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ABSTRACT

This paper presents a new method of computing constant scallop height tool paths in 5-axis milling.
Indeed, usual iso-scallop tool path computation methods in 3-axis or 5-axis milling generate tool
path self-intersections, which prevent from reaching the required quality and productivity. The
proposed approach consists in following parallel planes in 5-axis milling to avoid self-intersection of
the tool path. The constant scallop height is guaranteed by modifying the machined strip width by
means of the orientation angles of tool axis (yaw and tilt angles). Resulting scallop height and
surface roughness are simulated using the N-Buffer method.
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1. INTRODUCTION
The manufacturing process of sculptured surfaces is an important issue in aeronautic, mould and die industries. This
process, more generally based on 3 or 5-axis end milling, consists in sweeping the surface to be machined by a tool. At
final, the process must produce parts respecting geometrical specifications, in a minimum machining time. In this
context, the machining strategy, which defines the sweeping directions, plays a major role.

To overcome the limits of common machining strategies (parallel planes or isoparameteric curves), which generate
over-quality of surface finish, iso-scallop strategy has been developed in 3-axis milling [6],[16],[18],[19] as well as in
5-axis milling [10-11],[13],[20]. With such strategies, the respect of the dicretization parameters specified by the user is
ensured in a uniform way over the whole surface. Geometrical deviations are thus uniformly distributed, which allows
forward a homogeneous polishing of the surface. Moreover, for a given tool geometry, tool path length is minimum
[18]. Therefore, iso-scallop height machining strategies are of a major interest. However, in the case of iso-scallop
strategies and unlike common strategies for which the feed direction is imposed by the strategy itself, the tool path
geometry cannot be predicted beforehand. Iso-scallop tool path generation is a deterministic calculation depending on
four parameters, which are the initial path, the tool geometry, the surface to be machined and the specified scallop
height. According to these parameters, the behavior and the distribution of the paths on the surface are different. It is
important to notice that the initial tool path necessary to computation is not necessarily the initial one during
machining.

In every published algorithm of the literature, iso-scallop tool path calculation relies on an initial trajectory Tp0,
arbitrarily selected on the surface. This trajectory is sampled in a set of tool postures Tp0,j. The algorithm is thus applied
to each tool posture Tpi,j with the objective of finding the posture Tpi+1,j of the adjacent tool path respecting given
constraints. The calculation of the complete tool path can be carried out by first looping on j, then on i, (pass by pass),
or either by first looping i then j. For instance, let us consider the 3-axis ball-end milling of a portion of sphere
connected to a plane with tangency continuity. The surface to be machined thus consists of a plane surface, a toroidal
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surface and a spherical surface. The tool path is calculated according to the algorithm proposed in [6],[19] based on
the Machining Surface model.

Fig. 1(a): loop in iso-scallop tool path. Fig. 1(b): loop in iso-scallop tool path.

In some cases the algorithm fails because of the geometry of the generated tool paths. A particular but foreseeable
situation is observed when the initial tool path belongs to the vertical plane passing through the top of the sphere (Fig.
1(a)). The tool posture, which exactly belongs to the transition curve between the torus and the sphere, follows this
curve and turns around indefinitely (figure 1a). The tool path thus becomes degenerated and it is not possible to
control the direction of the tool path, which depends on the orientation of the normal to the surface to be machined at
the considered point. Particularly, it depends on the projection of the surface normal in the machining direction [6,19].

Another problem occurs when the curvature radius of the tool path becomes smaller than the tool radius. In this case,
the envelope surface of the tool movement may present self- intersections (figure 1b) and the resulting tool path thus
contains loops. Hence, iso-scallop machining strategy loses all its interest as the tool sweeps several times the same
area, decreasing accordingly machining efficiency [16,18]. A solution is to remove loops due to self-intersections. Such
an approach is, for instance, used for pocket machining with a helical machining strategy [17]. All the techniques
allowing this operation are referenced in [14]. However, they generally involve tangency discontinuities on the
trajectory which are not acceptable within the context of High Speed Machining, [5,15].

To prevent previous problems, we propose a 5 axis milling iso-scallop strategy based on parallel planes. Rotation axes
can be considered as degrees of freedom allowing a constant scallop height between predefined parallel tool paths.
The interest of such a strategy is to avoid self-intersections by imposing beforehand tool paths’ geometry. However,
tool path length, which is roughly proportional to machining time, is no more optimal for machined strip width is not
maximal for each cutter location. Nevertheless, such a strategy may improve kinematical performances during
machining. Actually, classical iso-scallop algorithms provide tool paths the execution of which may be difficult at high
feedrates, as all axes of the machine tool are used. In the proposed approach, as parallel planes can be chosen parallel
to a specific plane of the machine tool, only 3 axes (two translations and one rotation) are used.

The paper is organized as follows. We first present the bi-parameterized surface model of tool paths we have
developed for sculptured surface machining. The algorithm for 5-axis iso-scallop tool path calculation along parallel
planes is next detailed. The efficiency of the algorithm is illustrated through an example for which classical iso-scallop
machining strategies failed.

2. BI-PARAMETRIZED SURFACE MODEL OF TOOL PATHS
The proposed algorithm is based on a surface representation of the machining tool path [4]. Concerning the general
case of 5-axis end milling using a filleted end cutter tool, a generic definition was proposed in [9].
In 5-axis machining, the tool axis orientation is specified by the user through two angles (θt, t) and (θn, n) in the local
coordinate frame (CC, f, n, t), where f is the tool feed vector, n the normal vector to the surface and t the tangent
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vector to the surface defined by t = f  n (Fig. 2). For each cutter location, a point locating the tool and a vector

orienting the tool axis must
be specified. Two surfaces are thus necessary to calculate the tool trajectory.
Let us consider rc and R, respectively, the corner radius and the tool radius. If CC is the contact point between the tool
and the surface to be machined, K is defined as the offset point of CC by a distance value equal to rc. When the tool is
set in position, the point K remains fixed. Therefore, points K and CL and the normal n allow positioning the tool and
define two surfaces: SG, the guiding surface and SO, the orientation surface (Fig. 2). The guiding surface SG is the locus
of the K point, with K = CC + rc . n. It is thus the offset surface of the nominal surface by a distance equal to the
corner radius rc. Therefore, the guiding surface does not depend on the machining strategy. The orientation surface SO

is the locus of the CL point with CL = CC + rc . n + R .v. Hence, the orientation surface gives the orientation of the
tool axis according to the considered machining strategy.

Fig. 2: The guiding and orientation surface in 5-axis milling.

The main advantage of the bi-parameterized surface model (also called the Machining Surface) in 5-axis milling is to
know the whole positions of a fixed point of the tool, the point K for instance, which makes it possible to cover the
entire surface without gouging. Advantages and difficulties to develop such a model in 5-axis milling are detailed in
[12].

3. “ISO-SCALLOP TOOL PATHS ALONG PARALLEL PLANES” ALGORITHM
First, the direction of the guiding plane and the distance d between parallel planes must be set. The initial tool path as
well as the orientation of the tool axis on this initial path is also given. Given a tool path i, the determination of the set
of tool postures (tool positions Ki,j and tool axis orientations ui,j) is divided into two stages (Fig. 3(a)):
- Computation of scallop points Pi,j
- Computation of tool postures (Ki,j ,ui,j) of the next path.
Both stages are repeated from the initial to the last path.

3.1 Computation of Scallop Points
Let us consider a tool posture defined by the position of the tool center CL and the tool axis orientation u. Sh is the
specified scallop height and Sn is the surface to be machined. The first stage consists in finding the scallop point P so
that (Fig. 3(b)):

1. P belongs to the iso-scallop surface Si (u, v):

P = S
i
(u,v) = S

n
(u,v)+ S

h
³ n(u,v) (3.1)

2. P belongs to the cutting edge of the filleted end mill located at the given posture. The implicit representation
F(x,y,z) of the tool geometry (apart from a coordinate system modification) can be set as:

           
2 22 2 2 2 22 2 2R r 4R 0L L L Ly z x yxLP C P C P C P C P C            (3.2)
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3. P belongs to the generative profile of the tool which creates the scallop curve [1]:

V
P

. n
tool ,P

= 0 (3.3)

Where VP is the velocity vector of P belonging to the tool:

V
P

= V
K

+ PK ŸW
tool /R

0

(3.4)

with K the point of the tool belonging to the guiding surface and toolR0 the instantaneous speed rotation vector of the
tool when moving along the surface.
In 5-axis milling, the tool is oriented in the local coordinate system R1 defined by (K, f, n, t) which evolves all path
long. If R0 is the global coordinate system attached to the part, we can write:

W
tool /R

0

= W
tool /R

1

+ W
R

1
/R

0

(3.5)

where tool/R1 is defined by the tool orientation angles:

W
tool /R

1

=
dq

t
. t + q

n
. n

dt
(3.6)

The instantaneous speed rotation vector R1/R0, is calculated using the following equation (see appendix):

W
R

1
/R

0

=
1

2
.(f Ÿ

df

dt
+ n Ÿ

dn

dt
+ t Ÿ

dt

dt
) (3.7)

Fig. 3(a): Computation of scallop points and tool postures. Fig. 3(b): Intersection tool / iso-scallop surface.

In kinematics, the variable t represents the time but for this application, t is the parameter of the tool path curve
followed by K. This leads to a non-linear system of three equations (3.1-3.3) with three unknowns (Px, Py, Pz),
coordinates of P in R0. The resolution of this system using the Newton-Raphson method requires an initial solution
very close to the solution in order to ensure rapid convergence. To find a good initial guess, we suggest to use the
intersection curve between the tool and the iso-scallop surface (Fig. 3(b)), which means that we solve eq(3.1) and
eq(3.2). More exactly, we follow the intersection curve from the previous scallop point (computed from the previous
tool path) until we reach an area close to the solution that we search. The solution is found when eq(3.3) is verified.
The non-linear function F from R3 into R is defined by:

F (P
x
, P

y
,P

z
) = 0 (3.8)
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Since we are following the intersection curve between two surfaces, we know that the tangent vector Tp to the
intersection curve is equal to the cross product of the two normal vectors of the intersecting surfaces.
The resolution is done with a marching method starting from the initial solution X0 corresponding to the previous
scallop point. Based on a known point Xp, we search for the following point Xp+1 so that:

F(X
p+ 1

) = 0 (3.9)

((X
p+ 1

- X
p
) .

T
P

T
P

)- d = 0 (3.10)

δ is a numerical parameter ensuring convergence. Resolution is done in three steps: prediction, correction and
progression. Prediction consists in moving a step forward along the tangent vector Tp by a length equal to δ to find the

guess point X*. In practice, Tp is computed by numerical differentiation. Then, correction consists in applying Newton

algorithm to find the solution Xp+1 from the initial guess X * . At final, progression is done by modifying parameter δ
regarding the curvature of the followed curve to minimize computing steps. Every times we find a point Xp+1 on the
intersection curve, equation (3.3) is evaluated. When its sign changes, the point (Xp+1 + Xp )/2 is used as the initial
solution to solve the non-linear system of three equations (3.1-3.3) in order to find the scallop point P. This last
operation is performed using Newton algorithm. Finally, it takes n1 iterations ( 6) to find the guess solution and n2

iterations ( 4) to find the solution. Experimentations have shown the robustness of the algorithm. Once the scallop
point is determined, the tangent to the scallop curve Tsc on each scallop point P is given by the cross product of the
normals of the tool and the scallop surface.

3.2 Computation of Tool Postures
The second stage of our method consists in computing the tool posture based on the scallop point. The geometrical
conditions associated to the second stage are the followings:

1. The driving point K belongs to the guiding surface SG:

K = S
G
(u,v) = S

n
(u,v)+ r

c
³ n(u,v) (3.11)

2. The driving point K belongs to the guiding plane defined by (M, Nplane):

MK . N
plane

= 0 (3.12)

3. The scallop point P belongs to the cutting edge of the filleted endmill

           
2 22 2 2 2 22 2 2R r 4R 0L L L Ly z x yxLP C P C P C P C P C            (3.13)

4. The normal vector to the tool at the scallop point ntool,P is perpendicular to the tangent vector to the scallop
curve Tsc,

T
sc

. n
tool ,P

= 0 (3.14)

In order to simplify the problem, we set the yaw angle (θn, n) equal to zero. This also yields to a non-linear system of 4
equations (3.11-3.14) with 4 unknowns (Kx, Ky , Kz , θt ). For convenience, we transform this system into a non-linear
system of 2 equations with 2 unknowns, τ et θt, with τ the parameter of the intersection curve between the guiding
surface and the guiding plane, and θt the tilt angle. As we conserve equations (3.13) and (3.14), we have to solve the
intersection between the guiding surface and the guiding plane. This yields to solve:

g(u,v) = (S
G
(u,v) - OM) . N

Plane
= 0 (3.15)

The approach consists in computing a set of points belonging to the intersection curve and to fit them with a cubic
Bspline curve according to the least squares approximation. The computation of the intersection points is done exactly
the same say we used for the intersection curve between the tool and the iso-scallop surface (3.8). The problem is
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now: finding parameters τ and θt in order to solve equations (3.13) and (3.14). The main difficulty is once again to
find the guess of the initial solution for the Newton algorithm.

Let us consider the machining of a revolution cylinder along the circle arc cross-sections. This simple example
represents an approximation of any surface to be machined, at the first order in the transversal direction, and the
second order in the machining direction. This choice is coherent as regards the small distance between two successive
tool paths.

Let us assume that the first stage of the method gives a set of scallop points based on an initial tool path. Fig. 4 is the
representation of the zero contour boundaries of the two non-linear equations (3.13) and (3.14) in the (τ, θt) plane.
Each equation divides the (τ, θt) plane into positive and negative regions bounded by zero curves. Solid curves refer to
equation (3.13) (also identified by numbers) and express the belonging of the scallop point P to the tool. Dashed
curves (also identified by letters) refer to equation (3.14), the condition according to which the tool normal ntool,P is
perpendicular to the tangent to the scallop curve Tsc. The desired solutions are the intersections of the zero curves. The
number of solutions is a priori equal to six, but only one ensures a tool posture without gouging.
Actually, the four solutions associated to the intersections between the couples of curves (1, b) and (2, c) correspond to
cases for which the tool machines the scallop point with its backside. Curve 3 describes the situations for which the
tool machines the scallop point with its front side. The reason why this zone does not extend up to values of the tilt
angle close to pi/2 is that the effective tool radius is too small to reach the scallop point, regarding the selected distance
between planes d. Moreover, the set of solutions is restricted because we must also ensure a tangent contact between
the tool and the surface, i.e. an interference free tool path. Hence, the tilt angle is located in the [0, π/2] interval.
Then, the only root that respects all the constraints is located at the intersection of the couple of curves (3,d).

Fig. 4: Zero contour boundaries of the two non-linear equations (3.13 - 3.14).

It is possible that no satisfying root exists according to the value of the distance between guiding planes, the scallop
height and the tool geometry parameters. Indeed, if we take the equation suggested in [10] concerning the effective
tool radius in 5-axis milling with a filleted end-mill, we obtain:

R
eff

=
r
c
(R + r

c
³sin q

t
)

r
c

sin q
t

³cosq
n
2 + (R + r

c
³sin q

t
) sin q

n
2

(3.16)

and with θn = 0 :
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R
eff

=
(R + r

c
³sin q

t
)

sin q
t

(3.17)

The value of the effective tool radius Reff reaches its minimum for θt = π/2. If we consider a first order approximation
of the surface, by neglecting the transversal curvature, the minimum distance between the guiding planes is given by
the well-known formula:

d
min

= 8 ³S
h

³(R + r
c
) (3.18)

Finally, considering the previous discussion about dmin, the choice of the initial guess is facilitated because the zero
curve “d” covers all the interval of variation of the tilt angle θt. Regardless the tilt angle, there is always one solution to
equation (3.14) when the tool follows the considered tool path.

4. APPLICATIONS
We implemented this approach using Matlab for the machining of a surface presenting curvature variations so that, if
using a classical iso-scallop strategy, some loops may appear (Fig. 5(a)). The scallop height Sh is set to 10µm. The
filleted endmill radii are R = 5mm and rc = 1.5mm. We generate preliminary parallel tool paths on the guiding surface
(i.e. the guiding point follows parallel planes) by intersecting a set of YZ parallel planes with the guiding surface using
the algorithm previously described. The distance between guiding planes is fixed to d = 5mm. The tilt angle along the
initial tool path, is set to: θt = 5°. We use a set of 25 points of the initial tool path to compute the iso-scallop tool paths.
Finally, we obtain for each tool path the tilt angle θt of the tool axis according to the tool path parameter τ of the
guided point K (Fig. 5(b)). Some of the curves θt (τ) are represented along the tool path in Fig. 5(b). In order to
simulate machining and to assess our algorithm, we developed numerical tools such as the N-buffer simulation
proposed in [7]. Each tool path, described as a cubic B-spline, is sampled so that the chordal deviation does not
influence the scallop height [8].
Figures 5c shows that the resulting scallop height matches the specification. It can be noticed (Fig. 5(d)) that the widths
of cut are not any more constant as when using classical iso-scallop strategies.

Fig. 5(a): NURBS test surface. Fig. 5(b): Resulting tool orientations.

Fig. 5(c): Generated scallops. Fig. 5(d): Machining stripes.
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5. CONCLUSIONS AND FUTURE WORKS
The proposed algorithm provides iso-scallop tool paths without self-intersections. This goal is achieved by guiding the
tool along parallel planes and by using the tilt angle to modify the width of cut and to maintain a constant scallop
height. In the application, we choose a constant distance between tool path and a null yaw angle. An optimization of
this first approach would consist in maximizing the distance between planes in order to minimize the number of tool
paths. Another possibility to improve the algorithm would be the use of the yaw angle to increase the number of tool
axis orientation candidates to solve the problem. It also should be interesting to compare both classical and parallel
planes iso-scallop strategies in terms of effective machining time. Indeed, the tool path geometry has great influence on
the kinematical behavior of the machine tool. Our approach generates 2D tool paths with tool axis modifications along
the tool path while standard approaches generate 3D tool paths with constant tool axis orientation.

6. APPENDIX
Let R1 = {O1, x1, y1, z1} be a coordinate system attached to a solid S, moving in a fixed coordinate system R0 = {O,

x0, y0, z0}. The basis vector of R1 are normalized and perpendicular. Let





R
1
/R

0

be the rotation vector of S (or R1)

compared to R0. We can write:



d

x

1

dt












R

0





R
1
/R

0



x

1
,

d

y

1

dt












R

0





R
1
/R

0



y

1
,

d

z
1

dt












R

0





R
1
/R

0



z
1

By multiplying each term with the considered basis vector, we get:




x

1


d

x

1

dt












R

0



y

1


d

y

1

dt










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R

0



z
1


d

z
1

dt










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R

0



x

1




R
1
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0



x

1  
y

1
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


R
1
/R

0



x

1  
z
1




R
1
/R

0



x

1 

We then use the double vector product simplification:


A B C  B. A.C C . A. B 

We get:




x

1


d

x

1

dt




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


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0



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1


d

y

1

dt




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
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after gathering all the terms:
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finally:
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