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Introduction

Residues of crop protection products on foodstuffs are highly regulated. Thus, maximum residue levels (MRLs) and tolerances (hereafter collectively termed residue limits), are based on carefully conducted supervised field trials, and represent the highest residue that would normally be expected when observing good agricultural practice (EC 1997b[START_REF] Epa | Residue Chemistry Test Guidelines[END_REF], FAO/WHO 2002).

When a crop protection product is used on a crop, residues of the active ingredient (a.i.) can be found on food and feed commodities at harvest. The level of residues depends on a large number of factors. Factors relating to effect of use pattern and growth conditions on residue levels have been extensively investigated. For example, application rate [START_REF] Fletcher | Literature review and evaluation of the EPA food-chain (Kenaga) nomogram, an instrument for estimating pesticide residues on plants[END_REF][START_REF] Hoerger | Pesticide residues on plants: correlation of representative data as a basis for estimation of their magnitude in the environment[END_REF], OECD 2002b[START_REF] Pfleeger | Field Evaluation of the EPA (Kenaga) nomogram, a method for estimating wildlife exposure to pesticide residues on plants[END_REF][START_REF] Sadlo | Quantitative relationship of application rate and pesticide residues in greenhouse tomatoes[END_REF], pre-harvest intervals (PHI) [START_REF] Timme | Statistical interpretation and graphic representation of the degradational behaviour of pesticide residues I[END_REF], number of applications [START_REF] Timme | Statistical interpretation and graphic representation of the degradational behaviour of pesticide residues I[END_REF]) crop characteristics [START_REF] Fletcher | Literature review and evaluation of the EPA food-chain (Kenaga) nomogram, an instrument for estimating pesticide residues on plants[END_REF][START_REF] Hoerger | Pesticide residues on plants: correlation of representative data as a basis for estimation of their magnitude in the environment[END_REF][START_REF] Pfleeger | Field Evaluation of the EPA (Kenaga) nomogram, a method for estimating wildlife exposure to pesticide residues on plants[END_REF][START_REF] Santier | Reassessment of the role of cuticular waxes in the transfer of organic molecules through plant cuticles[END_REF], climate [START_REF] Elliot | Temporal Dynamics of Chlorothalonil Residues on Peanut Foliage and the influence of Weather Factors and Plant Growth[END_REF][START_REF] Galera | A study of fenpropathrin residues in tomatoes and green beans grown in greenhouses in Spain[END_REF][START_REF] Nigg | Weather and pesticide residues[END_REF], OECD 2002b), and growth dilution [START_REF] Holland | Modelling of pesticide Residues on Fruit II: Persimmon[END_REF] all affect residues. The influence of the properties of the a.i. itself on residues is less well understood. However, there is some evidence that physico-chemical properties of formulations and a.i.s affect residues [START_REF] Briggs | Influence of physicochemical properties of uptake and loss of pesticides and adjuvants from the leaf surface[END_REF][START_REF] Holloway | Tank-mix adjuvants and pesticide residues: some regulatory and quantitative aspects[END_REF][START_REF] Spynu | Predicting pesticide residues to reduce crop contamination[END_REF]).

Factors indirectly affecting residue levels include rain-fastness, foliar uptake, uptake through roots, volatilisation, photostability, degradation rate and persistence on the plant surfaces, all of which are linked to the physico- 4 chemical properties of the a.i.s [START_REF] Bentson | Fate of Xenobiotics in Foliar Pesticide Deposits[END_REF], Bromilow & Chamberlain 1991, Bromilow & Chamberlain 1995[START_REF] Holloway | Tank-mix adjuvants and pesticide residues: some regulatory and quantitative aspects[END_REF][START_REF] Trapp | Plant uptake and transport models for neutral and ionic chemicals[END_REF]). The physico-chemical properties may interact, and the relationship with residues is not necessarily linear [START_REF] Baker | Physicochemical properties of agrochemicals: their effects on foliar penetration[END_REF]. For example, water solubility and lipophilicity affect uptake as well as persistence on the plant surfaces (Bromilow & Chamberlain 1995[START_REF] Tice | Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals?[END_REF], Willis & McDowell 1987).

Furthermore, there may be interactions among use patterns, crops, climate and physico-chemical properties of the a.i.s [START_REF] Bentson | Fate of Xenobiotics in Foliar Pesticide Deposits[END_REF][START_REF] Galera | A study of fenpropathrin residues in tomatoes and green beans grown in greenhouses in Spain[END_REF][START_REF] Schonherr | Modelling foliar penetration: its role in optimising pesticide delivery[END_REF]. Consequently, data that cover a wide range of crops, use patterns and climatic conditions are necessary in order to draw generally applicable conclusions about the relationship between physicochemical properties of a.i.s and residues in foodstuffs. Since the trials used to set residue limits are normally conducted under varying local and climatic conditions, residue limits often provide a more substantial basis for modelling residues than results from single experiments (EC 1997b[START_REF] Epa | Residue Chemistry Test Guidelines[END_REF], FAO/WHO 2002[START_REF] Hoerger | Pesticide residues on plants: correlation of representative data as a basis for estimation of their magnitude in the environment[END_REF].

Here, the relationship between physico-chemical properties of crop protection products and residue limits in foodstuffs are explored. This was done for fungicides, herbicides and insecticides registered for use by the EU, Codex and US. Furthermore, residue limits in different regions and for different crop types were compared. Only a.i.s that had information on both physico-chemical properties and residue limits were included in the analyses.

Methods

Data collation and datasets

Physical and chemical properties of active ingredients. The dataset containing the physico-chemical properties of a wide range of a.i.s ( datasets, the EU MRLs included some a.i.s which were not registered for use in the EU; for those a.i.s the MRL was not set on the basis of residue trials but at the level of quantification (LOQ). Thus, in the EU dataset, it was not possible to distinguish between the LOQs that represented genuinely low residues and those which were set at LOQ because the a.i. was not registered for use. Consequently, the analyses of the EU MRL dataset were performed without MRLs set at LOQ.

The datasets represented a wide range of a.i.s and crops (Table II, Table III).

There was some but not a complete overlap between the a.i.s and crops in the three datasets. Residues have been shown to differ between crops [START_REF] Fletcher | Literature review and evaluation of the EPA food-chain (Kenaga) nomogram, an instrument for estimating pesticide residues on plants[END_REF][START_REF] Galera | A study of fenpropathrin residues in tomatoes and green beans grown in greenhouses in Spain[END_REF][START_REF] Hoerger | Pesticide residues on plants: correlation of representative data as a basis for estimation of their magnitude in the environment[END_REF][START_REF] Pfleeger | Field Evaluation of the EPA (Kenaga) nomogram, a method for estimating wildlife exposure to pesticide residues on plants[END_REF], so the crops were grouped into seven categories in order to allow comparisons (Table II). The grouping was made on the basis of surface area to weight ratio, direct exposure to spray, and consumers (humans or animals).

For each a.i., the mean residue limit was taken for all the crops belonging to a crop type, and this value was used in the data analyses. Thus, the models predict residue limits for a crop type rather than an individual commodity.

Animal feed and 'others' were excluded from the analyses because residues in foodstuffs of plant origin intended for human consumption are the focus of this study.

Data analysis

Summary statistics for legal regions, crop type and main uses were calculated. Artificial neural networks (three layer perceptrons) were used to analyse the relationship between residue limits and the physico-chemical properties of the a.i.s. The three layer perception was chosen because it is one of the most commonly used neural network architectures, and it is a powerful tool for analysing data for prediction and classification [START_REF] Bishop | Neural Networks for Pattern Recognition[END_REF].

Furthermore, the three layer perceptron is capable of modelling complex linear and nonlinear relationships and is good at handling large numbers of interdependent variables, which often complicates more traditional approaches to statistical modelling [START_REF] Bishop | Neural Networks for Pattern Recognition[END_REF]. The datasets were also analysed with general linear models (anovas, multiple regression and combinations thereof), but as neural networks performed much better, results from these more traditional statistical methods are not presented. The residue limits were log-transformed prior to all analyses.

Variable selection and training of neural networks. In order to train the neural networks each of the datasets of residue limits from the three legal regions were combined with the dataset containing physico-chemical properties of the a.i.s. Neural networks require large datasets to be properly trained. As the number of variables increases the more observations are required to train neural networks [START_REF] Bishop | Neural Networks for Pattern Recognition[END_REF]. Consequently, variable selection and reduction is paramount for successful training. The following procedure for variable selection was used. Pair-wise correlations between residue limits and all the physico-chemical variables were performed. Then feature selection was applied with forwards, backwards and genetic selection. On the basis of these two approaches, variables were chosen that appeared to be important. 

Results

General trends in residue limits

An initial inspection of the summary statistics of the three raw datasets of residue limits revealed some general trends relating to main use, crop types and legal region. Of the three main uses, fungicides had the highest residue limits, insecticide residue limits were intermediate and herbicide residue limits were lowest (Figure 1A). For food commodities, leafy vegetables had the highest residue limits, whereas more 'compact' commodities such as fruits (e.g. apples) and compact vegetables (e.g. cucumbers) were intermediate (Figure 1B). The lowest residue limits were found for root and bulb vegetables The residue limits varied among legal regions. Thus, US tolerances tended to be higher than Codex MRLs and EU MRLs were lowest (Figure 1). However, interpretation of the differences among the legal regions should be made with caution, because even though there is some overlap between the three datasets with respect to a.i.s and crops, there are also some substantial differences (Table III). Nonetheless, the trend remained the same for fungicides and insecticides when the a.i.s found in all three datasets were compared (there were not enough herbicides in the Codex MRL dataset for this comparison).

Prediction of fungicides

Of the three main uses, neural networks generally performed best on fungicide residue limits. Thus, a higher proportion of the variation was explained than for the other main uses (Table IV, Table V, Table VI). The general trends in residue limits were captured for EU MRLs, Codex MRLs and US tolerances (Table IV, Figure 2). On the basis of crop type and 2-4 physicochemical variables it was possible to explain 40-50% of the variation in residue limits (Table IV).

For each legal region there was more than one neural network that performed equally well with respect to precision of predictions. The neural networks differed both with respect to the variables included and network architecture (number of neurons in different layers). Even so, there were some general trends with respect to variable selections. Crop type was an important variable and was included in most neural networks. Variables describing non-hydrogen atom characteristics (aromatic proportion, non-carbon proportion and halogen proportion), also appeared in many neural networks, as did water solubility.

The relationship between the physico-chemical variables and residue limits was not straightforward. One of the simpler neural networks was used to explain this point, namely the best Codex network, where three variables (crop type, molecular weight and aromatic proportion) explained 50% of the variation in Codex MRLs. Analysed separately, there was no obvious relationship between molecular weight or aromatic proportion and residue limits (Figure 3). However, when molecular weight and aromatic proportion were combined a pattern emerged; at low aromatic proportions molecular weight only had minor effect, but at higher aromatic proportions there was a negative relationship between residue limits and molecular weight. Thus, the highest residue limits were found for compounds, which had a high aromatic proportion and low molecular weight (Figure 3). Although molecular weight was not included in the neural networks for the EU MRL and US tolerance datasets, the same pattern was still apparent (Figure 4). The a.i.s where high residue limits were linked to low molecular weight and high aromatic proportion, were a mixture of compounds with CAS dates before 1965 and newer compounds with CAS date after 1965. Some of the other neural networks performed as well as the one just described (Table IV), but they included more variables and the relationships between variables and residue limits were more complex.

Prediction of herbicides

The neural networks were able to capture general trends in US tolerances for herbicides on the basis of 4-5 physico-chemical variables. The neural networks explained 40% of the variation in US tolerances (Table V), but underestimated tolerances in the higher end (Figure 5B). For EU MRLs for herbicides, the neural networks also captured the general trends in the lower end, but the tendency to underestimate residue limits in the higher end was even more pronounced than for US tolerances (Table V, Figure 5A). There

were not enough herbicides in the Codex dataset for analysis (Table III).

In contrast to fungicides and insecticides, crop type did not appear to be important for herbicide residue limits. As in the analyses of fungicides, variables describing non-hydrogen atom characteristics (aromatic proportion, non-carbon proportion and halogen proportion) tended to be influential. In contrast to both fungicides and insecticides, acidity and basicity were also important. There was a tendency for a downward trend in residue limits at high hydrogen-bond acidity (Figure 5C), but other than that it was difficult to discern the shape of the relationship between the physico-chemical variables and residue limits (e.g. aromatic proportion, Figure 5D). VI, Figure 6). The prediction of EU MRLs was best with 52% of the variation explained. The neural networks were able to explain 38% of the variation in Codex MRLs but only 28% of the variation in US tolerances for insecticides.

Prediction of insecticides

In the same way as for the fungicides, crop type was important for insecticide residue limits as were physico-chemical variables describing non-hydrogen atom characteristics (aromatic proportion, non-carbon proportion and halogen proportion) (Table VI). Again, the relationships between residue limits and the physico-chemical variables were not straightforward. As an example the simplest neural network for EU MRLs for insecticides was chosen. There was a negative relationship between halogen proportion and residue limits, but the effect of non-carbon proportion on residue limits could only be observed when combined with halogen proportion (Figure 7). Thus, a combination of high halogen proportion and low non-carbon proportion gave the lowest residue limits. One of the neural networks for Codex MRLs also included non-carbon proportion and halogen proportion. However, the compounds with high halogen proportion were compounds with CAS dates from before 1965, and some of them also had use as fumigants. The combination of halogen proportion and non-carbon proportion was not included in the neural networks for US tolerances (Table VI). The summary statistics of the residue limits showed substantial variation among and within main uses, crop types and legal regions. Of the three main uses, herbicides had the lowest residue limits, fungicides the highest and insecticides were intermediate. Herbicide residues were expected to be low because they are often applied with long pre-harvest intervals (PHI).

Discussion

Fungicides tend to have higher application rates and shorter PHI than insecticides, which might explain why they had higher residue limits.

Our results indicate that residue limits are affected by commodity surface to weight ratio and exposure to direct spray. These factors along with application rate have been shown to cause variation in initial residues [START_REF] Fletcher | Literature review and evaluation of the EPA food-chain (Kenaga) nomogram, an instrument for estimating pesticide residues on plants[END_REF][START_REF] Hoerger | Pesticide residues on plants: correlation of representative data as a basis for estimation of their magnitude in the environment[END_REF], OECD 2002a[START_REF] Pfleeger | Field Evaluation of the EPA (Kenaga) nomogram, a method for estimating wildlife exposure to pesticide residues on plants[END_REF] and subsequent decline of residues [START_REF] Galera | A study of fenpropathrin residues in tomatoes and green beans grown in greenhouses in Spain[END_REF].

In general, US tolerances were higher than Codex MRLs, which were higher than EU MRLs. Many factors might have contributed to these differences among legal regions. Firstly, there were differences with regards to which a.i.s

were registered for use in the three legal regions. However, the trend remained the same even when only a.i.s and crop types that occurred in all three legal regions were included. Secondly, differences in pest and disease prevalence, use patterns and climatic conditions may contribute to the variation (Bruhn & Fry 1982[START_REF] Galera | A study of fenpropathrin residues in tomatoes and green beans grown in greenhouses in Spain[END_REF], OECD 2002a, Willis & McDowell 1987). Thirdly, different calculation methods for residue limits may How good were the predictions?

Neural networks explained 30 to 50% of the variation in residue limits and although there was some noise, the general trends in residue limits were captured on the basis of crop type and 3-5 physico-chemical variables. A prediction of 40-50% of the variation could be considered fairly good considering that information on use pattern had not been taken directly into account. However, use pattern alone does not explain all variation in residue limits either. Thus, even if only initial deposit is considered, application rate only explains 20% of the variation for some crop types, but up to 90% for others [START_REF] Pfleeger | Field Evaluation of the EPA (Kenaga) nomogram, a method for estimating wildlife exposure to pesticide residues on plants[END_REF]. Nonetheless, many factors that have an effect on residue limits were not included in our analyses (e.g. application rate, number of applications, PHI and formulation) [START_REF] Briggs | Influence of physicochemical properties of uptake and loss of pesticides and adjuvants from the leaf surface[END_REF][START_REF] Frehse | The behaviour of pesticide residues in fruits and vegetables: evaluation by decliine curves[END_REF][START_REF] Hoerger | Pesticide residues on plants: correlation of representative data as a basis for estimation of their magnitude in the environment[END_REF][START_REF] Holloway | Tank-mix adjuvants and pesticide residues: some regulatory and quantitative aspects[END_REF][START_REF] Timme | Statistical interpretation and graphic representation of the degradational behaviour of pesticide residues I[END_REF]. Our results indicated that crop type and physicochemical properties of the a.i.s controlled important aspects of the processes leading to a residue limit, irrespective of the use pattern.

Which variables were important?

Physico-chemical properties are likely to be important for rainfastness [START_REF] Mulrooney | Rainfastening of bifenthrin to cotton leaves with selected adjuvants[END_REF], photo degradation [START_REF] Bentson | Fate of Xenobiotics in Foliar Pesticide Deposits[END_REF]), volatilisation [START_REF] Bentson | Fate of Xenobiotics in Foliar Pesticide Deposits[END_REF], metabolism [START_REF] Bates | The prediction of pesticide residues in crops by the optimum use of existing data[END_REF]), retention on plant surface (Willis et al. 1994), degradation rate [START_REF] Timme | Statistical interpretation and graphic representation of the degradational behaviour of pesticide residues I[END_REF], uptake into plants and transport in plants (Bromilow & Chamberlain 1991, Bromilow et al. 1991[START_REF] Schonherr | Modelling penetration of plant cuticles by crop protection agents and effects of adjuvants on their rates of penetration[END_REF][START_REF] Schonherr | Modelling foliar penetration: its role in optimising pesticide delivery[END_REF][START_REF] Trapp | Plant uptake and transport models for neutral and ionic chemicals[END_REF]. Often more than one neural network gave similar predicted outcomes. This indicated that there were several variables affecting the dissipation processes, and/or that variables were interdependent and therefore interchangeable. The relationships between non-hydrogen atoms characteristics and residue limits were not straightforward. There were interactions between variables as well as non-linear relationships involved. These complex relationships might have been caused by non-hydrogen atom characteristics affecting different aspects of the dissipation processes simultaneously. For instance, non- 

How do main uses and legal regions vary with respect to variable selection and precision of predictions?

Neural networks performed best on fungicides followed by insecticides and had the poorest performance on herbicides. This reflected the general trends in residue limits among main uses. Thus, not surprisingly, it was easiest to get good predictions for the main uses with detectable residues, whereas it was This may explain the differences among the main uses with respect to which variables appeared in neural networks.

Crop type occurred in most fungicide and insecticide neural networks but not in herbicides. This, was expected as herbicides are targeted at weeds rather than the crop. Water solubility appeared in most fungicide models but less frequently in insecticides. This may be explained by insecticides having more uniform water solubility than fungicides.

Aromatic proportion in combination with a measure of molecular size (molecular weight or volume) and water solubility appeared to be important in determining the residues of fungicides. In general, the highest residue limits were found for compounds which had a high aromatic proportion and low molecular weight. Newer a.i.s tend to have higher molecular weights and lower application rates than old a.i.s [START_REF] Tomlin | The Pesticide Manual, 12th Edition[END_REF], and such correlations may also have been picked up by the neural networks. However, the compounds were a mixture of compounds with old and new CAS dates, and came from different pesticide classes, so the pattern appeared to have general Halogen proportion appeared to be important for controlling the residues of insecticides and there was a negative relationship between halogens and residue limits. A closer inspection of the data showed that negative correlations were to some extent driven by a few compounds which had high halogen proportion and low residue limits. These were all compounds with CAS date from before 1965, and some were also used as fumigants. It is therefore questionable whether this trend has general applicability.

Nonetheless, as halogens are added to insecticides to make them more stable with respect to insect metabolism (Clarke & Delaney 2003), a.i.s with high halogen proportion may be more efficacious and persistent, consequently requiring lower application rates.

The variables, which were included in herbicide neural networks, were different from those for fungicides and insecticides. For instance, acidity often appeared in the herbicide neural networks. There tended to be a negative relationship between acidity and herbicide residue limits. Acid groups are more common in herbicides than in fungicides and insecticides, possibly because acid groups tend to have phytotoxic effects [START_REF] Tice | Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals?[END_REF], Clarke & Delaney 2003). Furthermore, acidity is linked to transport of chemicals within plants [START_REF] Trapp | Plant uptake and transport models for neutral and ionic chemicals[END_REF]. Additionally, Abraham's A is linked to hydrogen-bond & Delaney 2003, Platt et al. 1999). Thus, acidic herbicides may have lower residue limits because they are more efficacious and less stable.

Overall, the best predictions were achieved for EU MRLs, and Codex MRLs could also be predicted fairly well, whereas models predicting US tolerances had the poorest performance. The variables that were used by the neural networks varied among the EU, Codex and US, even for the same main use.

This could be caused by differences in which a.i.s were included in the different datasets. Alternatively, if climate and physico-chemical properties interact [START_REF] Galera | A study of fenpropathrin residues in tomatoes and green beans grown in greenhouses in Spain[END_REF], Willis & McDowell 1987), this may also cause differences between which variables were included in the different neural networks. For instance, foliar uptake is affected by molecular weight, but the relationship between foliar uptake and molecular weight changes with temperature [START_REF] Schonherr | Modelling foliar penetration: its role in optimising pesticide delivery[END_REF]). Moreover, photodegradation not only depends on photo-stability but also on uptake into leaves where compounds are more stable [START_REF] Bentson | Fate of Xenobiotics in Foliar Pesticide Deposits[END_REF]).

Importance of use patterns

Use patterns were not included directly in the analyses, but we suspect that the differences among main uses, crop types and legal regions are linked to differences in use pattern. As main uses and legal regions were analysed separately and crop type was included in most models, use pattern was indirectly included in the analyses. 

  Four datasets were collated for analyses: one of physico-chemical properties of a.i.s (Clarke & Delaney 2003) and three on residue limits for different commodities from the EU (Liaison Database [Internet]), Codex (Liaison Database [Internet]) and US (US Environmetal Protection Agency [Internet]).

  both representing commodities that have a low direct exposure to spray deposits compared to other crops.

  able to capture the general trends in EU MRLs and Codex MRLs on the basis of crop type and 3-4 physico-chemical variables (Table

  Crop type was included in the majority of neural networks. Non-hydrogen atom characteristics of the pesticides were also important, and at least one of aromatic proportion, non-carbon proportion and halogen proportion were included in all neural networks. The non-hydrogen atom characteristics affect water solubility, lipophilicity and polarisability, which are all factors that are thought to be important for uptake into and transport around plants(Bromilow et al. 1991, Clarke & Delaney 2003[START_REF] Trapp | Plant uptake and transport models for neutral and ionic chemicals[END_REF]). Nonetheless, non-hydrogen atom characteristics were more important for prediction of residue limits than water solubility, polarisability and lipophilicity themselves. This could have been caused by the non-hydrogen atom characteristics also affecting other properties of the a.i.s, such as stability, volatilisation, toxicity and metabolism(Clarke & Delaney 2003), or because uptake into plants and transport around plants does not always control the final residues.

  affect both water solubility and lipophilicity, which affect rainfastness as well as uptake into plants(Bromilow & Chamberlain 1995[START_REF] Mulrooney | Rainfastening of bifenthrin to cotton leaves with selected adjuvants[END_REF][START_REF] Trapp | Plant uptake and transport models for neutral and ionic chemicals[END_REF]). Non-hydrogen atom characteristics also affect the stability of the a.i.s, causing differences in degradation and metabolism rate(Clarke & Delaney 2003). Non-carbon proportion affects the solubility of the compound, its ability to permeate membranes and how well it sticks to a waxy surface(Bromilow & Chamberlain 1995[START_REF] Tice | Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals?[END_REF][START_REF] Trapp | Plant uptake and transport models for neutral and ionic chemicals[END_REF]). However, the effect will depend on whether groups containing nitrogen and oxygen or halogens are added. This could be the reason for non-carbon proportion and halogen proportion often appearing together in the neural networks. Aromatic proportion was included in many neural networks. Aromatic proportion is likely to affect both stability and ability to permeate membranes, and possibly also toxicity(Clarke & Delaney 2003[START_REF] Tice | Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals?[END_REF], which may affect efficacy and hence application rate. To complicate things further, plants have different surface properties and morphology, which may be another reason why crop type was included in most networks.

  herbicides where residues were low and showed less variation.The three main uses differ in physico-chemical profiles and in systemicity(Clarke & Delaney 2003[START_REF] Tice | Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals?[END_REF][START_REF] Tice | Selection the right compounds for screening: use of surface -area parameters[END_REF]. Thus, most herbicides tend to be systemic, whereas the majority of insecticides have contact action, and fungicides are somewhere in between(Clarke & Delaney 2003[START_REF] Tice | Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals?[END_REF]).

  explanation may stem from the relationship between molecular weight and aromatic proportion, where each addition of an aromatic ring leads to a rather high increase in molecular weight leading to a complex relationship.

  are thought to have a negative correlation with stability (Clarke
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Table I .

 I toxicity for the target organisms may lead to lower application rates, which will lead to lower residues. It would be interesting to include information on use pattern as a future development of the models. Physico-chemical variables used to predict residue limits. For details of sources and calculation methods see Clarke & Delaney 2003.
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Table II .

 II Number of crops with residue limits in the three legal regions and grouping of crops.

	Crop type	EU	Number of crops Codex	US	Example of typical crops
	Leafy vegetables	20	24	190	Leafy salad, spinach, leafy brassica, herbs
	Compact vegetables	29	28	54	Head cabbages, head salad, tomatoes, squash
	Root and bulb vegetables	21	22	90	Onions, potatoes, radish, carrots
	Fruits	44	54	102	Apples, melons, berries, grapes
	Seeds	45	79	254	Cereals, corn, nuts, oil seeds, legumes
	Animal feed* Other* * excluded from data analyses --F o r	36 64	577 575	Hay, alfalfa, fodder beet, forage crops Animal produce, milk, tea, processed commodities
		P		
		e		
		e r		
			R	
			e	
				v i e
					w
					O n l
					y

Table III .

 III Number of active ingredients (a.i.s) and observations included in the datasets.

	Main use	EU MRLs	EU MRLs	Codex	US	a.i.s shared by
		including	excluding	MRLs	tolerances	all datasets
		LOQ	LOQ			
	Fungicides Number of a.i.s Number of cases*	62 260	37 176	45 196	47 173	22
	F o r					
	P				
	e				
		e r				
		R			
		e			
			v i e		
				w		
				O n l	
					y	
						29

Table IV .

 IV Performance of neural networks used to analyse the relationships between residue limits of fungicides and crop types and the physico-chemical properties of the active ingredients. R 2 indicate the proportion of the variation in residue levels that was explaind by the neural network. Over-learning occurs when a neural network fits the model to the noise rather than real patterns.

	Dataset	Variables included in neural	R 2	Graphical inspection of predicted	Check for over-
		network		plotted against observed residues	learning
	EU MRLs	ClogP, aromatic proportion,	0.48	Good over all fit. Captures high, but	No over-learning
		non-carbon proportion,		overestimates low residues	
		halogen proportion, ESOL Crop type, non-carbon proportion, B, ESOL Crop type, non-carbon proportion, halogen F o r	0.46 0.52	Captures high values, but overestimates most lower and lower intermediate values Captures high values, but overestimates most lower and lower	No over-learning Moderate over-learning
	Codex MRLs	proportion, B, ESOL Crop type, aromatic proportion, halogen proportion, V P Crop type, MWT, aromatic proportion e Crop type, V, ESOL e 0.44 0.50 0.41 r	intermediate values Good fit Good fit Good fit	Moderate over-learning Moderate over-learning Moderate over-
					learning
	US tolerances	Non-carbon proportion, halogen proportion, water solubility Non-carbon proportion, halogen proportion, ESOL Non-carbon proportion, halogen proportion, aromatic proportion	0.41 R Good fit in mid-high range, does not capture low residues 0.42 Good fit in mid-high range, does not capture low residues e 0.41 Good fit in mid-high range, does not capture low residues v i e	Minor over-learning Minor over-learning Minor over-learning
				w	
				O n l	
				y	
					30

Table V .

 V Performance of neural networks used to analyse the relationships between residue limits of herbicides and crop types and the physico-chemical properties of the active ingredients. R 2 and over-learning as in TableIV.

	Dataset	Variables included in neural	R 2	Graphical inspection of	Check for over-
		network		predicted plotted against	learning
				observed residues	
	EU MRLs	Aromatic proportion, non-		Fit only reasonable in mid-rage,	Moderate over learning.
		carbon proportion, ESOL		i.e. underestimate high values,	Several models with
		or		and overestimate low residues	similar fits
		Non-carbon proportion, A,	0.30		
	Codex MRLs	ESOL or Aromatic proportion, A,B F o r	Too few observations for analysis	
	US tolerances	Aromatic proportion, halogen proportion, S, ESOL, DOH Aromatic proportion, A, L, ESOL P e e 0.41 0.41 r	Poor fit Capture general trend but underestimated tolerances in high end	Minor over-learning Moderate over-learning
			R		
			e	
			v i e	
				w	
				O n l	
				y
					31

Table VI .

 VI Performance of neural networks used to analyse the relationships between residue limits of insecticides and crop types and the physico-chemical properties of the active ingredients. R 2 and over-learning as in TableIV. General trends of residue limits relating to target organisms (main uses), crop type and legal region. Means of residue limits for (A) main uses, and (B) crop types (for details on grouping see TableII). Error bars show 95% confidence limits.

	FIGURE LEGENDS
	Dataset EU MRLs Figure 1. Figure 2. Predictions of fungicide residue limits by neural networks. (A) EU MRLs; Variables included in neural network R 2 Graphical inspection of predicted plotted against observed residues Check for over-learning Crop type, clogP* aromatic proportion, halogen proportion 0.52 Good fit No over-learning. Crop type, non-carbon proportion, halogen proportion 0.49 Good fit (but larger spread at Moderate over-learning high values than model with 4 variables) Codex MRLs # Crop type, non-carbon proportion, halogen proportion, DOH, water solubility 0.38 Reasonable to good fit in all range Moderate over-learning. US tolerances Crop type, clogP, aromatic 0.26 Poor fit No over-learning F variables used by neural network: crop type, non-carbon proportion, halogen o r proportion, B, ESOL. (B) Codex MRLs; variables used by neural network: crop type,
	proportion, ESOL Crop type, aromatic proportion, S *ClogP may be substituted by ESOL molecular weight, aromatic proportion. (C) US tolerances; variables used by neural 0.28 Poor fit Moderate over-learning P e network: non-carbon proportion, halogen proportion, aromatic proportion. Black
	# One observation excluded because MRL was very high e r
	R
	e
	v i e
	w
	O n l
	y

circles: predictions. Dotted lines indicate perfect prediction, thus circles above line are over-predictions and circles below line are under-predictions.
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