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Abstract.  We surveyed the Owen Fracture Zone at the boundary between the 15 

Arabia and India plates in the NW Indian Ocean using a high-resolution multibeam 16 

echo-sounder (Owen survey, 2009) for search of active faults. Bathymetric data 17 

reveal a previously unrecognized submarine fault scarp system running for over 18 

800 km between the Sheba Ridge in the Gulf of Aden and the Makran subduction 19 

zone. The primary plate boundary structure is not the bathymetrically high Owen 20 

Ridge, but is instead a series of clearly delineated strike-slip fault segments 21 

separated by several releasing and restraining bends. Despite abundant sedimentary 22 

supply by the Indus River flowing from the Himalaya, fault scarps are not obscured 23 

by recent deposits and can be followed over hundreds of kilometres, pointing to very 24 

active tectonics. The total strike-slip displacement of the fault system is 10-12 km, 25 

indicating that it has been active for the past ~3 to 6 million years if its current rate 26 

of motion of 3 ±1 mm year-1 has remained stable. We describe the geometry of this 27 

recent fault system, including a major pull-apart basin at the latitude 20°N, and we 28 

show that it closely follows an arc of small circle centred on the Arabia-India pole of 29 

rotation, as expected for a transform plate boundary. 30 

31 
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1.  Introduction 31 

 The Arabia-India plate motion is currently accommodated along the Owen 32 

Fracture Zone (OFZ) in the NW Indian Ocean (Wilson, 1965; Matthews, 1966; 33 

Whitmarsh, 1979; Gordon and DeMets, 1989). The OFZ belongs to the large strike-34 

slip plate boundaries like the San Andreas, Dead Sea, North Anatolian and Alpine 35 

faults in the continental domain, and the Macquarie Ridge in the oceanic domain 36 

(Mann, 2007; Weber et al., 2009; Stein et al., 1997; Le Pichon et al., 2005; Massel et 37 

al., 2000; Lebrun et al., 2003). The OFZ is marked by a moderate seismicity and by a 38 

prominent bathymetric ridge, the Owen Ridge, up to 2,000-m high with respect to 39 

the surrounding seafloor (Fig. 1). The Owen Ridge acts as a barrier to turbidites of 40 

the Indus deep-sea Fan and prevents their sedimentation towards the west into the 41 

Owen Basin (Mountain and Prell, 1990; Clift et al., 2001). As indicated by dextral 42 

strike-slip focal mechanisms of earthquakes along the OFZ (Quittmeyer and Kafka, 43 

1984; Gordon and DeMets, 1989; Fournier et al., 2001), the Arabian plate moves 44 

northwards slightly faster than the Indian plate at a differential rate of 2 to 45 

4 mm year-1 estimated independently from geodetic (Fournier et al., 2008b) and 46 

geological (DeMets et al., 1990, 1994, 2010) data. We recently surveyed the OFZ 47 

onboard the R/V Beautemps-Beaupré (Owen survey, 2009) using a high-resolution 48 

deep-water multibeam echo-sounder and a 3.5 kHz sub-bottom seismic profiler to 49 

identify surficial traces of active faults and characterize the geometry of the fault 50 

system in relation with its kinematics. Magnetic and gravity measurements were also 51 

routinely acquired. 52 

 53 

2. Geometry of the plate boundary 54 
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 Multibeam bathymetric data reveal an outstanding active submarine fault system 55 

between the Beautemps-Beaupré Basin to the south (Fig. 1; Fournier et al., 2008a) 56 

and the Dalrymple Trough to the north (Edwards et al., 2008). The fault scarps are 57 

well preserved on the seafloor and run at the base of the east-facing escarpment of 58 

the Owen Ridge, except at its southern extremity and in its central part where the 59 

faults crosscut the ridge (Fig. 1). The fault system is remarkably linear and focused 60 

on a single strand along much of its length. Six main fault segments can be 61 

identified, apparently uninterrupted over lengths between 60 and 180 km (Fig. 2). 62 

The overall geometry of the fault system hereafter described, including releasing and 63 

restraining bends, pull-apart basins localized on releasing bends, and basins ending 64 

the fault system, is consistent with a dextral strike-slip motion. 65 

 We used an oblique Mercator projection with the Arabia-India pole of rotation as 66 

pole of projection to test if the trace of the OFZ follows a small circle of the Arabia-67 

India motion (Fig. 2a). In this coordinate system, transform faults should be 68 

horizontal straight lines if they strictly follow small circles. The trace of the OFZ is 69 

generally parallel to a small circle and is diverted from it between 16.5°N and 70 

20.3°N, where a system of adjacent releasing and restraining bends constituting a 71 

paired bend (Mann, 2007) is observed. The releasing bend is made up of two pull-72 

apart basins, a small rhomboidal basin at 18.6°N (see Fig. 1a) and a larger basin at a 73 

change in trend of the OFZ at 20°N (see section 4). Between 16.5°N and 18°N, the 74 

fault trace slightly deviates from the direction of the interplate slip vector, leading to 75 

the development of a gentle restraining bend. Minor compressional structures 76 

adjacent to the restraining bend are deduced from the seafloor morphology east of 77 

the fault and from the observation of folds and reverse faults in the recent deposits 78 
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on 3.5 kHz profiles. At the northern end of the OFZ, a second restraining bend 79 

associated with folds on the Indian plate side is observed. 80 

 To further test the transform motion of the OFZ, we determined the location of 81 

the Arabia-India pole from the great circles perpendicular to the fault. As shown in 82 

Figure 2b, the great circles perpendicular to the fault strike, measured out of 83 

releasing or restraining bends, intersect close to the rotation pole independently 84 

determined from GPS and seismicity data (Fournier et al., 2008b) , and close to the 85 

best-fitting Arabia-India pole determined from geological data (fault azimuths; 86 

DeMets et al., 2010). The closure-enforced MORVEL Arabia-India rotation pole 87 

(DeMets et al., 2010), which is located much farther to the east (3.2°S, 116.6°E), 88 

predicts right-lateral slip parallel to the OFZ between 15°N and 18.5°N, becoming 89 

more and more extensional north of 18.5°N (Fig. 2a). Thus, recent kinematic models 90 

agree that the present-day OFZ is a pure strike-slip plate boundary over ~400 km 91 

between 15°N and 18.5°N and that, north of 18.5°N, the motion is dominantly 92 

strike-slip, but a small component of boundary-normal extensional motion cannot be 93 

excluded. MORVEL solution requires a partitioning mechanism north of 18.5°N to 94 

accommodate the predicted extensional component of boundary-normal motion, 95 

since segments 4 and 5 are pure strike-slip (Fig. 2a). On the other hand, MORVEL 96 

prediction is pure strike-slip along segment 6, at the entrance of the Dalrymple 97 

horsetail, whereas our model would imply a small component of compression. Non 98 

strike-slip components, either extensional or compressional, are expected to be so 99 

small that, if distributed over a wide area, they may be difficult to recognize. 100 

 101 

3. Age of the active fault system 102 
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 The active fault system crosscuts the Owen Ridge and offsets it dextrally. The 103 

total displacement is well constrained between 10 and 12 km by two strike-slip 104 

offsets of morphologic features (Fig. 1a and b). A long-term extrapolation of the 105 

GPS-derived slip rate of the OFZ (3 ±1 mm year-1) would restore the observed offset 106 

in ~3 to 6 million years. The small finite offset therefore testifies that the present-107 

day fault system initiated recently, most probably during the Pliocene. 108 

 The reconstruction of the Arabia-India plate motion from the Somalia-Arabia and 109 

Somalia-India plate motion models (Merkouriev and DeMets, 2006; Fournier et al., 110 

2010), indicates that the OFZ rate of motion remained nearly stable since oceanic 111 

spreading initiated in the Gulf of Aden 20 Ma ago (Chamot-Rooke et al., 2009). This 112 

result implies that, before the development of the present-day fault system, the 113 

Arabia-India motion was accommodated by an older fault system, or ‘paleo OFZ’, 114 

inactive since ~3-6 Ma. 115 

 The development of the present-day fault system postdates the uplift of the 116 

southern and central parts of the Owen Ridge. The onset of uplift of the southern 117 

Owen Ridge, related to vertical motions on the paleo OFZ (Weissel et al., 1992), is 118 

recorded by the transition from turbidites to pelagic sediments and is precisely dated 119 

by drilling of the Early Miocene (19 Ma; Whitmarsh et al., 1974; Shipboard Scientific 120 

Party, 1989). The onset of uplift of the Owen Ridge is synchronous of the initiation of 121 

seafloor spreading in the Gulf of Aden, constrained by the age of the oldest magnetic 122 

anomaly identified (An 6, 19.7 Ma; Fournier et al., 2010). 123 

 124 

4. Tectonic record in the 20°N pull-apart basin 125 

 The main releasing bend along the OFZ is marked by a 90-km-long pull-apart 126 

basin at the latitude of 20°N (Fig. 3). The 20°N-Basin corresponds to a right 127 
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step-over of 12 km between two master strike-slip faults trending N25°E south of the 128 

basin and N30°E north of it. The dimensions of the 20°N-Basin (90 x 12 km) are of 129 

the same order than those of the Dead Sea pull-apart basin (132 x 16 km; Ten Brink 130 

et al., 1993) along the Dead Sea strike-slip fault on the western side of the Arabian 131 

plate. The 20°N-Basin becomes wider (25 km) and deeper (4050 m) to the north, 132 

where it is bounded to the west by a master normal fault scarp with a vertical throw 133 

of 500 m, and to the east by three normal fault scarps with throws between 100 and 134 

300 m stepping down towards the basin axis (profile P2 in fig. 3). 135 

 The spindle shape of the 20°N-Basin can be compared to pull-apart basins of 136 

sandbox analogue models formed in pure strike-slip or transtensional setting (Smit et 137 

al., 2008; Wu et al., 2009). The overall geometry of the 20°N-Basin compares closely 138 

with pull-aparts developed in pure strike-slip regime (Wu et al., 2009). In particular, 139 

the 20°N-Basin does not exhibit margins of en-echelon oblique-extensional faults, 140 

typical of transtensional basins. This observation further confirms that the OFZ is a 141 

pure strike-slip feature. 142 

 The 20°N-Basin is directly supplied in turbidity-current deposits by an active 143 

channel of the Indus Fan (the mouth of the Indus river is 800 km away towards the 144 

northeast), which deeply incises the recent deposits (Fig. 3). The channel displays a 145 

moderate sinuosity, compared with nearby highly meandering abandoned channels, 146 

which attests of a resumption of erosion on a steeper gradient. Similar changes in 147 

gradient are evidenced by abandoned channels, raised and tilted in the vicinity of the 148 

active faults (Fig. 3), indicating local tectonic uplift provoked by the fault motion. The 149 

trace of the active faults bounding the 20°N-Basin is not obscured by turbiditic 150 

deposits despite the slow rate of slip of the OFZ. The preservation of normal fault 151 

scarps bounding the basin indicates that the rate of vertical (dip-slip) motion along 152 
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the faults has exceeded the rate of deposition and burial by the sediments of the 153 

Indus Fan. The tectonic process is therefore dominant over deposition. 154 

 Sub-bottom seismic profiles (3.5 kHz) across the 20°N-Basin show that the basin 155 

is asymmetric with a turbidite sequence that becomes thicker towards the north, 156 

where the present-day depocentre of the basin is located (profile P1 in fig. 3). 157 

Turbiditic currents feeding the 20°N-Basin could be related to the regional seismicity 158 

and/or to the activity of the Indus River in relation with sea-level variations. The 159 

basin could thus preserve a record of the seismic activity of the OFZ in its sediments, 160 

and possibly of the seismicity of the Makran subduction zone.  161 

 162 

5. Terminations of the Owen Fracture Zone 163 

 At its both tips, the OFZ terminates into extensional structures associated with 164 

basins. To the north, the OFZ ends into the Dalrymple Trough by a system of 165 

regularly spaced normal faults that branch from the master strike-slip fault and form 166 

a spectacular 30-km-wide horsetail splay (Fig. 4a). The normal faults delineate a 167 

series of deep basins (up to 4000 m deep), which constitute the southern part of the 168 

Dalrymple Trough. The horsetail splay is indicative of slip dying out gradually 169 

towards the northern tip of the OFZ. To the south in contrast, the OFZ terminates 170 

abruptly into the Beautemps-Beaupré Basin, a 50-km-wide and 120-km-long basin 171 

bounded by two N70-N90°E-trending conjugate master normal faults (Fig. 4b; 172 

Fournier et al., 2008a). The basin is characterized by a strong negative gravity 173 

anomaly in relation with a thick sedimentary infill of at least 3-4 km. Recent works on 174 

the Arabia-India-Somalia triple junction showed that the Arabia-India motion was 175 

transferred to the west of the Beautemps-Beaupré Basin along a dextral shear zone, 176 

which joins southward the Sheba Ridge axis (Fournier et al., 2010). Numerous 177 
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landslide scars are observed on the slopes of the Beautemps-Beaupré Basin and the 178 

southern Owen Ridge (Fig. 4b and 4c). Giant landslides, probably triggered by 179 

earthquakes along the active fault system, massively impinge the western flank of 180 

the Owen Ridge and were evacuated westward in the Owen Basin. Because of their 181 

huge volume, these mass failures represent a potential source of tsunami for the 182 

nearby coasts of Oman (Okal et al., 2006; Donato et al., 2009). 183 

 184 

6. Conclusion 185 

 Our work sheds light on a previously unknown 800-km-long active fault system 186 

associated with giant landslides at the Arabia-India plate boundary. These results will 187 

motivate a reappraisal of the seismic and tsunami hazard assessment in the NW 188 

Indian Ocean (Okal and Synolakis, 2008; Heidarzadehet al., 2008a). We show that 189 

the OFZ is a pure strike-slip boundary between the Arabian and Indian plates. The 190 

geometry of the active fault system is probably controlled both by the pre-existing 191 

faults of the paleo OFZ and by the topography of the Owen Ridge since the 20°N-192 

Basin is located at the main threshold of the ridge. Extrapolating the present-day slip 193 

rate of the OFZ for 3-6 million years accounts for its total displacement. The initiation 194 

of strike-slip motion along the present-day fault system does not coincide with any 195 

tectonic event recorded onland in Oman (Lepvrier et al., 2002; Fournier et al., 2004, 196 

2006), but is coeval with a major tectonic reorganization of the Arabia-Eurasia 197 

collision from western Turkey to Iran between 3 and 7 Ma (Axen et al., 2001; Allen 198 

et al., 2004; Shabanian et al., 2009) deduced from the extrapolation of short-term 199 

deformation rates. It is also synchronous with the initiation of extrusion of Anatolia 200 

ca. 5 Ma (Armijo et al., 1999) and the onset of seafloor spreading in the Red Sea 4-5 201 

million years ago (Cochran and Karner, 2007). The lateral transport of the Anatolian 202 



 10 

lithosphere out of the collision zone could be at the origin of this widespread 203 

reorganization, including initiation of the present-day fault system at the Arabia-India 204 

plate boundary. 205 
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Figure captions 215 

 216 

Figure 1.  Active fault scarps of the OFZ mapped with a multibeam echo-sounder 217 

can be followed over 800 km from the Beautemps-Beaupré Basin to the Dalrymple 218 

Trough (white arrows). The OFZ is bounded to the east by the Indian plate oceanic 219 

floor of Paleocene age formed at the Carlsberg Ridge (Chaubey et al., 2002; Royer et 220 

al., 2002), overlain by thick deposits (up to 12 km) of the Indus Fan (the second 221 

largest deep-sea fan), and to the west by the Owen Basin floored with oceanic crust 222 

of poorly constrained age between Late Jurassic and Eocene (Whitmarsh, 1979; 223 

Mountain and Prell, 1990; Edwards et al., 2000). The Owen Ridge is made up of 224 

three distinct portions separated by two thresholds at 18.2°N and 20°N. The 225 

southern ridge is asymmetric with a steep east-facing scarp and a gentle western 226 

flank, whereas the central ridge displays a dome morphology elongated in the 227 

direction of the Owen fracture zone. The southern and central ridges do not bear any 228 

magnetic signal. In contrast, the northern ridge, which rises ~2500 m above the 229 

surrounding seafloor and is topped by a flat platform at depths of 400 m below 230 

present sea level, is characterized by high amplitude magnetic anomalies attesting of 231 

a volcanic origin. It corresponds to the Qalhat Seamount, a volcanic guyot of 232 

probable Cretaceous age like the Little Murray Ridge in the Oman Basin (Edwards et 233 

al., 2000; Gaedicke et al., 2002; Ellouz-Zimmermann et al., 2007). a and b, Strike-234 

slip geomorphologic offsets of the active faults reach 10 to 12 km. 235 

 236 

Figure 2.  Two graphical tests confirm that the OFZ is a transform fault. a, On an 237 

oblique Mercator map where the pole of projection has been shifted to the Arabia-238 

India rotation pole (12.1°N, 76.2°E; Fournier et al., 2008b), the OFZ is aligned with 239 
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Eulerian parallels (black dashed line), as expected for a transform fault. Between 240 

16.5°N and 20.3°N, the fault trace is deviated from the horizontal reference line by a 241 

paired bend, but returns to it once the bend is passed. A small circle about the 242 

closure-enforced MORVEL Arabia-India rotation pole (blue dashed line; DeMets et al., 243 

2010) is parallel to an horizontal straight line south of 18.5°N and diverge 244 

increasingly from it north of 18.5°N. Six apparently uninterrupted fault segments are 245 

labelled from 1 to 6. b, Great circles perpendicular to the fault trace intersect near 246 

the Arabia-India rotation pole (12.1°N, 76.2°E) shown by a red star with its 95% 247 

confidence ellipse. The best-fitting MORVEL Arabia-India pole is shown by an open 248 

circle (DeMets et al., 2010). The closure-enforced MORVEL Arabia-India pole (-3.2°N, 249 

116.6°E) and the GPS-based Arabia-India pole of Reilinger et al. (2006; 17.7°N, 250 

110.9°E) are located more than 30° toward the east. 251 

 252 

Figure 3.  The 20°N pull-apart basin is located at the main threshold of the Owen 253 

Ridge, south of the Qalhat Seamount. The basin is directly supplied in turbiditic 254 

deposits by an active channel of the Indus Fan. Two sub-bottom seismic profiles 255 

across the basin, along (P1) and perpendicular (P2) to its great axis, show that the 256 

turbiditic deposits, characterized on profiles by an alternation of thin highly reflective 257 

levels and thick transparent layers, are tilted towards the north due to motion of the 258 

border normal fault. White arrows indicate the master strike-slip faults.  259 

 260 

Figure 4.  a, The horsetail splay of the Dalrymple Trough developed in the northern 261 

tip-damage zone of the OFZ. Normal faults branch from the master strike-slip fault at 262 

low angles, curve progressively and become parallel to the maximum horizontal 263 

stress. b, Giant submarine landslides, probably due to strong ground motions from 264 
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earthquakes of nearby active faults, occurred on western flank of the Owen Ridge 265 

and are suspected to have generated tsunami (Heidarzadehet al., 2008b). c. 266 

Perspective view from the northwest of a multi-events generated landslide and 267 

related headwall collapses. This landslide removed up to 14 km3 of material from the 268 

pelagic cover of the Owen Ridge (Rodriguez et al., submitted to Marine Geology). 269 

Location in Figure 4b. 270 

271 
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