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Abstract

Asbestos has been known for many years as a powerful carcinogen. Our purpose is
quantify the relationship between an occupational exposure to asbestos and an increase of
the risk of lung cancer. Furthermore, we wish to tackle the very delicate question of the
evaluation, in subjects suffering from a lung cancer, of how much the amount of exposure
to asbestos explains the occurrence of the cancer. For this purpose, we rely on a recent
French case-control study. We build a large collection of threshold regression models,
data-adaptively select a better model in it by multi-fold likelihood-based cross-validation,
then fit the resulting better model by maximum likelihood. A necessary preliminary step
to eliminate the bias due to the case-control sampling design is made possible because
the probability distribution of being a case can be computed beforehand based on an
independent study. The implications of the fitted model in terms of a notion of maximum
number of years of life guaranteed free of lung cancer are discussed.

Keywords: case-control study; cross-validation; threshold regression model.

1 Introduction

Asbestos has been known for many years as a powerful carcinogen [1]. Our purpose is to
quantify the relationship between an occupational exposure to asbestos and an increase of
the risk of lung cancer. Furthermore, we wish to tackle the very delicate question of the
evaluation, in subjects suffering from a lung cancer, of how much the amount of exposure to
asbestos explains the occurrence of the cancer.

For this purpose, we rely on a recent French case-control study on lung cancer [9]. For a
sample of approximately 2,000 participants, a number of information is available, including
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information pertaining to lifetime tobacco consumption and a longitudinal description of
occupational exposure to asbestos. Each employment is associated with its duration and an
original qualitative description of the exposure to asbestos into 28 categories.

We decide to model the age at incident lung cancer as the first time that a time-indexed
continuous stochastic process (which should be interpreted as an amount of health relative
to lung cancer, initially positive and featuring a negative trend) reaches 0. This justifies
the expression first hitting time model, but the expression threshold regression model is often
preferred. Such models have been playing an important role in survival analysis for some
years now, and we refer the reader to [6, 7] for a bibliographical overview. The model is
designed in such a way that occupational exposure to asbestos may accelerate the reference
time, so that incident lung cancer may occur sooner in the presence of exposure to asbestos
than it would in the absence of any such exposure. This actually yields a very large collection
of threshold regression models, the largest one (i.e., less constrained) containing thousands of
smaller threshold regression models (obtained for instance by reducing the original 28-category
description of exposure to asbestos to a description with fewer categories).

As mentioned earlier, the dataset has been obtained following a case-control study design,
which is convenient for a rare disease like lung cancer (since it allows to sample known
cases of lung cancer). In that sense, case-control sampling is a biased sampling method.
In our example, approximately one out of two participants is a case, i.e. is diagnosed an
incident lung cancer, a proportion which is of course much larger than in the population of
interest, with a known prevalence proportion approximately equal to five cases out of 10,000
persons [2]. Knowing (actually: Estimating based on the independent study [2]) beforehand
the probability distribution of being a case is of crucial importance, as it makes it possible
to eliminate the bias induced by the case-control sampling design, as shown in [13, 12].
Indeed, we manage to data-adaptively select a better model in our large collection of threshold
regression models by relying on multi-fold likelihood-based cross-validation [15]. Then, we fit
the latter better model to the data by maximum likelihood, therefore obtaining a quantitative
understanding of how an exposure to asbestos is related to an increase of the risk of lung
cancer.

The evaluation of how much the amount of exposure to asbestos explains the occurrence
of an incident lung cancer in a case is a recurring issue. It has important implications in
public-health policy-making and might be used in the design of legal compensation schemes
(as in the United States, unlike in France). In this view, a mathematical notion of probability
of causation has been formalized and studied in [10]. The authors of [10] soon overcame
the shortcomings of the latter notion which they had underlined, by showing that expected
years of life lost due to hazardous exposure can sometimes be estimated, and how to estimate
them when possible [11, 8]. In this article, we explain and take advantage of the fact that
resorting to threshold regression modeling makes it very easy to come up with a notion of
maximal number of years of life guaranteed free of lung cancer (heuristically, a number of
years of life which a subject living infinitely would enjoy before developing an incident lung
cancer). Once the selected model has been fitted, elementary algebra maps deterministically
(conditionally on observed age at incident lung cancer, history of occupational exposure,
and parameter estimates) an age at incident lung cancer and a longitudinal description of
occupational exposure to asbestos into a number which can be interpreted as a maximal
number of years of life guaranteed free of lung cancer.

We emphasize that, although the central issues studied in this article are causal by their
very nature, we cautiously used for their statement two expressions (how an exposure is related
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to an increase; how much the amount of exposure explains the cancer) which belong to the
semantic field of associations. This wariness is notably motivated by the fact that smoking
is also a well known risk factor of lung cancer [3], so that reaching a causal conclusion would
require unraveling the intertwined effects of asbestos exposure and smoking, an impossible
task with the dataset at hand. For this reason among others, the above mentioned notion of
maximal number of years of life guaranteed free of lung cancer cannot be interpreted causally.

The article is organized as follows. The dataset and the original qualitative description
of the exposure to asbestos into 28 categories are carefully described in Section 2. The
case-control estimation problem is formalized in Section 3, and some asymptotic properties
of the resulting case-control weighted maximum likelihood estimator are briefly exposed in
Section 4 (elements of proofs are relegated to the appendix). We develop the threshold
regression modeling in Section 5. This includes the formal definition of the maximal number
of years of life guaranteed free of lung cancer. Section 6 is dedicated to the application itself.
This includes the computation of the quantities required to eliminate the bias due to the
case-control sampling design, the details of the model selection procedure, the description of
the better model fitted to the data, and its implications regarding the maximal number of
years of life guaranteed free of lung cancer. A brief discussion is finally developed in Section 7.

2 Dataset

A case-control study.

The dataset was built following a case-control sampling scheme. The study took place between
1999 and 2002 in four Parisian hospitals. Case and control subjects were retrospectively
recruited at the end of each year 1999 to 2002 among the patients of these hospitals who
were free of lung cancer at the beginning of the corresponding year. The case subjects were
diagnosed with incident lung cancer during the period of the study. They were matched
by control subjects on the basis of gender, age at end of calendar year (up to ±2.5 years),
hospital, and race. Control subjects were recruited among patients of the departments of
ophthalmology, general and orthopedic surgeries, and were by definition free of lung cancer
at the time of their enrollment.

The one-to-one matching (i.e., the pattern of who is matched by whom) and race are not
available. We come up with an artificial valid matching pattern (based on gender, age and
hospital) and make sure that our results do not depend on this particular choice. We exclude
every subject with missing information. The full data set then counts n = 860 cases and 901
controls, resulting in n + 901 = 1, 761 observations.

The population sampled from during the study is arguably stationary. Therefore, the
observed data structures on experimental units made of pairs of case and matched control
can be modeled as independent and identically distributed (iid) random variables. This simple
fact is the cornerstone of the study undertaken here. Following the seminal article [13], we
invoke this fact in order to derive the valid likelihood function which is the backbone of the
study. The fundamental reasoning is fully developed with care in Section 3.

Finally, we emphasize that the results we obtain in this article, based on this dataset, can
be interpreted as results relative to France under the additional assumption that sampling
from the four Parisian hospitals that participate to the study is stochastically equivalent to
sampling from the population of France. This assumption is also carefully stated in Section 3.
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Non-professional information.

Each subject included in the study is associated with his/her date of birth, gender, date of
incident lung cancer diagnosis (for cases) or interview (for controls), and binary indicator of
occurrence of lung cancer in close family.

Information pertaining to tobacco consumption is also collected. We know for each subject
if he/she ever smoked. For those subjects who were once smokers, the beginning and ending
dates of the smoking period are given, as well as the lifetime tobacco use.

We will however summarize this information by only considering a discretized version of
the lifetime tobacco use. Our motivation is twofold. First, a relevant tobacco history would
be dynamic whereas we only have cumulated information. Second, such a time dependent
tobacco history would yield time dependent confounding. Furthermore, the previous argument
also implies that the results we obtain in this article cannot be interpreted in causal terms.
It is well known that tobacco is a serious risk factor of lung cancer [3]. Reaching a causal
interpretation would require that we unravel the intricate synergies between tobacco use and
occupational exposures to asbestos, a difficult task that we cannot even try to address given
the data at hand.

Occupational information.

Occupational information on subjects is longitudinal. Every employment (with duration at
least 6 months) is associated with its start and end dates as well as with an original description
of the exposure to asbestos, a known carcinogen.

This description is a triplet referred to as “probability/frequency/intensity”, each of them
taking values in {1, 2, 3}: for the considered employment, the probability of exposure, its
frequency and intensity are evaluated as low/mild/high, respectively coded by 1, 2, 3. Hence,
the set E of categories of exposure has 27+1=28 elements (we add a category 0 = (0, 0, 0) for
no exposure), each of them corresponding to a particular rate of exposure. Note that we will
use from now on either the notation ε = (ε1, ε2, ε3) or more simply the notational shortcut
ε = ε1ε2ε3.

We report in Table 1 the overall number of employments associated to each possible
“probability/frequency/intensity” description. Although computed over a total of 8,432 em-
ployments, Table 1 strikingly exhibits many zeros, showing that the latter description is
over-parametrized.

We also report in Table 2 the overall number of employments that feature a particular
value of each coordinate of the “probability/frequency/intensity” description. Notice that, of
course, the sums over rows coincide.

The generic longitudinal description of occupational exposure to asbestos is denoted by ā.
It belongs to Ē , the set of functions from the nonnegative real line to E such that a(t) = 0 for
t small or large enough (before the age at first employment or when no further information
is available; this constraint is just a convenience, as we will make clear in Section 5). It is
understood that the value of ā at t is denoted by a(t) while ā(t) stand for the restrictions of ā
to [0, t]. Thus a(t) = a correspond to an occupational position held at age t and characterized
by asbestos exposure a.

One of the central issues we deal with in this article is how to associate each description
in E with a rate of exposure. We propose an original solution which heavily exploits the
underlying multiplicative nature of the “probability/frequency/intensity” encoding. Indeed,
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ε nb. of emp. ε nb. of emp. ε nb. of emp.

111 213 211 53 311 138
112 167 212 64 312 105
113 3 213 6 313 24
121 150 221 59 321 136
122 46 222 36 322 189
123 3 223 3 323 22
131 0 231 2 331 1
132 0 232 0 332 3
133 0 233 0 333 0

Table 1: Overall number of employments associated to each possible “probabil-
ity/frequency/intensity” description. The total number of employments is 8,432. Only 1,423
of them feature a description in E \ {0}.

1 2 3

probability 582 223 618
frequency 773 644 6
intensity 752 610 61

Table 2: Overall number of employments that feature a particular value of each coordinate
of the “probability/frequency/intensity” description.

it is the product of “probability”, “frequency” and “intensity” which is relevant in terms of
rate of exposure.

3 Formulation of the case-control estimation problem

This section builds upon the seminal study [13]. Following its strategy:

(i) We derive from the description of our case-control study the characterization of the
prospective sampling scheme one would have liked to follow, had the probability of
being an incident case of lung cancer not been so small. This mainly amounts to
defining an observed data structure O⋆ under prospective sampling, whose distribution
P ⋆

0 presents features of interest.

(ii) In view of the latter, we characterize the observed data structure O under matched
case-control sampling and its distribution P0. Then we show how to make inference on
the features of P ⋆

0 from data sampled under P0.

Prospective sampling.

We first set a calendar time τ (expressed in years), and consider a generic subject sampled at
time τ . We denote by W = (W1, W2, W3) ∈ W his/her explanatory covariate taking values
in W = {1, 2, 3, 4} × {0, 1}2 × {0, 1, 2, 3},

• W0 indicating from which hospital the generic subject is sampled;

• W1 = 0 for men and W1 = 1 for women;
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• W2 = 0 if no lung cancer occurred in close family and W2 = 1 otherwise;

• W3 = 0 for never-smoker, W3 = 1 for lifetime tobacco use comprised between 1 and 25
pack years, W3 = 2 for lifetime tobacco use comprised between 26 and 45 pack years,
W3 = 3 otherwise.

Note that the boundaries that we chose for defining W3 yield strata of comparable sizes (371
subjects with W3 = 0, and respectively 468, 469, 453 subjects with W3 = 1, 2, 3). Let T
denote his/her age at incident lung cancer (set to infinity if no lung cancer ever occurs), and
let X = X(τ) denote his/her age at time τ . They are associated with Z = min{T, X} and
Y = 1{T ≤ X}. Finally, the occupational information collected at time τ is encoded in Ā(X).

Now, as explained in Section 2, sampling occurred at times τ0, τ1 = τ0+1, τ2 = τ0+2, τ3 =
τ0 + 3 (where τ0 stands for the initial sampling date, January 1st, 2000). Obviously the
reference population depends on time. Denoting by P ⋆(τ) the distribution of the reference
population at time τ , we make the following stationary assumption:

∀1 ≤ k ≤ 3, P ⋆(τk) = P ⋆(τ0) ≡ P ⋆
0 . (1)

This assumption is reasonable due to the influx and the outflow featured by the population
of the Parisian region over the period of investigation. We emphasized in Section 2 that
interpreting the results obtained in the present article as results relative to France requires
that one be willing to assume that sampling from the four Parisian hospitals that participate
to the study is stochastically equivalent to sampling from the population of France. Formally,
this amounts to assuming that the distribution of the observed data structure O⋆ sampled
from the whole French population equals P ⋆

0 .
Had the prospective sampling been undertaken, we would have observed n0 (respectively

n1, n2, n3) independent observed data structures O⋆
i sampled at time points τ0 (respectively

τ1, τ2, τ3), therefore collecting an iid sample (O⋆
1, . . . , O

⋆
N ) of size N = n0 + n1 + n2 + n3 of

the distribution P ⋆
0 by virtue of our stationary assumption. This justifies the final definition

of the observed data structure in a prospective sampling scheme:

O⋆ = (W, X, Ā(X), Y, Z) (2)

with

• W explanatory covariate;

• X the age of the subject associated with the unit when it is sampled;

• Ā(X) occupational information up to age X related to asbestos;

• Y = 1 if and only if (iff) T = Z ≤ X (the subject is then called a case) and Y = 0 iff
T > Z = X (the subject is then called a control).

The likelihood of O⋆ under P ⋆
0 finally writes as

P ⋆
0 (O⋆) = P ⋆

0 (W )P ⋆
0 (X|W )P ⋆

0 (Ā(X)|X, W )

× dP ⋆
0 (Z = T |T ≥ X − 1, Ā(X), X,W )Y

× P ⋆
0 (T > X|T ≥ X − 1, Ā(X), X,W )1−Y , (3)

where dP ⋆
0 (t|T ≥ X −1, Ā(X), X,W ) is the conditional density of T at time t given the event

[T ≥ X − 1, Ā(X), X,W ].
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Matched case-control sampling.

Such a prospective sampling scheme would have been impractical and ineffective because the
probability P ⋆

0 (Y = 1) of being an incident case of lung cancer is very small. In order to
recruit some cases in the sample, one would have to sample a huge number of observations.
This is the main motivation for using a case-control sampling scheme.

Let us now describe what is our observed data structure in this framework. We introduce
the categorical matching variable V ∈ V obtained by concatenating W0 (subject’s hospital
when sampled), W1 (subject’s gender) and a discretized version of the age at sampling X over
bins of length five years. In the sequel, we repeatedly use the convenient (though redundant)
notation (V,W ).

The matched case-control sampling scheme can be described as follows:

• One first samples a case by sampling

(V 1, O1⋆) = (V 1, W 1, X1, Ā1(X1), Y 1 = 1, Z1)

from the conditional distribution of (V,O⋆) given Y = 1.

• Subsequently, one samples J controls

(V 0,j , O0,j⋆) = (V 0,j , W 0,j , X0,j , Ā0,j(X0,j), Y 0,j = 0, Z0,j)

from the conditional distribution of (V,O⋆) given Y = 0, V 0,j = V 1 for all j ≤ J .

This results in the observed data structure

O = ((V 1, O1⋆), (V 0,j , O0,j⋆), j = 1, . . . , J) ∼ P0

whose true distribution P0 can be deduced from P ⋆
0 and the two-step description above.

Interestingly, the method naturally allows to consider the case that J is random and thus
varies per experimental unit. This allows to exploit all our observations, even though we have
less cases than controls. Note that each control is only taken into account once.

Case-control weighting of the log-likelihood loss function developed for prospec-

tive sampling.

It is remarkable that the log-likelihood loss function developed for prospective sampling can
be adapted to the case-control sampling scheme by appropriate weighting. This weighting
relies on the prior knowledge of the following probabilities: for each (y, v) ∈ {0, 1} × V,

q0 = P ⋆
0 (Y = 1), (4)

q0(y|v) = P ⋆
0 (Y = y|V = v), (5)

q0(v|y) = P ⋆
0 (V = v|Y = y), (6)

or, namely, the marginal probability of being a case (4), the conditional probabilities of being
a case or a control given matching variable at level v (5), and the conditional probabilities
of observing level v for the matching variable given being a case or a control (6). Indeed,
it is possible to compute the latter key quantities based on the independent study [2], see
Section 6.1.
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For this purpose, let us define for all v ∈ V the quantities

q̄0(v) = q0
P ⋆

0 (Y = 0|V = v)

P ⋆
0 (Y = 1|V = v)

= q0
q0(0|v)

q0(1|v)
(7)

and introduce the following case-control weighted log-likelihood loss function for the density
p⋆
0 of P ⋆

0 under sampling of O ∼ P0:

ℓ(O|p⋆) = q0 log p⋆(V 1, O1⋆) + q̄0(V
1)

1

J

J∑

j=1

log p⋆(V 1, O0,j⋆). (8)

It is worth noting that, even though q0 appears in both terms in (8), we prefer to consider
ℓ(O|p⋆) as defined above rather than q−1

0 ℓ(O|p⋆). This choice guarantees that the weighted
log-likelihood ℓ(O|p⋆) is on the same scale as the log-likelihood log P ⋆

0 (O⋆) under prospective
sampling.

Proposition 1. Let p⋆
0 be the density of the observed data structure O⋆ under prospective

sampling. Consider a model P⋆ for p⋆
0 such that the integrals

∫
log p⋆(o⋆)dP ⋆

0 (o⋆, Y = y) are
properly defined for all p⋆ ∈ P⋆ and y = 0, 1. If P⋆ is well-specified (i.e., if p⋆

0 ∈ P⋆), then the
density that maximizes the expectation under P0 of the weighted loss function (8) over P⋆,

arg max
p⋆∈P⋆

EP0
ℓ(O|p⋆),

is unique and coincides with p⋆
0.

The proof is relegated to the appendix.
In Section 5 we propose a parametric model for the conditional distribution of O⋆ given

(W, X, Ā, Y ), that is the conditional distribution of Z given (W, X, Ā, Y ). The parametric
model is sound in the sense that the conditional distribution of Z given (W, X, Ā, Y ) only
depends on (W, X, Ā(X), Y ). The latter parametric model is combined with a nonparametric
model for the conditional distribution of (W, X, Ā) given Y , both yielding a semiparametric
model P⋆ for p⋆

0 because we know beforehand q0, the true probability of being a case.
Let p⋆

θ be the density of O⋆ under parameter θ. Assuming that the true density p⋆
0 is

“projected” (in terms of Kullback-Leibler divergence) onto p⋆
θ0

for some θ0, or in other terms
that the mapping θ 7→ KL(p⋆

0, p
⋆
θ) achieves a unique minimum at the unique θ0, we focus

hereafter on the maximum likelihood estimation of θ0. Following the lines of the proof of
Proposition 1, the case-control weighted maximum likelihood estimator

θn = arg max
θ

n∑

i=1

ℓ(Oi|p⋆
θ) (9)

does estimate θ0. We briefly consider its asymptotic properties in the next section.

4 Asymptotic properties of the case-control weighted maxi-

mum likelihood estimator

Let us denote for convenience
Ω = (W, X, Ā(X), Y )
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so that O⋆ = (Ω, Z), and in the same spirit,

Ω1 = (W 1, X1, Ā1(X1), Y 1 = 1)

Ω0,j = (W 0,j , X0,j , Ā0,j(X0,j), Y 0,j = 0),

hence O1⋆ = (Ω1, Z1) and O0,j⋆ = (Ω0,j , Z0,j⋆). We consider a semiparametric model such
that the likelihood of O⋆ under θ ∈ Θ writes as

p⋆
θ(O

⋆) = p⋆
θ(Z|Ω)η(Ω),

η(Ω) being here the likelihood of Ω, which we assume without serious loss of generality to
be bounded away from 0. Therefore the weighted log-likelihood loss function for p⋆

0 under
sampling of O ∼ P0 can be decomposed as

ℓ(O|p⋆
θ) = q0 log p⋆

θ(V
1, O1⋆) + q̄0(V

1)
1

J

J∑

j=1

log p⋆
θ(V

1, O0,j⋆)

= q0 log p⋆
θ(Z

1|Ω1, V 1) + q̄0(V
1)

1

J

J∑

j=1

log p⋆
θ(Z

0,j |Ω0,j , V 1)

+rem(O), (10)

where rem(O) is a random term independent of θ. We set ℓ̃(O|θ) = ℓ(O|p⋆
θ) − rem(O) and

note that one can substitute ℓ̃(Oi|θ) for ℓ(Oi|p⋆
θ) in the definition (9) of θn without modifying

the resulting estimator:

θn = arg max
θ∈Θ

n∑

i=1

ℓ̃(Oi|θ),

therefore avoiding to consider η at all while estimating the parameter of interest.
We recall that the class F = {ℓ(·|p⋆

θ) : θ ∈ Θ} is P0-Glivenko-Cantelli if supθ∈Θ | 1n
∑n

i=1 ℓ(Oi|p⋆
θ)−

EP0
ℓ(O|p⋆

θ)| = oP0
(1). The following classical consistency result holds (see Theorem 5.7 and

Example 19.8 in [14]).

Proposition 2. Assume that EP ⋆
0

log p⋆
0(O) is well-defined and that the mapping θ 7→ KL(p⋆

0, p
⋆
θ)

from Θ to the nonnegative real numbers attains its minimum uniquely at θ0 ∈ int(Θ) (p⋆
θ0

is
the Kullback-Leibler projection of p⋆

0 upon {p⋆
θ : θ ∈ Θ}). If F is P0-Glivenko-Cantelli then θn

converges in probability to θ0. This is for instance the case if Θ is a compact metric space, if
θ 7→ ℓ(o⋆|p⋆

θ) is continuous for every o⋆ and if F admits an integrable envelope function with
respect to P0.

It is accompanied with an asymptotic normality result (inspired by classical results of
asymptotic normality, see Theorem 5.23 in [14]; we omit the measurability conditions).

Proposition 3 (first part). In the context of Propositions 1 and 2, assume in addition that
θ 7→ log p⋆

θ(Z|Ω) is twice differentiable at θ0 P ⋆
0 -almost surely with first and second derivatives

ℓ̇⋆
θ0

(O⋆) and ℓ̈⋆
θ0

(O⋆) such that
∫

l(o⋆)dP ⋆
0 (o⋆, Y = y) are properly defined for l = ℓ̇⋆

θ0
, ℓ̈⋆

θ0
and

y = 0, 1, and introduce accordingly the weighted versions

˙̃
ℓ(O|θ0) = q0ℓ̇

⋆
θ0

(V 1, O1⋆) + q̄0(V
1)

1

J

J∑

j=1

ℓ̇⋆
θ0

(V 1, O0,j⋆),

¨̃
ℓ(O|θ0) = q0ℓ̈

⋆
θ0

(V 1, O1⋆) + q̄0(V
1)

1

J

J∑

j=1

ℓ̈⋆
θ0

(V 1, O0,j⋆).
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Suppose also that, for every θ1, θ2 in a neighborhood of θ0 and a function ṁ such that
EP ⋆

0
ṁ(O⋆)2 < ∞, P ⋆

0 -almost surely

| log p⋆
θ1

(Z|Ω) − log p⋆
θ2

(Z|Ω)| ≤ ṁ(O⋆)‖θ1 − θ2‖.

Furthermore, assume that θ 7→ EP0
ℓ(O|p⋆

θ) = EP ⋆
0

log p⋆
θ(O

⋆) (by virtue of Proposition 1)
admits a second-order Taylor expansion at θ0 with nonsingular symmetric second derivative

matrix Sθ0
= EP0

¨̃
ℓ(O|θ0). Then Sθ0

= EP ⋆
0
ℓ̈⋆
θ0

(O⋆) and

√
n(θn − θ0) = −S−1

θ0

1√
n

n∑

i=1

˙̃
ℓ(Oi|θ0) + oP0

(1). (11)

In particular, the sequence
√

n(θn − θ0) is asymptotically Gaussian with mean zero and co-

variance matrix Σ = S−1
θ0

EP0
[
˙̃
ℓ(O|θ0)

˙̃
ℓ(O|θ0)

⊤]S−1
θ0

.

We emphasize that we purposely do not use the same convention to denote the first and
second order derivatives at θ0 of θ 7→ log p⋆

θ(Z|Ω) (respectively ℓ̇⋆
θ0

(O⋆) and ℓ̈⋆
θ0

(O⋆)) and the

derivatives of θ 7→ ℓ̃(O|θ) (respectively
˙̃
ℓ(O|θ0) and

¨̃
ℓ(O|θ0)): we intend to stress that the

former are related to the prospective sampling observed data structure O⋆ whereas the latter
are related to the case-control sampling observed data structure O.

A natural question arises: How does the asymptotic covariance matrix Σ compares with
the asymptotic covariance matrix one would have got under prospective sampling? We give in
the second part of Proposition 3 a very simple answer, but for a prospective sampling under
a modified version of P ⋆

0 . Introduce for clarity of exposition the notation

q̄0(o
⋆) = q0

q0(y|v)

q0(1|v)
(12)

such that q̄0(o
⋆) = q0 if y = 1 (o⋆ corresponds to a case) and q̄0(o

⋆) = q̄0(v) if y = 0 (o⋆

corresponds to a control). By setting

dP ⋆
1

dP ⋆
0

(o⋆) =
1

2q̄0(o⋆)
, (13)

we define a probability distribution P ⋆
1 for the observed data structure O⋆ (indeed, o⋆ 7→ q̄0(o

⋆)
is positive and EP ⋆

0
(2q̄0(O

⋆))−1 = 1). Moreover:

• under P ⋆
1 , being a case is as likely as being a control (equivalently, P ⋆

1 (Y = 1) = 1
2);

• the marginal distribution of the matching variable V under P ⋆
1 equals the conditional

distribution of V under P ⋆
0 , conditionally on being a case (equivalently, P ⋆

1 (V = v) =
q0(v|1) for all v ∈ V);

• given (V, Y ), O⋆ has the same distribution under P ⋆
1 as under P ⋆

0 (indeed, q̄0(o
⋆) depends

on o⋆ through (v, y) only).

Furthermore, since obviously

2EP ⋆
1
q̄0(O

⋆) log p⋆
θ(O

⋆) = EP ⋆
0

log p⋆
θ(O

⋆),

θ 7→ q̄0(O
⋆) log p⋆

θ(O
⋆) is a proper loss function for the purpose of estimating θ0 under prospec-

tive sampling of O⋆ ∼ P ⋆
1 .
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Proposition 3 (second part). Define S′
θ0

= EP ⋆
1
q̄0(O

⋆)ℓ̈⋆
θ0

(O⋆). Suppose that the model is
well-specified (or equivalently that KL(p⋆

0, p
⋆
θ0

) = 0). Assume in addition that for all o1⋆ =
(z1, ω1), the class of derivatives of p⋆

θ(z
1|ω1) with respect to θ is uniformly bounded (in θ) by

an integrable function (of z1). Then the covariance matrix Σ satisfies

Σ =
1

2
S′

θ0

−1
EP ⋆

1
[q̄0(O

⋆)2ℓ̇⋆
θ0

(O⋆)ℓ̇⋆
θ0

(O⋆)⊤]S′
θ0

−1
.

In particular, 2Σ can be interpreted as the asymptotic covariance matrix of the M -
estimator of θ0 based on the loss function θ 7→ q̄0(O

⋆) log p⋆
θ(O

⋆) and n iid observations
drawn from P ⋆

1 . The n observations under P0-case-control sampling correspond to 2 × n ob-
servations under P ⋆

1 -prospective sampling, each of them in the former counting for two in the
latter. Elements of proof are relegated to the appendix.

5 Threshold regression parametric modeling

5.1 Health as a stochastic process

We adopt the threshold regression approach (see [6, 7] and references therein), that is (quoting
the title of [6]) we model the time to event of interest (development of an incident lung cancer)
as a stochastic process reaching a boundary. The latter stochastic process represents here
the amount of health relative to lung cancer. As long as it stays above zero (the so-called
boundary), no lung cancer occurs. Crossing the boundary for the first time corresponds to
developing an incident lung cancer.

Let B be a Brownian motion. For any real numbers h > 0 and µ ≤ 0, define

T (h, µ) = inf{t ≥ 0 : h + µt + Bt ≤ 0}, (14)

the first time the drifted Brownian motion (h + µt + Bt, t ≥ 0) hits the set of nonnegative
numbers. The distribution of T (h, µ) is known as the inverse Gaussian distribution with
parameter (h, µ). It is characterized by its cumulative distribution function (cdf)

F (t;h, µ) = 1 + e−2hµΦ
(
(µt − h)t−1/2

)
− Φ

(
(µt + h)t−1/2

)
,

where Φ is the standard normal cdf.
It is well known (see for instance [4]) that the drifted Brownian motion (h+µt+Bt, t ≥ 0)

will almost surely eventually reach the boundary (i.e., T (h, µ) < ∞) because µ ≤ 0. Therefore
T (h, µ) is also characterized by its density

f(t;h, µ) =
h

(2πt3)1/2
exp

(
−(h − |µ|t)2

2t

)
.

Finally, T (h, µ) has mean h/|µ| whenever µ < 0.
Here, (h + µt + Bt, t ≥ 0) models the amount of health relative to lung cancer as affected

by the exposure to asbestos in absence of such an exposure, so that an incident lung cancer
eventually occurs at time T (h, µ). Furthermore, this presentation of the model we are building
yields a nice interpretation of the parameter (h, µ): h plays the role of an initial amount of
health relative to lung cancer, and µ a rate of decay of the latter amount of health.
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Describing what happens in presence of exposures involves the introduction of an accel-
eration function R, that is a nondecreasing continuous function on the nonnegative real line
such that R(t) ≥ t for all t. Given such a function R, we define

T (h, µ,R) = inf{t ≥ 0 : h + µR(t) + BR(t) ≤ 0}, (15)

the first time the drifted Brownian motion (h + µt + Bt, t ≥ 0) hits the set of nonnegative
numbers along the modified time scale derived from R. Obviously, T (h, µ,R) = T (h, µ) when
R is the identity, but in general T (h, µ,R) ≤ T (h, µ). Furthermore,

T (h, µ,R) ≥ t if and only if T (h, µ) ≥ R(t), (16)

so that the cdf of T (h, µ,R) at t is F (R(t);h, µ), and its density at t is R′(t)f(R(t);h, µ) as
soon as R is differentiable.

More importantly here, by virtue of the factorization of the likelihood exhibited in (3), the
conditional survival function and density of T (h, µ,R) at t ≥ x− 1 given [T (h, µ,R) ≥ x− 1]
are respectively

G(t;h, µ,R) =
1 − F (R(t);h, µ)

1 − F (R(x − 1);h, µ)
(17)

and

g(t;h, µ,R) =
R′(t)f(R(t);h, µ)

1 − F (R(x − 1);h, µ)
. (18)

The time T (h, µ,R) should be interpreted as the time to incident lung cancer under a
history of exposure to asbestos compatible with R, a notion we investigate in the next section.

5.2 Calendar versus biological ages: modeling the ageing acceleration due

to occupational exposure to asbestos

There is a nice interpretation of the acceleration function device. Admitting that the reference
time scale (that is that of the Brownian motion B) corresponds to chronological/calendar
time scale, the new time scale formed by an acceleration function R may be understood as a
biological time scale. This interpretation acknowledges the fact that the ageing phenomenon
related to lung cancer is stronger in presence of noxious exposure than in its absence.

We present now an original class of acceleration functions tailored to our particular de-
scription of occupational exposures. Let us define

M =
{

(M0, (Mk,l)k,l≤3) ∈ R+ × M3,3(R+) :

0 ≤ Mk,1 ≤ Mk,2 ≤ Mk,3 = 1, k = 1, 2, 3
}

. (19)

Then the rate yielded by description ε = (ε1, ε2, ε3) ∈ E \ {0} for M ∈ M writes as

M(ε) = 1 + M0 × M1,ε1
× M2,ε2

× M3,ε3
, (20)

and that of ε = 0 is set to M(0) = 1. Notably, M0 is to be interpreted as the factor of
acceleration of time for the higher exposure, which we recall is encoded by ε = (3, 3, 3). Rates
M(ε) range from 1 to M(3, 3, 3) = 1 + M0 and (with convention 0/0 = 1)

M(ε) − 1

M0
= M1,ε1

× M2,ε2
× M3,ε3

:

12



an exposure characterized by “probability/frequency/intensity” description ε = (ε1, ε2, ε3)
achieves a fraction M1,ε1

× M2,ε2
× M3,ε3

of the maximal acceleration.
Note that we only need 7 parameters in order to fully describe the 28 possibly different

rates of acceleration. Furthermore, it is easily seen that this parametrization is identifiable:
if M,M ′ ∈ M satisfy M(ε) = M ′(ε) for all ε ∈ E then M = M ′.

Consider M ∈ M and a generic longitudinal description ε̄ as presented in Section 2. Let
us define now the function r̃ over the nonnegative real line such that for all t ≥ 0,

r̃(t; M, ε̄) = M(ε(t)).

Function r̃ is piecewise constant, but we can construct a continuous version r such that, if
r̃ =

∑L
l=1 ρl1]tl; tl+1] + 1]tL+1;∞), then r(tl) = ρl for l = 1, . . . , L and ‖r̃ − r‖∞ ≤ α for a

small α > 0 chosen a priori. Because we are willing to add a constraint M(0) ≤ C1 to the
definition of M and to impose that a generic longitudinal description cannot have more than
C2 breakpoints (that is to upper bound a priori the number of employments that a subject
can have in a lifetime), the mapping r̃ 7→ r can even guarantee supM,ε̄ ‖r̃− r‖∞ ≤ α. We will
denote hereafter by r(·;M, ε̄) the continuous function associated to M and ε̄ and proceed as
if α = 0.

Finally, every pair (M, ε̄) gives rise to the differentiable (because r(·; M, ε̄) is continuous)
acceleration function characterized by

R(t;M, ε̄) =

∫ t

0
r(s;M, ε̄)ds.

In particular if ε(t) = 0 for all t ≥ 0 (that is in absence of exposure throughout lifetime),
then R(t;M, ε̄) = t for all t ≥ 0: in other words, the chronological and biological time scales
coincide.

Now, given parameters h > 0, µ, M ∈ M and covariate ā, we obtain Ra = R(·; M, ā),
which yields in turn the time to incident lung cancer T (h, µ,Ra).

5.3 A notion of maximal number of years of life guaranteed free of lung

cancer

Equivalence (16) has another important straightforward consequence:

T (h, µ) = R(T (h, µ,R)).

In particular, given parameters h > 0, µ, M ∈ M and covariate ā, T (h, µ) = Ra(T (h, µ,Ra)).
In words, all things (gender, occurrence of lung cancer in close family, lifetime tobacco use)
being equal, the age at incident lung cancer in the absence of occupational exposure to asbestos
can be deduced deterministically from the (observed) age at incident lung cancer and history
of occupational exposure to asbestos of a case. Furthermore, the nonnegative quantity

Ra(T (h, µ,Ra)) − T (h, µ,Ra)

(with convention Ra(∞) = ∞ and ∞ − ∞ = 0) can be interpreted as a maximal num-
ber of years of life guaranteed free of lung cancer. The expression conveys the notion that
Ra(T (h, µ,Ra))−T (h, µ,Ra) is different from the remaining number of years of life, as death
may occur anytime after T (h, µ,Ra) even in the absence of occupational exposure to asbestos.
Heuristically, it is the number of years of life which a subject living infinitely would enjoy
before developing an incident lung cancer

13



5.4 Case-control weighted log-likelihood loss function

We derive in this section a valid log-likelihood loss function based on the threshold regression
parametric modelling introduced in Sections 5.1 and 5.2. By Section 3, we know that it suffices
to model the distribution of the observed data structure O⋆ under prospective sampling.

As explained in Section 3, we wish to model parametrically the conditional distribution of
O⋆ given Ω = (W, X, Ā(X), Y ), leaving the conditional distribution of Ω given Y unspecified.

For this purpose, we state that under θ = (α, β, M) ∈ Θ = R
4 ×R

16 ×M, the conditional
distribution of T (the possibly unobserved age at incident lung cancer of the subject associated
with O⋆) given Ω is that of T (h, µ,Ra) with

log h = α1+(0,1,2,0)W⊤ (21)

(each level of (W1, W2) ∈ {0, 1}2 is associated with a unique positive initial health h),

log(−µ) = β1+(0,1,2,4)W⊤ (22)

(each level of (W1, W2, W3) ∈ W = {0, 1}2 × {0, 1, 2, 3} is associated with a unique negative
drift µ), and

Ra = R(·;M, Ā(X)).

Therefore,
log p⋆

θ (Z|Ω) = Y log g(Z; θ) + (1 − Y ) log G(Z; θ)

with convention

G(Z; θ) = G(Z;h, µ,R(·;M, Ā(X))),

g(Z; θ) = g(Z; h, µ,R(·; M, Ā(X))),

the functions G and g being defined in (17) and (18). Finally, the relevant part of the resulting
case-control weighted log-likelihood at θ ∈ Θ writes as

n∑

i=1



q0 log g(Z1

i ; θ) + q̄0(V
1
i )

1

Ji

Ji∑

j=1

log G(Z0,j
i ; θ)



 = Pnℓ̃(·|θ), (23)

where ℓ̃(O|θ) = ℓ(O|p⋆
θ)−rem(O) (see equation (10)) and Pn =

∑n
i=1 δOi

denotes the empirical
measure.

5.5 Multi-fold likelihood-based cross-validation

It makes no doubt that the model we have built so far is over-dimensioned. The “probabil-
ity/frequency/intensity” description with its 28 different levels is itself certainly too rich (see
again Table 1), or at least difficult to establish and prone to errors. We rather consider the
model Θ described so far as a “maximal” model giving rise to a large collection of sub-models
Θk obtained by adding constraints on the “maximal” parameter θ = (α, β, M) ∈ Θ. The
number of such sub-models is large indeed: there are (1 + 73) = 344 sub-models defined by
adding only constraints on M (of the type M0 = 0, or M0 > 0 and for any k = 1, 2, 3, 0 = Mk,1

or Mk,1 = Mk,2 or Mk,2 = 1 or 0 = Mk,1 = Mk,2 or Mk,1 = Mk,2 = 1 or (0 = Mk,1, Mk,2 = 1)),
hence the total number of sub-models equals 22 × 23 × 344 = 11, 008. It is out of question to
explore the whole collection of sub-models. Instead, we propose to
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(i) define a large collection {Θk : k ∈ K} of sub-models of interest,

(ii) let the data select a better sub-model Θk̂ in the latter collection based on a multi-fold
likelihood-based cross-validation criterion.

It is shown in [15] that, under mild assumptions, the multi-fold likelihood-based cross-
validation criterion will select a better model comparing favorably with the oracle model
of the collection (whose definition involves the true distribution of the data). By this we
mean that the likelihood risk of the better model will not be much bigger than that of the or-
acle model. Although we cannot invoke rigorously this remarkable property here, it motivates
the procedure that we describe below.

The likelihood risk of θ ∈ Θ is by definition

R(θ) = −EP0
ℓ̃(O|θ),

which is closely related to minus the Kullback-Leibler divergence between the density p⋆
0 of

P ⋆
0 and p⋆

θ, as explained in Section 3. Let us denote by θn,k(Pn) the case-control weighted
maximum likelihood estimator defined in (9) with θ ranging over Θk. Given the collection
{θn,k(Pn) : k ∈ K} we wish to select the estimator θn,k̄(Pn) that minimizes R, where k̄
itself depends on Pn. Because the definition of R involves the true distribution P0, we must
estimate R(θn,k(Pn)) and choose to do so by multi-fold cross-validation. Details follow.

We split the data randomly into a training and a validation samples. Given an inte-
ger V (later set to V = 10), each observed data structure Oi is associated with a label
labi = 1 + (i mod V ). The collection of labels {labi : i ≤ n} ⊂ {1, . . . , V } is such that
maxl,l′≤V |∑n

i=1 1{labi = l} − ∑n
i=1 1{labi = l′}| ≤ 1. The splitting random variable

S = (S1, . . . , Sn) ∈ {0, 1}n is drawn independently of O1, . . . , On in such a way that, for
each 1 ≤ l ≤ V , S = (1{lab1 = l}, . . . ,1{labn = l}) with probability V −1. Conditionally
on S, the observed data structure Oi belongs to the training sample if Si = 0 (there are
approximately n(V −1)/V such Oi’s), otherwise it belongs to the validation sample. The em-
pirical distribution of those Oi’s for which Si = 0 (respectively, Si = 1) is P 0

n,S (respectively,

P 1
n,S). The empirical distribution of those Oi’s for which labi = l (respectively, labi 6= l) is

P l
n (respectively, P−l

n ).
Each Θk yields a maximum likelihood estimator θn,k(P

0
n,S) based on the training sample

only. Its risk, averaged over the splits, writes as

crit(k) = ESR(θn,k(P
0
n,S)) = − 1

V

V∑

l=1

EP0
ℓ̃
(
O|θn,k(P

−l
n )

)
.

The value k̃ that minimizes k 7→ crit(k) over K is called the oracle because it depends both
on Pn and on P0. In our attempt to reach that k̃ which is a good proxy to k̄, we estimate
crit(k) by

ĉrit(k) = −ESEP 1

n,S
ℓ̃
(
O|θn,k(P

0
n,S)

)
= − 1

V

V∑

l=1

EP l
n
ℓ̃
(
O|θn,k(P

−l
n )

)
,

and propose to use the value k̂ that minimizes k 7→ ĉrit(k) over K, whose definition is
postponed to Section 6.2. In conclusion, the final estimator is θn,k̂(Pn).
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q0 = 470.0682e-06

a q0(1|0, a) q0(1|1, a)

1 2.058932e-06 1.663324e-06
2 1.859944e-05 1.460473e-05
3 6.803086e-05 4.461827e-05
4 2.586692e-04 1.184914e-04
5 6.484864e-04 1.947058e-04
6 1.192778e-03 2.542976e-04
7 1.854668e-03 3.294062e-04
8 2.331553e-03 3.588764e-04
9 2.928415e-03 4.466062e-04

10 3.686216e-03 5.312313e-04
11 3.608302e-03 5.332930e-04
12 3.636995e-03 5.395069e-04
13 2.171286e-03 3.234775e-04

a q̄0(0, a) q̄0(1, a)

1 228.3063171 282.6071669
2 25.2727716 32.1855444
3 6.9091613 10.5348607
4 1.8167860 3.9666376
5 0.7243998 2.4137787
6 0.3936251 1.8480261
7 0.2529813 1.4265470
8 0.2011416 1.3093632
9 0.1600496 1.0520638

10 0.1270504 0.8843954
11 0.1298040 0.8809745
12 0.1287763 0.8708223
13 0.2160229 1.4527010

Table 3: Estimating the probability distribution of being a case, based on the independent
study [2]. Left: Estimates of q0(1|w1, v2), as defined in (5). Middle: Estimate of q0, as
defined in (4). Right: Estimates of q̄0(w1, v2), as defined in (7). Here, w1 = 0 for men and
w1 = 1 for women, and v2 = a if the age at sampling x belongs to [ta; ta+1), where t0 = 0,
ta = 30 + 5(a − 1) for 1 ≤ a ≤ 12 and t13 = ∞.

6 Results

6.1 Conditional distribution of being a case

Estimating the marginal probability of being a case q0 (4), the conditional probabilities of
being a case or a control conditional on the matching variable (q0(1|v))v∈V (5), and the weights
(q̄0(v))v∈V (7) is made possible thanks to [2], an independent study of cancer incidence and
mortality in France, over the period 1980–2005. However, we must assume either (i) that the
data from [2], which are collected over the whole French population, are representative of the
Parisian population of interest, or (ii) as underlined in Section 2 that sampling from the four
Parisian hospitals that participate to the study is stochastically equivalent to sampling from
the population of France.

We first estimate these quantities for each year from 1999 to 2002 separately. In agreement
with our stationary assumption (1), we remark that the various estimates are very consistent
over the years. In order to gain precision, we average the estimates over the years. The final
estimates are presented in Table 3. We emphasize that the weights (q̄0(v))v∈V are far from
being homogeneous.

6.2 Model selection procedure in action

We explain in Section 5.5 how the best model index k̂ (with related best model Θk̂) is obtained
in a pre-determined collection K of sub-model indices (with related sub-models Θk, k ∈ K).
The latter collections are constructed by recursion as presented below.

We first initialize Θ0 = Θ and K−1 = ∅ with convention max ∅ = 0.
At a given step ν ≥ 0, a sub-model Θν is defined as a subset of Θ meeting ν independent
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one-dimensional constraints on M ∈ M (i.e., constraints of the type Mk,l−1 = Mk,l for some
k = 1, 2, 3 and l = 1, 2, 3 with convention Mk,0 = 0). Start with c(ν+1) = −∞ and Θν+1 = ∅.
The following rule is applied to Θν+1:

Rule 1. For every possible sub-model Θ′ ⊂ Θν derived from Θν by adding another one-
dimensional constraint on M as described above (all such models share the same di-
mension), evaluate the corresponding maximum log-likelihood criterion

ℓ(Θ′) = max
θ∈Θ′

Pnℓ̃(·|θ).

If ℓ(Θ′) ≥ c(ν + 1), update c(ν + 1) = ℓ(Θ′) and Θν+1 = Θ′.

Applying Rule 1 as long as possible yields 7 sets Θν , ν = 0, . . . , 6. Their description is
given in Table 4.

Θ0 = Θ,

Θ1 = {θ ∈ Θ0 : M1,1 = 0}, (24)

Θ2 = {θ ∈ Θ1 : M2,1 = M2,2}, (25)

Θ3 = {θ ∈ Θ2 : M2,2 = 1}, (26)

Θ4 = {θ ∈ Θ3 : M3,1 = M3,2}, (27)

Θ5 = {θ ∈ Θ4 : M1,2 = 1}, (28)

Θ6 = {θ ∈ Θ5 : M3,1 = 0}. (29)

(24) low probability does not differ from no exposure at all;
(25) moreover, low and mild frequencies do not differ;
(26) moreover, mild and high frequencies do not differ;
(27) moreover, low and mild intensities do not differ;
(28) moreover, mild and high probabilities do not differ;
(29) moreover, low intensity does not differ from no exposure.

Table 4: Descriptions of Θ0, . . . ,Θ6. The collection of parameter sets is nested. For instance,
Θ3 is the set of those θ ∈ Θ such that M1,1 = 0 and M2,1 = M2,2 = 1. Regarding dimensions,
it trivially holds that, for each 0 ≤ k ≤ 6, dim(Θk) = 27 − k.

At a given step ν ≥ 0, a set Kν−1 of successive integers is defined. Start with Kν =
{max Kν−1 + 1} (a set initially containing a single element) and define Θν,max Kν−1+1 = Θν .
The following second rule is applied to Kν :

Rule 2. For every possible constraint “ϕ(θ) = 0” on θ ∈ Θν of the form “α and β independent
of Wl” for some l = 1, 2, 3 (the lth coordinate of W does not affect the value of the initial
health and drift parameters h and µ, see (21) and (22)), update Kν = Kν∪{max Kν +1}
and define Θν,max Kν

= {θ ∈ Θν : ϕ(θ) = 0}.

(Note that each Θν therefore gives rise to 23 = 8 sub-models Θν,l.)
We apply Rule 2 for ν = 0, . . . , 6, and finally define

K = ∪11
ν=0Kν = {1, 2, 3, . . . , 56}.
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For every k ∈ K there exists a unique ν = 0, . . . , 7 such that Θν,k be defined: setting Θk = Θν,k

concludes the definition of the collection {Θk : k ∈ K} of sub-models of interest.
The best model Θk̂ (according to our multi-fold likelihood-based cross-validation criterion)

is a subset of Θ2, featuring 16 degrees of freedom. Its complete description follows:

• the initial health parameter depends on W only through gender (hence not on the
indicator of occurrence of lung cancer in close family);

• the drift parameter depends on W only through gender and lifetime tobacco use (hence
not on the indicator of occurrence of lung cancer in close family);

• exposure to asbestos is significantly noxious; there is no difference between low proba-
bility and no exposure to asbestos at all (in view of (19), M1,1 = 0) and no difference
either between low and mild frequencies (in terms of (19), M2,1 = M2,2).

6.3 Fitting the best model

The best model Θk̂ ⊂ Θ2 described in Section 6.2 is first fitted in terms of maximum likelihood
on the whole dataset. Regarding the derivation of confidence intervals, we decide to rely on
the bootstrap instead of a central limit theorem (such as Proposition 3). The particulars
of the bootstrap procedure follow. We set α = 2.5%, B = 1, 000 and p = 5%, then for b
ranging from 1 to B, we repeatedly resample without replacement n(1 − p) = 817 observed
data structures, yielding the bootstrapped empirical measure P b

n(1−p), in order to compute

and store the corresponding maximum likelihood estimate θn(1−p),k̂(P
b
n(1−p)) of θ ∈ Θk̂. The

mean and median values of θ
B
n,k̂

= {θn(1−p),k̂(P
b
n(1−p)) : b ≤ B} only very slightly differ

from each other (moreover, they are very close to the maximum likelihood estimate θn,k̂(Pn)

computed on the whole dataset). The componentwise α/16- and (1−α/16)-quantiles of θ
B
n,k̂

are used as lower- and upper-bounds of confidence intervals, which simultaneously provide a
(1 − 2α) = 95%-coverage by the applied Bonferroni correction. Specifically:

• initial health:

W1 h

0 23.82 [23.42; 24.13]
1 25.09 [24.86; 25.40]

It is seen in particular that women are associated with a significantly larger initial health
than men.

• drift:

−100µ
W3 W1 = 0 W1 = 1

0 0.69 [0.08; 1.46] 0.02 [0.01; 0.03]
1 7.70 [6.91; 8.28] 6.63 [5.73; 7.68]
2 13.89 [13.25; 14.46] 10.55 [9.63; 11.80]
3 17.67 [17.11; 18.38] 14.79 [13.65; 17.77]

Two main features arise:
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– For each level of lifetime tobacco use, the absolute value of the drift is significantly
larger for men than for women (actually, the confidence intervals for W3 = 3 slightly
overlap). Combined with the already mentioned fact that women are associated
with a larger initial health, this implies that for any given history of exposure
to asbestos and for every level of lifetime tobacco use, the distribution of age at
incident lung cancer in women is stochastically dominated by the distribution of
age at incident lung cancer in men. In other words, given a man and a woman
sharing the same history of exposure to asbestos and lifetime tobacco use, given
an age t, the man is more likely to have developed an incident lung cancer at age
t than the woman.

Note that there is no clear consensus in the literature on whether there exist
differences in lung cancer risk between men and women or not (for instance, it
is argued in [16] that women are more susceptible to tobacco carcinogens, but it
is seen in [5] that men or women are more susceptible to tobacco carcinogens,
depending on ethnic and racial group).

– Both in men and women, the absolute value of the drift significantly increases with
lifetime tobacco use. This implies that, both in men and women, for any given
history of exposure to asbestos and for every 0 ≤ w < w′ ≤ 3, the distribution
of age at incident lung cancer for lifetime tobacco use equal to w is stochastically
dominated by the distribution of age at incident lung cancer for lifetime tobacco
use equal to w′. In other words, given two persons sharing the same gender and
history of exposure to asbestos, the person with the larger lifetime tobacco use is
more likely to have developed an incident lung cancer at age t than the other.

This is in agreement with the general scientific consensus [3].

• exposure to asbestos:

M0: 1.19 [0.34; 2.00]

M1,1 = 0 M1,2: 0.97 [0.96; 0.99] M1,3 = 1
M2,1 = M2,2 M2,2: 0.93 [0.90; 0.98] M2,3 = 1
M3,1: 0.02 [0.00; 0.09] M3,2: 0.09 [0.00; 0.27] M3,3 = 1

We notably derive from the above table the values of (M(ε) − 1) (which can be inter-
preted as a factor of acceleration of time due to an exposure of level ε, see (20)) and
related confidence intervals for each level of exposure ε ∈ E \ {0}, see Table 5.

6.4 Application to the maximal number of years of life guaranteed free of

lung cancer

In view of Section 5.3 and the notion of maximal number of years of life guaranteed free of
lung cancer, the results of the previous section provide us with a way of evaluating the latter
number on a case by case basis. Arguably, we mostly care for a pointwise estimation of,
and confidence lower-bound on, the maximal number of years of life guaranteed free of lung
cancer. In order to address this issue, let us compute a counterpart of Table 5 based on the
componentwise 2α/5-quantiles of θ

B
n,k̂

(which simultaneously provide (1−2α) = 95%-coverage

for parameter M on its own by the applied Bonferroni correction, since there M has 5 degrees
of freedom), see Table 6.
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ε M(ε) − 1 ε M(ε) − 1 ε M(ε) − 1

111 0 211 0.026 [0.000; 0.171] 311 0.026 [0.000; 0.173]
112 0 212 0.092 [0.001; 0.530] 312 0.094 [0.001; 0.537]
113 0 213 1.078 [0.297; 1.939] 313 1.108 [0.309; 1.964]
121 0 221 0.026 [0.000; 0.171] 321 0.026 [0.000; 0.173]
122 0 222 0.092 [0.001; 0.530] 322 0.094 [0.001; 0.537]
123 0 223 1.078 [0.297; 1.939] 323 1.108 [0.309; 1.964]
131 0 231 0.027 [0.000; 0.174] 331 0.028 [0.000; 0.176]
132 0 232 0.099 [0.001; 0.539] 332 0.101 [0.001; 0.546]
133 0 233 1.159 [0.330; 1.971] 333 1.192 [0.344; 1.998]

Table 5: Estimated values (with precision 10−3) of the factor of acceleration of time (M(ε)−1)
and related confidence intervals for each level of exposure ε ∈ E \ {0}. Recall that M(0) = 1.

ε M(ε) − 1 ε M(ε) − 1 ε M(ε) − 1

111 0 211 0.026 [0.001;∞) 311 0.026 [0.001;∞)
112 0 212 0.092 [0.004;∞) 312 0.094 [0.004;∞)
113 0 213 1.078 [0.374;∞) 313 1.108 [0.389;∞)
121 0 221 0.026 [0.001;∞) 321 0.026 [0.001;∞)
122 0 222 0.092 [0.004;∞) 322 0.094 [0.004;∞)
123 0 223 1.078 [0.374;∞) 323 1.108 [0.389;∞)
131 0 231 0.027 [0.001;∞) 331 0.028 [0.002;∞)
132 0 232 0.099 [0.004;∞) 332 0.101 [0.004;∞)
133 0 233 1.159 [0.414;∞) 333 1.192 [0.431;∞)

Table 6: Estimated values (with precision 10−3) of the factor of acceleration of time (M(ε)−1)
and related right confidence intervals for each level of exposure ε ∈ E\{0}. Recall that M(0) =
1. A Bonferroni correction ensures that the confidence regions simultaneously guarantee
(1 − 2α) = 95%-coverage (for {M(ε) − 1 : ε ∈ E} on its own).
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Elementary algebra permits to compute an evaluation c(t, ā(t)) of, and confidence lower-
bound c−(t, ā(t)) on, the maximal number of years of life guaranteed free of lung cancer for
any couple (t, ā(t)) of age t at incident lung cancer and history ā(t) of occupational exposure
to asbestos till t. Let us consider three examples:

• Consider a case of incident lung cancer at age t who spent, till that age, 30 years with an
occupational exposure to asbestos ε = 332: one evaluates c(t, ā(t)) = 30 × 0.101 = 3.03
maximal number of years guaranteed free of lung cancer, with its 95%-confidence lower
bound c−(t, ā(t)) = 30× 0.004 = 0.09 maximal number of years guaranteed free of lung
cancer (approximately 44 days).

This is quite an extreme case, since 3 out of the 8,432 employments described in the
dataset achieve the description ε = 332.

• Consider a case of incident lung cancer at age t who spent, till that age, 10 years (then
later 5 years and 2 years) with an occupational exposure to asbestos ε = 322 (then later
ε = 121 and ε = 222): one evaluates c(t, ā(t)) = 10 × 0.094 + 5 × 0 + 2 × 0.092 = 1.124
maximal number of years guaranteed free of lung cancer, with its 95%-confidence lower
bound c−(t, ā(t)) = 10 × 0.004 + 5 × 0 + 2 × 0.004 = 0.048 maximal number of years
guaranteed free of lung cancer (approximately 17.5 days).

Note that 150, 36 and 189 out of the 8,432 employments described in the dataset achieve
the descriptions ε = 121, ε = 222 and ε = 322.

• Consider a case of incident lung cancer at age t who spent, till that age, 10 years
(then later 15 years) with an occupational exposure to asbestos ε = 213 (then later
ε = 223): one evaluates c(t, ā(t)) = 10× 1.078 + 15× 1.078 = 26.95 maximal number of
years guaranteed free of lung cancer, with its 95%-confidence lower bound c−(t, ā(t)) =
10×0.374+15×0.374 = 9.350 maximal number of years guaranteed free of lung cancer.

This is quite an extreme case, since only 6 and 3 out of the 8,432 employments described
in the dataset achieve the descriptions ε = 213 and ε = 223.

Among the n = 860 cases of our dataset, only 259 (i.e., 30%) cases are associated with
positive maximal number of years of life guaranteed free of lung cancer. We report in Table 7
the quartiles, mean and extreme values of maximal number of years of life guaranteed free of
lung cancer as computed on those 259 cases.

• The maximum value is reached by a male who accumulated through his professional
life a total of 33 years with occupational exposure to asbestos equal to ε = 313 and
was diagnosed a lung cancer at 70 years old. Although this is not relevant as far as
the evaluation of the potential years of life free of lung cancer is concerned, his lifetime
tobacco equals 45 pack years.

• The minimum value is reached by 4 women who accumulated through their professional
lives a total of 1 year with occupational exposure to asbestos ε ∈ {211, 221} and were
diagnosed a lung cancer at 51 (for two of them), 59 and 68 years old. Although this is
not relevant as far as the evaluation of the potential years of life free of lung cancer is
concerned, their lifetime tobacco uses equal 25, 30, 32 and 55 pack years).

• The median value is reached by a man who accumulated through his professional life
a total of 4 years (respectively, 5 and 7) with occupational exposure to asbestos equal

21



min. 25% 50% mean 75% max.

max. number of years free of lung cancer 0.026 0.289 0.769 2.467 2.408 36.577
95%-lower bound 0.001 0.014 0.037 0.555 0.102 12.832

Table 7: Quartiles, mean and extreme values of the maximal number of years of life guaranteed
free of lung cancer and corresponding 95%-confidence lower-bound (with precision 10−3), as
computed on those 259 cases (i.e., 30% of all cases) for whom the evaluated maximal number
of years of life guaranteed free of lung cancer is positive.

to ε = 111 (respectively, ε = 211 and ε = 212) and was diagnosed a lung cancer at 71
years old. Although this is not relevant as far as the evaluation of the potential years
of life free of lung cancer is concerned, his lifetime tobacco equals 55 pack years.

We represent in Figure 1 the empirical cdf of the maximal number of years of life guaran-
teed free of lung cancer (and corresponding 95%-confidence lower bounds) for the 259 cases
for whom it is positive.

7 Discussion

We have developed a collection of threshold regression models (see Section 5), and have
data-adaptively selected a better model in it by relying on multi-fold likelihood-based cross-
validation (see Section 6.2 for the descriptions of the model selection procedure and derived
better model). The latter better threshold regression model has been fitted by maximum
likelihood, and bootstrapped confidence intervals have been obtained (see Section 6.3). The
statistical procedure has been adjusted in order to eliminate the bias induced by the case-
control sampling design used to collect the dataset. This necessary preliminary step was made
possible because the probability distribution of being a case in the population of interest can
be computed beforehand based on an independent study (see Section 6.1). We have discussed
the implications of the fitted threshold regression model in terms of the notion of maximal
number of years of life guaranteed free of lung cancer which is naturally attached to it (see
Section 6.4).

We believe that, even though they cannot be interpreted causally, the results presented in
this article contribute significantly to the quantitative understanding of how an occupational
exposure to asbestos is related to an increase of lung cancer, and to the evaluation, in subjects
suffering from a lung cancer, of how much the amount of exposure to asbestos explains the
occurrence of the cancer.

We finally acknowledge a limitation of the approach undertaken in this article: The link
between the occupational exposure to asbestos and age at incident lung cancer is well-defined
in the context of the proposed threshold regression models, but we do not extend it beyond.
The parameter we aim for is therefore difficult to comprehend (it is related to the Kullback-
Leibler projection of the true distribution of the data onto a threshold regression model), and
the inference procedure certainly fails to estimate optimally/efficiently what we really care
for, which would be a measure of the strength of the link between the occupational exposure
to asbestos and age at incident lung cancer defined non- or semiparametrically. We intend to
go further in that direction in future work.
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Figure 1: Empirical distributions of maximal number of years of life guaranteed

free of lung cancer and related confidence lower-bound. The rightmost curve with
bullets (respectively leftmost curve with triangles) represents the empirical cdf of the maximal
number of years guaranteed free free of lung cancer (respectively of the 95%-confidence lower
bound on that number) of those cases for whom it is positive, that is the empirical cdf of
{c(T 1

i , Ā1(T 1
i )) : c(T 1

i , Ā1(T 1
i )) > 0, i ≤ n} (respectively {c−(T 1

i , Ā1(T 1
i )) : c(T 1

i , Ā1(T 1
i )) >

0, i ≤ n}). Only 30% of the cases are concerned. The x-axis scale is logarithmic.
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A Appendix: elements of proof

Proof of Proposition 1. On one hand, note that

EP0
q0 log p⋆(V 1, O1⋆) =

∫
q0 log p⋆(v1, o1⋆)dP ⋆

0 (v1, o1⋆|y = 1)

=

∫
log p⋆(v1, o1⋆)dP ⋆

0 (v1, o1⋆, y = 1)

=

∫
log p⋆(o⋆)dP ⋆

0 (o⋆, y = 1). (30)

On the other hand, for each j ≤ J ,

EP0
q̄0(V

1) log p⋆(V 1, O0,j⋆) = EP0
q̄0(V

1)EP0

[
log p⋆(V 1, O0,j⋆)|V 1

]

= EP0
q̄0(V

1)

∫
log p⋆(V 1, o⋆)dP ⋆

0 (o⋆|V 1, y = 0)

=

∫
q̄0(v

1) log p⋆(v1, o⋆)dP ⋆
0 (o⋆|v1, y = 0)dP0(v

1).

Furthermore, for each v ∈ V, dP0(v) = dP ⋆
0 (v|y = 1) = q0(v|1)δv(v) (we use the same

shorthand notation as in (4), (5), (6), (7)) and denote by δv the Dirac mass at v), hence

q̄0(v)dP0(v) = q0
q0(0|v)

q0(1|v)
q0(v|1)δv = q0(0|v)P ⋆

0 (v)δv(v) = dP ⋆
0 (v, y = 0).

Consequently, we obtain

EP0
q̄0(V

1) log p⋆(V 1, O0,j⋆) =

∫
log p⋆(v1, o⋆)dP ⋆

0 (o⋆|v1, y = 0)dP ⋆
0 (v1, y = 0)

=

∫
log p⋆(v1, o⋆)dP ⋆

0 (v1, o⋆, y = 0)

=

∫
log p⋆(o⋆)dP ⋆

0 (o⋆, y = 0) (31)

(which does not depend on j). Combining (30), (31) finally yields

EP0
ℓ(O|p⋆) =

∫
log p⋆(o⋆)dP ⋆

0 (o⋆) = EP ⋆
0

log p⋆(O⋆).

The conclusion is straightforward, because

EP ⋆
0

log p⋆(O⋆) − EP ⋆
0

log p⋆
0(O

⋆) = −KL(p⋆
0, p

⋆),

the opposite of the Kullback-Leibler divergence between p⋆
0 and p⋆, which is positive for

p⋆ 6= p⋆
0 and equals zero otherwise.

Proof of Proposition 3. The expansion (11) and the related distributional limit result are a
consequence of Theorem 5.23 in [14]. The fact that Sθ0

= EP ⋆
0
ℓ̈⋆
θ0

(O⋆) is obtained by adapting
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slightly the proof of Proposition 1. Regarding EP0
[
˙̃
ℓ(O|θ0)

˙̃
ℓ(O|θ0)

⊤], let us abbreviate xx⊤ to
x2 and note that

˙̃
ℓ(O|θ0)

˙̃
ℓ(O|θ0)

⊤ =
[
q0q̄0(O

1⋆)ℓ̇⋆
θ0

(V 1, O1⋆)2 + q̄0(V
1)

(
1
J

∑
j q̄0(O

0,j⋆)ℓ̇⋆
θ0

(V 1, O0,j⋆)
)2]

+
[
q0q̄0(V

1)ℓ̇⋆
θ0

(V 1, O1⋆)
(

1
J

∑
j q̄0(O

0,j⋆)ℓ̇⋆
θ0

(V 1, O0,j⋆)
)⊤

+ q0q̄0(V
1)

(
1
J

∑
j q̄0(O

0,j⋆)ℓ̇⋆
θ0

(O0,j⋆)
)
ℓ̇⋆
θ0

(O1⋆)⊤
]
.

The P0-expected value of the first term between brackets is EP ⋆
0
ℓ̈⋆
θ0

(O⋆), as another simple
adaptation of the proof of Proposition 1 straightforwardly yields. Moreover,

EP0
q0q̄0(V

1)ℓ̇⋆
θ0

(V 1, O1⋆)
(

1
J

∑
j q̄0(O

0,j⋆)ℓ̇⋆
θ0

(V 1, O0,j⋆)
)⊤

= EP0

[
q0q̄0(V

1)EP0

(
ℓ̇⋆
θ0

(V 1, O1⋆)
(

1
J

∑
j q̄0(O

0,j⋆)ℓ̇⋆
θ0

(V 1, O0,j⋆)
)⊤

∣∣∣∣ V 1

)]

= EP0

[
q0q̄0(V

1)EP0

(
ℓ̇⋆
θ0

(V 1, O1⋆)
∣∣∣ V 1

)

EP0

((
1
J

∑
j q̄0(O

0,j⋆)ℓ̇⋆
θ0

(V 1, O0,j⋆)
)⊤

∣∣∣∣ V 1

)]

by conditional independence. Denote by Π = EP0
(ℓ̇⋆

θ0
(V 1, O1⋆)|O1⋆ \ Z1) the conditional

expectation of ℓ̇⋆
θ0

(V 1, O1⋆) given every component of O1⋆ but Z1, that is given Ω1 (compatible
with V 1). The projection Π can be written as a measurable function of Ω1 times

∫
ℓ̇⋆
θ0

(z, Ω1)p⋆
θ0

(z|Ω1)dz =

∫
∂p⋆

θ(z|Ω1)

∂θ

∣∣∣∣
θ=θ0

dz = 0,

provided that the order of differentiation and integration can be reversed. This is ensured
by the stated constraint on the derivatives of p⋆

θ(z|Ω1) with respect to θ. Consequently, the
P0-expected value of the second term between brackets in the first display is zero, hence the
validity of the alternative version of Σ. The conclusion simply follows from another application
of Theorem 5.23 in [14] in the classical iid framework associated with P ⋆

1 .
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