y € L* fulfilling condition 3.c.3,
3.c.2 and 3.c.2 respectively.

If 7 is obtained by expansion of FA — B : m in branch v, then a # b € L\ A,. As
(E4,~y) is an elementary representation, we deduce a # b € L\ A,/. Let us choose
01 € K\Ay and ¢; € M\ A, and apply the following expansion rules to 7':

V1 F(K=x (L/\AO)):—* (L=B°%:m

|
: assy: ¢cgm—>b
]FA—*.B:m Vo TKx (LAA°) ¢
: V4 FL—B°:b
|

‘ asss : 0sa — C1

ass: am —b TK : 6,
TA:a Vs TLAA® :a
FB:b ‘

‘ TL: a
Yo TA® :a
\
TL: b
FB° :b
|
P(Vx)

Then (C, +{am—~>b}, ~, +{cim—b,d1a—~c1}) is an elementary representation according
to Lemma 6.13 case 2, having checked that m # e (Proposition 5.7 applied to 7). ¢ is
extended the obvious way. We also observe that TK : §;, TL : @ and TL : b are introduced
fulfilling condition 1. ]

7.2. From Bl-proofs to BBI-proofs

We showed how a TBI-tableau can be transformed into a TBBI-tableau. Now we show
that a closed TBI-tableau (i.e. a proof) can be transformed into a closed TBBI-tableau,
thus obtaining the soundness part of our embedding. This is done in two steps, first
obtain a pseudo-closed TBBI-tableau and then close the pseudo-closed TBBI-tableau.

Definition 7.2. A (L, K) pseudo-closed TBBI-tableau is a TBBI-tableau 7 in which
every open branch  verifies the two following conditions:

1. ~ contains the following set of statements:
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{TL: e, TT =« (LxL—L):e} U {TK:¢e,TT = (K« K—K) : ¢}
U{TL:a|a€LﬂA7} U{TK:5O|50€KQA7}
3. v verifies at least one of the two following conditions:
3.c.2 FL:[ € v for some [ € L*;
3.c.3 FK:§ € ~ for some § € K*.

Remark: notice that we have conserved the same terminology as in Lemma 7.1 for the
conditions that remain. This explains the hole in the numbering of the conditions.

Proposition 7.3. If the formula G € Bl has a closed TBI-tableau over the alphabet L
then the formula (I — (I AH)) — (Ix G°) € BBI has a (L, K) pseudo-closed TBBI-tableau
for some alphabet K.

Proof. Let T be a closed TBI-tableau for G. According to Lemma 7.1, we build a
corresponding TBBI-tableau 7’ for G’ = (I = (I AH)) — (I * G°) over LU K U M and
the injective map ¢ from (maximal) branches of 7 to (maximal) branches of 7’. Since
T’ verifies condition 1 of Lemma 7.1, then each branch +' of 7’ verifies condition 1 of
Definition 7.2 because Fl : ¢ € 4" is a closure condition for TBBI-tableaux branches.

There are two kinds of branches in 7’. Those which are images 7' = () of branches
of 7 and those which are not. Let us consider the latter case. According to condition 3
of Lemma 7.1, such a branch is either closed by Fl : € € 7/ or satisfies conditions 3.c.2
or 3.c.3. In any case, the open branches which are not of the form ~ = ¢(v) verify
condition 3.c.2 or 3.c.3 of Definition 7.2.

Let us consider the former case which are branches of the form 4" = ¢(v). Since 7 is
closed, each of its branches are closed, v in particular. The branch + is closed by one of
the following conditions:

— if TL:m €~ then TL°:m €+’ and as 1° = L, the branch 7/ is closed;

— for the same reason, if FT : m € v then FT : m € 4" and ' is closed;

— if Fl : m € v and € C, m then FK x| : m € 4" (because I1° = K x I) and there exists
0 € K* such that de ~, m. Then we apply the following branch expansion rules:

Vi FKxl:m

3.c.3 X

and we replace 7/ with two branches, one of which is closed by Fl : € and the other
one satisfying condition 3.c.3 of Definition 7.2. We also observe that condition 1 is
still fulfilled by the left branch because, should it remain open, no new assertion is
introduced, and thus the alphabet of the branch is left unchanged;
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— ifTX :me~vy, FX:n€yand mE, nthen TK+X :m € v, FK* X : n € v and
there exists ¢ € K* such that 0m ~, n. We choose 6; € K\A, and ¢; € M\ A, and
then apply the following branch expansion rules:

Vi TK+«X :m
Vo FK* X :n

req: om~mn

|
assy : 0161 —m
TK : (51
TX : C1
|

reqs : (061)c1 ~n

FK : (5(51 FX : C1
| |

3.c.3 X
We check that (601)ci ~ n by rule (e;) with v/ = [y/,01¢1 — m,TK : 61, TX : ¢4].

+' is replaced by two branches v = [/,FK : §61] and v = [v",FX : ¢1], the latter
vy being closed by TX : ¢; and FX : ¢;, the former v/ satisfying condition 3.c.3
of Definition 7.2, should it be open. We also remark that the statement TK : §; is
introduced in 4”. So condition 1 is fulfilled because the alphabet A, of the left branch

verifies the equation A, = A, U {d1,c1}.

Applying those transformations for every branch v/ = ¢(v) of 7', we obtain a TBBI-
tableau 7" in which every open branch satisfies condition 1 and either condition 3.c.2
or 3.c.3 of Definition 7.2. Hence 7" is a (L, K) pseudo-closed TBBI-tableau. O

Proposition 7.4. If a formula of BBI has a (L, K) pseudo-closed TBBI-tableau then it
has a closed TBBI-tableau.

Proof. Let us define the weight of a branch ~' by 0 for a closed branch and the length
of the shortest word x € A7, such that either (x € L* and FL : 2 € 4) or (z € K* and
FK : z € 4') otherwise. The weight exists because condition 3.c.2 or 3.¢.3 is fulfilled for
any open branch of a (L, K) pseudo-closed TBBI-tableau. The weight of a whole (L, K)
pseudo closed TBBI-tableau is the sum of the weights of all its branches.

Let us prove that any (L, K) pseudo-closed TBBI-tableau can be expanded into a closed
TBBI-tableau by induction on the weight of the tableau:

— if the weight of the tableau is 0. Let us consider any branch +’. v must have weight 0



Embedding Intuitionistic BI into Boolean BI 47

(because weights are positive numbers) and then, either ' is closed or FL : e € 4’ or
FK : € € v/, € being the only word of length 0. Reasoning by contradiction, if 4’ is not
closed then by condition 1, TL : € and TK : € occur in +’. Hence + is closed because
either FL : € or FK : € occur in «'. So if the weight of the tableau is 0 then the tableau
is closed because all its branches are closed. Thus there is no need to expand it;

— if the weight of the tableau is not 0. Let us choose a branch «/ of strictly positive
weight p > 0. Then ~' is an open branch and let FL : [ occur in " with [ € L* of
length p (the case FK : § with 6 € K* of length p is treated similarly). As p > 0, we
write | = al’ with @ € L and I’ € L*. As FL : [ occurs in 7/, we must have | ~./ [
by Proposition 5.3, hence al’ ~, al’. Then a € LN A, and by condition 1, the
statements TL : @ and TT — (L« L — L) : € both occur in «'. We apply to the branch
~" the expansion rules described by:

Vi TT = (LxL—L):e
TL : a
FL : al’

|

req; : (al')e ~ al’

FT :al Vo TLxL—L:al
‘ /\
X V3 FLxL:al’ TL : al’
| |
reqs : al’ ~al’ X
/\
FL:a FL:U
| |

X 3.c.2

The order in which the statements TT —x (L*L—L) : ¢, TL : @ and FL : al’ occur
in the branch «/ is of no importance. The branch +' is expanded into four branches,
three of which are closed, thus of weight 0, and the last one containing FL : I’, thus of
weight lower than p—1 which is the length of I’. The TBBI-tableau obtained after such
branch expansion thus has a strictly lower weight. It is also an (L, K) pseudo-closed
TBBI-tableau because no assertion is inserted, hence condition 1 is still fulfilled, and
the only new branch which is potentially open verifies condition 3.c.2. By induction
hypothesis, this TBBI-tableau can itself be expanded into a closed TBBI-tableau.

Thus, we have proved by induction on the weight that any (L, K) pseudo-closed TBBI-
tableau can be expanded into a closed TBBI-tableau. ]
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Proposition 7.5. For any two BBI-formulae A and B, the formulaec A — B and (I —
A) — (1% B) are logically equivalent in BBI.

Proof. Let (L,~,IF) be a BBI-frame. For any m € L™, by monotonicity of |- we can
show that m I A holds if and only if m I | =« A holds, and and that m IF B holds if and
only if m I- I« B. Thus m |- A — B holds if and only if m IF (I =« A) — (I« B) holds. []

Theorem 7.6 (Soundness of the embedding). Let G be a Bl-formula not containing
the spare logical variables L and K. If G is Bl-valid then (I A H) — G° is BBI-valid.

Proof. Let G' = (I =« (I AH)) — (1 « G°). If G is Bl-valid then, by completeness of the
TBI-tableau system (see Theorem 5.8), G has a closed TBI-tableau. Then, according to
Proposition 7.3, G’ has a (L, K) pseudo-closed TBBI-tableau. So, by Proposition 7.4, G’
has a closed TBBI-tableau, hence is BBI-valid by soundness of the TBBI-tableau system
(see Theorem 5.14). Hence (I A H) — G° is BBI-valid because it is BBl-equivalent to G’
by Proposition 7.5 (with A =1AH and B = G°). Ul

8. Faithfulness by counter-model transformation

We have proved that if the Bl-formula G is Bl-valid then the formula (I A H) — G° is
BBI-valid. Let us show that if G has a Bl-counter-model then (I A H) — G° has a BBI-
counter-model.

8.1. From Bl-counter-models to BBl-counter-models

Theorem 8.1 (Faithfulness). Let G be a formula of Bl not containing the variables L
or K. If G has a Bl-counter-model then the BBI-formula (I AH) — G° has a BBl-counter-
model.

Proof. Let us suppose that G has a Bl-counter-model. Then it is Bl-invalid and by
Theorem 5.9, it is possible to obtain a counter-model of G of the form of a Bl-simple
PMO C over some langage L. So let (L, C, I ) be a Bl-frame where C is a Bl-simple PMO
and such that e ¥ G. By Theorem 6.14, there exists a BBl-simple PME ~ over L’ such
that LUK C L' and C = CL X Thus, by Theorem 4.4, in the BBI-frame (L', ~,IF.), we
have e ¥ G°.

In the frame (L', ~,IF.), we observe that € |- L and € I-. K. Let us prove that
el T (LxL—L). Let xze ~y, z Ik~ T and y Ik L x L. Let us prove y I L. There
exists y1,y2 such that y1y2 ~ y, y1 k< L and yo IFo L. Thus, by definition of (-) - L,
there exists l1,lo € L* such that [y ~ y; and Il ~ ys. Hence by two applications of
rule (e;), we obtain l1ly ~ y. As l1ls € L*, we conclude y I-. L. We have proved that
elFw T = (L*L—L). By an identical argument, we show that e lF. T — (K« K — K).

So, we have € I, H. To finish, we get e ¥ (IAH) — G° thus (L', ~,IF.) is the desired
BBIl-counter-model. L]
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8.2. Example of counter-model transformation

In this section, we explain how a Bl-counter-model of X V (X — 1) is transformed into a
BBI-counter-model of F' = (IAH)— (K« X VK=« ((LAK*X)— 1)) which is the BBI-formula
associated to X V(X —L1). We recall that H = (LAK)A((T —¢(LxL—L))A(T—(K«K—K))).

One possible Bl-counter-model for X V (X — 1) is based on the PMO C = C; over
the langage L = {b} with C = {e — b}. We can check that:

E:EC:{E’Evb*ILEQb}

We complete the Bl-frame (L = {b},C,IFc) with ¢ ¥ X and b Ik X and we check
the monotonicity of the relation IFz. Then we verify that we have a Bl-counter-model of
X V(X — 1). Indeed, b W L and thus, as € C b, we get € ¥ X — L. Hence, ¢ ¥
X V(X — 1). This is the usual Kripke counter-model of the intuitionistic propositional
formula X V (X — 1).

The PMO L is clearly Bl-elementary (case 3 of Definition 5.4 with m = €). According
to Lemma 6.13 case 3, we compute D = {§ — b} with § € K: (Cy,~y) is a (L, K, M)
elementary representation and thus (C¢, ~p) is a (L, K, M)-elementary representation.

Let ~ = ~p. Then we can check the following identity:

N:ND:{E*G,b——bvé*(g,(g*b,b*é}

As A.NL={b}, AN K = {6} and AL N M = (), we can verify C = CL-K

As ({b}, C,IF) is a Bl-counter-model for X V (X — L), let us complete ({b,0},~,IF.)
into a BBI-counter-model for the translation F' of X V (X — L). The forcing relation I-.
is given by Theorem 4.4: el LK, e l¥L X, blF. X,L,Kand § IF. X, L, K.

We check that we indeed have a BBI-counter-model of F'. We have €,b,6 - LxL— L
and €,b,0 IFo KxK— K. Thus e l- T = (L*L— L) and € IF. T = (K*x K — K). We
obtain € I H and thus € IF. | A H. We also have b, IF. K* X and € ¥ K* X. Thus
b,0 Ik LAK*X and e ¥ LAK+X. Thus b,0 ¥ (LAK+«X)— L andelFo (LAK*X)— L.
Hence, e ¥ K= ((LAK % X) — 1), because 0 |- K and de ¥ (LAK=# X)— L. Thus
e K« X VK= ((LAK%X)— 1) and then e ¥, F and we indeed have a BBI-counter-
model of the formula F' which is the translation of X V (X — L).

8.3. Fuithfully embedding Bl into BBI

We conclude with the central result of this article. If we add two spare logical variables
L and K to the language of Bl, we can provide a map from Bl-formulae (without L and
K) to BBI-formulae which preserves both validity and invalidity.

Theorem 8.2. Let L and K be two different spare logical variables, the map G +—
(IAH) — G°, where H= (LAK) A ((T =« (L*L— L)) A (T = (KxK— K))), is a sound
and faithful embedding of Bl into BBI.

Proof. Direct combination of Theorems 7.6 and 8.1. ]
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9. Application to the expressive power of Bl

We briefly present one possible application of some of the semantical results of this article
related to the expressivity of Bl on Bl-frames. These results can trivially be transferred
to partially ordered partial monoids.

The property of “being squarable” in a Bl-frame can be expressed by the first order
logic atomic formula H'(z) = zz C zz. We show that it cannot be represented by any
Bl-formula: there is no formula F' of Bl such that for any Bl-frame (L,C,lFc) and for
any m € L=, H'(m) holds if and only if m |- F.

Proposition 9.1. Bl-simple PMOs do not have square words, except of course e.

Proof. Let C be a Bl-simple PMO over L. We want to show that for any m € L*,
if mm C mm then m = €. According to Theorem 6.14, let L', K and ~ where ~ is a
BBI-simple PME over L’ such that LUK C L' and C = CLX Let m € L* such that
mm C mm. Then we have dmm ~ mm for some 6 € K*. Then, mm ~ mm by rule (r).
By Corollary 6.10 and property 1 of Proposition 6.7, we obtain m ~ €. Hence em ~ €
with e € K* and, as T = C2 ¥, we obtain m C e. Thus by Proposition 5.6, we get m = e.

O

Proposition 9.2. Let H(C) be a property ranging over PMOs verifying:

1. H(C) is true for every Bl-simple PMO C;
2. H(L,) is false for some (other) PMO C,.

Then, the property H(C) cannot be represented by a Bl-formula, i.e. there is no formula
F of Bl such that for any Bl-frame (L, C,IF), H(C) holds if and only € I-c F.

Proof. Let us suppose that such a formula F' exists and deduce a contradiction. Then
H(C) holds if and only if € - F. Thus € IFc F holds in every Bl-simple PMO. Hence,
F' cannot have a Bl-simple counter-model and is thus Bl-valid by Theorem 5.9.

On the other hand, let (L, C,IF) be a (not simple) PMO such that H(Z) does not hold.
Then in this frame we have e ¥ F. Hence F' has a Bl-counter-model which contradicts
its validity. ]

Corollary 9.3. The property mm C mm (“being squarable”) is not Bl-definable.

Proof. Let H'(x) = xa C xx which expresses the property being squarable. Let us
suppose that the Bl-formula F represents H', i.e. for any m € L=, H'(m) holds if and
only m I F'. Let us prove that the existence of F' leads to a contradiction. Let us consider
the property H(C) = VYm € LE (H'(m) = ¢ T m) which is represented by the formula
F — |, i.e. H(C) holds if and only if € IlFc F — I

By Proposition 9.1, H(C) is true for every Bl-simple PMO C. On the other hand, let
Co = {¢ — ¢,a — a,aa — aa} where a is an arbitrary letter. It is obvious to check that
Co is a PMO but H(CZ,) does not hold because a € L5, aa Ty aa and € £, a. Thus, by
Proposition 9.2, H(C) cannot be represented by F' — |. Contradiction. L]

Corollary 9.4. The property m C € is not Bl-definable.
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Proof. Let us suppose H'(x) = x T € is expressed by the Bl-formula F, i.e. m C ¢
holds if and only if m I F. Let us consider H(E) =Vm € LE (m C e = ¢ T m). H(C)
holds if and only if € IFg F' =« |. If T is a Bl-simple PMO then m C € holds for no word
m other than e, see Proposition 5.6. Thus H(C) holds whenever C is a Bl-simple PMO.
On the other hand, let £y = {a’ — a’ | i > j} be the PMO generated by the singleton
constraint {a — €}, which of course is not Bl-elementary. H(Cj) does not hold because
a Cy € but € £, a. Contradiction. ]

10. Conclusion and perspectives

In this article, we have proved that there exists a sound and faithful embedding of in-
tuitionistic Bl logic into Boolean BIl. The result is based on the study of the relations
between constraints based models of Bl and BBI, namely PMOs and PMEs, the com-
pleteness of the class of simple PMOs w.r.t. intuitionistic Bl, and the soundness of the
TBBI-tableau method for BBI. We also point out some immediate consequences of our
intermediary results on the expressivity of Bl.

Another quite direct application of our results would be a new proof and counter-model
search method for Bl, derived from our embedding and based on partial monoidal con-
straints (PMEs) instead of the existing resource graphs (Galmiche et al. 2005). Resource
graphs are mainly a graphical representation for PMOs. The embedding we obtain was
quite unexpected and is based on the intuition to represent the order relation m C n
by composition with some unobservable word ¢ such that dm ~ n. There may be some
pratical applications of this idea to distinguish observable and unobservable words. In
particular we aim at describing a concrete and complete class of separation logic style
models for (intuitionistic) BI.

Of course, the proof of the completeness theorem of the TBBI-tableau method (com-
pleteness only, not the already achieved soundness) is one of our immediate goals. The
complete study and characterization of constraints based models of BBI is a natural evo-
lution of our work. In particular, the TBBI-tableau method may introduce constraints
like € — ab in which case a and b become invertible words. We aim at a generalization
of the notion of resource graph to take invertible elements into account. This potentially
constitutes a major evolution because invertible elements do not occur in the TBI-tableau
method.

The characterization of TBBI-constraints can lead to an effective decision procedure
for those partial monoidal constraints. We wish to compute the explicit form of the
extension ~ 4+ {¢ — m}, not only when m is a new letter (as in the present article), but
when m is any defined word. Combined with the other explicit forms (~ + {ab — m}
and ~ + {am — b}) described in the present article, this can lead to specific properties
of TBBI-generated constraints and then to expressivity results for BBIl. For example we
think that in a TBBIl-generated PME ~, no word m is squarable (mm ~ mm) unless it
is invertible (Jaam ~ €). As invertibility is BBI-defined by the formula —(T — =), the
consequence would be that, as with Bl, “being squarable” is not BBI-definable.
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Appendix A. Proofs of free PME extensions identities

Proposition 6.3. Let ~ be a PME over L and b be new to ~, i.e. b € L\ A.. Then
~+{e—b} =~ with ~ = {0Pz ~ by |z ~y Ap,g =0} and AL = AL U {b}.

Proof. First it is obvious that A = A. U {b} (see Proposition 3.16). Then, let ~" =
~+{e~b}. We prove that ~' C ~" and that ~' is a PME, which is sufficient to establish
~'" =~/ because obviously ~ U {e — b} C ~/ (we have b’ ~' ble).

As b ~" € (by rule (s)), for any p > 1, by p applications of rule (e;), we can show that
bP ~'" ¢ (since b ~" € and € ~" €). Also b” = € ~"' €. Hence, b? ~" ¢ and b? ~" ¢ for any
p,q = 0. Let x,y be such that x ~ y. Then x ~"” y as ~ C ~”. Thus ex ~" ey and by
applications of rule (e;) and (e,), we obtain b’z ~" b%y. We have proved that ~' C ~".

The relation ~’ is obviously closed under rules (e, s). For rule (t), let us consider z,y, 2
such that © ~' y and y ~' z. Then (z,y) = (bP2’,b%y’) for some p,q > 0 and some z’,
such that 2/ ~ ¢/. Also (y,2) = (b"y",b52') with r,s > 0 and 3y’ ~ 2. As ¢/, y" € AL
and b &€ Ao, from y = by’ = b"y”, we deduce ¢ = r and vy = y. Hence v’ ~ 2’ and then
a’ ~ z' since ~ is closed under rule (t). So = bz’ ~' bz’ = z. The relation ~’ is thus
closed under rule (t).

For rules (d,c), the core argument is the same: b ¢ A. so that the decomposition
x = bPx’ with 2/ € A% is unique. Hence, having proved that it is closed under rules (d)
and (c), the relation ~ is a PME. This completes the proof. Ul

Lemma 6.4. Let ~ be a PME over L. Let m € L* and o € L* such that m ~ m,
mm ~ mm, a # € and A, N Ao = 0. Then ~ + {a —m} = ~' with

~N=~U{lz~bylz~yAmz~myAds<and{eal}
U {ax — ay | ma ~ my}
U{az —y | mz~y}
U{z~ay|z~my}
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and A = AL UA,.

Proof. First, it is obvious that A, C AL U A,. Then AL C Ao and a ~" a (because
me ~ me), hence A, C A~r. Thus, A = ALUA,. As A,NA. = 0 we have the following
property: whenever z ~’ ¢ holds, z and y can be uniquely decomposed into z = z1z5
and y = y1y2 such that zq,y; € A, and xa,ys € AL. Let ~" = ~ + {a — m}. We prove
that ~' C ~”, and that ~’ is a PME, which is sufficient to establish ~” = ~'  because

/

obviously ~ U {a —m} C ~' (we have ae ~' m).

For ~' C ~", we already have ~ C ~" and we provide the following deduction trees:

mx ~ my
— ")
my ~ my
— ~ C mx ~y
a~"m my~"my T c
- (er) a~"m mx~"y
ay ~" my xr~Yy <€l>
W<pl>»6‘<a —~C az ~"y
Yy~ oy r~y
dx ~" Sy )
mx ~ my
— ~C A T~ my
" 1 - 1
a~"m mzx~"my ——— ~C~
(er) a~"m x~"my
" "
a~"m mx ~" ay ~ (er)
ax ~" ay et e

Now let us prove that ~’ is a PME. ~' is obviously closed under rules (¢) and (s)
(observe the symmetry between x and y in the definition of ~’). Then, let us consider
the case of rule (d). Let z,y such that zy ~' xy. If zy ~ zy then x ~ x hence = ~' z.
Let us consider the other cases:

—as o # € and A, N AL = 0, it is no possible that (zy,zy) = (az’,y’) or (zvy,zy) =
(@', ay’);

— hence xy = §2' with mz’ ~ mz’ and € # § < « (this covers the cases § # o and § = «).
As AuNAL =0, let x = z119 and y = y1y2 with z1,y1 € A% and z3,y2 € AL . From
TY = T1T2Y1y2 = 02', we obtain § = z1y1 and 2z’ = zoys. Then maxays ~ mroys. Thus
maxg ~ maxe and xo ~ o by rule (d). If 21 = € then x = x5 ~ 29 = x hence = ~' x.
If 1 # € then € # z1 < x1y1 = 6 < « hence, as mxa ~ may and o ~ xo, we obtain
T =229 ~ T1T2 = T.

Now let us consider rule (t). Let z,y, z such that  ~' y and y ~' z. We want to prove
x ~' z. In theory, there are 5 x 5 = 25 cases to study for (z,y) and (y,z). But as we
have already proved that ~' is symetric, we only need to consider “half” of the matrix
of cases, i.e. 5+ ---+ 1 =15 cases:

— x~yand y~ z. Then z ~ z hence z ~' z;
—x ~ vy and (y,2) = (dy’,02’) with § < « and § # € is impossible because § € A%,
d<ye A and A,NA. =0
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(ay’, az’) is impossible by the same argument, « # €;
/

—x~yand (y,2) =
— z ~yand (y,2) = (ay
—x~yand (y,2) =

,z) is impossible because « # ¢;

(y,z’) with y ~ mz’. So x ~ mz’ and thus z ~' oz’ = z;

— (x,y) = (62',0y’) and (y,z) = (8'y",8'2") with &’ ~ ¢/, ma’ ~my', ¢y’ ~ 2/, my" ~
mz', 6 < o, ¢ < aand 6,0" € {e,a}. From y = dy’ = §'y”, we deduce 6 = ¢" and
y' =9". Then ¢y ~ 2z’ and my’ ~ mz’, hence by rule (t), ' ~ 2z’ and mz’ ~ mz’. So,
0z’ ~' 6z hence x ~' z;

— (z,y) = (62',9y’) and (y, 2) = (ay”, az’) is impossible because ¢ # «;

— (z,y) = (62',9y’) and (y, 2) = (ay”, z) is impossible because § # «;

— (z,y) = (62',0y’) and (y, z) = (y, @z’) is impossible because § # ¢;

— (z,y) =

(x, (ax’,ay’) and (y,z) = (ay”, az’) with ma’ ~ my’ and my” ~ mz’. Then
y = ay’ = ay” hence y' = 3" and my’ ~ mz’. Thus ma’ ~ mz’ and we obtain
ax’ ~' oz, hence x ~' z;

— (z,y) = (a2’, ) and (y, 2) = (ay”, z) with ma’ ~ my’ and my” ~ z. Then y' = y”
and thus mz’ ~ z hence z = ax’ ~' z;

— (z,y) = (a2’, ) and (y, z) = (y, @z’) is impossible because a # ¢;

— (z,y) = (a2’ y) and (y, z) = (¢, 2) is impossible because a # ¢;
- (as,y) = (Oél‘

hence az’ ~ az’ thus x ~' z;

9,
" y) and (y,z) = (y,az’) with ma’ ~ y and y ~ mz’. Then ma’ ~ mz’

— (z,y) = (z,a®/) and (y, z) = (y, az’) is impossible because a # €.

Let us consider rule (c). Let us consider g, z, y such that qy ~' qy and = ~" y. We want
to prove gx ~' qy. We consider 2 x 5 = 10 cases:

— qy ~ qy and z ~ y. Then gz ~ qy thus gz ~' qy;

—qy ~ qy and (z,y) = (d2’,6y’) is impossible because we would have § < gy with
e£d€ A, que AL and A,NAL =0;

— qy ~ qy and (z,y) = (a2’, ay’) is impossible because a £ qy;

—qy ~ qy and (x,y) = (az’,y) with ma’ ~ y. Then gma’ ~ qy by rule (c). Hence
qr = aqz’ ~' qy;

— qy ~ qy and (z,y) = (z,ay’) is impossible because o 4 qy;

— qy = 02" and z ~ y with mz’ ~ mz’, € # 3§ < . Let ¢ = q1q2 with ¢; € A}, and
g2 € AL, As y, 2’ € AL, from qy = q1qoy = 62’ we get ¢ = 6 and ¢oy = 2’. Hence
mqay ~ mqay. Thus g2y ~ goy and we obtain mqax ~ mgoy and gax ~ goy by rule {c).
In either case (6 = « or § # «) we deduce gz = dgax ~' g2y = qu;

— qy =067 and (x,y) = (0'a’,0"y") with mz’ ~mz', e £5 < a, 2’ ~y', ma' ~my', & <
a and &' ¢ {e,a}. Let ¢ = q1q2 with ¢1 € A}, and ¢ € AZ. From qy = q1q20'y’ = 62’
we obtain ¢16’ = § and goy’ = 2’. As in the previous case, we derive mgox’ ~ mqay’
and g2’ ~ q2y’. And thus gz = q1¢26's" = dqoa’ ~' 02y’ = 1q20"y" = qy;

—qy = 02" and (z,y) = (a2’,ay’) with mz’ ~ mz’, € # 6 < o and ma’ ~ my’. Let
q = q1q2 with ¢; € A} and ¢ € AS. From qy = qigory’ = 52’ we obtain gra = §
and g2y’ = 2’. Hence ¢; = € and o = §. Thus ¢ = g2 and from mz’ ~ mz’' we get
mqy’ ~ mqy’. Combining with ma’ ~ my’ by rule (c), we obtain mgz’ ~ mqy’. Thus
qr = aqr’ ~" agqy’ = qy;
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— qy = 62" and (z,y) = (ax’,y) with mz’ ~mz', e #§ < o and ma’ ~y. Asy € AL,
from qy = 0z’ we deduce § < ¢q. Let ¢/ = q. Then ¢’y = z’. Hence mq'y ~ mq'y.
Combining with maz’ ~ y by rule (c), we derive mg’'mz’ ~ mgq'y hence mm ~ mm by
rule (p;). This contradicts the overall hypothesis mm » mm;

— qy = 67" and (x,y) = (z,ay’) with mz’ ~mz2’, e # 6 < a and x ~ my'. Let ¢ = q1¢2
with ¢ € A%, and ¢z € A”,. From qy = q1q2ay’ = §2’ we obtain ¢ = § and gy’ = 2’
Hence ¢ = € and o = §. Thus ¢ = g2 and from mz’ ~ mz’ we get mqy’ ~ mqy'.
Combining with = ~ my’ by rule {(c), we obtain gx ~ gmy’. Hence gz ~" aqy’ = qy.

So we have proved that the relation ~' is closed under all the rules defining PMEs. [

Lemma 6.5. Let ~ be a PME over L. Let m € L*, « € L*, b € L such that m ~ m,
a#e, AuNAL=0and b g AL UA,. Then ~ + {am — b} = ~' with

~=~U{z~by|lz~yNe£d<aATkak~m}
U{az —jb|z~ jm A 3k jkm ~m}
U {ib—ay |y ~im A Ik ikm ~ m}
U {ib— jb| 3k (ikm ~m A jkm ~m)}

and A = AL UA, U{b}.

Proof. First it is obvious that A, C AL U A, U {b}. Then AL C A. Asm ~ m, we
obtain b ~' b and am ~' b, hence A, C A, and b € A... Thus we get A, = ALUA,U{b}.
Let ~" = ~+{am—>b}. We prove that ~' C ~” and that ~’ is a PME, which is sufficient
to establish ~"” = ~' because obviously ~ U {am — b} C ~' (we have am ~' eb because
m ~ em and eem ~ m).

For ~' C ~", we already have ~ C ~". Let z,y, 0,k be such that z ~ y, € # § < «
and xk ~ m. We provide the following deduction tree, split in two parts:

Tk ~m am ~"b T~y
——~C (1) (s) — (e
zk ~" m am ~" am Yy~ akx ~" am
(e1) ~CAN ———— (), i<
akr ~" am y~"x dx ~" oz

er
ox ~" by ter)

hence we obtain dz ~" dy. Now let z, 4, k be such that x ~ ¢m and ikm ~ m. We provide
the two following deduction trees:

tkm ~m
— g N//
itkm ~" m am ~"'b
er) x ~im
aikm ~"'b am ~"'b —~C A —— {0)
— () ——(s) z~"im ib ~" iam
iam ~" iam b~" am (er)
c ib ~" ax

ib ~" jam

hence we obtain b ~" ax. By rule (s), we also obtain ax ~" ib. Let us consider the last
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line of the definition of ~: let 4, 7, k be such that ikm ~ m and jkm ~ m. Then we can
deduce im ~ jm:

tkm ~m Jjkm ~m
‘ : — () - — (p1)
jkm ~m im ~im jm ~ jm tkm ~m
— er) > ) {©)
mm ~ ijkm jikm ~ jm
: : (t)
im ~ jm

But we have already proved that we can deduce ib ~" iam from ikm ~ m (see first part,
on the left, of a previous deduction tree). Replacing i by j we can deduce jb ~" jam
from jkm ~ m. Thus we provide the deduction tree:

m o~ jm

im~" jm jb ~" ajm
.]b ~aim < > <er>
- s
ib ~" aim aim ~" jb “
t
ib~" jb
hence ib ~" ib. So for any z,y such that x ~' y, we have proved that = ~" y. Thus
~C A

Now let us prove that ~' is a PME. We first make the following remark: if x ~' z then
either x ~ x or (z = dz’ with 2’ ~ 2/, € # 6 < o and 2’k ~ m for some k) or (z = ib
with ikm ~ m for some k). Now let us consider the five rules defining PMEs one by one.
e ~' € since € ~ e. Hence ~' is closed under rule (€). Let us consider rule (s). Let z,y
such that z ~' y. We have fives cases:

— x ~ gy hence y ~ x and then y ~ x;

— (z,y) = (62',0y") with 2’ ~ ¢/, ¢ # 6 < a and 2’k ~ m. Then y ~ 2’ and thus
y'k ~m by rule (e;). Hence y = dy’ ~' o2’ = x;

— (x,y) = (aa’, jb) with 2’ ~ jm and jkm ~ m. Then y = jb ~' az’ = x;

— (z,y) = (ib, ay/’) same argument;

— (z,y) = (b, jb) with ikm ~ m and jkm ~ m. Then y = jb ~' ib = x.

In any case we obtain y ~' z. So ~' is closed under rule (s).

/

Let us consider rule (d). Let x,y such that zy ~' xy. We have three cases, because

az #ib (bg An UAL):

— zy ~ zy hence z ~ x and then z ~ x;

— xy = 62" with 2’ ~ 2/, € # § < @ and 2’k ~ m for some k. Then z,y € (A, UAL)*
and let & = 2122, y = y1y2 with 1,91 € A% and z2,y2 € AS. We thus have § = x1y;
and 2’ = xoys. From woys = 2’ ~ 2/ = woys, we deduce x4 ~ x9 by rule (d). On the
one hand, if z; = € then 2 = x5 ~ x5 = x, hence x ~' x. On the other hand, if 21 # ¢,
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as we have za(y2k) = 2’k ~ m and 1 < z1y1 = § < «, we obtain z1x3 ~' 122 hence
T~ T

— zy = ib with ikm ~ m. Then either b < z or b £ z. On the one hand, if b £ x then, as
b is a one letter word, b < y hence z(y/b)b = ib, so x(y/b) = i and thus z(y/b)km ~ m.
By application of rule (p;), we have x ~ z thus  ~' 2. On the other hand, if b < z
then (z/b)y = i hence (x/b)(yk)m ~ m. Thus, z = (z/b)b ~' (z/b)b = x.

In any case we obtain x ~' z. So ~' is closed under rule (d).

Let us consider rule (t). Let z,y, z such that z ~' y and y ~' 2. As we have already
proved that ~' is closed under rule (s), we only need to consider 5+ ...+ 1 =15 cases:

— x ~yand y ~ z. Then z ~ z hence x ~' z;

— x ~ y and (y,2) = (6y’,02') would imply é < dy’ = y which is impossible because
e£de A, and ALNA, =0

— z ~yand (y,2) = (ay’, jb) is impossible because o # € and A. N A, = 0;

— z ~y and (y, z) = (ib, @z’) is impossible because b ¢ A ;

— x ~y and (y, z) = (ib, jb) is impossible because b € A-;

)=
)=

— (x,y) = (62',0y') and (y, z) = (§'y", 0’2 ) with o' ~ ¢/, y" ~ 2/, e £d < a,e £ < q,
2’k ~m and y’k" ~ m. Then, as y = 0y’ = §'y” and AL N A, = (), we have § = &’
and vy =y". As 2’ ~ ¢y and ¢y = ¢y ~ 2/, we obtain 2’ ~ 2’. Hence, as 2’k ~ m, we
obtain x = dz’ ~' 62’ = z;

— (z,y) = (62/,9y') and (y,2) = (ay”,jb) with 2’ ~ ¢/, e #5 < a, 2’k ~m, ¢y ~ jm
and jk'm ~ m. Then y = 6y’ = ay”, which implies § = a and ' = 3" (A~ NA, = 0).
Thus y' ~ jm and hence 2’ ~ jm by rule (). So jm ~ z’ by rule (s). As 2’k ~ m,
we obtain jmk ~ m by rule (e;). Hence we have ' ~ jm and jkm ~ m. Thus
=01 =ar' ~ jb=z

— (z,y) = (62, 0y’) and (y, z) = (ib, az’) is impossible because b & A U Ay;

— (z,y) = (02, 8y’) and (y, z) = (ib, jb) is impossible because b € AL U Ay;

— (z,y) = (aa’, jb) and (y, 2) = (ay’, j'b) is impossible because b & A U A,;

— (z,y) = (ax’,jb) and (y,2) = (i'b,az’) with 2’ ~ jm, jkm ~ m, 2’ ~ i‘m and
'k'm ~ m. As y = jb = i'b we obtain j = i'. As 2’ ~ jm and jkm ~ m, we obtain
2’k ~ m by rule {e;). As 2z’ ~ i'm, we obtain jm = i‘m ~ 2’ by rule (s) and thus
x’ ~ 2’ by rule (t). Hence, as € # o < a, we get © = ax’ ~' az’ = z;

— (z,y) = (a2’,jb) and (y,z) = (i'b,j'b) with ' ~ jm, jkm ~ m, i'k'm ~ m and
j7'k'm ~ m. As remarked previously, we necessarily have i'm ~ j'm. Thus j'm ~ i'm
by rule (s). As y = jb = i'b, we get j = i’ and thus ¢'km ~ m. As j'm ~ i'm and
(i'm)k ~ m, we get (j'm)k ~ m by rule {e;). Hence j'km ~ m. As 2/ ~ jm = i'm
and i'm ~ j'm, we get &’ ~ j'm by rule (t). Thus z = az’ ~' j'b = z;

— (z,y) = (ib, /') and (y, z) = (i'b, z’) is impossible because b € A. U Ay;

— (x,y) = (ib,y’) and (y, z) = (', j'b) is impossible because b &€ A U A,;

— (z,y) = (ib,jb) and (y,z) = (i'b,j'b) with ikm ~ m, jkm ~ m, i'k'm ~ m and
3'k'm ~ m. Then y = jb = i’b hence j = ' and as remarked previously, we necessarily
have im ~ jm and ¢m ~ j'm. As jm = i'm we get im ~ j'm by rule (t). As
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(3'm)k’ ~m, we get (im)k’ ~ m by rule (e;). Hence ik’m ~ m and j'k'm ~ m. Thus
Tz =1ib~" j'b =z
In any case we obtain x ~' z, so we have proved that ~' is closed under rule (t).

Let us consider rule {c). Let ¢, z,y be such that gy ~' qy and = ~' y. We consider

3 x5 =15 cases:

— qy ~ qy and x ~ y. Then gz ~ qy and thus gz ~' qy;

—qy ~ qy and (z,y) = (62',dy") would imply 6 < gy which is impossible because
e£0€ A, que AL and ALNA, =0;

— qy ~ qy and (z,y) = (az’, jb) is impossible because b & A ;

— qy ~ qy and (z,y) = (ib, ay’) is impossible because a # € and A. N A, = 0;

— qy ~ qy and (z,y) = (ib, jb) is impossible because b € A.;

—qy=207 andz ~ywith 2/ ~ 2, e 25 <aand 2’k ~m. As § < 6z’ = qy, y € AL,
§ < aand AL NA, = 0, we obtain § < ¢q. So let ¢ = §¢' hence ¢'y = 2. Then
qd'y ~ q'y, hence ¢'x ~ ¢'y by rule (c). As ¢'yk = 2’k ~ m we obtain (¢'z)k ~ m by
rule {e;). Hence gz = §q’'z ~' dq'y = qy;

—qy = 67 and (z,y) = (0'2',8'y’) with 2/ ~ 2/, ¢ #0 < «a, 2’k ~ m, 2/ ~ ¢/,
e# 8 <aand 2’k ~m. As ¢ < qy = 62, we have ¢ € (A, UAL)*. So let ¢ = q1¢2
with ¢ € A, and ¢u € A%. From qy = q1q20'y’ = 3§2’, we obtain ¢;18' = § and
gy’ = 2. As 2/ ~ 2/, we deduce g2y’ ~ q21/. As 2’ ~ ¢/, we deduce gz’ ~ 29’ by
rule {(c). Also 2’k ~ m i.e. goy'k ~ m. Thus g2’k ~ m by rule (e;). Then, we obtain
qr = q1q20"7" = 0gax’ ~' 62y’ = q16'q2y = qy;

— qy = 67’ and (z,y) = (az’, jb) is impossible because b € A U Aq;

—qy = 62" and (z,y) = (ib,ay’) with 2/ ~ 2/, e £ 6 < «, 2’k ~ m, ¢y ~ im and
tk'm ~ m. Then qy = qay’ = 62’, hence a < §z’. As ALNA, =0 and 2’ € A%, we
obtain a < 4. Hence o = ¢ and thus qy’ = 2z’. We deduce qy’'k ~ m, hence qy’ ~ qy’
by rule (p;). From y’ ~ im, we derive im ~ gy’ by rule (s) and then qy’ ~ g(im)
by rule (e,), hence gim ~ qy’ by rule (s). From qy’'k ~ m, we obtain gimk ~ m by
rule (e;). Hence we have (qy’) ~ (¢i)m and (gi)km ~ m. Thus gz = (¢i)b ~' a(qy’) =
qy;

— qy = 67’ and (z,y) = (¢'b, j'b) is impossible because b & A U A,;

— qy = ib and x ~ y with ikm ~ m. We have b £ y because y € A%. As b is a single
letter word, we deduce b < g hence (¢/b)y = i. Thus ((g/b)y)km ~ m and so, as x ~ y,
we get ((g/b)x)km ~ m by rule (e;). Thus we have qx = (¢/b)xb ~' (q/b)yb = qy;

— qy = ib and (x,y) = (62, 0y’) would imply & < b which is impossible because § # ¢
and A, N (A U{b}) = 0;

— qy = ib and (x,y) = (aa’,j’'b) with ikm ~ m, 2’ ~ j'm and j'k'm ~ m. As qy =
qj’b = ib, we obtain ¢j’ = i. Hence ¢j’km ~ m. So qj'm ~ gj’m by rule (p;). As
a2’ ~ j'm, we obtain gz’ ~ (gj")m by rule (e;). Since we also have (¢j')km ~ m, we
conclude gz = a(qz’) ~' (¢j')b = qy;

— qy = ib and (z,y) = (ib, ay’) would imply « < b which is impossible because a # €
and Ay, N (A U{b}) = 0;

—qy = ib and (x,y) = (i'b,j'b) with ikm ~ m, i'k'm ~ m and j'k'm ~ m. As
qy = qj'b = ib, we get qj’ = i. Hence qj’km ~ m. From i'k'm ~ m and j'k'm ~ m,
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we deduce i'm ~ j'm as remarked previously. From ¢k(j'm) ~ m, we thus derive
qk(i'm) ~ m by rule (e;). So (¢i")km ~ m and (gj’)km ~ m, and thus gz = (qi’)b ~/
(¢7")b = qy.

In any case we obtain gz ~' qy, so we have proved that ~’ is closed under rule {(c). []

Appendix B. Complete proof of the fundamental lemma

Lemma 6.13. Let L, K and M be three mutually disjoint alphabets. Let (C,~) be a
(L, K, M) elementary representation. Let m, a, b, § and ¢ such that m © m, a # b € L\Ac,
d € K\A. and ¢ € M\ A.. Then in each of the following cases, (C',~') is a (L, K, M)
elementary representation:

1. ©=C+{ab—m} and ~' =~+{0c~m,ab~c} whenm#e¢
2. C=C+{am~>b} and ~'=~+{cm—~0b,da—~c}

3. C=C+ {m—->b} and ~' =~+{m—>}

3. C=C+{m—->b} and ~' =~+{dm—~b,e—~¢}

4. C'=C+ {e-m} and ~'=~+{0c—m,e—~c} when m # €
4. C'=C+ {e-m} and ~' =~+{e~c,m—~4d} when m # €

Proof. Case 2 was treated as an illustration in the main body of this article. We
consider the remaining cases. Let us consider case 1 where C' = C + {ab — m} and
~ = ~+4 {dc~m,ab ~ c} and m # e. As m # ¢, C' is clearly Bl-elementary. By
Proposition 6.12, we have m T m = m € LE = m € L~ = m ~ m. As ~ is has
no square (see Corollary 6.10), by Proposition 6.7 we have m ~ ¢ = m € IX, = m €
L* N M* = m = e. Hence m ~ ¢ and thus dc — m is BBl-elementary w.r.t. ~ (6 # ¢ and
d,c ¢ AL). Thus ~" = ~+ {dc—m} is BBl-elementary and according to Proposition 6.9,
|~ =1I.. Then we have ¢ ~"" ¢ = ce l.» = c€ l. = c € A.. Thus from ¢c € A.
we deduce ¢ =" e. As Aur = AL U {6, ¢}, we have Auv N L = A.NL = Ac and thus
L\A.» = L\Ac. Hence have a # b € L\ A.». Thus ab — c is BBl-elementary w.r.t. ~".
Hence, ~' = ~" + {ab — ¢} is BBl-elementary, has no square and /., = /». We deduce
lor=1.C M.

Obviously A = AL U {a,b,0,c}. Let d € M such that d ~' d. Then, either d € A
or d = c. On the one hand, if d € AL then d ~ d and let x € L* and o« € K* such that
za ~ d. Thus za ~' d because ~ C ~'. On the other hand, if d = ¢ then (ab)e ~' ¢ with
abe L* and € € K*.

Let us prove &' C Ei’/K. As dc ~" mand ab ~' ¢, by rule (e;) we obtain dab ~' m, hence
ab Ei}K m. As ~ C ~/ we obviously have C = CL K C EELK. Hence, CU{ab—m} C Ef’,K.
We get C' = C + {ab—m} C EELK.

Let us now consider the converse inclusion Ei’,K C C'. As m ~ € and ¢ ~" ¢ hence
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mm ~ mm and cc =" cc, we have the following identities according to Lemma 6.4:

!

M=~ {dc-m}=~U{0x~dy,cx —cy|z~yAmz~my}
U {dcx — dcy | mz ~ my}
U {bcx — y,y — dex | mz ~ y}

!

~ =~ {ab -} =~" U {ax — ay,br — by | x ~ y A cx ~ ey}
U {abx — aby | cx ~" cy}
U {abx — y,y — abz | cx ~" y}

Let v € K* and x,y € L* such that vz ~" 3. Let us prove that z T’ y. We study each
case depending on the form of (yz,y):

— if yx ~" y then according to the equations for ~”, the only possibility for vz ~" y
is when vz ~ y: indeed, in the other cases, either ¢ occurs on the right (impossible
because we would have § < y with § € L) or ¢ occurs on the left or on the right
(impossible because ¢ € L U K). Since vz ~ y, we deduce x C y hence z T’ y;

— (yz,y) = (az’,ay’) with 2’ ~" 3/ and cz’ ~" ¢y/’. As v = az’ and a 4 7, then a < x
and let 2/ = z/a. Then o/ = vyz”, y2” ~" y' and eya” ~" cy'. According to the
equations for ~”, as cx’ ~" cy’ and § £ 3/, we must have ' ~ y and mz’ ~ my'.
Hence, v2” ~ ' and m~yx” ~ my’. Thus, " C ¢’ and mz” C my’, and as C C ',
we obtain '/ £’ ¢ and maz” T’ my’. We produce the following deduction tree:

ma” ' my'
—
my’ T my abCT'm

C
by T ey {e)
(pr)

ay/ E/ ay/ x// I:/ y/

ax/l E/ ay/

Thus z = az” C' ay’ = y;

— (yz,y) = (ba’,by’) with &’ ~" ¢’ and ez’ ~" cy’. The same argument applies using b
instead of a in the last two steps of the left branch of the preceding deduction tree.
Hence = T’ y;

— (yx,y) = (abx’,aby’) with cx’ ~
have z = abz” and x’ = yx”. Hence, yex” ~" cy’. As 0 £ ¢, the only possibility is
when vz” ~ ¢ and myz” ~ my’. Thus, 2”7 C ¢ and mz” C my’ and we can repeat
the preceding deduction tree using ab instead of a in the last two steps of the left
branch. Thus z = abz” T aby’ = y;

— (yz,y) = (aba’,y) with cx’ ~" y. Let "/ = x/ab. We have = abz” and 2’ = vz
Thus cyz” ~" y. As ¢ A y, we must have § < vz and m(ya”)/d ~ y. As § £ a”
(because 6 € K and 2”7 € L*) then 6 < . We thus have m(y/d)z” ~ y. Hence
mx” Cy. So mz” C' y. As ab C' m, with rule (e;), we get x = abz” T’ y;

— (yx,y) = (yx,aby’) with vz ~" ¢y’. As ¢ £ vz, we must have (yzx,cy’) = (2", dcy”)
for some z”,y"” such that my” ~ z”. But then ¢y’ = dy” hence § < ¢y < aby’ = v.
This is not possible since y € L* and § € K;

" cy'. As yr = abz’, we define " = x/ab and we
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We have proved that for any v € K* and z,y € L*, if yo ~' y then z T’ y. Thus
C5K C . So, in case 1, we have indeed proved that (Z/,~') is a (L, K, M) elementary
representation.

Let us consider case 3 where ' = C + {m — b} and ~ = ~ + {dm — b}. First
C’ is clearly Bl-elementary. The constraint dm — b is obviously BBl-elementary w.r.t. ~
because § # b and §,b & A and then ~' is BBl-elementary. According to Proposition 6.9,
~' =~ +{dm — b} has no square and /., = /. C M.

We have Ar = AL U {b,d}. Let d € M such that d ~' d. Then we must have d € A..
Let x € L* and a € K* such that za ~ d. Hence za ~' d.

As om ~' b, we deduce m Ei’,K b and thus C' = C + {m — b} C Ei’,K. Let us
consider the converse inclusion E{:’,K C C’. We have the following identity according to
Proposition 6.8:

M=~ {dm—-b}=~U{0x~dy|x~yAIkzck~m}
U {dx ~— jb,jb~dx |z ~mAj~¢€}
U{ib-—jbli~eNj~e}

Let v € K* and x,y € L* such that vo ~' y. Let us prove that z T’ y. We study each
case depending on the form of (yz,y):

— if yx ~ y then x C y hence 2 T’ y;

— (yz,y) = (62, 0y’) is impossible because § £ y;

— (yz,y) = (d2', jb) with 2’ ~ m and j ~ €. Then j € I, hence j € M*. As j < jb =1y,
we have j € L*. Thus j € L*NM*. So j=ecand y=0. Asd Az and § < dz’ = vz,
we have § < 7. So let + such that 64’ = . Then v’z = z’. Hence, we get 7'z ~ m.
Thus £ C m and so z &' m. As m C’ b, we obtain x C’' b = y by rule (¢);

— (vyz,y) = (ib, 6y’) is impossible because § 4 y;

— (yz,y) = (ib,jb) with i ~ ¢ and j ~ e. Then 4,5 € I, hence, i,j € M*. As i < vz
and j <y, we must have i = j = e. Hence x = y = b and v = €. As m T’ b we have
b’ b by rule {r), thus x C’ y;

We have proved that for any v € K* and z,y € L*, if yo ~' y then z T’ y. Thus
LK

)

Ei’,K C C'. So, in case 3, we have indeed proved that T’ = C;".

Case 3’ is trivial because ~+{dm—~b, e —¢e} = (~+{om~b})+{e~—€} = ~+{om—~0b}
and we are thus back to case 3.

We temporarily skip case 4 and instead consider case 4’ where C' = C + {€ — m}
and ~' = ~ + {e — ¢,m — §}. First, C’ is clearly Bl-elementary. As ¢ € A, € — c is
BBl-elementary w.r.t. ~ hence, according to Proposition 6.9, ~” = ~ + {e¢ — ¢} has no

square and [.» = I, U{c} C M. We have m =" ¢: otherwise m ~" e = m € I, = m €
L* N M* = m = e. Thus m — ¢ is BBl-elementary w.r.t. ~”, so ~ = ~" + {m — ¢} is
BBl-elementary and according to Proposition 6.9, we have I, = 1., = 1. U{c} C M.
By rule (s) we have de ~' m so we deduce ¢ Efj/K m and thus C' = C+{e~m} C Ef’,K.
Let us consider the converse inclusion C%5 C T/, As ~" 4+ {m ~ 6} = ~" + {6 — m}
by rule (s), we have the following identities according to Proposition 6.3 and Lemma 6.4



Embedding Intuitionistic BI into Boolean BI 63

(as m =" € we have mm ~"" mm):

~N=r~4{e~c}={cPr~cly|x~yApq=0}
~ =5 - m) =~ U {6z~ Sy | max ~ my}
U {dz —y,y — oz | mz ~" y}

Let v € K* and x,y € L* such that yx ~" 3. Let us prove that z T’ y. We study each

case depending on the form of (yz,y):

— if yz ~" y then (yz,y) = (Pa’,c?y’) with 2’ ~ ¢y and p,g > 0. Asc &€ LUK, we
must have p = ¢ = 0 and then 2’ = vz, ¥’ = y and yx ~ y. Thus z C y and we obtain
T

— (yz,y) = (62, 0y’) is impossible because § £ y;

— (yz,y) = (02, y) with ma’ ~" y. Asma’ € L*, y € L* and ¢ &€ L, then we must have
mz’ ~ y. Then 6 <~ and let v/§ = v. Hence 7'z = 2’ and thus m~y'z ~ y. So we get
maz C y hence mz Z' y. But ¢ C' m and we derive x T’ y by rule (e;);

— (yz,y) = (yx,0y’) is impossible because § £ y;

We have proved that for any v € K* and z,y € L*, if yo ~' y then 2 =’ y. Thus

Eﬁ’,K C C'. So, in case 4’, we have indeed proved that C’ = Ei’/K.

Case 4 is obtained from case 4’. Let ~" = ~ + {e — c}. As € ~" ¢, we can easily prove
that ~"+{6c—~m} = ~"+{§—m}. Thus ~+{0c~m,e~c} = (~+{e—c})+{0c—m} =
~Mp{de—=m} = ~'+H{6-m} = ~'+{m—6} = (~+{e~c})+{m—6} = ~+{e~c,m—~5}
and we are back to case 4. L]



