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ABSTRACT 

Residues on foodstuffs resulting from the use of crop protection products are 

a function of many factors, e.g. environmental conditions, dissipation and 

application rate, some of which are linked to the physico-chemical properties 

of the active ingredients (a.i.).  Residue limits (maximum residue levels 

(MRLs) and tolerances) of fungicides, herbicides and insecticides set by 

different regulatory authorities are compared, and the relationship between 

physico-chemical properties of the a.i.s and residue limits are explored. This 

has been carried out using simple summary statistics and artificial neural 

networks. US tolerances tended to be higher than EU MRLs. Generally, 

fungicides had the highest residue limits followed by insecticides and 

herbicides. Physico-chemical properties (e.g. aromatic proportion, non-carbon 

proportion and water solubility) and crop type explained up to 50% of the 

variation in residue limits. This suggests that physico-chemical properties of 

the a.i.s may control important aspects of the processes leading to residues.  

 

Keywords: artificial neural networks, pesticides, foodstuffs, physico-chemical 

properties, crop type 
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Introduction 

 

Residues of crop protection products on foodstuffs are highly regulated. Thus, 

maximum residue levels (MRLs) and tolerances (hereafter collectively termed 

residue limits), are based on carefully conducted supervised field trials, and 

represent the highest residue that would normally be expected when 

observing good agricultural practice (EC 1997b, EPA 1996, FAO/WHO 2002). 

When a crop protection product is used on a crop, residues of the active 

ingredient (a.i.) can be found on food and feed commodities at harvest. The 

level of residues depends on a large number of factors. Factors relating to 

effect of use pattern and growth conditions on residue levels have been 

extensively investigated. For example, application rate (Fletcher et al. 1994; 

Hoerger & Kenaga 1972, OECD 2002b, Pfleeger et al. 1996, Sadlo 2000), 

pre-harvest intervals (PHI) (Timme & Frehse 1980), number of applications 

(Timme & Frehse 1980) crop characteristics (Fletcher et al. 1994, Hoerger & 

Kenaga 1972, Pfleeger et al. 1996, Santier & Chamel 1998), climate (Elliot & 

Spurr 1993, Galera et al. 1997, Nigg et al. 1978, OECD 2002b), and growth 

dilution (Holland et al. 1996) all affect residues. The influence of the properties 

of the a.i. itself on residues is less well understood. However, there is some 

evidence that physico-chemical properties of formulations and a.i.s affect 

residues (Briggs & Bromilow 1994, Holloway & Western 2003, Spynu 1989).  

 

Factors indirectly affecting residue levels include rain-fastness, foliar uptake, 

uptake through roots, volatilisation, photostability, degradation rate and 

persistence on the plant surfaces, all of which are linked to the physico-
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chemical properties of the a.i.s (Bentson 1990, Bromilow & Chamberlain 

1991, Bromilow & Chamberlain 1995, Holloway & Western 2003, Trapp 

2004). The physico-chemical properties may interact, and the relationship with 

residues is not necessarily linear (Baker et al. 1992). For example, water 

solubility and lipophilicity affect uptake as well as persistence on the plant 

surfaces (Bromilow & Chamberlain 1995, Tice 2001, Willis & McDowell 1987). 

Furthermore, there may be interactions among use patterns, crops, climate 

and physico-chemical properties of the a.i.s (Bentson 1990, Galera et al. 

1997, Schonherr et al. 1999). Consequently, data that cover a wide range of 

crops, use patterns and climatic conditions are necessary in order to draw 

generally applicable conclusions about the relationship between physico-

chemical properties of a.i.s and residues in foodstuffs. Since the trials used to 

set residue limits are normally conducted under varying local and climatic 

conditions, residue limits often provide a more substantial basis for modelling 

residues than results from single experiments (EC 1997b, EPA 1996, 

FAO/WHO 2002, Hoerger & Kenaga 1972).  

 

Here, the relationship between physico-chemical properties of crop protection 

products and residue limits in foodstuffs are explored. This was done for 

fungicides, herbicides and insecticides registered for use by the EU, Codex 

and US. Furthermore, residue limits in different regions and for different crop 

types were compared. 

 

Methods 

Data collation and datasets 
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Four datasets were collated for analyses: one of physico-chemical properties 

of a.i.s (Clarke & Delaney 2003) and three on residue limits for different 

commodities from the EU (Liaison Database [Internet]), Codex (Liaison 

Database [Internet]) and US (US Environmetal Protection Agency [Internet]). 

Only a.i.s that had information on both physico-chemical properties and 

residue limits were included in the analyses.  

 

Physical and chemical properties of active ingredients. The dataset containing 

the physico-chemical properties of a wide range of a.i.s (Table I) was provided 

by Eric Clarke and John Delaney (for details of sources and calculations 

methods see Clarke & Delaney 2003). On the basis of their target organisms, 

the a.i.s were grouped into fungicides, herbicides and insecticides (hereafter 

collectively termed main uses). The physico-chemical properties of fungicides, 

herbicides and insecticides differ (Bromilow & Chamberlain 1995, Clarke & 

Delaney 2003, Tice 2001), so the three main uses were analysed separately. 

 

Residue limits on crops in different legal regions. Three datasets on residue 

limits were collated: EU MRLs, Codex MRLs and US tolerances (Liaison 

Database [Internet], US Environmetal Protection Agency Tolerance Database 

[Internet])). The EU and US cover real geographical regions, whereas Codex 

does not cover a coherent region; hereafter the EU, US and Codex are 

collectively termed legal region. The methods used to establish residue limits 

by the EU, US and Codex are different (EC 1997a, FAO/WHO 2002, USEPA 

1996), and the use patterns are not necessarily the same. Therefore, the 

three datasets were analysed separately. In contrast to the US and Codex 
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datasets, the EU MRLs included some a.i.s which were not registered for use 

in the EU; for those a.i.s the MRL was not set on the basis of residue trials but 

at the level of quantification (LOQ). Thus, in the EU dataset, it was not 

possible to distinguish between the LOQs that represented genuinely low 

residues and those which were set at LOQ because the a.i. was not 

registered for use. Consequently, the analyses of the EU MRL dataset were 

performed without MRLs set at LOQ.  

 

The datasets represented a wide range of a.i.s and crops (Table II, Table III). 

There was some but not a complete overlap between the a.i.s and crops in 

the three datasets. Residues have been shown to differ between crops 

(Fletcher et al. 1994, Galera et al. 1997, Hoerger & Kenaga 1972, Pfleeger et 

al. 1996), so the crops were grouped into seven categories in order to allow 

comparisons (Table II). The grouping was made on the basis of surface area 

to weight ratio, direct exposure to spray, and consumers (humans or animals). 

For each a.i., the mean residue limit was taken for all the crops belonging to a 

crop type, and this value was used in the data analyses. Thus, the models 

predict residue limits for a crop type rather than an individual commodity. 

Animal feed and ‘others’ were excluded from the analyses because residues 

in foodstuffs of plant origin intended for human consumption are the focus of 

this study. 

 

Data analysis 

Summary statistics for legal regions, crop type and main uses were 

calculated. Artificial neural networks (three layer perceptrons) were used to 
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analyse the relationship between residue limits and the physico-chemical 

properties of the a.i.s. The three layer perception was chosen because it is 

one of the most commonly used neural network architectures, and it is a 

powerful tool for analysing data for prediction and classification (Bishop 1995). 

Furthermore, the three layer perceptron is capable of modelling complex 

linear and nonlinear relationships and is good at handling large numbers of 

interdependent variables, which often complicates more traditional 

approaches to statistical modelling (Bishop 1995). The datasets were also 

analysed with general linear models (anovas, multiple regression and 

combinations thereof), but as neural networks performed much better, results 

from these more traditional statistical methods are not presented. The residue 

limits were log-transformed prior to all analyses. 

 

Variable selection and training of neural networks. In order to train the neural 

networks each of the datasets of residue limits from the three legal regions 

were combined with the dataset containing physico-chemical properties of the 

a.i.s. Neural networks require large datasets to be properly trained. As the 

number of variables increases the more observations are required to train 

neural networks (Bishop 1995). Consequently, variable selection and 

reduction is paramount for successful training. The following procedure for 

variable selection was used. Pair-wise correlations between residue limits and 

all the physico-chemical variables were performed. Then feature selection 

was applied with forwards, backwards and genetic selection. On the basis of 

these two approaches, variables were chosen that appeared to be important. 

Numerous networks were trained and sensitivity analyses were used to 
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further reduce the number of variables. The variable reduction and training 

was continued until a balance between prediction accuracy and network 

complexity was achieved. Then a range of networks with similar accuracy of 

predictions, but with different input variables and architectures were chosen 

for further comparisons. The comparison included a check for over-learning, 

correlation between observed and predicted values, and a graphical 

inspection of the relationship between observed and predicted values. This 

showed whether the network performed well over the full range of observed 

residue limits. On this basis, the network(s) which gave the best predictions of 

residue limits were chosen and are presented in the results and discussion.  

 

All data analyses relating to neural networks were carried out using 

STATISTICA Neural Networks version 6 (©, StatSoft, Inc. 2003).  

 

Results 

General trends in residue limits 

An initial inspection of the summary statistics of the three raw datasets of 

residue limits revealed some general trends relating to main use, crop types 

and legal region. Of the three main uses, fungicides had the highest residue 

limits, insecticide residue limits were intermediate and herbicide residue limits 

were lowest (Figure 1A). For food commodities, leafy vegetables had the 

highest residue limits, whereas more ‘compact’ commodities such as fruits 

(e.g. apples) and compact vegetables (e.g. cucumbers) were intermediate 

(Figure 1B). The lowest residue limits were found for root and bulb vegetables 
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and seeds, both representing commodities that have a low direct exposure to 

spray deposits compared to other crops.  

 

The residue limits varied among legal regions. Thus, US tolerances tended to 

be higher than Codex MRLs and EU MRLs were lowest (Figure 1). However, 

interpretation of the differences among the legal regions should be made with 

caution, because even though there is some overlap between the three 

datasets with respect to a.i.s and crops, there are also some substantial 

differences (Table III). Nonetheless, the trend remained the same for 

fungicides and insecticides when the a.i.s found in all three datasets were 

compared (there were not enough herbicides in the Codex MRL dataset for 

this comparison).  

 

Prediction of fungicides 

Of the three main uses, neural networks generally performed best on 

fungicide residue limits. Thus, a higher proportion of the variation was 

explained than for the other main uses (Table IV, Table V, Table VI). The 

general trends in residue limits were captured for EU MRLs, Codex MRLs and 

US tolerances (Table IV, Figure 2). On the basis of crop type and 2-4 physico-

chemical variables it was possible to explain 40-50% of the variation in 

residue limits (Table IV).  

 

For each legal region there was more than one neural network that performed 

equally well with respect to precision of predictions. The neural networks 

differed both with respect to the variables included and network architecture 
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(number of neurons in different layers). Even so, there were some general 

trends with respect to variable selections. Crop type was an important variable 

and was included in most neural networks. Variables describing non-hydrogen 

atom characteristics (aromatic proportion, non-carbon proportion and halogen 

proportion), also appeared in many neural networks, as did water solubility.  

 

The relationship between the physico-chemical variables and residue limits 

was not straightforward. One of the simpler neural networks was used to 

explain this point, namely the best Codex network, where three variables 

(crop type, molecular weight and aromatic proportion) explained 50% of the 

variation in Codex MRLs. Analysed separately, there was no obvious 

relationship between molecular weight or aromatic proportion and residue 

limits (Figure 3). However, when molecular weight and aromatic proportion 

were combined a pattern emerged; at low aromatic proportions molecular 

weight only had minor effect, but at higher aromatic proportions there was a 

negative relationship between residue limits and molecular weight. Thus, the 

highest residue limits were found for compounds, which had a high aromatic 

proportion and low molecular weight (Figure 3). Although molecular weight 

was not included in the neural networks for the EU MRL and US tolerance 

datasets, the same pattern was still apparent (Figure 4). The a.i.s where high 

residue limits were linked to low molecular weight and high aromatic 

proportion, were a mixture of compounds with CAS dates before 1965 and 

newer compounds with CAS date after 1965. Some of the other neural 

networks performed as well as the one just described (Table IV), but they 
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included more variables and the relationships between variables and residue 

limits were more complex. 

 

Prediction of herbicides 

The neural networks were able to capture general trends in US tolerances for 

herbicides on the basis of 4-5 physico-chemical variables. The neural 

networks explained 40% of the variation in US tolerances (Table V), but 

underestimated tolerances in the higher end (Figure 5B). For EU MRLs for 

herbicides, the neural networks also captured the general trends in the lower 

end, but the tendency to underestimate residue limits in the higher end was 

even more pronounced than for US tolerances (Table V, Figure 5A). There 

were not enough herbicides in the Codex dataset for analysis (Table III).  

 

In contrast to fungicides and insecticides, crop type did not appear to be 

important for herbicide residue limits. As in the analyses of fungicides, 

variables describing non-hydrogen atom characteristics (aromatic proportion, 

non-carbon proportion and halogen proportion) tended to be influential. In 

contrast to both fungicides and insecticides, acidity and basicity were also 

important. There was a tendency for a downward trend in residue limits at 

high hydrogen-bond acidity (Figure 5C), but other than that it was difficult to 

discern the shape of the relationship between the physico-chemical variables 

and residue limits (e.g. aromatic proportion, Figure 5D). 

 

Prediction of insecticides 
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Neural networks were able to capture the general trends in EU MRLs and 

Codex MRLs on the basis of crop type and 3-4 physico-chemical variables 

(Table VI, Figure 6). The prediction of EU MRLs was best with 52% of the 

variation explained. The neural networks were able to explain 38% of the 

variation in Codex MRLs but only 28% of the variation in US tolerances for 

insecticides. 

 

In the same way as for the fungicides, crop type was important for insecticide 

residue limits as were physico-chemical variables describing non-hydrogen 

atom characteristics (aromatic proportion, non-carbon proportion and halogen 

proportion) (Table VI). Again, the relationships between residue limits and the 

physico-chemical variables were not straightforward. As an example the 

simplest neural network for EU MRLs for insecticides was chosen. There was 

a negative relationship between halogen proportion and residue limits, but the 

effect of non-carbon proportion on residue limits could only be observed when 

combined with halogen proportion (Figure 7). Thus, a combination of high 

halogen proportion and low non-carbon proportion gave the lowest residue 

limits. One of the neural networks for Codex MRLs also included non-carbon 

proportion and halogen proportion. However, the compounds with high 

halogen proportion were compounds with CAS dates from before 1965, and 

some of them also had use as fumigants. The combination of halogen 

proportion and non-carbon proportion was not included in the neural networks 

for US tolerances (Table VI).  

 

Discussion 
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General trends in residue limits 

The summary statistics of the residue limits showed substantial variation 

among and within main uses, crop types and legal regions. Of the three main 

uses, herbicides had the lowest residue limits, fungicides the highest and 

insecticides were intermediate. Herbicide residues were expected to be low 

because they are often applied with long pre-harvest intervals (PHI). 

Fungicides tend to have higher application rates and shorter PHI than 

insecticides, which might explain why they had higher residue limits.  

 

Our results indicate that residue limits are affected by commodity surface to 

weight ratio and exposure to direct spray. These factors along with application 

rate have been shown to cause variation in initial residues (Fletcher et al. 

1994, Hoerger & Kenaga 1972, OECD 2002a, Pfleeger et al. 1996) and 

subsequent decline of residues (Galera et al. 1997). 

 

In general, US tolerances were higher than Codex MRLs, which were higher 

than EU MRLs. Many factors might have contributed to these differences 

among legal regions. Firstly, there were differences with regards to which a.i.s 

were registered for use in the three legal regions. However, the trend 

remained the same even when only a.i.s and crop types that occurred in all 

three legal regions were included. Secondly, differences in pest and disease 

prevalence, use patterns and climatic conditions may contribute to the 

variation (Bruhn & Fry 1982, Galera et al. 1997, OECD 2002a, Willis & 

McDowell 1987). Thirdly, different calculation methods for residue limits may 
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also have contributed to the variation (EC 1997b, FAO/WHO 2002, EPA 

1996).  

 

How good were the predictions? 

Neural networks explained 30 to 50% of the variation in residue limits and 

although there was some noise, the general trends in residue limits were 

captured on the basis of crop type and 3-5 physico-chemical variables. A 

prediction of 40-50% of the variation could be considered fairly good 

considering that information on use pattern had not been taken directly into 

account. However, use pattern alone does not explain all variation in residue 

limits either. Thus, even if only initial deposit is considered, application rate 

only explains 20% of the variation for some crop types, but up to 90% for 

others (Pfleeger et al. 1996). Nonetheless, many factors that have an effect 

on residue limits were not included in our analyses (e.g. application rate, 

number of applications, PHI and formulation) (Briggs & Bromilow 1994, 

Frehse & Walter 1994, Hoerger & Kenaga 1972, Holloway & Western 2003, 

Timme & Frehse 1980). Our results indicated that crop type and physico-

chemical properties of the a.i.s controlled important aspects of the processes 

leading to a residue limit, irrespective of the use pattern.  

 

Which variables were important? 

Physico-chemical properties are likely to be important for rainfastness 

(Mulrooney & Elmore 2000), photo degradation (Bentson 1990), volatilisation 

(Bentson 1990), metabolism (Bates 1990), retention on plant surface (Willis et 

al. 1994), degradation rate (Timme & Frehse 1980), uptake into plants and 
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transport in plants (Bromilow & Chamberlain 1991, Bromilow et al. 1991, 

Schonherr & Baur 1994, Schonherr et al. 1999, Trapp 2004). Often more than 

one neural network gave similar predicted outcomes. This indicated that there 

were several variables affecting the dissipation processes, and/or that 

variables were interdependent and therefore interchangeable.  

 

Crop type was included in the majority of neural networks. Non-hydrogen 

atom characteristics of the pesticides were also important, and at least one of 

aromatic proportion, non-carbon proportion and halogen proportion were 

included in all neural networks. The non-hydrogen atom characteristics affect 

water solubility, lipophilicity and polarisability, which are all factors that are 

thought to be important for uptake into and transport around plants (Bromilow 

et al. 1991, Clarke & Delaney 2003, Trapp 2004). Nonetheless, non-hydrogen 

atom characteristics were more important for prediction of residue limits than 

water solubility, polarisability and lipophilicity themselves. This could have 

been caused by the non-hydrogen atom characteristics also affecting other 

properties of the a.i.s, such as stability, volatilisation, toxicity and metabolism 

(Clarke & Delaney 2003), or because uptake into plants and transport around 

plants does not always control the final residues.  

 

The relationships between non-hydrogen atoms characteristics and residue 

limits were not straightforward. There were interactions between variables as 

well as non-linear relationships involved. These complex relationships might 

have been caused by non-hydrogen atom characteristics affecting different 

aspects of the dissipation processes simultaneously. For instance, non-
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hydrogen atom characteristics affect both water solubility and lipophilicity, 

which affect rainfastness as well as uptake into plants (Bromilow & 

Chamberlain 1995, Mulrooney & Elmore 2000, Trapp 2004). Non-hydrogen 

atom characteristics also affect the stability of the a.i.s, causing differences in 

degradation and metabolism rate (Clarke & Delaney 2003). Non-carbon 

proportion affects the solubility of the compound, its ability to permeate 

membranes and how well it sticks to a waxy surface (Bromilow & Chamberlain 

1995, Tice 2001, Trapp 2004). However, the effect will depend on whether 

groups containing nitrogen and oxygen or halogens are added. This could be 

the reason for non-carbon proportion and halogen proportion often appearing 

together in the neural networks. Aromatic proportion was included in many 

neural networks. Aromatic proportion is likely to affect both stability and ability 

to permeate membranes, and possibly also toxicity (Clarke & Delaney 2003, 

Tice 2001), which may affect efficacy and hence application rate. To 

complicate things further, plants have different surface properties and 

morphology, which may be another reason why crop type was included in 

most networks. 

 

How do main uses and legal regions vary with respect to variable selection 

and precision of predictions? 

Neural networks performed best on fungicides followed by insecticides and 

had the poorest performance on herbicides. This reflected the general trends 

in residue limits among main uses. Thus, not surprisingly, it was easiest to get 

good predictions for the main uses with detectable residues, whereas it was 
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more difficult for herbicides where residues were low and showed less 

variation.  

 

The three main uses differ in physico-chemical profiles and in systemicity 

(Clarke & Delaney 2003, Tice 2001, 2002). Thus, most herbicides tend to be 

systemic, whereas the majority of insecticides have contact action, and 

fungicides are somewhere in between (Clarke & Delaney 2003, Tice 2001). 

This may explain the differences among the main uses with respect to which 

variables appeared in neural networks.  

 

Crop type occurred in most fungicide and insecticide neural networks but not 

in herbicides. This, was expected as herbicides are targeted at weeds rather 

than the crop. Water solubility appeared in most fungicide models but less 

frequently in insecticides. This may be explained by insecticides having more 

uniform water solubility than fungicides. 

 

Aromatic proportion in combination with a measure of molecular size 

(molecular weight or volume) and water solubility appeared to be important in 

determining the residues of fungicides. In general, the highest residue limits 

were found for compounds which had a high aromatic proportion and low 

molecular weight. Newer a.i.s tend to have higher molecular weights and 

lower application rates than old a.i.s (Tomlin 2000), and such correlations may 

also have been picked up by the neural networks. However, the compounds 

were a mixture of compounds with old and new CAS dates, and came from 

different pesticide classes, so the pattern appeared to have general 
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applicability. Another explanation may stem from the relationship between 

molecular weight and aromatic proportion, where each addition of an aromatic 

ring leads to a rather high increase in molecular weight leading to a complex 

relationship.  

 

Halogen proportion appeared to be important for controlling the residues of 

insecticides and there was a negative relationship between halogens and 

residue limits. A closer inspection of the data showed that negative 

correlations were to some extent driven by a few compounds which had high 

halogen proportion and low residue limits. These were all compounds with 

CAS date from before 1965, and some were also used as fumigants. It is 

therefore questionable whether this trend has general applicability. 

Nonetheless, as halogens are added to insecticides to make them more 

stable with respect to insect metabolism (Clarke & Delaney 2003), a.i.s with 

high halogen proportion may be more efficacious and persistent, 

consequently requiring lower application rates. 

 

The variables, which were included in herbicide neural networks, were 

different from those for fungicides and insecticides. For instance, acidity often 

appeared in the herbicide neural networks. There tended to be a negative 

relationship between acidity and herbicide residue limits. Acid groups are 

more common in herbicides than in fungicides and insecticides, possibly 

because acid groups tend to have phytotoxic effects (Tice 2001, Clarke & 

Delaney 2003). Furthermore, acidity is linked to transport of chemicals within 

plants (Trapp 2004). Additionally, Abraham’s A is linked to hydrogen-bond 
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donors, which are thought to have a negative correlation with stability (Clarke 

& Delaney 2003, Platt et al. 1999). Thus, acidic herbicides may have lower 

residue limits because they are more efficacious and less stable.  

 

Overall, the best predictions were achieved for EU MRLs, and Codex MRLs 

could also be predicted fairly well, whereas models predicting US tolerances 

had the poorest performance. The variables that were used by the neural 

networks varied among the EU, Codex and US, even for the same main use. 

This could be caused by differences in which a.i.s were included in the 

different datasets. Alternatively, if climate and physico-chemical properties 

interact (Galera et al. 1997, Willis & McDowell 1987), this may also cause 

differences between which variables were included in the different neural 

networks. For instance, foliar uptake is affected by molecular weight, but the 

relationship between foliar uptake and molecular weight changes with 

temperature (Schonherr et al. 1999). Moreover, photodegradation not only 

depends on photo-stability but also on uptake into leaves where compounds 

are more stable (Bentson 1990).  

 

Importance of use patterns 

Use patterns were not included directly in the analyses, but we suspect that 

the differences among main uses, crop types and legal regions are linked to 

differences in use pattern. As main uses and legal regions were analysed 

separately and crop type was included in most models, use pattern was 

indirectly included in the analyses. Furthermore, if the physico-chemical 

properties are linked to toxicity and stability this may affect use pattern. For 
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instance, high toxicity for the target organisms may lead to lower application 

rates, which will lead to lower residues. It would be interesting to include 

information on use pattern as a future development of the models. 
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TABLES 

 

Table I. Physico-chemical variables used to predict residue limits. For details of 

sources and calculation methods see Clarke & Delaney 2003. 

 

Physiochemical property Description 

ClogP Log of the partition coefficient between octanol and water. Values from clogP 

v4© software 

MWT Molecular weight 

N_Rot_bond Number of single non-terminal bonds 

N_Donor Number of hydrogen-bond donors 

N_acceptor Number of hydrogen-bond acceptors 

Aromatic proportion* Number of non-hydrogen atoms in aromatic systems divided by total number of 

non-hydrogen atoms 

Non-carbon proportion* Number of non-carbon non-hydrogen atoms divided by total number of non-

hydrogen atoms 

Halogen proportion* Number of halogen atoms divided by the total number of non-hydrogen atoms 

N_Cation Number of positive charges 

N_Anion Number of negative charges 

Charge Formal charge at pH 7 

A Abraham’s A (a measure of hydrogen-bond acidity). Values from Absolv v1.4 © 

B Abraham’s B (a measure of hydrogen-bond basicity). Values from Absolv v1.4 © 

S Polarisability. Values from Absolv v1.4© 

E Excess molar refraction. Values from Absolv v1.4© 

L Length of molecule. Values from Absolv v1.4© 

V McGowan volume. Values from Absolv v1.4© 

DOH Difference between log of the partition coefficient between octanol and water and 

log of the partition coefficient between hexadecane and water 

Water solubility Log of the measure of water solubility from Absolv v1.4© 

ESOL Log of ESOL, a measure of water solubility (Delaney, 2004) 

* collectively termed non-hydrogen atom characteristics; which equate to heavy atom characteristics in Clarke 

& Delaney 2003. 
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Table II. Number of crops with residue limits in the three legal regions and grouping 

of crops. 

 

Number of crops 
Crop type 

EU Codex US 
Example of typical crops 

Leafy vegetables 20 24 190 Leafy salad, spinach, leafy brassica, herbs  

Compact vegetables 29 28 54 Head cabbages, head salad, tomatoes, squash 

Root and bulb vegetables 21 22 90 Onions, potatoes, radish, carrots 

Fruits 44 54 102 Apples, melons, berries, grapes 

Seeds 45 79 254 Cereals, corn, nuts, oil seeds, legumes 

Animal feed* - 36 577 Hay, alfalfa, fodder beet, forage crops 

Other* - 64 575 Animal produce, milk, tea, processed 

commodities 

* excluded from data analyses 
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Table III. Number of active ingredients (a.i.s) and observations included in the 

datasets.  

 

Main use EU MRLs 

including 

LOQ 

EU MRLs 

excluding 

LOQ 

Codex 

MRLs 

US 

tolerances 

a.i.s shared by 

all datasets 

Fungicides Number of a.i.s 

Number of cases* 

62 

260 

37 

176 

45 

196 

47 

173 
22 

Herbicides Number of a.i.s 

Number of cases* 

94 

335 

52 

137 

9 

44 

112 

305 
4 

Insecticides Number of a.i.s 

Number of cases* 

92 

407 

40 

217 

72 

316 

72 

295 
40 

*Number of cases counted after the crops had been grouped into crop types. 
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Table IV. Performance of neural networks used to analyse the relationships between 

residue limits of fungicides and crop types and the physico-chemical properties of the 

active ingredients. R
2
 indicate the proportion of the variation in residue levels that was 

explaind by the neural network. Over-learning occurs when a neural network fits the 

model to the noise rather than real patterns. 

 

Dataset Variables included in neural 

network 

R
2 

Graphical inspection of predicted 

plotted against observed residues 

Check for over-

learning 

EU MRLs  ClogP, aromatic proportion, 

non-carbon proportion, 

halogen proportion, ESOL 

0.48 Good over all fit. Captures high, but 

overestimates low residues 

No over-learning 

 Crop type, non-carbon 

proportion, B, ESOL 

0.46 Captures high values, but 

overestimates most lower and lower 

intermediate values  

No over-learning 

 Crop type, non-carbon 

proportion, halogen 

proportion, B, ESOL 

0.52 Captures high values, but 

overestimates most lower and lower 

intermediate values  

Moderate over-

learning 

Codex 

MRLs 

Crop type, aromatic 

proportion, halogen 

proportion, V 

0.44 Good fit Moderate over-

learning 

 Crop type, MWT, aromatic 

proportion 

0.50 Good fit Moderate over-

learning 

 Crop type, V, ESOL 0.41 Good fit Moderate over-

learning 

US 

tolerances 

Non-carbon proportion, 

halogen proportion, water 

solubility 

0.41 Good fit in mid-high range, does not 

capture low residues 

Minor over-learning 

 Non-carbon proportion, 

halogen proportion, ESOL 

0.42 Good fit in mid-high range, does not 

capture low residues  

Minor over-learning 

 Non-carbon proportion, 

halogen proportion, aromatic 

proportion 

0.41 Good fit in mid-high range, does not 

capture low residues  

Minor over-learning 
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Table V. Performance of neural networks used to analyse the relationships between 

residue limits of herbicides and crop types and the physico-chemical properties of the 

active ingredients. R
2
 and over-learning as in Table IV. 

 

Dataset Variables included in neural 

network 

R
2 

Graphical inspection of 

predicted plotted against 

observed residues 

Check for over-

learning 

EU MRLs  Aromatic proportion, non-

carbon proportion, ESOL 

or  

Non-carbon proportion, A, 

ESOL 

or 

Aromatic proportion, A,B 

0.30 

Fit only reasonable in mid-rage, 

i.e. underestimate high values, 

and overestimate low residues 

Moderate over learning. 

Several models with 

similar fits 

Codex 

MRLs 

Too few observations for analysis 

US 

tolerances 

Aromatic proportion, halogen 

proportion, S, ESOL, DOH 

0.41 Poor fit  Minor over-learning 

 Aromatic proportion, A, L, 

ESOL 

0.41 Capture general trend but 

underestimated tolerances in 

high end  

Moderate over-learning 
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Table VI. Performance of neural networks used to analyse the relationships between 

residue limits of insecticides and crop types and the physico-chemical properties of 

the active ingredients. R
2
 and over-learning as in Table IV. 

 

Dataset Variables included in neural 

network 

R
2 

Graphical inspection of 

predicted plotted against 

observed residues 

Check for over-learning 

EU MRLs  Crop type, clogP* aromatic 

proportion, halogen proportion 

0.52 Good fit No over-learning.  

 
Crop type, non-carbon 

proportion, halogen proportion 

0.49 Good fit (but larger spread at 

high values than model with 4 

variables) 

Moderate over-learning 

Codex MRLs
#
 Crop type, non-carbon 

proportion, halogen proportion, 

DOH, water solubility 

0.38 Reasonable to good fit in all 

range 

Moderate over-learning.  

US tolerances Crop type, clogP, aromatic 

proportion, ESOL 

0.26 Poor fit No over-learning 

 Crop type, aromatic proportion, 

S 

0.28 Poor fit  Moderate over-learning 

*ClogP may be substituted by ESOL 

# One observation excluded because MRL was very high 
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FIGURE LEGENDS 

Figure 1. General trends of residue limits relating to target organisms (main uses), 

crop type and legal region. Means of residue limits for (A) main uses, and (B) crop 

types (for details on grouping see Table II). Error bars show 95% confidence limits.  

 

Figure 2. Predictions of fungicide residue limits by neural networks. (A) EU MRLs; 

variables used by neural network: crop type, non-carbon proportion, halogen 

proportion, B, ESOL. (B) Codex MRLs; variables used by neural network: crop type, 

molecular weight, aromatic proportion. (C) US tolerances; variables used by neural 

network: non-carbon proportion, halogen proportion, aromatic proportion. Black 

circles: predictions. Dotted lines indicate perfect prediction, thus circles above line are 

over-predictions and circles below line are under-predictions.  

 

Figure 3. Relationship between physico-chemical variables and Codex MRLs for 

fungicides. (A) Aromatic proportion. (B) Molecular weight (MWT). (C) Aromatic 

proportion and MWT where the surface was fitted with distance-weighted least 

squares smoothing procedure. (D) Response surface used by neural network.  

 

Figure 4. Relationship between fungicide residues and molecular weight (MWT) and 

aromatic proportion. (A) EU MRL. (B) US tolerances. The surfaces were fitted with 

distance-weighted least squares smoothing procedure. 
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Figure 5. Predictions of herbicide residue limits by neural networks. (a) EU MRLs. 

Variables used by neural network: aromatic proportion, A, B. (B) US tolerances. 

Variables used by neural network: aromatic proportion, A, L, ESOL. Black circles: 

predictions. Dotted lines: perfect prediction, thus circles above line are over-

predictions and circles below line are under-predictions. (C) Relationship between US 

tolerances and A (hydrogen-bond acidity). (D) Relationship between aromatic 

proportion and US tolerances.  

 

Figure 6. Predictions of insecticide residue limits by neural networks. (A) EU MRL; 

variables used by neural network: crop type, non-carbon proportion, halogen 

proportion. (B) Codex MRLs; variables used by neural network: crop type, non-

carbon proportion, halogen proportion, DOH, water solubility. Black circles: 

predictions. Dotted lines: perfect prediction, thus circles above line are over-

predictions and circles below line are under-predictions.  

 

Figure 7. Relationship between physico-chemical variables and EU MRLs for 

Insecticides. (A) Non-carbon proportion. (B) Halogen proportion, where the surface 

was fitted with distance-weighted least squares smoothing procedure. (C) Non-carbon 

proportion and halogen proportion, where the surface was fitted with distance-

weighted least squares smoothing procedure. (D) Response surface used by neural 

network.

Page 33 of 40

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 34 

FIGURES 

 
 
 
 

 

 

 

 

 

 

 

Figure 1.  

0

1

2

3

4

5

6

Root

vegetables

Seeds Compact

vegetables

Fruits Leafy

vegetables

 R
e
s
id
u
e
 L
im
it
s
 (
m
g
/k
g
)

(B)

0

1

2

3

4

5

6

7

8

Herbicides Insecticides Fungicides

R
e
s
id
u
e
 L
im
it
s
 (
m
g
/k
g
)

EU MRL Codex MRL US Tolerance(A)

Page 34 of 40

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 35 

 

 

 

 

 

 

 

Figure 2. 

 

-5

0

5

-5 0 5

Observed (ln tolerance)

 P
re
d
ic
te
d
 (
ln
 t
o
le
ra
n
c
e
)

(C) US

over-prediction

under-prediction

-5

0

5

-5 0 5
Observed (ln MRL)

 P
re
d
ic
te
d
 (
ln
 M
R
L
)

(B) Codex

over-prediction

under-prediction

-5

0

5

-5 0 5

Observed (ln MRL)

 P
re
d
ic
te
d
 (
ln
 M
R
L
)

(A) EU

over-prediction

under-prediction

-5

0

5

-5 0 5

Observed (ln tolerance)

 P
re
d
ic
te
d
 (
ln
 t
o
le
ra
n
c
e
)

(C) US

over-prediction

under-prediction

-5

0

5

-5 0 5
Observed (ln MRL)

 P
re
d
ic
te
d
 (
ln
 M
R
L
)

(B) Codex

over-prediction

under-prediction

-5

0

5

-5 0 5

Observed (ln MRL)

 P
re
d
ic
te
d
 (
ln
 M
R
L
)

(A) EU

over-prediction

under-prediction

Page 35 of 40

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 36 

 

 

 

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Aromatic proportion

-5

-4

-3

-2

-1

0

1

2

3

4

ln
(M

R
L
)

(A)

 

150 200 250 300 350 400 450

MWT

-5

-4

-3

-2

-1

0

1

2

3

4

ln
(M

R
L
)

(B)

 
(C) (D)

 

 

 

 

 

 

Figure 3. 

Page 36 of 40

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 37 

 
(A) EU MRLs

(B) US tolerances

 

 

 

 

 

 

 

 

 

 

Figure 4. 

Page 37 of 40

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 38 

 

-5

-4

-3

-2

-1

0

1

-5 -4 -3 -2 -1 0 1

Observed (ln MRL)

 P
re
d
ic
te
d
 (
ln
 M
R
L
)

(A) EU

over-prediction

under-prediction

 

-5

-4

-3

-2

-1

0

1

2

3

4

-5 -4 -3 -2 -1 0 1 2 3 4

Observed (ln MRL)

 P
re
d
ic
te
d
 (
ln
 M
R
L
)

(B) US

over-prediction

under-prediction

 

-0.5 0.0 0.5 1.0 1.5

A

-5

-4

-3

-2

-1

0

1

2

3

4

ln
 (
to
le
ra
n
c
e
)

(C) US

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Aromatic proportion

-5

-4

-3

-2

-1

0

1

2

3

4

ln
 (
to
le
ra
n
c
e
)

(D) US

 

 

 

 

 

 

 

 

 

Figure 5. 

Page 38 of 40

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 39 

-5

0

5

-5 0 5

Observed (ln MRL)

 P
re
d
ic
te
d
 (
ln
 M
R
L
)

(A) EU

over-prediction

under-prediction
-5

0

5

-5 0 5

Observed (ln MRL)

 P
re
d
ic
te
d
 (
ln
 M
R
L
)

(B) Codex

over-prediction

under-prediction

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 

Page 39 of 40

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 40 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

Non-carbon proportion

-5

-4

-3

-2

-1

0

1

2

3

4

ln
 (
M
R
L
)

(A)

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Halogen proportion

-5

-4

-3

-2

-1

0

1

2

3

4

ln
(M

R
L
)

(B)

 
(C) (D)

 

 

 

 

 

 

 

 

Figure 7 

 

 

Page 40 of 40

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


