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From higher-order Kerr nonlinearities to quantitative modeling of 3rd and 5th harmonic generation in argon

The recent measurement of negative higher-order Kerr effect (HOKE) terms in gases has given rise to a controversial debate, fed by its impact on short laser pulse propagation. By comparing the experimentally measured yield of the third and fifth harmonics, with both an analytical and a full comprehensive numerical propagation model, we confirm the absolute and relative values of the reported HOKE indices.

In a recent experiment, we have shown that the electronic optical Kerr effect in Ar, N 2 , O 2 , and air exhibits a highly nonlinear behavior versus the applied intensity [START_REF] Loriot | Measurement of high order kerr refractive index of major air components[END_REF], resulting in a saturation of the nonlinear refractive index observed at moderate intensity, followed by a sign inversion at higher laser intensity. This observation has a substantial impact on the propagation of ultrashort and ultra-intense laser pulses, especially in the context of laser filamentation [START_REF] Chin | The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges[END_REF][START_REF] Bergé | Ultrashort filaments of light in weakly-ionized, optically-transparent media[END_REF][START_REF] Couairon | Femtosecond filamentation in transparent media[END_REF][START_REF] Kasparian | Physics and applications of atmospheric nonlinear optics and filamentation[END_REF] where the higher-order Kerr effect (HOKE), rather than the defocusing contribution of the free electrons, can play a key role in the self-guiding process [START_REF] Béjot | Higherorder kerr terms allow ionization-free filamentation in gases[END_REF], especially at long wavelengths [START_REF] Ettoumi | Spectral dependence of purely-kerr-driven filamentation in air and argon[END_REF] and for short pulses [START_REF] Loriot | On negative higher-order kerr effect and filamentation[END_REF]. However, this issue is still controversial [START_REF] Kolesik | Femtosecond filamentation in air and higher-order nonlinearities[END_REF][START_REF] Polynkin | Experimental tests of the new paradigm for laser filamentation in gases[END_REF][START_REF] Kolesik | On the higher-order kerr effect in femtosecond filaments[END_REF]. Therefore, an independent confirmation of our measurement of the HOKE is still needed. Recently, Kolesik et al. [START_REF] Kolesik | Femtosecond filamentation in air and higher-order nonlinearities[END_REF] have proposed such test, based on the comparison of the yields of the third harmonic (TH) and the fifth harmonic (FH) radiations generated by the nonlinear frequency up-conversion of a short and intense laser pulse in air. Based on numerical simulations, they suggested that, considering the HOKE indices, "the relative strength of the FH to the TH should reach values of the order of 10 -1 " while, if omitting them, "this ratio should be about 4-5 orders smaller" [START_REF] Kolesik | Femtosecond filamentation in air and higher-order nonlinearities[END_REF].

So far, no measurement of the yield of FH versus the TH have been achieved in air. However, Kosma et al. [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF] measured the yields of TH and FH produced by a short and intense laser pulse in argon. The present paper aims at confronting the results of this experiment to predictions based on the HOKE in argon [START_REF] Loriot | Measurement of high order kerr refractive index of major air components[END_REF].

In the first part, we confirm the ratio of the recently measured non-linear indices [START_REF] Loriot | Measurement of high order kerr refractive index of major air components[END_REF] based on the analytical description of the harmonic generation. In the second part, a comprehensive model including linear and nonlinear propagation effects such as dispersion, self-phase modulation, ionization, and Kerr effect, is presented.

For a focused laser beam propagating linearly, the harmonic power of the qth harmonic in the perturbative regime is given by

P q = A q N 2 |J q (b∆k)| 2 , ( 1 
)
where N is the atomic density of the medium and

A q = qω 2 1 4n ℓ q (n ℓ 1 ) q (ǫ 0 π) q-1 c q w 2q-2 0 χ (q) 2 P q 1 , (2) 
with P 1 , ω 1 , and w 0 the power, the angular frequency, and the beam waist of the incident beam, respectively [START_REF] Boyd | Nonlinear Optics[END_REF][START_REF] Reintjes | Comparaison of fifth and third harmonic conversion in helium[END_REF]. χ (q) is the qth-order microscopic nonlinear susceptibility (q = 3, 5) given in SI units, n ℓ j are the linear refractive indices at the fundamental (j = 1) and harmonic frequencies (j = 3, 5), ǫ 0 is the permittivity of vacuum, and c is the speed of light. J q is a dimensionless function that accounts for the phase matching

J q = 2(L-f )/b -2f /b dξ exp (-ib∆kξ/2) (1 + iξ) q-1 , (3) 
with ∆k = k q -qk 1 = 2πq λ1 n ℓ q -n ℓ 1 the phase mismatch, with n ℓ q -n ℓ 1 proportional to the pressure, and k j (j = 1, q) the wave vectors, b the confocal parameter, L the length of the static cell, and f the position of the focus with respect to the entrance of the static cell [START_REF] Bjorklund | Effects of focusing on third-order nonlinear processes in isotropic media[END_REF]. According to Eqs. ( 1) and ( 2), the ratio of the FH to the TH power is

P 5 P 3 ≈ 5 3ǫ 2 0 π 2 c 2 w 4 0 χ (5) χ (3) 2 N 5 |J 5 | N 3 |J 3 | 2 P 2 1 , (4) 
where n ℓ j have been approximated to unity in Eq. 2. N 3 and N 5 refer to the different atomic densities at the pressures maximizing the harmonic conversion for the 3rd and 5th orders, respectively. This equation provides a direct relationship between the power ratio of the harmonics and the ratio of the corresponding non-linear susceptibilities. The latter are related to the nonlinear refractive indices through the relation [START_REF] Ettoumi | Spectral dependence of purely-kerr-driven filamentation in air and argon[END_REF] so that

n 2j = (2j + 1)! 2 j+1 j! (j + 1)! 1 (n ℓ 1 ) 2 ǫ 0 c j χ (2j+1) Kerr . (5) 
P 5 P 3 ≈ 3 5π 2 w 4 0 n 4 n 2 2 N 5 |J 5 | N 3 |J 3 | 2 P 2 1 , (6) 
In the experiment by Kosma el al., b=7.8 cm, w 0 = 100 µm, L=1.8 cm, f =L/2, and the wavelength λ 1 =810 nm [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF]. The fundamental power, calculated from the input energy E 1 =710 µJ and the pulse duration τ 1 =12 fs, is P 1 = 59 GW. They observed that the pressure maximizing the TH power ranged between 160 mbar [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF] and 250 mbar [START_REF] Kosma | Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path[END_REF], for similar experimental conditions. One single maximum, around 50 mbar, is observed for the FH. The maximum energies of the TH and FH measured at the respective optimal pressures reported in [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF] are 140 and 4 nJ, respectively, while the pulse duration was estimated to be 11 fs for both harmonics [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF][START_REF] Kosma | Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path[END_REF]. This leads to a power ratio P 5 /P 3 = 0.028. According to Eq. ( 6), where J q of Eq. ( 3) has been calculated using n ℓ 1 = 1.00028, n ℓ 3 = 1.00030, and n ℓ 5 = 1.00035 for the values of the refractive index of argon at 1 bar at 810, 270, and 162 nm, respectively [START_REF] Bideau | Higher-order kerr terms allow ionization-free filamentation in gases[END_REF], the corresponding ratio of the HOKE indices is |n 4 /n 2 | = 6.8 × 10 -19 m 2 /W. This value confirms, within a factor of 2 compatible with the experimental error, the ratio of the experimental HOKE indices

n 2 = 10 -23 m 2 /W 1 and n 4 = -3.6 × 10 -42 m 4 /W 2 [1], resulting in |n 4 /n 2 | = 3.6 × 10 -19 m 2 /W.
The agreement is remarkable, especially considering the simplicity of the analytical model used.

Further comparison with the experiment was performed by computing the value of N 2 |J q | 2 as a function of the argon pressure relying on Eq. (3) (Fig. 1). This function should reflect the pressure dependence of the harmonic powers. The analytical model predicts a maximum at about 300 mbar for TH, in line with the experimental results. It yields three maxima between 0 and 400 mbar for FH, the first of them close to the observed optimum pressure for the FH. This oscillatory structure, which is due to the periodic phase matching, was not observed in the experiments [START_REF] Fuß | Private Communication[END_REF] probably due to nonlinear propagation effects which are not considered in the analytical model.

To overcome these limitations and take into account the perturbations of the fundamental pulse during its propagation through the gas sample, as well as the effect of the HOKE indices on the phase matching, we have solved the unidirectional pulse propagation equation for the experimental conditions of Kosma et al. More precisely, assuming a cylindrical symmetry around the propagation axis z, the angularly resolved spectrum E(k ⊥ , ω) of the real electric field E(r, t) follows the equation [START_REF] Kolesik | Nonlinear optical pulse propagation simulation: From maxwell's to unidirectional equations[END_REF] ∂

z E = ik z E + 1 2k z iω 2 c 2 P NL - ω ǫ 0 c 2 J , (7) 
where k z = k 2 (ω) -k 2 ⊥ , P NL (resp., J ) is the angularly resolved nonlinear polarization (resp., free charge induced current) spectrum, and k(ω) = n(ω)ω c . The nonlinear polarization P NL is evaluated in the time domain as P NL = χ (3) E 3 + χ (5) E 5 + χ (7) E 7 + χ (9) E 9 + χ (11) E 11 . Since the nonlinear polarization is defined from the real electric field, Eq. 7 captures without any modifications all frequency-mixing processes induced by the total field. For numerical stability concerns, we considered only the part responsible for the refractive index change around ω 0 , neglecting harmonics generation induced by the terms proportional to E 7 , E 9 , and E 11 . The current induced by the free charges is calculated in the frequency domain as J = e 2 me νe+iω ν 2 e +ω 2 ρε, where e (resp., m e ) is the electron charge (resp., mass), ν e is the effective collisional frequency, and ρ is the electron density which is evaluated as

∂ t ρ = W (I) (ρ at -ρ) + σ U i I -βρ 2 , ( 8 
)
where W (I) is the ionization probability evaluated with the Keldysh-PPT (Perelomov, Popov, Terent'ev) model [START_REF] Bergé | Ultrashort filaments of light in weakly-ionized, optically-transparent media[END_REF], ρ at is the atomic number density, σ is the inverse Bremsstrahlung cross-section, β is the recombination constant (negligible on the time scale investigated in the present work), and I is proportional to the time-averaged E 2 . Figure 2 displays the harmonics intensity as a function of argon pressure for an input pulse and a detection geometry matching the experimental parameters: 12 fs pulse duration (FWHM), 700 µJ input energy, and a beam radius of 4 mm before focusing. In order to mimic the experiment, the pulse first propagates in vacuum up to the position of the cell (99.1 cm after the f =1 m lens). After this focusing step, the pulse propagates over 1.8 cm in the argon cell. The optimal pressure for the FH is 50 mbar, in full agreement with the experiment [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF]. The reduction of the second and third maxima of the FH, as compared to Fig. 1, results from the phase mismatch introduced by the HOKE at large pressure. The TH yield is maximal at 260 mbar, similar to the value reported in [START_REF] Kosma | Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path[END_REF]. In full agreement with the experiment by Kosma al. [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF], the ratio at 50 mbar is about 0.1 and becomes even larger at reduced pressures. Furthermore, the total FH and TH energies at their respective optimum pres- (open red circles) harmonics in argon integrated over the full radial distribution. To be compared with the Fig. 3 of [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF]. The spectrum calculated at 50 mbar is shown in the inset.

sures are 6 and 218 nJ, in good agreement with the experimental values of 4 and 140 nJ, where losses due to the setup lead to a slight underestimation of the output energies [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF].

If the HOKE are not considered in the model, the ratio of the FH to the TH at a pressure of 50 mbar drops to 0.017, and the FH and TH energies are respectively 1.7 and 584 nJ: These values are inconsistent with the experimental results of Kosma et al. Furthermore, contrary to the experimental observations [START_REF] Fuß | Private Communication[END_REF], the FH would exhibit strong maxima at 160 and 250 mbar. These discrepancies show that the HOKE are necessary to reproduce the experimental results [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF][START_REF] Kosma | Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path[END_REF], further validating their measured values [START_REF] Loriot | Measurement of high order kerr refractive index of major air components[END_REF]. Note that the ratio of 0.017 strongly depends on the propagation distance, so that it cannot be directly compared to that of 10,000 predicted by Kolesik et al. for the "classical" model over an unspecified propagation distance. For a propagation length of 220 µm, 80 times shorter than in our work but consistent with neglecting the phase matching, our calculation indeed predicts a ratio of 10,000.

In conclusion, as recently suggested in [START_REF] Kolesik | Femtosecond filamentation in air and higher-order nonlinearities[END_REF], we have compared the recent experimental measurements of the TH and FH yields in argon [START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF] with both analytical and numerical simulations. These results agree quantitatively with the measured high-order Kerr indices [START_REF] Loriot | Measurement of high order kerr refractive index of major air components[END_REF]. This conclusion is supported by the following findings. First, the harmonic yield reported in argon by Kosma et al. at the pressure that optimized the 5th harmonic leads to a ratio of about 0.1 between the fifth and the third harmonics. This ratio implies a ratio of the Kerr indices consistent with our measurement of the HOKE indices within their uncertainty range [START_REF] Loriot | Measurement of high order kerr refractive index of major air components[END_REF]. Second, the analytical model based on our HOKE indices reproduces the pressure maximizing the TH, as well as the first pressure maximum of the 5th harmonic yield. Third, a full numerical propagation model accounting for the dispersion and nonlinear effects such as ionization and higher-order Kerr effects quantitatively reproduces the ratio of the harmonic yields observed in the experiment, as well as the pressure dependence of both the 3rd and 5th harmonics. It even reproduces the absolute harmonics intensity within a fairly good accuracy.
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 61 Fig. 1. (Color online) Analytical calculation of the pressure dependence of the 3rd (solid blue line) and 5th (dashed red line) harmonics in argon.

Fig. 2 .

 2 Fig. 2. (Color online) Numerical calculation of the pressure dependence of the 3rd (dotted blue line) and 5th(open red circles) harmonics in argon integrated over the full radial distribution. To be compared with the Fig.3of[START_REF] Kosma | Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a ti:sapphire laser[END_REF]. The spectrum calculated at 50 mbar is shown in the inset.
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