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Abstract

This paper describes Robinson’s (1988) double residual semipara-
metric regression estimator and Hardle and Mammen’s (1993) speci-
fication test implementation in Stata. Some simple simulations illus-
trate how this newly coded estimator outperforms the already available
semiparametric plreg command.
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1 Introduction

The objective of this paper is to present the implementation in Stata of
Robinson’s (1988) double residual semiparametric regression estimator. Also,
to check if the nonparametric part of the relation may be approximated by
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a polynomial functional form, we introduce Hardle and Mammen’s (1993)
specification test as an option in the programmed estimator. We also briefly
describe this test.

The structure of the paper is the following: in Section 2, Robinson’s
(1988) semiparametric regression estimator and Hardle and Mammen’s (1993)
specification test are described. In Section 3, the implemented Stata com-
mand (semipar) is presented. Some simple simulations assessing the per-
formance of the estimator and of the test are performed in Section 4. In
Section 5, we illustrate the use of the semipar command with an empirical
application. Section 6 concludes.

2 Estimation method

2.1 Robinson’s (1988) semiparametric regression estimator

Consider a general model of the type

yi = θ0 + xiθ + f(zi) + εi, i = 1, ..., N (1)

where yi is the value taken by the dependent variable for individual i, xi

is the row vector of characteristics for individual i, θ0 is a constant term and
εi is the disturbance assumed to have zero mean and constant variance σ2

ε .
Variable z is an explanatory variable that enters the equation nonlinearly
according to a non-binding function f . This model can be estimated using
Robinson’s (1988) double residual methodology that starts by applying a
conditional expectation to both sides of (1). This leads to

E (yi|zi) = θ0 + E (xi|zi) θ + f(zi) i = 1, ..., N (2)

By subtracting (2) from (1), we have

yi − E (yi|zi) = (xi − E (xi|zi)) θ + εi i = 1, ..., N (3)

If the conditional expectations are known, parameter vector θ can easily
be estimated by fitting (3) by ordinary least squares. If they are unknown,
they have to be estimated by calling on some consistent estimators yi =
my(zi) + ε1i and xki = mxk

(zi) + ε2ki, where k = 1, ...,K is the index of the
explanatory variables entering the model parametrically. Robinson’s (1988)
double residual estimator is hence the OLS estimation of model

yi − m̂y(zi) = (xi − m̂x(zi)) θ + εi i = 1, ..., N (4)

where xi − m̂x(zi) is the row-vector of the differences between each ex-
planatory variable xki and the fitted conditional expectation of xki given
zi.
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The estimated coefficients vector is therefore

θ̂ =

(

∑

i

(xi − m̂x(zi))
′ (xi − m̂x(zi))

)

−1
∑

i

(xi − m̂x(zi))
′ (yi − m̂y(zi))

(5)
with variance (if errors are i.i.d)

V ar
(

θ̂
)

= σ2

ε

(

∑

i

(xi − m̂x(zi))
′ (xi − m̂x(zi))

)

−1

(6)

where σ2
ε is the variance of the error term. If errors are non i.i.d., stan-

dard sandwich and cluster variance formulas can be used.
Having estimated parameter vector θ, it is now possible to fit the nonlin-

ear relation between zi and yi by simply estimating equation (7) presented
below nonparametrically.

yi − xiθ̂ = θ0 + f(zi) + εi, i = 1, ..., N (7)

2.2 Hardle and Mammen’s (1993) test

It is sometimes suggested that nonparametric functions may be approxi-
mated by some parametric polynomial alternative. To test for the appro-
priateness of such an approximation, Hardle and Mammen (1993) propose
a statistic which compares the nonparametric and parametric regression fits
using squared deviations between them. The test-statistic is:

Tn = N
√
h

N
∑

i=1

(

f̂(zi)− f̂(zi, θ)
)2

π(·) (8)

where f̂(zi) is the nonparametric function estimated in (7), f̂(zi, θ) is an
estimated parametric function and h is the bandwidth used. π(·) is a weight
function. To obtain critical values for the test, Hardle and Mammen (1993)
suggest to call on simulated values obtained by wild bootstrap. Obviously,
an absence of rejection of the null (i.e. “accepting” the parametric model)
means that the polynomial adjustment is at least of the degree that has been
tested.

We implemented this estimator in Stata under the command semipar

which is described below.

3 The semipar command

The semipar command fits Robinson’s double residual estimator in the case
of a unique variable entering the model nonparametrically. The default ker-
nel regression used for all stages is a gaussian kernel weighted local polyno-
mial fit. This kernel is of order 2. The optimal bandwidth used minimizes
the conditional weighted mean integrated squared error.
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The general syntax for the command is:

semipar varlist
[

if
] [

in
]

, nonpar(string)
[

generate(string)

partial(string) nograph ci level(#) title(string) ytitle(string)

xtitle(string) robust cluster(varname) test(#) nsim(#)

weight(varname) degree(#)
]

The first option, nonpar, is compulsory and necessary to declare which
variable enters the model nonparametrically. All other choices are optional.
The first one, generate, reproduces the “nonparametrically” fitted depen-
dent variable. The user chooses the name of this new variable by defining it
in parentheses. Similarly, the partial option is needed to generate a new
variable that contains the parametric residuals (i.e. the left-hand side of
equation (7)). The option nograph will be used if the user does not want
the graph of the nonparametric fit of the variable set in nonpar to appear.
The ci option allows to visualize the confidence interval around the nonpara-
metric fit, while the level option sets the level of confidence for inference
(by default set to 95%). The options title, ytitle and xtitle are used to
indicate respectively the title and the labels of the axes of the graph illus-
trating the nonparametric relation between the dependent variable and the
variable defined in the nonpar option. The robust and cluster options call
for standard errors of the estimated parameters that are respectively resis-
tant to heteroskedasticity and clustered errors. The test option implements
Hardle and Mammen’s (1993) statistic to test whether the nonparametric
fit could be approximated by a polynomial fit, the order of which must be
set by the user. For the sake of clarity, we rescaled the statistic in such a
way that it can be compared with the quantile of a Normal distribution.
Note however that the test is not normally distributed. The nsim option
defines the number of bootstrap replicates used to get inference. Its default
value is set to 20. The weight option allows to introduce a weighting vector
for the test (i.e. π(·) in equation (8)). By default, this weighting vector
is set to ιN/N with ιN a unit vector of dimension N . Finally, the degree

option allows the user to specify the degree of the local polynomial fit used
to nonparametrically estimate the regressions. By default, it is set to 1.

To assess the performance of the programmed estimator, in the next
section we present some simple simulations in which we compare this esti-
mator with the already available plreg command. The latter implements
Yatchew’s (1998) difference estimator where the nonparametric part in (1)
is partialled out by differencing rather than by removing the conditional
expectations. Since the highest efficiency of Yatchew’s (1998) estimator is
attained by a differencing of order 10, we will use this differencing order as
a benchmark.
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Table 1: Comparison between semipar and plreg

Bias x2 Bias x3 MSE x2 MSE x3
plreg -0.4695 -0.1039 0.2208 0.0111
semipar -0.0435 -0.0183 0.0022 0.0007

4 Simulations

The simulation setup is the following. To begin, we generate (for a sample of
300 observations) two explanatory variables x2 and x3 from two independent
N(0, 1). An additional random variable x1 is generated from a discrete
Uniform distribution on [−10, 10]. This sample design remains unchanged
for all simulations. Then, for each replication, we generate an error term
e from a standard normal and create variable y according to DGP y =
x1 + x2

1
+ x2 + x3 + e. We run the semipar and plreg estimators for each

replicate and Table 1 reports both the bias and MSE of the coefficients
associated with x2 and x3. We carry out 1000 simulations. The variable that
enters the equation nonparametrically is generated from a discrete Uniform
distribution on purpose to illustrate the fragility of plreg with respect to
this kind of data. Robinson’s (1988) estimator, that is based on partialling
out the nonparametric part removing conditional expectations rather than
by differencing, behaves much better.

In this setup, Robinson’s (1988) estimator leads to smaller biases than
Yatchew’s (1998) differencing estimator. From equation (7), this also implies
that the nonparametric fit is better estimated by semipar than by plreg.

To illustrate the fitting performance of the proposed estimation proce-
dure, we generate four samples according to the following DGPs:

a) y = x2 + x3 + e

b) y = x1 + x2 + x3 + e

c) y = x1 + x2
1
+ x2 + x3 + e

d) y = x1 − x2
1
− x3

1
+ x2 + x3 + e.

In Figure (1), we present the scatter plots, the non-parametric fit (thick
plain line) and the true DGP (red dashed line) related to the four DGPs
described above. As expected, the results are unambiguous.

In the absence of any relation between x1 and y (panel a), no clear pat-
tern emerges and the non-parametric curve lies close to the horizontal line
(the true DGP). In the three other cases (panels b, c and d), the nonpara-
metric estimation of the relation matches the true functional form quite
well.

As mentioned in the previous section, the Tn statistic assesses the ade-
quacy of a polynomial adjustment compared to a nonparametric fit. Table
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Figure 1: Non-parametric fit of the four DGPs
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Table 2: Performance of the comparison Test Tn

Order tested
0 1 2 3

0 0.053 0.06 0.055 0.039
True 1 1 0.064 0.055 0.021
Order 2 1 1 0.06 0.062

3 1 1 1 0.066

Figures correspond to rejection rates of the

test.

2 presents the performance of the test for the DGPs described above. The
rows indicate the order of the generated polynomial while the columns spec-
ify the order of the polynomial that has been tested. Thus, the diagonal
(and the upper triangle) elements are the simulated sizes of the test while
elements below the main diagonal are some measure of power. To construct
this table we replicated the DGPs 1000 times. Each time a new error term
is randomly drawn and a new dependent variable is generated (the design
space remains unchanged). Inference for the test is based on 100 bootstrap
replications. We observe that the test has good rejection rates when the
order of the polynomial adjustment tested is lower than the generated one.
Besides, the size of the test (whose theoretical value is set at 5%), is very
close to its nominal value.

5 Example

To illustrate the usefulness of this semiparametric model in empirical ap-
plications, we call on a dataset used by Wooldridge (2002) that studies the
effects of an incinerator location on housing prices. The data are for houses
that were sold during the year 1981 in North Andover, MA; 1981 was the
year construction began on a local garbage incinerator. The dependent vari-
able is the log of price of houses (lprice) and the variable of interest is the
distance from the house to the incinerator measured in feet and expressed
in logs (ldist). To control for confounding effects, the author suggest to
include the log of interstate distance (linst), the log of the square footage of
the house (larea), the log of the lot size in square feet (lland), the number
of rooms (rooms), the number of bathrooms (baths), and the age of the
house (age) as additional covariate. However, he also asserts that the effect
of the log of the interstate distance is not linear and proposes to consider
it squared. In this application we carry out this exercise again but do not
impose any functional form to the log of interstate distance and estimate
the model semiparametrically. We then check if the square approximation
is appropriate. More precisely, we run the following command lines:
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. use http://fmwww.bc.edu/ec-p/data/wooldridge/HPRICE3

. semipar lprice ldist larea lland rooms baths age, nonpar(linst) xtitle(linst) ci

Number of obs = 321
R-squared = 0.4437
Adj R-squared = 0.4331
Root MSE = 0.2646

lprice Coef. Std. Err. t P>|t| [95% Conf. Interval]

ldist .1083941 .0640184 1.69 0.091 -.0175636 .2343519
larea .4887243 .0668208 7.31 0.000 .3572527 .6201959
lland .0866459 .036037 2.40 0.017 .0157423 .1575495
rooms .0436451 .0221781 1.97 0.050 9.12e-06 .087281
baths .0806555 .0335251 2.41 0.017 .014694 .146617

age -.003481 .0005436 -6.40 0.000 -.0045506 -.0024114

The results of the parametric part (see Stata output above) show that the
distance from the incinerator does not seem to be significant (the t-stat
associated with the coefficient is smaller than the critical value of 1.96).

As far as the effect of the log of the interstate distance is concerned,
Figure (2) shows that it is clearly nonlinear.

4
4.

5
5

5.
5

6

7 8 9 10 11
linst

Figure 2: Nonlinear link between the price and interstate distance (in logs)

8



Indeed, when the interstate distance increases, the effect of house prices
first increases and then decreases. When we check if the quadratic approxi-
mation proposed by Wooldridge (2002) is appropriate, it turns out that this
assumption is clearly rejected by Hardle and Mammen’s (1993) test (see be-
low). However, when we compare it with a polynomial adjustment of degree
3, the null is no longer rejected which means that instead of a semipara-
metric model, a pure parametric model with a polynomial fit of degree 3 of
linst could be used.

The two Stata outputs below summarize results of the Hardle and Mam-
men (1993) test when the polynomial adjustment tested is of order 2 or 3
respectively. These outputs do not present the results concerning the para-
metric part since they are the same as in the output presented above.

. use http://fmwww.bc.edu/ec-p/data/wooldridge/HPRICE3

. semipar lprice ldist larea lland rooms baths age, nonpar(linst) nograph test(2)
> nsim(100)

Simulation the distribution of the test statistic

bootstrap replicates (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

H0: Parametric and non-parametric fits are not different
-------------------------------------------------------
Test statistic T: 2.762337
Critical value (95%): 1.959964
P-value: 0

. use http://fmwww.bc.edu/ec-p/data/wooldridge/HPRICE3

. semipar lprice ldist larea lland rooms baths age, nonpar(linst) nograph test(3)
> nsim(100)

Simulation the distribution of the test statistic

bootstrap replicates (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

H0: Parametric and non-parametric fits are not different
-------------------------------------------------------
Test statistic T: .9705025
Critical value (95%): 1.959964
P-value: .3

6 Conclusion

In econometrics, semiparametric regression estimators have become stan-
dard tools for applied researchers. In this paper, we present Robinson’s
(1988) double residual semiparametric regression estimator and Hardle and
Mammen’s (1993) specification test. We then present the Stata codes we
created to implement them in practice. Some simple simulations and an
empirical application to illustrate the usefulness of the procedure are also

9



shown.
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