THE SPECTRUM OF THE LAPLACE OPERATOR ON THE MANIFOLD Sp(n)/Sp(q) × Sp(n-q) FIDA EL CHAMI
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In this paper, we compute the Laplace spectrum on the forms of the manifold Sp(n)/Sp(q) × Sp(n-q). The method is based on the representation theory of compact Lie groups and the "identification" of the Laplace operator with the Casimir operator in symmetric spaces.

Introduction

Let (G, K) be a compact symmetric pair with a compact connected semisimple Lie group G and M = G/K. We suppose that the Riemannian metric on M is induced from the Killing form sign changed. This is a G-invariant Riemannian metric on M . We consider the Laplace operator ∆ p acting on the space of differential p-forms and its spectrum Spec p (M ). The operator ∆ p is G-invariant when we consider the space of p-forms C ∞ (∧ p M ) as a Gmodule. Ikeda and Taniguchi [START_REF] Ikeda | Spectra and eigenforms of the Laplacian on S n and P n (C)[END_REF] computed the spectrum on the forms for M = S n and P n (C) using representation theory. They showed that ∆ p = C, the Casimir operator on G. On the other hand, Freudenthal's formula gives the eigenvalues of C on irreducible G-modules and Weyl's dimension formula gives their multiplicities. Then, it suffices to decompose C ∞ (∧ p M ) into irreducible G-submodules. Generally, this decomposition is not easy. Frobenius reciprocity law enables us to reduce the problem into the two followings: first, we decompose an irreducible G-module (as a K-module by restriction) into irreducible K-submodules, second, we decompose the p-th exterior power of the adjoint representation of the group K into irreducible K-submodules. C. Tsukamoto [START_REF] Tsukamoto | Spectra of Laplace-Beltrami operators on SO(n+2)/SO(2)×SO(n) and Sp(n+1)/Sp(1)×Sp(n)[END_REF] uses this method to compute the spectra of the spaces SO(n + 2)/SO(2) × SO(n) and Sp(n + 1)/Sp(1) × Sp(n). We note that in the case of functions, similar methods are used in [START_REF] Gr | The spectrum of the Laplace operator for the manifold SO(2p + 2q + 1)/SO(2p) × SO(2q + 1)[END_REF] and [START_REF] Gr | The spectrum of the symmetric space Sp(l)/SU(l)[END_REF] to compute the Laplace spectrum for the manifolds SO(2p + 2q + 1)/SO(2p) × SO(2q + 1) and 

Sp(n)/SU(n).

In [START_REF] Chami | Spectre du laplacien sur les formes versus spectre des volumes : le cas des grassmanniennes[END_REF] or [START_REF] Chami | Spectra of the Laplace operator on Grassmann Manifolds[END_REF], I generalized the result of [START_REF] Tsukamoto | Spectra of Laplace-Beltrami operators on SO(n+2)/SO(2)×SO(n) and Sp(n+1)/Sp(1)×Sp(n)[END_REF] to calculate the spectrum on the forms of Grassmann manifolds. This work is devoted to compute the spectrum on the forms of the manifold Sp(n)/Sp(q) × Sp(n-q). In the second section, we give a branching law to decompose the restriction of any irreducible Sp(n)-module into a sum of irreducible Sp(q) × Sp(n -q)-modules. In section three, we decompose the p-th exterior powers of the adjoint representation into irreducible Sp(q)×Sp(n-q)modules.

Branching law

Let G = Sp(n) and K = Sp(q) × Sp(n -q). We denote by g (resp. k) the complexified Lie algebra of G (resp. K). Precisely,

g = A B C -t A ; A, B, C ∈ M n (C), t B = B, t C = C and k =            A 1 0 B 1 0 0 A 2 0 B 2 C 1 0 -t A 1 0 0 C 2 0 -t A 2     ; A 1 , B 1 , C 1 ∈ M q (C), A 2 , B 2 , C 2 ∈ M n-q (C), t B i = B i , t C i = C i , i = 1, 2        .
We choose the following Cartan subalgebra of g and k:

t = diag (λ 1 , . . . , λ n , -λ 1 , . . . , -λ n ); λ j ∈ C}
where λ j is considered to be an element of t * .

We recall the following results:

• The roots of G:

∆ G = {±λ i ± λ j ; 1 ≤ i < j ≤ n} ∪ {±2λ i ; 1 ≤ i ≤ n}.
• The positive roots of G:

∆ + G = {λ i ± λ j ; 1 ≤ i < j ≤ n} ∪ {2λ i ; 1 ≤ i ≤ n}. • The simple roots of G: α 1 = λ 1 -λ 2 , α 2 = λ 2 -λ 3 , ..., α n-1 = λ n-1 -λ n , α n = 2λ n .
• Any dominant weight for (g, t) which corresponds to an irreducible representation of G has the form

   Λ = h 1 λ 1 + h 2 λ 2 + ... + h n λ n h i ∈ Z h 1 ≥ h 2 ≥ • • • ≥ h n .
(1)

• The Weyl group of G:

W G = {φ = (ε 1 , ..., ε n , σ)/ ε i = ±1, σ ∈ S n }, with φ(a 1 λ 1 + ... + a n λ n ) = n i=1
ε i a i σ(λ i ), det(φ)=sign(σ) and S n is the group of all permutations of {1, ..., n}.

• The roots of K:

∆ K = {±λ i ± λ j ; 1 ≤ i < j ≤ q or q + 1 ≤ i < j ≤ n} ∪ {±2λ i ; 1 ≤ i ≤ n}.
• The positive roots of K:

∆ + K = {λ i ± λ j ; 1 ≤ i < j ≤ q or q + 1 ≤ i < j ≤ n} ∪ {2λ i ; 1 ≤ i ≤ n}. • The simple roots of K: λ 1 -λ 2 , λ 2 -λ 3 , ..., λ q-1 -λ q , 2λ q , λ q+1 -λ q+2 , λ q+2 -λ q+3 , ..., λ n-1 -λ n , 2λ n .
• Any dominant weight for (k, t) which corresponds to an irreducible representation of K can be written:

       Λ = k 1 λ 1 + ... + k q λ q + k q+1 λ q+1 + ... + k n λ n k i ∈ Z for all 1 ≤ i ≤ n k 1 ≥ k 2 ≥ ... ≥ k q ≥ 0 k q+1 ≥ k q+2 ≥ ... ≥ k m ≥ 0. (2) 
• The Weyl group of K: W K = W Sp(q) × W Sp(n-q) .

Notations :

(i) We denote by:

e(Λ) = e 2πiΛ , s(Λ) = e(Λ) -e(-Λ), c(Λ) = e(Λ) + e(-Λ), α ij = λ i + λ j 2 , β ij = λ i -λ j 2 .
(ii) For r and s integers such that 1 ≤ r ≤ s, we designate by [a ij ] r:s a square matrix with i, j between r and s.

Remark 1. If r is an integer, then we have

s(rx) s(x) = r-1 k=0 e((2k -r + 1)x).
The demonstration of the next lemma is similar to that of the lemma 9 page 403 in [START_REF] Chami | Spectra of the Laplace operator on Grassmann Manifolds[END_REF] (or lemme 2.2.4 page 52 in [START_REF] Chami | Spectre du laplacien sur les formes versus spectre des volumes : le cas des grassmanniennes[END_REF]).

Lemma 2. Let H 1 , ..., H n be integers verifying H 1 > ... > H n > 0.
We have for all q ∈ {1, . . . , n}:

det[s(H i λ j )] 1:n q i=1 n j=i+1 s(α ij )s(β ij ) = K 1,v . . . Kq,v q r=1 n-1 s=r s(l r,s λ r ) s(λ r ) s(l r,n λ r ) det[s(K q,i λ j )] q+1:n ,
where the summations are taken over all the sets of integers

K u,v (1 ≤ u ≤ q and r + 1 ≤ v ≤ n) satisfying:    K u-1,v+1 < K u,v < K u-1,v-1 for u + 1 ≤ v ≤ n -1 K u,n < K u-1,n-1 0 < K u,n < K u,n-1 < ... < K u,u+1 , (3) K 0,v = H v
and for all 1 ≤ r ≤ q and r ≤ s ≤ n, the integers l r,s are given by:

   l r,r = K r-1,r -max(K r-1,r+1 , K r,r+1 ) l r,s = min(K r-1,s , K r,s ) -max(K r-1,s+1 , K r,s+1 ) for r + 1 ≤ s ≤ n -1 l r,n = min(K r-1,n , K r,n ). Theorem 3. Let V = V (Λ) be an irreducible G-module of highest weight Λ = h 1 λ 1 + ... + h n λ n satisfying (1). Then the irreducible decomposition of V as a K-module contains an irreducible K-submodule V = V (Λ ) with highest weight Λ = k 1 λ 1 + ... + k q λ q + k q+1 λ q+1 + ... + k n λ n satisfying (2), if and only if: 1. h i+q ≤ k i ≤ h i-q for q + 1 ≤ i ≤ n -q k i ≤ h i-q for n -q + 1 ≤ i ≤ n. 2. The multiplicity m Λ of V = V (Λ )
in the decomposition is the coefficient, when it does not vanish, of e((k 1 + q)λ 1 + ... + (k q + 1)λ q ) in:

q-1 i=1 q j=i+1 s(α ij )s(β ij ) k 1,v . . . k q-1,v q r=1 n-1 s=r s(l r,s λ r ) s(λ r ) s(l 1,n λ 1 )...s(l q,n λ q ).
where the summations are taken over all the sets of integers k u,v , 1 ≤ u ≤ q -1 and u + 1 ≤ v ≤ n such that:

• if 2u < 3q -n + 1:            max(k u-1,v+1 , k q,v+q-u ) ≤ k u,v ≤ k u-1,v-1 for u + 1 ≤ v ≤ n -q + u k u-1,v+1 ≤ k u,v ≤ k u-1,v-1 for n -q + u + 1 ≤ v ≤ 2q -u k u-1,v+1 ≤ k u,v ≤ min(k u-1,v-1 , k q,v-q+u ) for 2q -u + 1 ≤ v ≤ n -1 k u,n ≤ min(k u-1,n-1 , k q,n-q+u ) 0 ≤ k u,n ≤ ... ≤ k u,u+1 , (4) 
• if 2u ≥ 3q -n + 1:              max(k u-1,v+1 , k q,v+q-u ) ≤ k u,v ≤ k u-1,v-1 for u + 1 ≤ v ≤ 2q -u max(k u-1,v+1 , k q,v+q-u ) ≤ k u,v ≤ min(k u-1,v-1 , k q,v-q+u ) for 2q -u + 1 ≤ v ≤ n -q + u k u-1,v+1 ≤ k u,v ≤ min(k u-1,v-1 , k q,v-q+u ) for n -q + u + 1 ≤ v ≤ n -1 k u,n ≤ min(k u-1,n-1 , k q,n-q+u ) 0 ≤ k u,n ≤ ... ≤ k u,u+1 , ( 5 
)
with k 0,v = h v and k q,v = k v . The integers l r,s are given by:

   l r,r = k r-1,r -max(k r-1,r+1 , k r,r+1 ) + 1 l r,s = min(k r-1,s , k r,s ) -max(k r-1,s+1 , k r,s+1 ) + 1 for r + 1 ≤ s ≤ n -1 l r,n = min(k r-1,n , k r,n ) + 1. ( 6 
)
Proof: To decompose an irreducible G-module of highest weight Λ into irreducible K-modules, we will determine the set E of highest weights of K such that:

χ G (Λ) = Λ ∈E χ K (Λ ),
where

χ G (Λ) (resp. χ K (Λ )) is the character of V (Λ) (resp. V (Λ ).
Using the Weyl character formula, we obtain:

ξ G (Λ + δ G ) ξ G (δ G ) = Λ ∈E ξ K (Λ + δ K ) ξ K (δ K ) .
Then we have to determine the set E such that:

ξ G (Λ + δ G ) ξ G (δ G )/ξ K (δ K ) = Λ ∈E ξ K (Λ + δ K ), (7) 
It is well known that:

ξ G (δ G ) = α∈∆ + G (e(α/2) -e(-α/2)) and ξ K (δ K ) = α∈∆ + K (e(α/2) -e(-α/2)), then ξ G (δ G ) ξ K (δ K ) = α∈∆ + G -∆ + K (e(α/2) -e(-α/2)).
Writing Λ in the form (1), we have

Λ + δ G = H 1 λ 1 + H 2 λ 2 + ... + H n λ n , where H i = h i + n -i + 1 for all 1 ≤ i ≤ n. The H i are integers verifying H 1 > H 2 > ... > H n > 0.
In the same way we have Λ +δ K = K 1 λ 1 +...+K q λ q +K q+1 λ q+1 +...+K n λ n , where

K i = k i + q -i + 1 for all 1 ≤ i ≤ q and K i = k i + n -i + 1 for all q + 1 ≤ i ≤ n.
The K i are integers verifying:

K 1 > K 2 > ... > K q > 0 and K q+1 > K q+2 > ... > K n > 0.
Then we obtain:

ξ G (δ G ) ξ K (δ K ) = q i=1 n j=q+1 s(α ij )s(β ij ).
On the other hand, we show that

ξ G (Λ + δ G ) = det [s(H i λ j )] 1:n ,
and

ξ K (Λ + δ K ) = det[s(K i λ j )] 1:q × det[s(K i λ j )] q+1:n .
To determine the set E in the equality (7), it suffices to determine the integers

K 1 , ..., K n such that det[s(H i λ j )] 1:n q i=1 n j=q+1 s(α ij )s(β ij ) = K 1 >...>K q >0 K q+1 >...>K n >0 det[s(K i λ j )] 1:q × det[s(K i λ j )] q+1:n
Using lemma 2, we have to determine the integers K 1 , ..., K n such that

q-1 i=1 q j=i+1 s(α ij )s(β ij ) × K 1,v . . . K q,v q r=1 n-1 s=r s(l r,s λ r ) s(λ r ) s(l r,n λ r ) det[s(K q,i λ j )] q+1:n = K 1 >...>Kq>0 K q+1 >...>Kn>0 det[s(K i λ j )] 1:q × det[s(K i λ j )] q+1:n .
We permute successively the summations on the K 1,v , . . . , K q,v satisfying [START_REF] Ikeda | Spectra and eigenforms of the Laplacian on S n and P n (C)[END_REF] to get the first one on K q,v which verify:

   H v+q + q ≤ K q,v ≤ H v-q -q for q + 1 ≤ v ≤ n -q K q,v ≤ H v-q -q for n -q + 1 ≤ v ≤ n 0 < K q,n < ... < K q,q+1 ,
and the other ones on K 1,v , . . . , K q-1,v such that

• if 2u > n -q -3:            a q,u,v < K q-u-1,v < K q-u-2,v-1 for q -u ≤ v ≤ n -u -1 K q-u-2,v+1 < K q-u-1,v < K q-u-2,v-1 for n -u ≤ v ≤ q + u + 1 K q-u-2,v+1 < K q-u-1,v < b q,u,v for q + u + 2 ≤ v ≤ n -1 K q-u-1,n < b q,u,n 0 < K q-u-1,n < ... < K q-u-1,q-u , (8) • if 2u ≤ n -q -3:            a q,u,v < K q-u-1,v < K q-u-2,v-1 for q -u ≤ v ≤ q + u + 1 a q,u,v < K q-u-1,v < b q,u,v for q + u + 2 ≤ v ≤ n -u -1 K q-u-2,v+1 < K q-u-1,v < b q,u,v for n -u ≤ v ≤ n -1 K q-u-1,n < b q,u,n 0 < K q-u-1,n < ... < K q-u-1,q-u , (9)
where

a q,u,v = max(K q-u-2,v+1 , K q,v+u+1 + u) b q,u,v = min(K q-u-2,v-1 , K q,v-u-1 -u).
Thus, we obtain:

q-1 i=1 q j=i+1 s(α ij )s(β ij ) × Kq,v K 1,v ... K q-1,v q r=1 n-1 i=s s(l r,s λ r ) s(λ r ) s(l 1,n λ 1 )...s(l q,n λ q ) det[s(K q,i λ j )] q+1:n = K 1 >...>K q >0 K q+1 >...>K n >0 det[s(K i λ j )] 1:q × det[s(K i λ j )] q+1:n .
By identifying the left and right terms of the last equality, we get:

K i = K q,i for all q + 1 ≤ i ≤ n and K 1 >...K q >0 det[s(K i λ j )] 1:q = q-1 i=1 q j=i+1 s(α ij )s(β ij ) × K 1,v ... K q-1,v q r=1 n-1 s=r s(l r,s λ r ) s(λ r ) s(l 1,n λ 1 )...s(l q,n λ q ),
where the conditions on K u,v for 1 ≤ u ≤ q -1, are (8) and (9). We find:

   h i+q ≤ k i ≤ h i-q for q + 1 ≤ i ≤ n -q k i ≤ h i-q for n -q + 1 ≤ i ≤ n 0 ≤ k n ≤ ... ≤ k q .
If we denote by:

k u,v = K u,v -n + v -1, for all 0 ≤ u ≤ q -1 and u + 1 ≤ v ≤ n, we obtain the result. 2 3. Decomposition of ∧ p (g/k) *
We identify the complexified cotangent space of M = G/K at o = [K] with (g/k) * , the dual space of g/k.

The K-module (g/k) * is irreducible of highest weight λ 1 + λ q+1 .

Notations: Let H and L be two groups, V a H-module and W a Lmodule. The space V ⊗ W has a structure of H × L-module by the action of H on V and L on W . We denote by V W the obtained H × L-module. Thus, the Sp(q) × Sp(n -q)-module

(g/k) * is isomorphic to V (λ 1 ) V (λ q+1 ). 3.1. Particular case K = Sp(2) × Sp(n -2). Let H be the subgroup T × T of Sp(2)
where T is a torus of Sp [START_REF] Chami | Spectre du laplacien sur les formes versus spectre des volumes : le cas des grassmanniennes[END_REF]. We begin by decomposing the restriction of ∧ p (g/k) * to H × Sp(n -2). To restrict (g/k) * , i.e. V (λ 1 ) V (λ 3 ), to H × Sp(n -2), we restrict the Sp(2)-module V (λ 1 ) to H. The decomposition of the Sp(2)-module V (λ 1 ) into irreducible H-submodules:

V (λ 1 )| H ∼ = V (λ 1 ) ⊕ V (-λ 1 ) ⊕ V (λ 2 ) ⊕ V (-λ 2 ). We denote by V 1 = V (λ 1 ) V (λ 3 ), V 2 = V (-λ 1 ) V (λ 3 ), V 3 = V (λ 2 ) V (λ 3 ) and V 4 = V (-λ 2 ) V (λ 3 ). Then (g/k) * ∼ = V 1 ⊕ V 2 ⊕ V 3 ⊕ V 4 (irreducible H × Sp(n -2)-modules). Using the notation ∧ a,b,c,d = ∧ a V 1 ⊗∧ b V 2 ⊗∧ c V 3 ⊗∧ d V 4 (H ×Sp(n-2)-module), we get the H × Sp(n -2)-decomposition ∧ p (g/k) * ∼ = ∧ a,b,c,d with a + b + c + d = p. ( 10 
)
On the other hand, the restriction to Sp(n -

2) of V 1 , V 2 , V 3 or V 4 is isomorphic to V = V (λ 3 ). Also, the H × Sp(n -2)-module, ∧ a,b,c,d , is isomorphic to: V ((a -b)λ 1 ) V ((c -d)λ 2 ) (∧ a V ⊗ ∧ b V ⊗ ∧ c V ⊗ ∧ d V ). ( 11 
)
It means that it suffices to decompose the Sp(n

-2)-module (∧ a V ⊗ ∧ b V ⊗ ∧ c V ⊗∧ d V ) into irreducible Sp(n-2)
-submodules to obtain the decomposition of the H × Sp(n -2)-module ∧ a,b,c,d . We suppose that:

∧ a V ⊗∧ b V ⊗∧ c V ⊗∧ d V ∼ = V (µ), (irreducible Sp(n -2)-modules). ( 12 
)
We obtain:

∧ a,b,c,d ∼ = µ V ((a -b)λ 1 ) V ((c -d)λ 2 ) V (µ), (H × Sp(n -2)-modules).
(13) Notations: We set γ j-2 = λ j for 3 ≤ j ≤ n, and:

Γ 0 = 0 Γ j = γ 1 + ... + γ j for 1 ≤ j ≤ n -2
The Γ j for 1 ≤ j ≤ n -2 are the fundamental weights of the group Sp(n -2). With these notations, the restriction of ∧ a,b,c,d to Sp(n -2) is isomorphic to:

∧ a V (Γ 1 ) ⊗ ∧ b V (Γ 1 ) ⊗ ∧ c V (Γ 1 ) ⊗ ∧ d V (Γ 1 ). Proposition 4. [6]
(1) For 0 ≤ r ≤ n -2, we have

∧ r V (Γ 1 ) ∼ = V (Γ r ) ⊕ V (Γ r-2 ) ⊕ • • • ⊕ V (Γ 1 ) when r is odd and ∧ r V (Γ 1 ) ∼ = V (Γ r ) ⊕ V (Γ r-2 ) ⊕ • • • ⊕ V (Γ 0 ) when r is even with ∧ r V (Γ 1 ) ∼ = ∧ 2n-4-r V (Γ 1 ).
(2) For 0 ≤ r ≤ s ≤ n -2, the Sp(n -2)-module V (Γ r ) ⊗ V (Γ s ) can be decomposed into irreducible modules as follows:

V (Γ r ) ⊗ V (Γ s ) ∼ = i,j V (Γ i + Γ j ),
where the indices of the summation (i, j) are non-negative integers satisfying:

   s -r ≤ j -i ≤ 2n -4 -s -r i + j ≤ r + s i + j ≡ r + s (mod 2).

Conclusion

• The previous proposition allows us to decompose

∧ r V (Γ 1 ) ⊗ ∧ s V (Γ 1 ) into irreducible Sp(n -2)-modules. • The decomposition of ∧ a,b,c,d is reduced to that of V (Γ i + Γ j ) ⊗ V (Γ k + Γ l ) into irreducible Sp(n -2)
-modules which can be done using the Steinberg multiplicity formula. • The decomposition of ∧ a,b,c,d into Sp(2)×Sp(n-2)-modules can be done by gathering the irreducible H-modules in irreducible Sp(2)-modules.

3.2. General case. We consider now the general case K = Sp(q) × Sp(n -q). We consider a torus T of Sp(1). To decompose the K-module ∧ p (g/k) * into irreducible K-submodules, we begin by decomposing the restriction of (g/k) * to T × Sp(q -1) × Sp(n -q), then the restriction of ∧ p (g/k) * to T × Sp(q -1) × Sp(n -q) and finally, we come back to K as the case q = 2. As (g/k) * ∼ = V (λ 1 + λ q+1 ), it suffices to study the restriction of the Sp(q)module V (λ 1 ) to T × Sp(q -1). It is easy to show that V (λ 1 )| T ×Sp(q-1) ∼ = V (λ 1 ) ⊕ V (-λ 1 ) ⊕ V (λ 2 ), where V (λ 1 ) and V (-λ 1 ) are trivial and V (λ 2 ) is the standard representation of Sp(q -1). Then:

V (λ 1 + λ q+1 )| T ×Sp(q-1)×Sp(n-q) ∼ = U 1 ⊕ U 2 ⊕ U 3 ,
where U 1 , U 2 , U 3 are the irreducible T ×Sp(q-1)×Sp(n-q)-modules of highest weights λ 1 + λ q+1 , -λ 1 + λ q+1 and λ 2 + λ q+1 respectively.

The decomposition of ∧ p (g/k) * into irreducible K-submodules can be made recursively as follow: (i) The first step is given by the previous conclusion.

(ii) The restriction of ∧ p (g/k) * to T × Sp(q -1) × Sp(n -q) can be decomposed as follow:

• ∧ p (g/k) * ∼ = i+j+k=p ∧ i U 1 ⊗ ∧ j U 2 ⊗ ∧ k U 3 .

• The decomposition of ∧ i U 1 ⊗ ∧ j U 2 is determined by applying the proposition 4. • We decompose ∧ k U 3 recursively. (iii) To obtain the decomposition of ∧ p (g/k) * as Sp(q) × Sp(n -q)-module, we regroup the irreducible T × Sp(q -1)-modules occurring in the decomposition into irreducible Sp(q)-modules.