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Abstract

We rely on a recent French matched case-control study to investigate the effect of oc-
cupational exposure to asbestos on the occurrence of lung cancer. We build a large collec-
tion of threshold regression models, data-adaptively select a better model in it by multi-fold
likelihood-based cross-validation, then fit the resulting better model by maximum likelihood.
A necessary preliminary step to eliminate the bias due to the case-control sampling is made
possible because the conditional distribution of being a case given the matching variable and
the marginal distribution of the matching variable can be computed beforehand based on
two studies independent from our dataset. The implications of the fitted model in terms of
expected years of life free of lung cancer lost due to the occupational exposure to asbestos are
discussed.

1 Introduction

Asbestos is a powerful carcinogen [IARC, 1977]. We rely on a recent French matched case-control
study on lung cancer by Pairon et al. [2009] to investigate the effect of occupational exposure to
asbestos on the occurrence of lung cancer. Following a case-control study design is convenient for
a rare disease like lung cancer, with a known prevalence proportion approximately equal to five
cases out of 10,000 persons [Belot et al., 2008].

Logistic regression in parametric statistical models is the prevalent method of analysis in case-
control study [Breslow, 1996, and references therein]. Sometimes however, as here due for instance
to the nature of our exposure variable and because we do not aim for results in terms of risks,
this approach would not be satisfactory. Gustavsson et al. [2002] recently undertook a case-
control study on low-dose exposure to asbestos and lung cancer in Sweden with results expressed
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in terms of risks. By following van der Laan [2008], we show how to examine the connection
between occupational exposure to asbestos and lung cancer, accounting notably for tobacco use,
by performing estimation based on any parametric model for the conditional distribution of time
to incident lung cancer given the remaining information. It is possible to take up that challenge
because we can estimate the conditional distribution of being a case given the matching variable
and the marginal distribution of the matching variable (based on the independent study undertaken
by Belot et al. [2008] and on a dataset made publicly available by the French National Institute
of Statistics and Economic studies, see http://www.insee.fr/en/).

We model the time to incidence of lung cancer as the time until an unobservable process crosses
a threshold[Lee and Whitmore, 2006]. The effect of occupational exposure to asbestos is included
by accelerating the time index of the process. The effect of other covariates is not included as a
time acceleration factor, but directly on the other process parameters. By separately modeling
the effect of covariates and exposure in this way, we can get new insights on the effect of these
covariates and also, more importantly, on the effect of exposure alone. We express the latter in
terms of expected years of life lost as introduced by Robins and Greenland [1991]. Our model
belongs to the family of threshold regression models, which has been playing an important role
in survival analysis for some years [Lee and Whitmore, 2006, 2010, and references therein]. It is
also an accelerated failure time model, with strong ties to the model developed by Oakes [1995]
to study the effect of exposure to asbestos on the time until death from (not incidence of) lung
cancer, as discussed later. We note that the study of a case-control dataset based on a threshold
regression model is undertaken in [Lee et al., 2009], but we believe that the authors do not properly
address the difficulties which stem from the type of sampling used to collect the data.

As our study involves an original qualitative description of the exposure to asbestos into 28 cat-
egories, we actually consider our model as a maximal model containing thousands of smaller models
(obtained for instance by reducing the number of categories). We manage to data-adaptively se-
lect a better model in our large collection of threshold regression models by relying on multi-fold
likelihood-based cross-validation [van der Vaart et al., 2006]. Then we fit the latter better model
to the data by maximum likelihood, and draw our conclusions from its description.

The article is organized as follows. The dataset and the original qualitative description of the
exposure to asbestos into 28 categories are described in Section 2. The case-control estimation
problem is formalized in Section 3. We develop the threshold regression modeling in Section 4,
showing how to derive the expected years of life free of lung cancer lost due to occupational
exposure to asbestos for a case. We summarize in Section 5 the main results of the application
to the dataset. A brief discussion is finally developed in Section 6. Some relevant material is
gathered in the appendix. We present in Section A a few asymptotic results on the case-control
weighted maximum likelihood estimator upon which our study relies. Elements of proofs are
relegated to Section B. We provide additional details on the real data application in Section C.
This includes the computation of the quantities required to eliminate the bias due to the case-
control sampling in Section C.1, and brief presentations of (i) the principle of our multi-fold
likelihood-based cross-validation model selection procedure in Section C.2, and (%) its concrete
implementation in Section C.3.

2 Dataset

In this section we describe the dataset of interest. The details of the case-control sampling scheme
are given in Section 2.1. For each enrolled subject, non-professional information is collected, see
Section 2.2, as well as an original history of occupational exposure to asbestos, see Section 2.3.

2.1 A matched case-control study

The matched case-control study took place between 1999 and 2002 in four Parisian hospitals. Case
and control subjects were retrospectively recruited at the end of each year 1999 to 2002 among the
patients of these hospitals who were free of lung cancer at the beginning of the corresponding year.



The case subjects were diagnosed with incident lung cancer during the period of the study. They
were matched by control subjects on the basis of gender, age at end of calendar year (up to £2.5
years), hospital, and race. Control subjects were recruited among patients of the departments of
ophthalmology, general and orthopedic surgeries, and were by definition free of lung cancer at the
time of their enrollment.

The one-to-one matching (i.e., the pattern of who is matched by whom) and race are not
available. We propose an artificial valid matching pattern (based on gender, age and hospital)
and make sure that our results do not depend on this particular choice. We exclude every subject
with missing information. The resulting dataset counts n = 860 cases and 901 controls, hence a
total of n + 901 = 1, 761 observations.

We assume that the population sampled from during the study is stationary. Therefore, the
observed data structures on experimental units made of pairs of case and matched control can
be modeled as independent and identically distributed (iid) random variables. In Section 3, we
invoke this fact to derive the likelihood function used in our study.

2.2 Non-professional information

Set a calendar time 7 (expressed in years), and consider a subject sampled at time 7.

He/she is associated with his/her hospital of recruitment Wy € {1,2, 3,4}, gender W7 (W7 =0
for men and W7 = 1 for women), binary indicator Wy of occurrence of lung cancer in close family
(W5 = 0 if no lung cancer occurred and Wo = 1 otherwise), age at incident lung cancer diagnosis
T (T = oo if no lung cancer occurred), and age at interview X = X (7).

It is well known that tobacco is a serious risk factor of lung cancer [Biesalski et al., 1998].
Thus information on tobacco consumption is collected during the interview. We summarize this
information by considering a discretized version of the lifetime tobacco use. Hence, he/she is also
associated with his/her tobacco use W3 (W3 = 0 for never-smoker, W3 = 1 for lifetime tobacco use
comprised between 1 and 25 pack years, W3 = 2 for lifetime tobacco use comprised between 26
and 45 pack years, W3 = 3 otherwise). The boundaries are chosen to yield strata of comparable
sizes (371 subjects with W3 = 0, and respectively 468, 469, 453 subjects with W3 = 1,2,3). In
particular, we overlook the duration of habit and years of abstinence, although they are known to
play a role in the development of lung cancer [Ruano-Ravina et al., 2003; Gustavsson et al., 2002].

We denote W = (W1, W, W3) € W = {0,1}% x {0,1,2,3} the explanatory covariate, Z =
min{7T, X} and Y = 1{T < X}. Note that Y = 1 if and only if (iff) T = Z < X (the subject is
then called a case) and Y =0 iff T'> Z = X (the subject is then called a control).

2.3 History of occupational exposure to asbestos

In addition, the occupational history up to age X, A(X), of the latter subject sampled at 7 (we
justify the notation below) is determined during the interview by experts of occupational exposure
to asbestos. Every employment with duration at least 6 months is associated with its start and
end dates, and with an original description of the exposure to asbestos. This description was
characterized by the very experts who later conducted the interviews [Pairon et al., 2009]. At the
time of the characterization, the French threshold limit value for exposure to asbestos was set to
0.1f/mL (f/mL stands for “asbestos fibers per milliliter”).

This description is a triplet referred to as “probability /frequency/intensity”, each of them
taking values in {1, 2, 3}: for the considered employment, the probability of exposure, its frequency
and intensity are evaluated as either low or mild or high, respectively coded by 1, 2, 3. A probability
index equal to 1, 2 or 3 corresponds to a passive exposure, a possible direct exposure or a very likely
or certain direct exposure, respectively. A frequency index equal to 1, 2 or 3 corresponds to
exposures occurring less than once a month, more than once a month and during less than half of
the monthly working hours or during more than half of the monthly working hours, respectively.
An intensity index equal to 1, 2 or 3 corresponds to a concentration of asbestos fibers less than 0.1
f/mL, between 0.1 and 1 f/mL and more than 1f/mL, respectively. Thus, the set £ of categories of
exposure has 27+1=28 elements (we add a category 0 for no exposure), each of them corresponding



to a particular rate of exposure. Note that we will use from now on the notation € = £1e5¢e3 instead
of e = (51, 82,53).

The description is similar to that used by Gustavsson et al. [2002]. In the latter article, only
the probability and intensity of exposure are considered. Four classes of probability of expo-
sure correspond to an “estimated exposure prevalence” comprised between 0% and 20%, 20%
and 50%, 50% and 85%, 85% and 100%. Four classes of intensity of exposure correspond to
“time-period-specific annual arithmetic average level of exposure to asbestos” comprised between
0 and 0.03f/mL, 0.03f/mL and 0.1f/mL, 0.1f/mL and 0.3f/mL, 0.3f/mL and above. The Swedish
threshold limit value for exposure to asbestos was set to 0.3f/mL in 1993.

We report in the top table of Table 1 the overall number of employments associated to each pos-
sible “probability/frequency/intensity” description. Although computed over a total of 8,432 em-
ployments, this table contains many zeros, showing that the latter description is over-parametrized.
We also report in the bottom table of Table 1 the overall number of employments that feature a
particular value of each coordinate of the “probability/frequency/intensity” description.

€ mnb.ofemp. | € nb. ofemp. | € nb. of emp.
111 213 211 53 311 138
112 167 212 64 312 105
113 3 213 6 313 24
121 150 221 59 321 136
122 46 222 36 322 189
123 3 223 3 323 22
131 0 231 2 331 1
132 0 232 0 332 3
133 0 233 0 333 0
1 2 3

probability | 582 223 618
frequency | 773 644 6
intensity | 752 610 61

Table 1: Top: Overall number of employments associated to each possible “probabil-
ity /frequency/intensity” description. The total number of employments is 8,432. Only 1,423
of them feature a description in € \ {0}. Bottom: Overall number of employments that feature a
particular value of each coordinate of the “probability/frequency /intensity” description.

The generic longitudinal history of occupational exposure to asbestos is denoted by a. It
belongs to &, the set of functions from the nonnegative real line to € such that a(t) = 0 for ¢ small
or large enough (before the age at first employment or when no further information is available;
this constraint is just a convenience, as we will make clear in Section 4). It is understood that the
value of @ at t is denoted by a(t) while a(t) stand for the restrictions of a@ to [0,¢]. Thus a(t) = a
correspond to an occupational position held at age ¢ and characterized by asbestos exposure a.

One of the central issues we deal with in this article is how to associate each description in £
with a rate of exposure. We propose an original solution which heavily exploits the underlying
multiplicative nature of the “probability /frequency /intensity” encoding. Indeed, it is the product
of “probability”, “frequency” and “intensity” which is relevant in terms of rate of exposure.

3 Formulation of the case-control estimation problem
We show in three steps how to examine the connection between occupational exposure to asbestos

and lung cancer, accounting notably for tobacco use, by performing (appropriately weighted)
maximum likelihood estimation based on any parametric model (i.e., in particular, not necessarily



a logistic model) for the conditional distribution of time to incident lung cancer given the remaining
information. First, we derive from the description of our case-control study the characterization
of the representative sampling scheme one may have relied upon, had the probability of being an
incident case of lung cancer not been so small. This mainly amounts to defining an observed data
structure O* under representative sampling, whose distribution PJ presents features of interest,
see Section 3.1. Second, we characterize the observed data structure O under matched case-control
sampling and its distribution Py in terms of O* and Fj, see Section 3.2. Third, we show how to
make inference on the features of P from data sampled under P, see Section 3.3. This three-step
procedure follows [van der Laan, 2008; Rose and van der Laan, 2008].

3.1 Representative sampling scheme

We explained in Section 2.1 that sampling occurred at times 79,71 = 19+ 1,72 = 19+ 2,73 =790+ 3
(where 7( stands for the initial sampling date, January 1st, 2000). Had the representative sampling
been carried out, we would have observed ng (respectively ni,ns,n3) independent observed data
structures O sampled at time point 7y (respectively 71,72, 73) under, say, P*(79) (respectively
P*(11), P*(12), P*(13)). We make the following stationarity assumption:

V1 < k < 3, P*(r,) = P*(m0) = P (1)

This assumption is justified by the influx and outflow experienced by the population of the Parisian
region over the period of investigation. Thus, had the representative sampling been carried out,
one would have finally collected N = ng + n1 + ny + n3 independent copies (O7,...,0%) of
O* ~ Py, with

O* = (W, X,A(X),Y, 7). (2)

Note that the likelihood of O* under Pj writes as

FP3(0%) = Ff (W) P (X|W) Py (A(X) | X, W)
xdPy(Z =T|T > X — 1, A(X), X,W)¥
x PY(T > X|T>X—1,AX),X,W)*Y, (3)

where dP(t|T > X — 1, A(X), X, W) is the conditional density of T" at time ¢ given the event
T>X —1,A(X), X, W].

3.2 Matched case-control sampling

Such a representative sampling would have been impractical and ineffective because the probability
P;(Y = 1) of being an incident case of lung cancer is very small, see Section C.1. In order to
recruit some cases in the sample, one would have to sample a huge number of observations. This
is the main motivation for using a case-control sampling scheme.

We describe now what is our observed data structure in this framework. Introduce the cate-
gorical matching variable V' € V obtained by concatenating Wy (subject’s hospital when sampled),
W1 (subject’s gender) and a discretized version of the age at sampling X over bins of length five
years. In the sequel, we repeatedly use the convenient (though redundant) notation (V, W).

The matched case-control sampling scheme can be described as follows:

e One first samples a case by sampling
(Vho™) = (vhwh xH ANXY, Y =1,2)

from the conditional distribution of (V,O*) given Y = 1 (the superscript “1” refers to the
fact that Y1 = 1).



e Subsequently, one samples J controls
(V05 003%) = (VOd Wi X0, 405 (X 03, yOi = 0, 70)

from the conditional distribution of (V,0*) given Y = 0,V% = V! for all j < J (the
superscript “0” refers to the fact that Y%7 = 0 for all j < J).

Conditional on V! = v € V, the ratio of the number of controls for one case, J/1, is much smaller
than the ratio PF(Y = 0|V = v)/P3(Y = 1|V = v) one would get in the population. This
sampling scheme results in the observed data structure

O = ((Vl, Ol*)7 (VO,j, Oo’j*),j =1,..., J) ~ Py

whose true distribution Py can be deduced from Fy and the two-step description above.

The method naturally allows to consider the case that J is random and thus varies per exper-
imental unit. This permits to exploit all our observations, even though we have less cases than
controls. Note that each control is only taken into account once.

3.3 Case-control weighting of the log-likelihood loss function developed
for representative sampling

It is remarkable that the log-likelihood loss function developed for the representative sampling
scheme can be adapted to the case-control sampling scheme by appropriate weighting. This
weighting relies on the prior knowledge of the joint distribution of (V,Y), hence of the following
probabilities: for each (y,v) € {0,1} x V,

© = K =1, (4)
wylv) = K =ylV =), (5)
wvly) = BV =0y =y), (6)

or, namely, the marginal probability of being a case (4), the conditional probabilities of being a case
or a control given matching variable at level v (5), and the conditional probabilities of observing
level v for the matching variable given being a case or a control (6). We refer to Section C.1 for
the computation of the latter key quantities.

Consider a model P* for Py. We assume without serious loss of generality that there exists
a common dominating measure for all P* € P* and Fj, so that we can refer to the densities p*
and pjj of P* € P* and Fj. With a slight abuse of notation, P* denotes both the model and the
corresponding set of densities.

Define for all v € V the quantities

B(y =0V =0) _ a(0)
RV =1V=0  “a)

and introduce the following case-control weighted log-likelihood loss function for the density p§ of
Fg under sampling of O ~ Py: for all p* € P*,

do(v) = qo

(7)

J
(*)(0) = aolog (V! 0™) + (V1) % 3 logp (V! 0°5%). )

j=1

Even though ¢o appears in both terms in (8), we prefer to consider £(p*)(O) as defined above
rather than g5 '4(p*)(O). This choice guarantees that the weighted log-likelihood £(p*)(O) is on
the same scale as the log-likelihood log PJ(O*) under representative sampling. The weighted log-
likelihood loss function is adapted to the case-control sampling scheme in the following sense (the
proof is relegated to Section B):



Proposition 1. Let us assume that model P* for p§ is such that [logp*(0*)dPg;(0*,Y =y) are
properly defined for all p* € P* and y = 0,1. If P* is well-specified (i.e., if p§ € P*), then the
density that maximizes the expectation under Py of the weighted loss function (8) over P*,

argmax Ep, £(p*)(0),
p* E’P*

is unique and coincides with pj.

In words, this tells us that it is possible to draw inference about Fj based on data sampled
from Py by (appropriately weighted) maximum likelihood.

In the next section, we propose a parametric model for the conditional distribution of O* given
(W, X,A,Y), that is the conditional distribution of Z given (W, X, A,Y). The parametric model
is sound in the sense that the conditional distribution of Z given (W, X, A,Y) only depends on
Q= (W,X,A(X),Y). The latter parametric model is combined with a nonparametric model
for the conditional distribution of (W, X, A) given Y, both yielding a semiparametric model P* =
{P} : 6 € ©} for Py because we know beforehand qo, the true probability of being a case. Formally,
the likelihood of O* = (2, Z) under 6 € © writes as

B3 (07) = py(Z|2)n(92),

7(Q) being the likelihood of €2, which we assume without serious loss of generality to be bounded
away from 0. If we set

Q% = (WO, X%, A% (X)), Y% =0),

hence O = (2!, Z1) and O%7* = (2% Z%3*), then the weighted log-likelihood loss function for
pg under sampling of O ~ Py satisfies, for all § € ©,

J
* * * ~ 1 * j %
(3)(0) = qlogpy(V!,0™) +@ (V)3 D logpi(v',0°9)

Jj=1

J
* — 1 i 1
a0 log p5(ZQ, V) + QO(Vl)j Zlogpz(ZO’”IQO*% v
j=1

+rem(0), (9)

where rem(0O) is a random term independent of §. We set £(8)(0) = £(p})(0) — rem(O) for all
0 €o.

Assuming that the true density pf is “projected” (in terms of Kullback-Leibler divergence) onto
pp, for some Oy € int(©), or in other terms that the mapping ¢ — KL(pg,p;) achieves a unique
minimum at the unique 6y € int(0), we focus hereafter on the maximum likelihood estimation of
fo. Following the lines of the proof of Proposition 1, the case-control weighted maximum likelihood
estimator N

0, = argmax »_£(0)(0;) (10)
veo
does estimate 6. We briefly consider some asymptotic properties (including consistency and
asymptotic normality) in Section A.

4 Threshold regression parametric modeling

We model the time to incidence of lung cancer as the time until an unobservable process crosses
a threshold, the effect of asbestos exposure being included by accelerating the time index of the
process, see Section 4.1. This is typical of threshold regression modeling [Lee and Whitmore,



2006, 2010, and references therein|, with an original acceleration tailored to the description of
occupational exposure to asbestos (as presented in Section 2.3) that we introduce in Section 4.2.
We complete the description of our model in Section 4.3, where we also specify the form of the
resulting case-control weighted log-likelihood loss function. Finally, we show in Section 4.4 how
our model yields insights on the association between asbestos exposure alone and risk of developing
lung cancer.

4.1 Time to incident lung cancer

Let B be a Brownian motion. For any real numbers & > 0 and p < 0, define
T{h,p} =inf{t > 0: h+ ut +B; <0}, (11)

the first time the drifted Brownian motion (h + pt + B, ¢t > 0) crosses the threshold 0. The
distribution of T{h, 11} is known as the inverse Gaussian distribution with parameter (h, ). It is
characterized by its cumulative distribution function (cdf): for all ¢ > 0,

F(h,p)(t) =1+ e 2" ((ut - h)fl/Q) - ((ut + h)fl/z) 7

where @ is the standard normal cdf. Tt is well known [Chhikara and Folks, 1989] that T'{h, u} < 0o
almost surely eventually because p < 0. Therefore the distribution of T'{h, u} is also characterized

by its density
__h (h — |ult)?
f(hvu)(t) - (27Tt3)1/2 exXp ( on

(all ¢ > 0). Finally, T{h, u} has mean h/|u| whenever u < 0.

Here, (h + ut + B, t > 0) models the amount of health relative to lung cancer in absence of
occupational exposure to asbestos. Describing what happens in presence of exposure to asbestos
involves the introduction of an acceleration function R which summarizes the effects of this expo-
sure. An acceleration function R is a nondecreasing continuous function on the nonnegative real
line such that R(t) >t for all ¢ > 0. Given such a function R, we define

T{h,p, R} = inf{t > 0: h+ pR(t) + Bgy < 0}, (12)

the first time the drifted Brownian motion (h + ut + B, ¢ > 0) crosses the threshold 0 along the
modified time scale derived from R. Obviously, T{h, u, R} = T{h,u} when R is the identity, but
in general T{h, u, R} < T{h, p}. Furthermore,

T{h,p, R} >t iff T{h,u} > R(t), (13)

so that the cdf of T{h, u, R} at t > 0is F'(h, u)(R(t)), and its density at ¢t > 0 is R'(¢) f(h, u)(R(t))
as soon as R is differentiable. Consequently, the conditional survival function and density of
T{h,pu, R} at t > x — 1 given [T{h, u, R} > x — 1] are respectively

1 — F(h, p)(R(t))

GUMM, R)(t) = 1— F(h, lu)(R(iZT - 1))

(14)

and ,
s B8 — T OIS B(RD)
o 1= F(h, p)(R(z — 1))’

two important equalities in view of the factorization of the likelihood shown in (3).

Parameters h, u and T{h, u} are respectively interpreted as an initial amount of health relative
to lung cancer, a rate of decay of this amount of health in absence of occupational exposure to
asbestos, and the time to incident lung cancer in absence of occupational exposure to asbestos. As
for T{h, u, R}, it is interpreted as the time to incident lung cancer for a history of occupational
exposure to asbestos summarized by acceleration function R. Admitting that the reference time
scale (that is that of the Brownian motion B) corresponds to chronological/calendar time scale, the
new time scale formed by the acceleration function R may be understood as a biological time scale.
This interpretation acknowledges the fact that the ageing phenomenon related to lung cancer is
stronger in presence of noxious occupational exposure to asbestos than in its absence.

(15)



4.2 Calendar versus biological ages: modeling the ageing acceleration
due to occupational exposure to asbestos

We present now an original class of acceleration functions tailored to our particular description of
occupational exposures to asbestos. Let us define

M= {(Mo, (Mi)ka<3) € Ry x Mg a(Ry): 0 < My g < Mo < Myz=1,k=1, 273}- (16)

Then the rate yielded by description € = e1e9e3 € £ \ {0} for M € M writes as
M(E) =1+ MO X M1751 X M2.,62 X M3753, (17)

and that of e = 0 is set to M (0) = 1. Notably, M is the factor of acceleration of time for the higher
exposure, which we recall is encoded by e = 333. Rates M(e) range from 1 to M (333) =1+ M,
and (with convention 0/0 = 1)

M) -1

= Ml,al X M2752 X M3,53 :
My

an exposure characterized by “probability /frequency/intensity” description e = £1£9e3 achieves a
fraction My o, X Ma ., X M3 ., of the maximal acceleration.

Note that we only need 7 parameters in order to fully describe the 28 possibly different rates of
acceleration. Furthermore, it is easily seen that this parametrization is identifiable: if M, M’ € M
satisfy M(e) = M'(¢) for all € € £ then M = M.

Consider M € M and a generic longitudinal history & as presented in Section 2. The mapping
M(e(+)) : t — M(e(t)) is piecewise constant but it is more convenient to consider a continuous
approximation to it, which we denote by (M, £). (Formally, one may rely on convolution to derive
r(M,&) from M(e(+)).) Finally, every pair (M, &) gives rise to the acceleration function R(M, &)
characterized by

R(M,2)(t) = /0 r(M, 2)(s)ds (18)

(all t > 0). The quantity R(M, &)(t) is a summary measure of the history of occupational exposure
to asbestos, and can be interpreted as the cumulative occupational exposure to asbestos up to
age t. In particular if (¢t) = 0 for all ¢ > 0 (i.e., in absence of occupational exposure to asbestos
throughout lifetime) or if My = 0 (i.e., assuming that exposure to asbestos has no effect on the risk
of developing lung cancer), then R(M, £)(t) =t for all t > 0: in other words, the chronological and
biological time scales coincide. Note that R(M, &) is differentiable because (M, &) is continuous.

Note that R(M,&)(t) is very close to a linear combination of the times spent in each job
category (if larger than 6 months) up to calendar time ¢, where the coefficients of the combination
depend through M on the job categories. In this view, our acceleration function is classical [Lee
and Whitmore, 2006]. What makes it original though is how M maps each description ¢ € £ to
its coefficient M (). We comment further on our acceleration function in Section 4.3.

Now, given parameters h > 0, u, M € M and covariate a, we obtain R, = R(M,a), which
yields in turn the time to incident lung cancer T'{h, u, R, } for the history of occupational exposure
to asbestos summarized by R,.

4.3 The parametric model, and related case-control weighted log-likeli-
hood loss function

We complete the characterization of our model, and derive the related log-likelihood loss function.
By Section 3, we know that it suffices to model the distribution of the observed data structure O*
under representative sampling. As explained in Section 3, we wish to model parametrically the
conditional distribution of O* given Q = (W, X, A(X),Y), i.e., the conditional distribution of Z
given 2, leaving the conditional distribution of 2 given Y unspecified.



For this purpose, we state that under § = (o, 3, M) € © = R* x R'6 x M, the conditional
distribution of T' (the possibly unobserved time to incident lung cancer of the subject associated
with O*) given Q is that of T{h, u, R,} with

log h = Xindex(Wy,Wa) (19)

(each level of (W7, Wh) is associated with a unique positive initial health h),

].Og(_/,b) = ﬁindCX(Wl,Wz,Wg) (20)
(each level of (W7, Wa, W3) is associated with a unique negative drift p), and
R, = R(M, A(X)).

Therefore, it holds that logpj (Z]|Q) = Ylogg(8)(Z) + (1 — Y)logG(6)(Z), with convention
G0)(Z) = G(h,p,Ro)(Z) and ¢g(0)(Z) = g(h,p, Ro)(Z) (see (14) and (15) for the definitions
of G and g). Finally, the relevant part of the resulting case-control weighted log-likelihood at
0 € O writes as

n

Ji
; fJologg(H)(Z})+qo(‘/-i1)%;log(;(9)(zg,j) =Pnl7(9), (21)

where £(8)(0) = £(p})(O) — rem(O) (see equation (9)) and P, = >i 60, denotes the empirical
measure.

Comments. Oakes [1995] carried out the study of the effect of exposure to asbestos on time
until death from (not incidence of) lung cancer. Although the path that leads us to our model is
quite different from his (asbestos exposure are measured differently, more covariates are accounted
for here than there), the conditional cdf at ¢ > 0 of time until the event of interest given the rest
ends up in both cases being of the form F(R,(t)). Here F = F(h,pu) and R, = R(M, A(X))
whereas there F' is a Weibull cdf and R, : t — ¢ + pcum(t), cum(t) representing the cumulative
exposure to asbestos at age t in 100 million particles per cubic foot (measured in mppcf-years),
and p an “equivalence parameter”. Hence both model are accelerated failure time models of the
simple collapsible form (since F'(R,(t)) depends on the cumulated exposure at time ¢ and not on the
entire exposure history up to ¢; see [Duchesne and Rosenthal, 2003] for theoretical conditions under
which an accelerated failure time model turns out to be collapsible). Note that the expression
“equivalence parameter” conveys the notion that a cumulative exposure of 1/p mppcf-years of
asbestos dust has the same effect on the cumulative lung cancer risk as an additional year of life.
In view of (17) and (18), the two acceleration functions are very similar, the component My of
M = (Mo, (Mg,1)k,i<3) playing the same role as p, and (Mj,;)r1<3 serving as a mean to associate
a concentration of exposure to asbestos to every € € £.

Furthermore, we emphasize that our case-control weighted log-likelihood differs from the log-
likelihood developed in [Lee et al., 2009] even though the latter article also relies on a case-control
study. Lee et al. [2009] justify the form of their log-likelihood and discuss on the limitations of
the inferences they subsequently draw from it. However, we believe that the difficulties that stem
from the fact that a case-control sampling is performed are not fully addressed by them.

4.4 Expected years of life free of lung cancer lost due to occupational
exposure to asbestos

Equivalence (13) has an important consequence: given parameters h > 0, u < 0, M € M and
history of occupational exposure to asbestos A(X), T{h,u} = Ruo(T{h,pu, R.}). In words, all
things (gender, occurrence of lung cancer in close family, lifetime tobacco use) being equal, the
time to incident lung cancer in the absence of occupational exposure to asbestos can be deduced

10



deterministically from the (observed) age at incident lung cancer and history of occupational
exposure to asbestos of a case. The nonnegative quantity

Ra(T{ha Hs Ra}) - T{ha Hs Ra}

(with convention R,(c0) = 0o and oo — oo = 0) can be interpreted as a number of years of life free
of lung cancer that the case could have enjoyed had he/she not been exposed to asbestos. Note
that Ry (T{h,p, Ra}) — T{h, p, Ry} is different from the remaining number of years of life free of
lung cancer, as death may occur anytime after T{h, u, R,} even in the absence of occupational
exposure to asbestos.

There is a strong connection between R, (T{h,pu, Ry}) — T{h, 1, Ry} and expected years of
life lost as introduced by Robins and Greenland [1991]. Following [Robins and Greenland, 1991],
consider the expected years of life lost A(t) for a randomly sampled person among subjects (i) who
share the same characteristics (gender, occurrence of lung cancer in close family, lifetime tobacco
use, hence the common parameter (h, 1)), (i) who develop an incident lung cancer at age t, and
(#i) whose histories of occupational exposure to asbestos up to age t coincide (hence the same
acceleration function R,, at least up to time t). Then under some assumptions on how the exposure
affects health [Robins and Greenland, 1991, Theorem 3], it holds that A(t) = S5 0S;(t) —t, where
So=1—=F(h,p) and S; = (1 — F(h, 1)) o R, so that A(t) = R, (t) —t. For this reason, we decide
to refer to Ry (T{h,p, Ra}) — T{h, 1, R} as expected years of life (free of lung cancer) lost (due
to occupational exposure to asbestos).

5 Results

We present here the inferences we draw from our dataset, model, and resulting case-control
weighted log-likelihood loss function as described in Sections 2 and 4.3. In Section 5.1 we comment
on the fitted model, then we focus in Section 5.2 on its implications in terms of expected years of
life lost.

5.1 Fitting the best model

It makes no doubt that the model we have built so far is over-dimensioned. The “probabil-
ity /frequency/intensity” description with its 28 different levels is itself certainly too rich (see
Table 1), or at least difficult to establish and prone to errors. We rather consider the model
{P} : 0 € ©} described so far as a “maximal” model giving rise to a large collection of sub-models
{P} : 0 € ©} obtained by adding constraints on the “maximal” parameter = (o, 8, M) € ©.
The number of such sub-models is large indeed: there are (1 + 73) = 344 sub-models defined by
adding only constraints on M (of the type My = 0, or My > 0 and for any k =1,2,3,0= M, ; or
M1 =Mygzor Mpo=10r0= M1 =Myoo0r Mg1=DMo=1o0r (0= M1, M2 =1)), hence
the total number of sub-models equals 22 x 23 x 344 = 11,008. It is out of question to explore the
whole collection of sub-models. Instead, we propose to

(1) define a large collection {© : k € K} of interest,

(ii) let the data select a better ©; in the latter collection based on a multi-fold likelihood-based
cross-validation criterion.

van der Vaart et al. [2006] show that, under mild assumptions, the multi-fold likelihood-based
cross-validation criterion will select a better model comparing favorably with the oracle model of
the collection (whose definition involves the true distribution of the data). By this we mean that
the likelihood risk of the better model will not be much bigger than that of the oracle model.
Although we cannot invoke rigorously this remarkable property here, it motivates the procedure
that we describe in Sections C.2 and C.3.

The best model {P; : § € ©;} is described in Section C.3. Its characterization teaches us that
neither the initial health nor the drift parameter depend on the indicator of occurrence of lung
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cancer in close family. Moreover, (i) a passive exposure (probability index equal to 1) is the same
as no exposure at all, and (i) being exposed less than once a month (frequency index equal to 1)
or between once a month and during less than half of the monthly working hours (frequency index
equal to 2) have the same effect.

We first fit the best model in terms of maximum likelihood on the whole dataset. Regarding
the derivation of confidence intervals, we decide to rely on the bootstrap instead of a central limit
theorem (such as Proposition 3 in Section A). The particulars of the bootstrap procedure follow.
We set o = 2.5%, B = 1,000 and p = 5%, then for b ranging from 1 to B, we repeatedly resample
without replacement n(1— p) = 817 observed data structures, yielding the bootstrapped empirical
measure Pf;(lfp), in order to compute and store the corresponding maximum likelihood estimate

en(lfp),fc(Pg(lfp)) of § € ©;. The mean and median values of 057,; = {9n(17p)7,;(P3(17p)) :b< B}
only very slightly differ from each other. Moreover, they are very close to the maximum likelihood
estimate 0, ;(P,) computed on the whole dataset. The componentwise «/16- and (1 — a/16)-

quantiles of 05 i are used as lower- and upper-bounds of confidence intervals, which simultaneously

provide a (1 —72a) = 95%-coverage by the applied Bonferroni correction. Specifically, we obtain:

o initial health:

Wi | h
0 | 23.82 [23.42;24.13]
1| 25.09 [24.86; 25.40]

It is seen in particular that women are associated with a significantly larger initial health

than men.
o drift:
—100u
W3 | Wi=0 | Wi=1
0 0.69 [0.08;1.46] 0.02 [0.01;0.03]
1 7.70 [6.91; 8.28] 6.63 [5.73; 7.68]
2 | 13.89 [13.25;14.46] | 10.55 [9.63;11.80]

3| 17.67 [17.11;18.38] | 14.79 [13.65;17.77]

Two main features arise:

— For each level of lifetime tobacco use, the absolute value of the drift is significantly

larger for men than for women (actually, the confidence intervals for W5 = 3 slightly
overlap). Combined with the already mentioned fact that women are associated with a
larger initial health, this implies that for any given history of exposure to asbestos and
for every level of lifetime tobacco use, the distribution of time to incident lung cancer in
women is stochastically dominated by the distribution of time to incident lung cancer
in men. In other words, given a man and a woman sharing the same history of exposure
to asbestos and lifetime tobacco use, given an age t, the man is more likely to have
developed an incident lung cancer at age ¢ than the woman.
Note that there is no clear consensus in the literature on whether there exist differences
in lung cancer risk between men and women or not (for instance, Zang and L. [1996]
argue that women are more susceptible to tobacco carcinogens, but Haiman et al. [2006]
show that men or women are more susceptible to tobacco carcinogens, depending on
ethnic and racial group).

— Both in men and women, the absolute value of the drift significantly increases with
lifetime tobacco use. This implies that, both in men and women, for any given history
of exposure to asbestos and for every 0 < w < w' < 3, the distribution of time to
incident lung cancer for lifetime tobacco use equal to w is stochastically dominated by
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e ME)—1] ¢ M) -1 5 M) -1
111 0 211 0.026 [0.000;0.171] | 311 0.026 [0.000; 0.173]
112 0 212 0.092 [0.001;0.530] | 312 0.094 [0.001;0.537]
113 0 213 1.078 [0.297;1.939] | 313 1.108 [0.309; 1.964]
121 0 221 0.026 [0.000;0.171] | 321  0.026 [0.000;0.173]
122 0 222 0.092 [0.001;0.530] | 322 0.094 [0.001;0.537]
123 0 223 1.078 [0.297;1.939] | 323 1.108 [0.309; 1.964]
131 0 231 0.027 [0.000;0.174] | 331 0.028 [0.000;0.176]
132 0 232 0.099 [0.001;0.539] | 332 0.101 [0.001;0.546]
133 0 233 1.159 [0.330;1.971] | 333  1.192 [0.344; 1.998]

Table 2: Estimated values (precision 1073) of the factor of acceleration of time (M (g) — 1) and
related confidence intervals for each level of exposure ¢ € £ \ {0}. Recall that M (0) = 1.

the distribution of time to incident lung cancer for lifetime tobacco use equal to w’'.
In other words, given two persons sharing the same gender and history of exposure to
asbestos, the person with the larger lifetime tobacco use is more likely to have developed
an incident lung cancer at age t than the other.

This is in agreement with the general scientific consensus [Biesalski et al., 1998].

e cxposure to asbestos:

Mo: 1.19 [0.34;2.00]

My, =0 M; 5: 0.97 [0.96;0.99] M3 =1
May = My My 0.93[0.90;0.98] Mz =1
Ms1: 0.02 [0.00;0.09] Mso: 0.09 [0.00;0.27] Mz =1

We notably derive from the above table the values of (M () —1) (which can be interpreted as
a factor of acceleration of time due to an exposure of level ¢, see (17)) and related confidence
intervals for each level of exposure € € £\ {0}, see Table 2.

5.2 Application to the expected years of life free of lung cancer lost due
to occupational exposure to asbestos

In view of Section 4.4, the results of the previous section provide us with a way of evaluating the
expected years of life (free of lung cancer) lost (due to occupational exposure to asbestos) on a
case by case basis. Say that we mostly care for a pointwise estimation of, and confidence lower-
bound on, the expected years of life lost. A confidence upper-bound could be derived similarly.
We compute a counterpart of Table 2 based on the componentwise 2a,/5-quantiles of nyk. They
simultaneously provide (1 — 2a) = 95%-coverage for parameter M on its own by the applied
Bonferroni correction, since M has 5 degrees of freedom, see Table 3.

Elementary algebra permits to compute an evaluation §(¢, a(t)) of, and confidence lower-bound
5~ (t,a(t)) on, the expected years of life lost for any couple (¢, a(t)) of age ¢ at incident lung cancer
and history a(t) of occupational exposure to asbestos till ¢. Let us consider three examples:

e Consider a case of incident lung cancer at age ¢ who spent, till that age, 30 years with an
occupational exposure to asbestos ¢ = 332: one evaluates the 95%-confidence lower bound
0~ (t,a(t)) = 30 x 0.004 = 0.09 expected years of life lost (approximately 44 days) and
d(t,a(t)) = 30 x 0.101 = 3.03 expected years of life lost.

This is quite an extreme case, since 3 out of the 8,432 employments described in the dataset
achieve the description € = 332.
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e M@E)—-1| M(e) — 5 M(e) —
111 0 511 0.026 |0 001 750) | 311 0.026 [0 001 =)
112 0 212 0.092 [0.004;00) | 312 0.094 [0.004; 00)
113 0 213 1.078 [0.374;00) | 313 1.108 [0.389; 00)
121 0 221 0.026 [0.001;00) | 321 0.026 [0.001; )
122 0 222 0.092 [0.004;00) | 322 0.094 [0.004; 00)
123 0 223 1.078 [0.374;00) | 323 1.108 [0.389; 00)
131 0 231 0.027 [0.001;00) | 331 0.028 [0.002; c0)
132 0 232 0.099 [0.004;00) | 332 0.101 [0.004; 00)
133 0 233 1.159 [0.414;00) | 333 1.192 [0.431; 00)

Table 3: Estimated values (precision 1073) of the factor of acceleration of time (M (g) — 1) and
related right confidence intervals for each level of exposure ¢ € £ \ {0}. Recall that M(0) =1. A
Bonferroni correction ensures that the confidence regions simultaneously guarantee (1—2a) = 95%-
coverage (for {M(e) —1:e € &£} on its own).

e Consider a case of incident lung cancer at age ¢ who spent, till that age, 10 years (then
later 5 years and 2 years) with an occupational exposure to asbestos ¢ = 322 (then later
e = 121 and € = 222): one evaluates the 95%-confidence lower bound 6~ (¢,a(t)) = 10 x
0.004 45 x 042 x 0.004 = 0.048 years of life lost (approximately 17.5 days) and d(t,a(t)) =
10 x 0.094 + 5 x 0+ 2 x 0.092 = 1.124 expected years of life lost.

Note that 150, 36 and 189 out of the 8,432 employments described in the dataset achieve
the descriptions € = 121, ¢ = 222 and ¢ = 322.

e Consider a case of incident lung cancer at age ¢ who spent, till that age, 10 years (then
later 15 years) with an occupational exposure to asbestos ¢ = 213 (then later ¢ = 223):
one evaluates the 95%-confidence lower bound 6~ (¢, a(t)) = 10 x 0.374 + 15 x 0.374 = 9.350
expected years of life lost and §(¢,a(t)) = 10 x 1.078 + 15 x 1.078 = 26.95 expected years of
life lost.

This is quite an extreme case, since only 6 and 3 out of the 8,432 employments described in
the dataset achieve the descriptions e = 213 and € = 223.

Among the n = 860 cases of our dataset, only 259 (i.e., 30%) cases are associated with positive
expected years of life lost. We report in Table 4 the quartiles, mean and extreme values of expected
years of life lost as computed on those 259 cases.

e The maximum value is reached by a male who accumulated through his professional life a
total of 33 years with occupational exposure to asbestos equal to € = 313 and was diagnosed
a lung cancer at 70 years old. Although this is not relevant as far as the evaluation of the
expected years of life lost is concerned, his lifetime tobacco equals 45 pack years.

e The minimum value is reached by 4 women who accumulated through their professional lives
a total of 1 year with occupational exposure to asbestos € € {211,221} and were diagnosed
a lung cancer at 51 (for two of them), 59 and 68 years old. Although this is not relevant
as far as the evaluation of the expected years of life lost is concerned, their lifetime tobacco
uses equal 25, 30, 32 and 55 pack years).

e The median value is reached by a man who accumulated through his professional life a total
of 4 years (respectively, 5 and 7) with occupational exposure to asbestos equal to ¢ = 111
(respectively, e = 211 and ¢ = 212) and was diagnosed a lung cancer at 71 years old.
Although this is not relevant as far as the evaluation of the expected years of life lost is
concerned, his lifetime tobacco equals 55 pack years.

We represent in Figure 1 the empirical cdf of the expected years of life lost (and corresponding
95%-confidence lower bounds) for the 259 cases for whom it is positive.
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| min.

25%  50% 75%

mean

max.

expected years of life lost
95%-lower bound

0.026 0.289 0.769

0.001

0.014 0.037 0.555 0.102

2.467 2.408 36.577

12.832

Table 4: Quartiles, mean and extreme values of the expected years of life lost and corresponding
95%-confidence lower-bound (precision 1073), as computed on those 259 cases (i.e., 30% of all
cases) for whom the evaluated expected years of life lost is positive.

empirical cdf
0.2 0.3 04 05 06 0.7 08 0.9

0.1

years

Figure 1: Empirical distributions of expected years of life lost and related confidence
lower-bound. The rightmost curve with bullets (respectively leftmost curve with triangles)
represents the empirical cdf of the expected years of life lost (respectively of the 95%-confidence
lower bound on that number) of those cases for whom it is positive, that is the empirical cdf of
{8(Tr, AN(TY)) : (T, AYTE)) > 0,4 < n} (vespectively {6 (T, AL (T})) : §(TH AYTE) > 0,i <
n}). Only 30% of the cases are concerned. The z-axis scale is logarithmic.
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6 Discussion

We have developed a collection of threshold regression models (see Section 4.3), and have data-
adaptively selected a better model in it by relying on multi-fold likelihood-based cross-validation
(see Sections C.2 and C.3 for the descriptions of the model selection procedure and derived better
model). The latter better threshold regression model has been fitted by maximum likelihood, and
bootstrapped confidence intervals have been obtained (see Section 5.1). The statistical procedure
has been adjusted in order to eliminate the bias induced by the matched case-control sampling
design used to collect the dataset (see Sections 3.3 and 4.3). This necessary preliminary step
was made possible because the joint distribution of (V,Y') in the population of interest can be
computed beforehand independently from our dataset (see Section C.1). We have discussed the
implications of the fitted threshold regression model in terms of expected years of life (free of
lung cancer) lost (due to occupational exposure to asbestos) which is naturally attached to it (see
Section 5.2).

We finally acknowledge a limitation of the approach undertaken in this article: The link between
the occupational exposure to asbestos and age at incident lung cancer is well-defined in the context
of the proposed threshold regression models, but we do not extend it beyond. The parameter we
aim for is therefore difficult to comprehend (it is related to the Kullback-Leibler projection of
the true distribution of the data onto a threshold regression model), and the inference procedure
certainly fails to estimate optimally/efficiently what we really care for, which would be a measure
of the strength of the link between the occupational exposure to asbestos and age at incident lung
cancer defined non- or semiparametrically. We intend to build on the present study and go further
in that direction in future work.

A Asymptotic properties of the case-control weighted max-
imum likelihood estimator

We recall that 7 = {{(p}) : 0 € O} is Py-Glivenko-Cantelli if supyeg|L >0, €(p5)(0;) —
Epl(p;)(O)] = op,(1). The following classical consistency result holds (see Theorem 5.7 and
Example 19.8 in [van der Vaart, 1998]).

Proposition 2. Assume that Ep; logpg(O) is well-defined and that the mapping 0 — KL(pg, pj)
from © to the nonnegative real numbers attains its minimum uniquely at 0y € int(©) (pp is
the Kullback-Leibler projection of pf upon {p; : 8 € ©}). If F is Py-Glivenko-Cantelli then 0,
converges in probability to 0y. This is for instance the case if © is a compact metric space, if
0 — L(p})(0*) is continuous for every o* and if F admits an integrable envelope function with
respect to Pp.

We also derive an asymptotic normality result (inspired by classical results of asymptotic
normality, see Theorem 5.23 in [van der Vaart, 1998]; we omit the measurability conditions).

Proposition 3 (first part). In the context of Propositions 1 and 2, assume in addition that
0 — logpe(Z|Q) 15 twice diﬁerentiable at 0y Pg-almost surely with first and second derivatives
T ,(0*) and o ,(0%) such that [1(0*)dPj(0*,Y = y) are properly defined for | = 690,%0 and
y=0,1, and mtmduce accordingly the wezghted Versions

U00)(0) = qofy,(VE,0™) +q Ze (V1,0%%),

(0)(0) = aolis,(V',0™) + 4 Ze (V1,0%5%),

Suppose also that, for every 61,02 in a neighborhood of 8y and afunction m such that Epy m(0*)?
oo, Fy-almost surely

| log pj, (Z182) — log pp, (Z|Q)] < m(07)||61 — b2 -
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Furthermore, assume that 6 — Ep,{(p;)(O) = Eps logps(O*) (by virtue of Proposition 1) admits
a second-order Taylor expansion at 0y with nonsingular symmetric second derivative matriz Sp, =

Ep,(00)(0). Then Sp, = Ep; 5 (0*) and
Vil = 00) = =55 2= 3 (00)(0,) + 0r, (1), (22)

In particular, the sequence /n(0, — 0) is asymptotically Gaussian with mean zero and covariance
matriz X = Se_olEp0 [5(90)(0)5(90)(O)T]S9_01.

We purposely do not use the same convention to denote the first and second order derivatives
at 0 of 0 — logp;(Z|Q2) (respectively £5 (O*) and £5 (O*)) and the derivatives of 0 — £(0)(O)

(respectively £(60)(O) and £(6p)(0)). We intend to stress that the former are related to the
representative sampling observed data structure O* whereas the latter are related to the case-
control sampling observed data structure O.

A natural question arises: How does the asymptotic covariance matrix ¥ compare with the
asymptotic covariance matrix one would have got under representative sampling? We give in the
second part of Proposition 3 a very simple answer, but for a representative sampling under a
modified version of Fj. Introduce for clarity of exposition the notation

% q0 (y|1))
qo(0”) = qo 23
= i) )
such that go(0*) = qo if y = 1 (0* corresponds to a case) and Go(0*) = go(v) if y = 0 (0* corresponds
to a control). By setting
aPy , | 1
- 24
dPO* (0 ) 260 (O*) ) ( )
we define a probability distribution P; for the observed data structure O* (indeed, o* +— Go(0*) is
positive and Ep; (230(0*)) ' = 1). Moreover:

e under Py, being a case is as likely as being a control (i.e., Py (Y =1) = 1);

e the marginal distribution of the matching variable V under P; equals the conditional dis-
tribution of V' under PJ, conditionally on being a case (i.e., P{(V = v) = go(v|1) for all
v eV

e given (V,Y), O* has the same distribution under P} as under P (indeed, go(0*) depends
on o* through (v,y) only).

Furthermore, since obviously
2Epl* QO(O*) 1ng5 (O*) = Ep(;* 1ng5 (O*),

0 — Go(O*)log p5(O*) is a proper loss function for the purpose of estimating 6y under representa-
tive sampling of O* ~ Pf.

Proposition 3 (second part). Define S = Ep; cjo(O*)@.go (O*). Suppose that the model is well-
specified (or equivalently that KL(p,ps ) = 0). Assume in addition that for all o* = (24 wl),
the class of derivatives of pj(zt|w') with respect to 0 is uniformly bounded (in 6) by an integrable
function (of z'). Then the covariance matriz ¥ satisfies

2= 285, 7 By ao(0*)5, (015,09 185, 7
In particular, 23 can be interpreted as the asymptotic covariance matrix of the M-estimator
of 6y based on the loss function § — §o(O*)logp;(O*) and n iid observations drawn from Py
The n observations under Fj-case-control sampling correspond to 2 x n observations under Pj-
representative sampling, each of them in the former counting for two in the latter. Elements of
proof are relegated to Section B.
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B Elements of proof

Proof of Proposition 1. On one hand, note that
Ep,qologp™(V',0") = /qologp*(vla01*)dPo*(vlaol*ly =1)
= /logp*(vl,01*)dP0*(Ul,01*,y =1)
= [1ogp(0")aPs (0" y = D). (25)
On the other hand, for each j < J,
Ep,Go(V')logp*(V1,0%7*) = Ep,qo(V')Ep, [logp*(V,0%*)[V']

= Ena(V) [logp (V' 0B (V! y = 0)

/cjo(vl) logp*(vl,o*)dPg(o*wl,y = O)dPo(vl).

Furthermore, for each v € V, dPy(v) = dP§(v|ly = 1) = qo(v|1)d,(v) (we use the same shorthand
notation as in (4), (5), (6), (7)) and denote by §, the Dirac mass at v), hence

q0(0]v)
qo(1[) ®

Go(v)dPy(v) = qo (v[1)6, = qo(0[v) Py (v)dy(v) = dF§ (v, y = 0).

Consequently, we obtain
EPOQO(Vl) logp*(Vl, OO)j*) = logp*(vl,o*)dPg(o*wl, Yy= O)dPg(vl,y = O)

log p*(v*, 0" )dPy (v*, 0",y = 0)

Il
—— —

log p™(0*)dFg (0", y = 0) (26)

(which does not depend on j). Combining

—~

25), (26) finally yields

Ep,t(p*)(0) = /10gp*(0*)dPo*(0*) = Ep; logp™(07).
The conclusion is straightforward, because
Eps logp*(O*) — Eps log p5(O*) = —KL(pg, p*),

the opposite of the Kullback-Leibler divergence between pf and p*, which is positive for p* # pj
and equals zero otherwise. O

Proof of Proposition 3. The expansion (22) and the related distributional limit result are a con-
sequence of [van der Vaart, 1998, Theorem 5.23]. The fact that Sp, = Ep; €5 (O*) is obtained by

adapting slightly the proof of Proposition 1. Regarding Ep,[¢(69)(O)(60)(0)T], let us abbreviate
zx' to 2% and note that

1(00)(0)(60)(0) "
= [wi(0™)i3,(V,07) + a0 (Vh) (& 5, w(0%)is, (v, 007)) ]
+ (a3, (v, 0%) (5 5 d0(0)E5, (v, 000))

+a0do(Vh) (3 52 @(0%)i5, (0°9%))i5,(0) 7]
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The Py-expected value of the first term between brackets is Epy é;o (O*), as another simple adap-
tation of the proof of Proposition 1 straightforwardly yields. Moreover,

. L ) T
Eryaoto(V)l5,(V!,0™) (4 5, 0(0%)5,(V1,0%4))
1 ) 1 1 1 j ) j T 1
= Ep, {qoqo(v )Er, ( 5o (V5,01 (352, d0(09%) 6, (v, 0%7)) ‘v ﬂ
V')

Er, ( (355, a0(0%94)i5, (v, ooﬂ‘*))T] v)}

= Ep, [QOQO(VI)EPD ( .go(Vl, Ol*)

by conditional independence. Denote by II = Ep, (é;O(Vl, O*)|O™ \ Z') the conditional expec-

tation of é;O(Vl, O'*) given every component of O™ but Z!, that is given Q! (compatible with
V1. The projection II can be written as a measurable function of Q! times

[ i5,.0 i itz = [ 2

50 dz =0,

6=06o

provided that the order of differentiation and integration can be reversed. This is ensured by the
stated constraint on the derivatives of pj(z|Q2!) with respect to 6. Consequently, the Py-expected
value of the second term between brackets in the first display is zero, hence the validity of the
alternative version of ¥. The conclusion simply follows from another application of [van der Vaart,
1998, Theorem 5.23] in the classical iid framework associated with Py (]

C Application

C.1 Conditional distribution of being a case

Estimating the joint distribution of (V,Y") hence go (4), (go(1]v))vey (5), and (Go(v))yey (7) is
made possible thanks to [Belot et al., 2008], an independent study of cancer incidence and mortality
in France over the period 1980-2005 (for the conditional distribution of ¥ given V'), and on data
made publicly available by the French National Institute of Statistics and Economic studies (for
the marginal distribution of V, see http://www.insee.fr/en/). However, we must assume either
(i) that the data from [Belot et al., 2008], which are collected over the whole French population, are
representative of the Parisian population of interest, or (i) that sampling from the four Parisian
hospitals that participate to the study is stochastically equivalent to sampling from the population
of France.

We first estimate these quantities for each year from 1999 to 2002 separately. In agreement
with our stationarity assumption (1), we remark that the various estimates are very consistent
over the years. In order to gain precision, we average the estimates over the years. The final
estimates are presented in Table 5. We emphasize that the weights (go(v))yey are far from being
homogeneous.

C.2 Multi-fold likelihood-based cross-validation
The likelihood risk of § € © is by definition

R(o) = _EPOK(Q)(O)a

which is closely related to minus the Kullback-Leibler divergence between the density p; of Py
and pj, as explained in Section 3. Let us denote by 8, (P, ) the case-control weighted maximum
likelihood estimator defined in (10) with 6 ranging over ©. Given the collection {0, x(P,) : k € K}
we wish to select the estimator 6, ;(P,) that minimizes R, where k itself depends on P,. Because
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qo = 470.0682e-06

a q0(1]0, @) qo(1]1, @) a 30(0,a) qo(1,a)
1 | 2.058932e-06 1.663324e-06 1 | 228.3063171 282.6071669
2 | 1.859944e-05 1.460473e-05 2 | 25.2727716 32.1855444
3 | 6.803086e-05 4.461827e-05 3 6.9091613 10.5348607
4 | 2.586692e-04 1.184914e-04 4 1.8167860 3.9666376
5 | 6.484864e-04 1.947058e-04 5 0.7243998 2.4137787
6 | 1.192778e-03 2.542976e-04 6 0.3936251 1.8480261
7 | 1.854668e-03 3.294062¢-04 7 0.2529813 1.4265470
8 | 2.331553e-03 3.588764e-04 8 0.2011416 1.3093632
9 | 2.928415e-03 4.466062e-04 9 0.1600496 1.0520638
10 | 3.686216e-03 5.312313e-04 10 0.1270504 0.8843954
11 | 3.608302e-03 5.332930e-04 11 0.1298040 0.8809745
12 | 3.636995e-03 5.395069e-04 12 0.1287763 0.8708223
13 | 2.171286e-03 3.234775e-04 13 0.2160229 1.4527010

Table 5: Estimating the probability distribution of being a case, based on the independent
study [Belot et al., 2008]. Left: Estimates of qo(1|w1,v2), as defined in (5). Middle: Estimate
of qo, as defined in (4). Right: Estimates of (w1, v2), as defined in (7). Here, wy = 0 for men
and wy = 1 for women, and v = a if the age at sampling « belongs to [t4;tq+1), Where to = 0,
to =30+5(a—1) for 1 <a <12 and t153 = co.

the definition of R involves the true distribution Py, we must estimate R(6, 1 (Py)) and choose to
do so by multi-fold cross-validation. Details follow.

We split the data randomly into a training and a validation samples. Given an integer V (later
set to V' = 10), each observed data structure O; is associated with a label lab; = 1 4 (i mod V).
The collection of labels {lab; : i < n} C {1,...,V} is such that max; <y | Y., 1{lab; = I} —
o 1{lab; = I'}| < 1. The splitting random variable S = (Si,...,S,) € {0,1}" is drawn inde-
pendently of Oy, ..., O, in such a way that, foreach 1 <1 <V, S = (1{lab; ={},...,1{lab, ={})
with probability V~!. Conditionally on S, the observed data structure O; belongs to the training
sample if S; = 0 (there are approximately n(V —1)/V such O;’s), otherwise it belongs to the val-
idation sample. The empirical distribution of those O;’s for which S; = 0 (respectively, S; = 1) is
P) ¢ (vespectively, P, ). The empirical distribution of those O;’s for which lab; = [ (respectively,
lab; # 1) is P! (respectively, P;).

Each ©y, yields a maximum likelihood estimator on,k(P7?7 g) based on the training sample only.
Its risk, averaged over the splits, writes as

14
crit(k) = BsR(nx(PLs) = 12 3 Bnd (0n1(P)(0))
=1

The value k that minimizes k — crit(k) over K is called the oracle because it depends both on P,
and on Py. In our attempt to reach that k which is a good proxy to k, we estimate crit(k) by

1%
it(K) = ~BsBpy 1 (604 (PL5)(0) = 2 3 Bpy € (B (P )(0)
=1

and propose to use the value k that minimizes k — c/rR(k) over K, whose definition is postponed
to Section C.3. In conclusion, the final estimator is 0, ;(P,).

C.3 Model selection procedure in action

We explain in Section C.2 how the best model index k (with related best model {P} : 0 € ©:})
is obtained in a pre-determined collection K of sub-model indices (with related sub-models { P} :
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0 € O}, k € K). The latter collections are constructed by recursion as presented below.

We first initialize ©° = © and K~! = () with convention max () = 0.

At a given step v > 0, a sub-model ©" is defined as a subset of ©® meeting v independent
one-dimensional constraints on M € M (i.e., constraints of the type My ;1 = M, for some
k=1,2,3 and [ = 1,2,3 with convention My o = 0). Start with ¢(v + 1) = —oo and OV = ().
The following rule is applied to ©¥*1:

Rule 1. For every possible ©® C ©" derived from 0¥ by adding another one-dimensional con-
straint on M as described above (all such models share the same dimension), evaluate the
corresponding maximum log-likelihood criterion

o -
00" = gézganﬁ(G).
If £(©") > c(v + 1), update c(v + 1) = £(©’) and O 1! = ©'.

Applying Rule 1 as long as possible yields 7 sets ©”, v = 0,...,6. Their description is given
in Table 6.

e’ = o,
o' = {#€0": M, =0}, (27)
@2 = {9 S @1 : M271 = MQ)Q}, (28)
0 = {0€0?: My, =1}, (29)
@4 = {6‘ S @3 : Mg)l = M372}, (30)
@5 = {9 S @4 : MLQ = 1}, (31)
0% = {#€6°: M3, =0} (32)

(27) low probability does not differ from no exposure at all;

(28) moreover, low and mild frequencies do not differ;

(29) moreover, mild and high frequencies do not differ;

(30) moreover, low and mild intensities do not differ;

(31) moreover, mild and high probabilities do not differ;

(32) moreover, low intensity does not differ from no exposure.

Table 6: Descriptions of ©°,...,0%. The collection of parameter sets is nested. For instance, ©3

is the set of those § € O such that M;; = 0 and My ; = M2 = 1. Regarding dimensions, it
trivially holds that, for each 0 < k < 6, dim(6©*) = 27 — k.

At a given step v > 0, a set K“~! of successive integers is defined. Start with KV =
v—1
{max K¥~! + 1} (a set initially containing a single element) and define @"maxE" "+l — @,
The following second rule is applied to K":

Rule 2. For every possible constraint “¢p(6) = 0” on 6 € © of the form “a and  independent
of W” for some [ = 1,2,3 (the Ith coordinate of W does not affect the value of the initial
health and drift parameters h and p, see (19) and (20)), update K¥ = K¥ U {max K" + 1}
and define "™ K" — {9 € ©” : p(h) = 0}.

(Note that each ©" therefore gives rise to 23 = 8 sets ©.)
We apply Rule 2 for v = 0,...,6, and finally define
K=UL K =1{1,2,3,...,56}.

For every k € K there exists a unique v = 0,...,7 such that 6% is defined: setting @ = @F
concludes the definition of the collection {Oy : k € K} of interest.

The best model {P} : # € ©;} (according to our multi-fold likelihood-based cross-validation
criterion) is a subset of {P} : § € ©2}, featuring 16 degrees of freedom. Its complete description
follows:
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e the initial health parameter depends on W only through gender (hence not on the indicator
of occurrence of lung cancer in close family);

e the drift parameter depends on W only through gender and lifetime tobacco use (hence not
on the indicator of occurrence of lung cancer in close family);

e exposure to asbestos is significantly noxious; there is no difference between low probability
and no exposure to asbestos at all (in view of (16), M7 1 = 0) and no difference either
between low and mild frequencies (in terms of (16), My 1 = My 2).

Comment on implementation. Our implementation of the model selection procedure relies on
an algorithmic trick. The main difficulty arises from the combination of the following two facts:

e in order to fit a given model {P} : § € ©'} corresponding to a subset ©’ C O, it is necessary
to provide the optimization algorithm with the set of constraints which characterize ©’;

e given the huge number of sub-models, it is out of question to prepare beforehand all sets of
constraints for all sub-models that we may have to fit in the course of the model selection
procedure.

Hence we create an algorithm which maps an explicit description of any @’ C © onto the corre-
sponding set of constraints required by the optimization procedure.
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