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Abstract. We introduce a noise-tolerant segmentation algorithm effi-
cient on 3D multiscale granular materials. The approach uses a graph-
based version of the stochastic watershed and relies on the morphological
granulometry of the image to achieve a content-driven unsupervised seg-
mentation. We present results on both a virtual material and a real X-ray
microtomographic image of solid propellant.
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1 Introduction

The stochastic watershed segmentation was first introduced by Angulo and
Jeulin in [1]. The approach is based on using a large number of realizations
of random markers to build a probability density function (pdf) of contours,
starting from a standard watershed algorithm producing oversegmentations.

The stochastic watershed was proved to be efficient for unsupervised segmen-
tation [10][6]. The two parameters used for its construction are k, the number
of random markers used in each realization, and R, the number of realizations.
From the law of large numbers, the pdf converges when increasing R. The param-
eter k needs to be proportional to the number of desired regions in the segmented
image. Therefore, in the case of granular materials, k needs to be proportional
to the number of grains contained in the image, that can be automatically esti-
mated. In [6], the authors use the covariance for this estimation, deduced from
the average radius of the grains, and a Boolean model assumption [8].

For multiscale images, the covariance is not so efficient. In this paper, we
introduce a new approach for stochastic segmentation which relies on the full
granulometry of the image. Using morphological openings, this granulometry can
be automatically computed from the image and is used as a constraint during
iterations of segmentation steps.

2 Stochastic Segmentation

2.1 Stochastic Watershed

The first method introduced for computing the stochastic watershed is based
on a large number of realizations of random markers to estimate a pdf of con-



tours, or of surface boundaries in 3D. The random markers are generated with
an uniform distribution corresponding to a constant intensity. In the case of
granular materials, a constant background marker, extracted by an automatic
thresholding, is added to each set of random markers. For each set of markers, a
constrained watershed is computed. Then, the Parzen window is used to estimate
the pdf of contours.

For a good estimation of the stochastic watershed, 100 to 200 realizations are
required [1]. However, using λ-flat zones, a stochastic watershed segmentation
can be achieved with only 50 realizations [6]. This number is low, but the com-
putation of 50 watersheds is very time-consuming, especially on large 3D data
sets.

From the pdf, it is possible to obtain the segmentation. The first approach
uses this pdf as a gradient for a new watershed [1]. A more efficient approach
uses λ-flat zones to overcome the fact that the estimated pdf is not constant
over each branch of contour [6]. Illustration of the pdf of contours is on Fig. 1
(A). The resulting segmentation is illustrated on Fig. 2 (A).

(A) (B)

Fig. 1. (A) Pdf of contours on a simulated 3D material R1, estimated with 50 re-
alizations of a Poisson point process (slice). (B) Pdf of contours computed with a
graph-based approach (slice).

2.2 Graph-Based Stochastic Watershed

Computing a large number of watersheds from simulations provides good results
but is a slow process, mainly in 3D. A more efficient solution for computing
stochastic watersheds is to use a graph-based approach. Probability of bound-
aries is directly computed with a good approximation without the use of any
realisation [9, 7].

A first watershed is computed from the local minima of the gradient, as in
standard segmentation, but restricted to the complementary set of the back-
ground extracted by an automatic thresholding. For this purpose, the back-
ground is used as a marker. In the present case, a very strong oversegmentation
is obtained as a result of the presence of noise. From this watershed, an adja-
cency graph is constructed. Vertices of the graph are associated to each basin
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Fig. 2. (A) Stochastic watershed segmentation (slice). The λ-flat zones are used. A
few grains are over-segmented. Small grains are missing (B) Graph-based stochastic
watershed segmentation with a threshold of 0.5 on the probability (slice). A few over-
segmented grains, as well as small grains are missing. (C) Final granulometry-driven
multiscale segmentation result for the random material R1 (slice of a 3D image).

of the watershed, connecting edges between adjacent regions. A vertex is asso-
ciated to the background too. Values are given to the vertices corresponding to
the volumes of the regions (or to the areas, in 2D). Each edge is labelled with the
minimum of the gradient function on the boundary between the corresponding
regions. From this valued graph, a minimum spanning tree is extracted [7]. Then
the regions in the minimum spanning tree are merged, starting with the edge of
lowest value. After each merging, the probability p of the boundary between the
corresponding regions is estimated using the following equation [9]:

p = 1 − (1 − V1/V )k − (1 − V2/V )k + (1 − (V1 + V2)/V ))k (1)

This is the probability of obtaining at least one random marker in each of
the two regions, knowing the volumes V1 and V2 of the two regions, the total
volume V of the image and the number of markers k. It is seen from equation 1
that the probability p increases with the volume of the grain, that may cause a
bias towards largest grains if there is a wide distribution of sizes in the image.

After the merging of all the nodes in the original minimum spanning tree,
the probability of all the edges of the tree is known. The result is projected from
the tree on the graph and from the graph on the image.

This approach provides uniform probability on each part of boundary be-
tween two regions, as illustrated on Fig. 1 (B). Therefore, the λ-flat zones are
useless and a simple threshold can be used for the segmentation Fig. 2 (B).

3 Multiscale Image Segmentation

The multiscale image segmentation process is based on a simple idea: estimate
the full granulometry of the image, using morphological openings, then use mul-
tiple stochastic watersheds with different numbers of markers for each size, and



finally combine them to get a segmentation that is pertinent for each size of
grains. For achieving this goal, a hierarchy on the boundaries of the stochas-
tic watershed is required. Many hierarchical segmentation algorithms have been
studied, as the waterfalls [3] or the P algorithm [4]. Here we introduce an ap-
proach similar to the one used for the computation of the waterfall: the merging
of the watersheds basins using a minimum spanning tree [5].

3.1 Hierarchy on Boundaries

Each boundary is an edge in the adjacency graph. For a non-multiscale graph-
based stochastic watershed, a fixed threshold is efficient. So, a first approach
for constructing a hierarchy on the edges of the adjacency graph is to use a
threshold. All the edges with a probability less than a given value t are removed
from the graph. With t ∈ [0, 1], a complete hierarchy is obtained [9].

This approach is fast and easy to compute, but, for a large value of t the
remaining edges are not exploitable as boundaries for a segmentation. The re-
moval of edges implies the removal of boundaries and therefore the merging of
regions in the images. This process changes the probability of the boundaries
of the remaining regions if we iterate the segmentation. This phenomenon is ig-
nored with a fixed threshold. As seen on Fig. 2 (B), some over-segmented grains
will disappear by a simple trheshold.

Working with a graph, it is possible to update the probability of the bound-
aries of the remaining regions at each edge deletion with the following iterative
algorithm [9]:

– While the MST has at least 2 vertices.

• In the MST, the edge e with the lowest probability is chosen.
• The edge e is deleted and the adjacent vertices are merged.
• The probability of the edges incident to the merged vertex is updated,

using Eq. 1 and the new volume of the vertex.

This leads to better hierarchy on boundaries. As seen on Fig. 3, with the
threshold approach some over-segmented grains disappear easily, while this prob-
lem is solved with the merging algorithm.

3.2 Granulometry-Driven Multiscale Approach

In order to get a pertinent segmentation starting from a highly over-segmented
image, we can introduce constraints in the merging process. In the present case,
the first step of the approach is to estimate the full granulometry of the image,
using morphological openings. For fast computations, we use a rhombicuboc-
tahedron as structuring element and we work on the binarized (thresholded)
image. Gaussian noise, border effects and the shape of the structuring element
leads to a few errors on the granulometry, as seen on Fig. 4, but they will not
induce errors in the segmentation process.
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Fig. 3. (A) Probability density function of contours on a 3D material R1, computed
with a graph-based approach (detail of a slice). (B), (C), (D): hierarchy on boundaries
using increasing thresholds. (A), (E), (F), (G), (H): hierarchy on boundaries using the
merging algorithm, step 0 is (A).

From the granulometry, a small number of classes are chosen. A good ap-
proach for this choice is maximising the interclass variance. For our sample ma-
terial R1, we uses 3 classes: radius [13,18], radius [6,13] and radius [1,5]. The total
volume of the grains in each class will be denoted v(x). The number of grains in
each class is deduced from v(x) and is denoted n(x). It is used to generate the
corresponding number of markers in the calculation of the probability.

Then, the standard watershed is computed from the local minima of the gra-
dient. From this watershed, the adjacency graph is constructed and a minimum
spanning tree is extracted.

The first class is chosen. The stochastic watershed is computed with a number
of markers equals to n(1). In our 3D example (material R1), 417 markers are
needed. Based on this stochastic watershed, a first hierarchy on boundaries is
computed with the merging algorithm. For each step i of the hierarchy, the
granulometry of the corresponding segmentation is computed (vi(1)).

In the full hierarchy, there is a size step i∗ which minimises the difference
|vi(1) − v(1)|. In our example, i∗ = 40 (Fig. 11 and Fig. 5). This step is used
for the segmentation of the grains in the first class. All the segmented grains
are removed from the image and added to the background mask. The minimum
spanning tree is updated and the next class is chosen.

The same process is applied to all the classes. When no more class are left,
all the segmentations are combined together. This provides the final result il-
lustrated on Fig. 2 (C) and Fig. 12. The main lines of the multiscale image
segmentation process are summarized on Fig. 6.
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Fig. 4. Input granulometry of the random material R1 and granulometry measured on
the thresholded image from morphological openings. On x axis, the radius, and on y

axis the volume fraction of grains with this radius (in percent).
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Fig. 5. The segmentation of the random material R1 (slice). Results for the class 1 on
steps 1 (A), 20 (B) and 40 (C).

4 Validation

4.1 Random Model

For the validation, we use a simple random model. We generate 7560 random
discrete spheres. The distribution of the radius of the spheres is fixed and is given
on Fig. 4. The centres of the spheres are uniformly distributed in a cubic volume
of size 300×300×300 with a rejection sampling algorithm (acceptance-rejection
method). Two spheres cannot overlap more than a given threshold (fixed to
2 voxels). Spheres have non-uniform grey values, and show a visible boundary
generating information in the gradient image. The volume fraction of the grains
on the sample is 0.432. A strong Gaussian noise is finally added. A slice of the
simulated material and of the corresponding binary mask is illustrated on Fig. 7.
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Fig. 6. The main steps of the multiscale image segmentation process.

4.2 Microtomographic Images

Our second sample is an X-ray microtomographic image provided by the CEA
Gramat. The image was generated at with a Skyscan 1172 high-resolution micro-
CT. We are operating on a 954 × 243 × 243 subimage. It is a solid propellant
sample with fragmented grains due to a mechanical impact. A voxel is 1.80µm.
The original diameter of the grains is 400 µm, but there are many small frag-
ments. A slice is shown on Fig. 8. Results of the segmentation are illustrated on
Fig. 10 and Fig. 9, where it is clear that the multiscale approach overcomes the
standard stochastic watershed algorithm.

5 Conclusion

On both the simulated image and the X-ray microtomographic image, our mul-
tiscale approach provides a good segmentation (it is essential to use a ”volume”
weighted granulometry, all our attempts with a ”number” granulometry being
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Fig. 7. (A) Random material R1 with a strong Gaussian noise and a wide grain size
distribution (slice). (B) The binary mask for material R1 (slice), the threshold is cal-
culated via the maximization of the interclass variance.

Algorithm Image Time

Stochastic Watershed Random material R1 1h 36m 36s
Propellant (microtomographic) 3h 9m 21s

Graph-Based Stochastic Watershed Random material R1 5m 11s
Propellant (microtomographic) 14m 9s

Multiscale Image Segmentation Random material R1 9m 22s
Propellant (microtomographic) 25m 7s

Table 1. Computational cost of the stochastic watershed, the graph-based stochastic
watershed and our multiscale image segmentation approach. Times are give on a 3.00
GHz Pentium 4.

unsuccessful, due to its inherent sensitivity to noisy data). On the simulation,
there is no over-segmentation for large grains, and the small grains are present
as illustrated on Fig. 2 (C). On the microtomographic image, some of the large
grains are over-segmented, but most of the small fragments are present and the
results are better than the original stochastic watershed approach as illustrated
on Fig. 10.

The granulometry of the segmented image fits to the morphological granu-
lometry of the input images, since it was used as a constraint in the merging
process (Fig. 12 and Fig. 9).

This new segmentation technique, combining an iterative probability-based
merging of boundaries and a size distribution constraint, is very robust with
respect to the noise contained in the image, without the necessity to apply a
filter that would destroy the smallest grains. In addition, the segmentation is fully
non-parametric, since at every step the required parameters are automatically
deduced from the image.

Due to the graph approach, the process is much faster than the original
stochastic watershed, as summarized on Tab. 1.

Finally, it is possible to generalize the process to multi-criteria segmenta-
tion, using any other measurement tool as a constraint during the multiscale
segmentation.



Fig. 8. Image E1: a 3D X-ray microtomographic image of a fragmented granular ma-
terial and its binarization by maximisation of the interclass variance (slice).
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Fig. 9. Morphological granulometry of the X-ray microtomographic image of a frag-
mented granular material and granulometry of the final segmented image. On x axis,
the diameter (µm), and on y axis the volume fraction of grains with this diameter.
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Fig. 10. Segmentation of the X-ray microtomographic image of a fragmented granular
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Fig. 11. Morphological granulometry of the random material R1 and granulometry
obtained at different steps of the hierarchy. The best result is step 40.
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Fig. 12. Morphological granulometry of the random material R1 and granulometry of
the final segmented image.
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