

Absorption, distribution and elimination of fumonisin B1 metabolites in weaned piglets

Judit Fodor, Krisztian Balogh, Maria Weber, Miklos Mezes, Laszlo Kametler, Roland Posa, Rene Mamet, Johann Michael Bauer, Peter Horn, Ferenc

Kovacs, et al.

► To cite this version:

Judit Fodor, Krisztian Balogh, Maria Weber, Miklos Mezes, Laszlo Kametler, et al.. Absorption, distribution and elimination of fumonisin B1 metabolites in weaned piglets. Food Additives and Contaminants, 2007, 25 (01), pp.88-96. 10.1080/02652030701546180. hal-00577475

HAL Id: hal-00577475 https://hal.science/hal-00577475

Submitted on 17 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Food Additives and Contaminants

Absorption, distribution and elimination of fumonisin B1 metabolites in weaned piglets

Journal:	Food Additives and Contaminants
Manuscript ID:	TFAC-2006-380.R1
Manuscript Type:	Original Research Paper
Date Submitted by the Author:	07-Jun-2007
Complete List of Authors:	Fodor, Judit; Research Group of Animal Breeding and Animal Hygiene, University of Kaposvár, Faculty of Animal Science Balogh, Krisztian; Szent István University, Department of Nutrition Weber, Maria; Szent István University, Department of Nutrition Mezes, Miklos; Szent István University, Department of Nutrition Kametler, Laszlo; Research Group of Animal Breeding and Animal Hygiene, University of Kaposvár, Faculty of Animal Science Posa, Roland; Research Group of Animal Breeding and Animal Hygiene, University of Kaposvár, Faculty of Animal Science Mamet, Rene; Technische Universität München, Lehrstuhl für Tierhygiene Bauer, Johann; Technische Universität München, Lehrstuhl für Tierhygiene Horn, Peter; Research Group of Animal Breeding and Animal Hygiene, University of Kaposvár, Faculty of Animal Science Kovacs, Ferenc; Research Group of Animal Breeding and Animal Hygiene, University of Kaposvár, Faculty of Animal Science Kovacs, Melinda; Research Group of Animal Breeding and Animal Hygiene, University of Kaposvár, Faculty of Animal Science Kovacs, Melinda; Research Group of Animal Breeding and Animal Hygiene, University of Kaposvár, Faculty of Animal Science
Methods/Techniques:	Toxicology - in-vivo, Toxicology - metabolism
Additives/Contaminants:	Fumonisins, Mycotoxins - fumonisins
Food Types:	Animal products � meat, Animal feed

Absorption, distribution and elimination of fumonisin B_1 metabolites in weaned piglets

4 Abstract

 The absorption, distribution and elimination of fumonisin B_1 (and B_2) after oral administration of Fusarium verticillioides (MRC 826) fungal culture, mixed into the experimental feed for 10 days, was studied in weaned barrows. In order to determine the absorption of FB₁ from the feed marked by chromium oxide, a special T-cannula was implanted into the distal part of pigs' ileum. During the feeding of toxin-containing diet (45 mg FB₁ per kg) and until the 10^{th} day after the end of treatment, the total quantity of urine and faeces was collected and their toxin content was analysed. At the end of the trial, samples of lung, liver, kidney, brain, muscle and fat were also collected and their fumonisin content was analysed by LC-MS. The fumonisins appeared to decrease the reduced glutathione content in blood plasma and red blood cell haemolysate, possibly associated with in vivo lipid peroxidation. From a dataset of eighty individual data and the concentration and rate of Cr and fumonisins (FB₁, partially hydrolysed FB₁ and aminopentol) in the chymus, it could be established that the accumulative absorption of fumonisin B_1 was 3.9±0.7 %. In the chymus, the FB₁ conversion into aminopentol and partially hydrolysed FB₁ was 1% and 3.9%, respectively. The degree of metabolism in faeces was variable, although the main product was the partially hydrolysed form, with very small amounts of the aminopentol moiety being recovered. In the investigated tissues the FB₁ conversion to aminopentol and partially hydrolysed FB₁ was 30% and 20%, respectively.

24 Keywords: fumonisin, metabolites, biotransformation, absorption, lipid peroxidation

2 Introduction

Fumonisins were first isolated in 1988 from a culture of Fusarium verticillioides (earlier Fusarium moniliforme) strain MRC 826 grown on maize (Gelderblom et al. 1988, Cawood et al. 1991), and subsequently their structure was also determined (Bezuidenhout et al. 1988). The fumonisin B analogues, including toxicologically important FB_1 , FB_2 and FB_3 are the most abundant naturally occurring fumonisins (Marasas, 1996). Fumonisin B_1 (FB₁) causes leukoencephalomalacia in horses (Marasas et al. 1988) and pulmonary oedema in swine (Harrison et al. 1990). It is carcinogenic and has been implicated in the pathogenesis of oesophageal cancer in humans (Marasas et al. 1996).

The results of surveys indicate that fumonisins contaminate the maize kernels in all corngrowing countries of the world and can cause fumonisin toxicosis (Dutton 1996). The exact mechanism of action of FB_1 has still not been elucidated. Fumonisins are very similar to sphingolipids in molecular structure (Shier 1992); thus, they interfere in the metabolism of the latter and disturb the processes mediated by these molecules (Kim et al. 1991).

Food materials of animal origin may become contaminated with FB₁ after the toxin has been absorbed from the digestive tract, entered the bloodstream and reached the peripheral tissues. Therefore, from the food safety point of view it is especially important to know the distribution of this mycotoxin in the organism. However, the toxin concentration detectable in the organs, urine and faeces is influenced by the metabolism of the toxin to a large extent. Only a few data have been so far reported in the literature about the metabolism of FB₁ (Marasas et al., 2000).

The FB₁ molecule includes a long chain aminopentol backbone (AP₁) with two ester-linked tricarballylic acids (TCA). AP₁ originates from FB₁ by hydrolysis of the tricarballylic acid side chains at carbon 14 and 15, which are then replaced by hydroxyl groups. PHFB₁ (partially hydrolysed FB₁) is a result of partial hydrolysis (Merrill et al., 1993).

Little is known about the possible endogenous hydrolysis of FB₁ by the mammalian
metabolism, even if some studies performed on primates (Shepard et al. 1994) and ruminants
(Rice and Ross, 1994) revealed that the ester moiety of FB₁ was hydrolyzed in the intestine.

In our earlier study (Fodor et al., 2006a), from the toxin intake (50 mg per animal per day or 2.2 mg per kg body weight per day) of five days, a mean value of 13% was excreted in urine and faeces. Distribution of the excreted toxin in faeces and urine was 87% and 13%, respectively. Our examinations have applied to the unchanged chemical form of FB₁ only. It must be noted that the actual elimination would have presumably been much higher than that if the metabolised chemical forms had also been taken into consideration. Accordingly, it was supposed that the major part of the toxin was excreted in a partly or totally hydrolysed form. In this experiment, absorption, distribution and elimination of fumonisin B_1 and its metabolites were determined in pigs that were fed a ration containing 45 mg FB₁ kg⁻¹ during 10 days.

19 Materials and methods

20 Experimental design and animals

Sixteen weaned barrows (Hungarian Large White) from the age of 8 weeks, weighing 12–14 kg, were used in the experiment. The piglets were weighed and then divided into two groups: an experimental group (n = 10) and a control group (n = 6). The animals were placed in metabolic cages for the trial. The room temperature (20 °C) was controlled according to the

Food Additives and Contaminants

needs of weaned piglets. Feed was given twice a day, in two equal portions, and the amount of feed not consumed by the animals was measured. Drinking water was available ad libitum via automatic drinkers. The experimental animals were fed a basal diet of a composition corresponding to their age (187 g kg⁻¹ crude protein, 12.8 MJ kg⁻¹ metabolizable energy, 13.1 g kg⁻¹ lysine; ingredients: wheat 30%, barley 20%, corn 15%, soy-bean 10%, concentrate 15%). A Fusarium verticillioides (MRC 826) fungal culture (1%) and Cr₂O₃ (0.5%) was mixed into the feed of experimental animals, so as to provide a Cr-labelled, fumonisin-contaminated (45 mg/kg FB₁; 8.6 mg/kg FB₂; 4.6 mg/kg FB₃) feed. Fumonisins were produced by a locally developed method and with the application of Fusarium verticillioides strain MRC 826 (Fodor et al., 2006b). The homogenized fungal culture contained FB₁, FB₂ and FB₃ at a concentration of 5645 mg kg⁻¹, 1083 mg kg⁻¹ and 581 mg kg⁻¹, respectively.

After a five-day adaptation period, according to the method of Tossenberger et al. (2000), a special T-cannula was implanted into the distal part of the ileum, before the ileocaecal valve, in order to determine the absorption of FB_1 from the feed marked by Cr_2O_3 . At days 1 and 10 of the intoxication period, and 10 days after the withdrawal of the contaminated diet animals were weighed and blood samples were taken. From the blood samples lipid peroxidation parameters were measured, as a complementary examination. From the beginning of the experiment to end, total quantity of urine and faeces was collected, in order to determine the toxin content of them. At the end of both of periods, piglets (n=5 treated and 3 control)animals) were killed by bleeding after sedation. Gross pathological examinations were performed, organs were weighed and several organs were sampled, in order to determine their toxin content and lipid peroxidation status.

The experiments were carried out according to the regulations of the Hungarian Animal
Protection Act. The allowance number for the studies was MÁB-11/2002; KÁ-16/2001.

1	
2	Determination of mycotoxin content in feeds and fungal cultures
3	The mycotoxin content of the control and the experimental feed was checked. T-2 mycotoxin
4	was determined with GC-MS (LOD: 0.01 mg kg ⁻¹), while zearalenone (LOD: 0.01 mg kg ⁻¹),
5	DON (LOD: 0.05 mg kg ⁻¹) and ochratoxin A (LOD: 0.1 μ g kg ⁻¹) by a HPLC system.
6	
7	The determination of FB ₁ , FB ₂ and FB ₃ content from the culture and feed samples was
8	confirmed also by a HPLC fluorescence detection method based upon derivatisation with o-
9	phthaldialdehyde (OPA), as described earlier (Fodor et al., 2006a).
10	
11	The diet fed to the control group did not contain detectable amounts of mycotoxin.
12	
13	Lipid peroxidation examinations
14	For the determination of lipid peroxidation, the samples of blood and organs were stored at -
15	82 °C until analysis. Lipid peroxidation was determined by the quantification of
16	malondialdehyde (MDA) levels with 2-thiobarbituric acid method in blood plasma (Placer et
17	al., 1966), liver, lung, brain, kidney and spleen (Mihara et al., 1980). Among the small
18	molecular weight antioxidants, the amount of reduced glutathione (Sedlak and Lindsay, 1968)
19	was measured in blood plasma, and red blood cell haemolysate and in the above-mentioned
20	organs.
21	
22	Determination of fumonisin absorption and excretion

For the investigation of absorption of FB_1 , we and barrows implanted with a special Tcannula (PVTC) into the distal part of the ileum were used. The operation was carried out 7 days before toxin feeding. In the intoxication period (for 10 days) chymus samples were

Food Additives and Contaminants

collected twice a day (2-3 hrs after feed consumption) from every animal. Based on the rate of FB₁ and Cr₂O₃ in the feed, the absorption degree of the fumonisin was quantifiable from the chymus toxin content. In the experimental diet the concentration of Cr and FB₁ was 3.84 g kg⁻¹ ¹ and 45 mg kg⁻¹, respectively. During the calculation of FB₁ absorption (as calculated from the Cr-FB₁ ratio in the feed) the 85:1 of Cr:FB₁ ratio was taken as a basis. Therefore, the absorption was calculated (%) based on deviation from the rate of 85:1.

The preparation of the samples was carried out by the method of Christian and Coup (1954), and for the determination of the chymus Cr content atomabsorption method (Atomabsorption Spectrophotometer, AA-6701F Shimadzu) was used. For the atomizing, acetylene-air flame was applied. From day 2, during the calculation it was corrected with the toxin amount excreted back into the intestine by bile (literature data; Dantzer et al., 1999; biliary excretion of FB₁: 1.4% of the dose at 4 h after dosing). It was also taken the recovery rate of Cr (at the end of the ileum; Cr recovery: 98.6%; Köhler, 1993) into consideration.

In order to monitor the excretion of fumonisins, during the trial the total quantity of urine and faeces was collected. Faeces were collected two times daily (following the morning and afternoon feeding), and weighed with gram precision. Every day the entire quantity of faeces (stored at 4 °C until further processing) was homogenised and 10 g was sampled and frozen (at -18 °C) until laboratory analysis. Urine was collected continuously into a sealed container connected, and its volume was measured following the morning feeding. The urine collected daily was homogenised and 100 ml was stored at -18 °C until the analysis.

24 Analysis of the fumonisin content of organs, faeces, urine and chymus

1 The amount of toxins detectable in different organs and tissues including the liver, lungs, 2 kidney, brain, spleen, the *m. longissimus dorsi* and *m. psoas major* muscles, and abdominal 3 and subcutaneous fat was determined. Furthermore, the toxin content of faecal, urine and 4 chymus samples was measured.

6 Quantification and identification of intact fumonisin B_1 and fumonisin B_2 and metabolites of 7 FB₁, namely aminopentol and partially hydrolysed fumonisin B_1 was carried out using LC 8 (PerkinElmer, Series 200; USA)-MS (API 3200 LC/MS/MS System; Applied Biosystems, 9 USA). In the absence of analytic standard for FB₂ metabolites, the absorption of FB₂ was not 10 determined. The determination of tissues' and urines toxin content is equal of the described in 11 the method of Fodor et al. (2006a).

Non-dried and non-lyophilized faeces (2 g) and chymus (5 g) samples were extracted by a
mixture of 0.1 M ethylenediaminetetraacetate (EDTA) and methanol (8ml; 3/1 v/v) for 60
min. The samples were filtrated through a fiberglass filter (Whatman GF A, Dassel, Germany)
after centrifugation (2000 g; 3 min). An aliquot of the filtrate was analysed.

Similarly to our earlier experiment (Fodor et al., 2006a), pure FB₁ and FB₂ (Sigma, Schnelldorf, Germany) were used for the determination. PHFB₁ (partially hydrolysed FB₁) standard was prepared by Stephen M. Poling (U.S.A.), according to the method of Poling and Plattner (1999). This standard was an equilibrium mixture of the two partially hydrolyzed FB₁ forms. (PHFB₁a - TCA group at the C-15 hydroxy group (hydrolysis at C-14); PHFB₁b - TCA group at the C-14 (i.e. hydrolysis at C15)). AP₁ standard for the analysis was made by the

method of Pagliuca et al. (2005). Every standard was diluted with a mixture of ACN/H₂O (1:1). Table 1 shows the validation data for the FB_1 and its metabolites, and FB_2 . Taking the low feed concentrations of FB₃ into account, as compared to the other FB forms, and its presence supposedly under the LOD value, these parameters were not aimed to determine. [Insert Table 1 about here] Determination of FB_1 conversion into metabolites Based on the molecular weights of the fumonisin B_1 compounds (fumonisin B_1 (α): 721 g/mol; aminopentol (β): 405 g/mol; aminopolyols (γ): 563 g/mol) FB₁ conversion into its metabolites was calculated, as described below: the fumonisin B_1 – aminopentol conversion: $\lambda \alpha \rightarrow \beta = \frac{m\beta/M\beta}{m\alpha/M\alpha} = \frac{m\beta}{m\alpha} \times \frac{M\alpha}{M\beta}$ the fumonisin B_1 – partially hydrolyzed FB₁ conversion: $\lambda \alpha \rightarrow \gamma = \frac{m \gamma / M \gamma}{m \alpha / M \alpha} = \frac{m \gamma}{m \alpha} \times \frac{M \alpha}{M \gamma}$ where m indicates the mass of compounds in 1 g and M means their relative molecular weights. Statistical analysis The entire measurement dataset was analysed statistically. Correlation analysis ($P \le 0.05$) was performed to determine the correlation between the concentration of FB₁ and PHFB₁ or AP₁ in the faeces samples. Data processing and the mathematical-statistical calculations were performed using the Correlate and Descriptive Statistics modules of the SPSS 10.0
 programme package and the spreadsheet and figure editor programmes of EXCEL 7.0.
 Statistical evaluation of the results derived from blood sampling was carried out by analysis
 of variance (ANOVA) and least significant difference (LSD) "post hoc" tests.

Results and Discussion

Clinical signs and findings of the pathomorphological examinations

Pigs consumed 36.6 ± 6.5 mg FB₁ per day did not show clinical signs of disease and their feed consumption was balanced throughout the experiment. At the first examination (after the 10-day long toxin exposure) pulmonary oedema, the typical disease entity caused by fumonisin-contaminated feed, developed in all of the piglets (n=5) as a result of the toxin dose applied. In the pleural cavity of animals a small volume (2–7 ml) of slightly yellowish fluid with clotting characteristics could be found. Of the other organs examined, beside the pathological change of the liver, the heart, and the kidneys, the spleen showed hyperplasia. 10 days after the end of the toxin feeding, in case of 4 animals 8-9 ml fluid was distinctly visible in the pericardium. The pulmonary oedema was estimated as minor degree.

17 Antioxidant results

Based on results of the lipid peroxidation measures, it could be concluded that the glutathione content of blood plasma and haemolysed red blood cell was decreased significantly (Figure 1) but other changes indicative of lipid peroxidation were found neither in the period of toxin exposure nor after that time. In the concentration of reduced glutathione a significant (P=0.0007) decrease was experienced between the first and second sampling in case of treated group (Figure 1), while in the control group this value remained at an identical level with the

Food Additives and Contaminants

first blood sampling. Similar decrease (P= 0.043) was found in GSH levels/concentration
 between these two time points in the RBC haemolysates.

3 [Insert Figure 1 about here]

Summarized, fumonisin in the applied dose did not cause the production of peroxyl radicals in significant measure in these tissues but in bood (plasma and haemolysed RBC) it resulted reduction in the second line of the antioxidant system, namely in the reduced glutathione. This hypothesis is supported by the findings that fumonisin B₁ induces oxidative stress in human, rat and mouse neural cell cultures. Decreased GSH levels, indicative of lipid peroxidation and necrotic cell death were observed in all cell lines after incubation with FB₁ (Stockmann et al., 2004).

Our results provide the first evidence that the fumonisins *in vivo* appear to decrease the GSH
content in blood and haemolysed RBC, associated with lipid peroxidation.

14 Absorption of fumonisin B_1

Table 2 shows the results of the calculated daily absorption (per animal) of FB₁ in the 10-day period. By eighty individual data (taking the molecular weight of FB₁, PHFB₁ and AP₁ into account) it was established that the mean accumulative absorption rate of all animals tested for intact fumonisin B₁ and its metabolites formed in the small intestine (till the end of the ileum) is 4%. There was no significant correlation between the daily fumonisin intake and the absorption of the toxin. Until now, about the exact absorption of FB₁ only computed data were available; this is the first result from an absorption measurement.

22 [Insert Table 2 about here]

Following gavage dosing to vervet monkeys, only small amounts of FB_1 were absorbed, and after 24 hr major organs retained little of the radiolabel, with the liver retaining the most (Shephard et al., 1995). The p.o bioavailability of FB_1 was 3.5% after single doses of 10 mg FB₁ kg⁻¹ to rats, estimated by serial blood, liver and kidney tissue samples (MartinezLarranaga et al., 1999). Based on plasma and excretion data of pigs, systematic bioavailability
following intragastrical dosing was estimated to be higher, as compared to the above
mentioned, approximately 3-6 % (Prelusky et al., 1994).

5 In the chymus, the FB₁ conversion into aminopentol and partially hydrolysed FB₁ was 1% and 6 3.9%, respectively (data not shown). Accordingly, the biotransformation (metabolism) of 7 fumonisin B₁ was proven to happen already in the small intestine; the absorption of 8 metabolites (mainly of the aminopentol) might also occur.

9 No data have so far been reported on the FB_1 metabolite of small intestinal content. In the 10 experiment of Shephard et al (1995), at the time of sacrifice, the stomachs and small intestines 11 of the monkeys were empty, so the scheme of chymus sampling was not successful. All bile 12 samples failed to show the presence of any hydrolysis products in the cited study. Based on 13 this fact, Shephard et al. supposed already in 1995 that the hydrolysis process occurs only in 14 the gut and not in the liver.

16 Fumonisin content of the organs examined

With respect to the toxin content of organs, much lower FB_1 concentrations (maximum level in the liver) were measured, as compared to those in our earlier experiment (Fodor et al., 2006a). This was probably due to the difference between the daily feed intake (in the earlier trial 2 and at present 2.2 mg kg⁻¹ bw.) and the length (for 22 and 10 days, respectively) of the toxin load in the two trials.

22 [Insert Table 3 about here]

In the investigated tissues 50% of the recovered FB_1 was intact (Table 3). FB_1 conversion into aminopentol and partially hydrolysed FB_1 was 30% and 20%, respectively. In most of the

organs detectable amounts of FB₁ (50%) and its metabolite, aminopentol (50%) were
measured even 10 days after the dosage of the non-contaminated feed.

Excretion of fumonisins

5 During the 10-day toxin-feeding period, the daily toxin intake of the animals was 36.6 ± 6.5 6 mg (2.2 mg kg⁻¹ bw.) in average. In the first five days after begining of the toxin feeding, the 7 FB₁ concentration of the faecal content increased continuously, and then from the 5th day to 8 the 10th day it was about 55 µg g⁻¹ (Figure 2). There was no change in the aminopentol 9 concentration after the 3rd day, it was measured in standard but low (6 µg g⁻¹) concentration.

10 [Insert Figure 2 about here]

11 Taking the molecular weight of the compounds into account, it was established that during the 12 continuous toxin exposure (in 10 days) 59% of the total fumonisin B_1 compounds recovered 13 in the faeces were determined as partially (47%) or totally (12%) hydrolysed metabolites.

Previous toxicokinetic studies on vervet monkeys, based on iv and oral dosing of FB_1 , similarly demonstrated the rapid elimination of FB_1 in the faeces (Shephard et al., 1995). The extent of hydrolysis varied considerably, although the main product was the partially hydrolysed form (approximately 1/3 of total fumonisins), with very small recovered amounts of the fully hydrolysed (aminopentol) moiety.

Investigating the period between the 5th and 10th day, and having regard to all fumonisins, 72% (27.3 mg) of FB₁ taken up was recovered daily in the faeces. Between the days 5 and 10, a slower but constant increase was noted in the daily-excreted amount, suggesting a balance between the FB₁ intake and its elimination.

During the time of toxin exposure a relatively close correlation (r = -0.4, P<0.05) was found between the concentration of FB₁ and PHFB₁ in the faeces samples, while there was no statistically significant correlation between the concentration of FB₁ and AP₁.

After changing the experimental feed for the non-contaminated, a significant decrease was observed in the concentration of FB₁ and its metabolites already on the 3^{rd} day. Three days after the end of toxin feeding, PHFB₁ was the dominant compound (75%) in the faeces. Less than 1 mg fumonisins were excreted daily after the 15th day via faeces. Detectable amounts of FB₁ and its metabolites were measured in the faeces even 10 days after the dosage of the noncontaminated feed.

12 23% of the FB₂ consumed during the trial was eliminated by the faeces. This value is much 13 lower than in the results of Shephard and Snijman. (1999), where the recoveries of 14 unmetabolized FB₂ from faeces of 2 vervet monkeys were 8% and 56% (mean: 32%) over a 15 7-day period. This paper also addresses the occurrence of partially hydrolysed FB₂, which 16 accounts for some of the remainder of the dose.

1.5% of FB₁ quantity taken up was excreted with the urine during the entire trial, about 65% 19 in original, 16% in totally hydrolysed and 24% in partially hydrolysed form, while 0.6% of 20 the FB₂ consumed during the trial was eliminated via urine, as intact molecule.

Summarized, from the 360 mg FB_1 taken up in 10 days, 247.5 mg (69%) FB_1 (plus metabolites) was excreted by the faeces and urine during the toxin load and the 10-day long elimination period. In the first 10 days 222 mg (90%), while after this time 25.5 mg (10%) fumonisins were recovered.

2 Conclusion

In our first *in vivo* experiment (Fodor et al., 2006a) on the toxin elimination, by the determination of the intact FB_1 moieties, a strongly negative balance was found in the total toxin amount, when taking the moieties excreted in the urine and faeces into account. This was, at least in part, the basis of the present experiment, where the most important and frequent metabolites were also determined.

From the trials on animals, we could draw a conclusion that the intestinal microbiota of pigs is able to transform the intact FB_1 to a similarly toxic substance (partially hydrolysed FB_1) or a more toxic metabolite (aminopentol). As a general principle, from the two metabolites, partially hydrolysed FB₁ has priority during the metabolic process. The conversion of FB₁ to AP₁ is notable even despite of its little amount, because this new compound means a new risk from the viewpoint of animal- and human health as well, taking into account that aminopentol is hydrophobic molecule (with a more effective absorption) and that its further derivative (N-palmitoyl-aminopentol) appears to be tenfold toxic than the original FB_1 (Humpf et al., 1998). On the basis of the calculated accumulative absorption rate (maximally 4%) it is not clear, which metabolites shaped exactly this value. From the point of view of human exposure, special attention should be paid to AP_1 appeared in edible tissues even 10 days after the dosage of the non-contaminated feed because there is a lack of information about the effect of this metabolite consumed in low concentration but for a long term.

AP₁ was less potent than FB₁ as an inhibitor of ceramide synthase *in vitro* (Merrill et al., 1993). A feeding study in which rats were fed corn containing 50 ppm of FB₁ or 10 ppm AP₁ resulted in roughly equal toxicity signs in both groups, indicating that AP₁ could be more

toxic than FB₁ itself (Hendrich et al. 1993). AP₁ shows also cancer-promoting activity in liver (Hendrich et al. 1993). Removing the tricarballylic acids, AP₁ becomes not only an inhibitor but also a substrate for acylation by ceramide synthase. In the presence of palmitoyl-CoA AP₁ is also acylated to form N-palmitoyl-AP₁ (PAP₁), which is a more potent inhibitor of ceramide synthase (Humpf et al. 1998). Thus, if FB_1 is efficiently metabolized to aminopentol, the above mechanism may lead to metabolic activation.

Further investigations are reasoned to clarify the dose-dependent metabolism and absorption of fumonisin B₁.

Acknowledgements

This research was supported by the Office of Supported Research Institutions of the Hungarian Academy of Sciences (project no. B04074), the Ministry of Education (NKFP 4/034/2001) and by the Hungarian Scholarship Board (HSB) and Deutscher Akademischer Austausch Dienst (DAAD) project (HSB-DAAD 2006/7/4). The authors wish to thank Dr. Stephen M. Poling (U.S.A.) for providing the partially hydrolysed fumonisin B₁ standard. We thank Dr. András Szabó (University of Kaposvár, Hungary) for professional advice.

References

BEZUIDENHOUT, S. C., GELDERBLOM, W. C. A., GORSTALLMAN, C. P., HORAK, R. M., MARASAS, WFO, SPITELLER, G. and VLEGGAAR, R., 1988, Structure elucidation of the fumonisin mycotoxins from Fusarium moniliforme. Journal of the Chemical Society, Chemical Communications, 11, 743-745.

1		
2 3 4	1	CAWOOD, M.E., GELDERBLOM, W.C.A., VLEGGAAR, R., BEHREND, Y., THIEL, P.G. and
5 6 7	2	MARASAW, W.F.O., 1991, Isolation of the fumonisin mycotoxins: a quantitative
7 8 9	3	approach. Journal of Agricultural and Food Chemistry, 39, 1958–1962.
10 11	4	CHRISTIAN, K. R., and M. R. COUP., 1954, Measurement of feed intake by grazing cattle and
12 13 14	5	sheep. VI. The determination of chromic oxide in faeces. N.Z. J. Sci. Technol. 36:328.
15 16	6	DANTZER WR, HOPPER J, MULLIN K, HENDRICH S, and MURPHY PA., 1999, Excretion of
17 18 10	7	(14)C-fumonizin B(1), (14)C-hydrolyzed fumonizin B(1), and (14)C-fumonizin B(1)-
20 21	8	fructose in rats. J Agric Food Chem. 47(10):4291-6.
22 23	9	DUTTON, M.F., 1996, Fumonisins, mycotoxins of increasing importance: their nature and their
24 25 26	10	effects. Pharmacology and Therapeutics, 70, 137–161.
20 27 28	11	FODOR J., K. MEYER, M. RIEDLBERGER, J. BAUER, HORN P., KOVÁCS F., and KOVÁCS M.,
29 30	12	2006a, Distribution and elimination of fumonisin analogues in weaned piglets after
31 32 33	13	oral administration of Fusarium verticillioides fungal culture. Food Additives and
34 35	14	<i>Contaminants</i> , 23 (5):492-501.
36 37 28	15	FODOR, J., KAMETLER, L., and KOVÁCS, M., 2006b, Practical aspects of fumonisin production
30 39 40	16	under laboratory conditions. Mycotoxin Research. 2006. 22:211-216.
41 42	17	GELDERBLOM, W.C.A., JASKIEWICZ, K., MARASAS, W.F.O., THIEL, P.G., HORAK, R.M.,
43 44 45	18	VLEGGAAR, R. and KRIEK, N.P.J., 1988, Fumonisins – novel mycotoxins with cancer-
43 46 47	19	promoting activity produced by Fusarium moniliforme. Applied and Environmental
48 49	20	Microbiology, 54 , 1806–1811.
50 51 52	21	HARRISON, L.R., COLVIN, B.M., GREENE, J.T., NEWMAN, L.E. and COLE, J.R., 1990,
53 54	22	Pulmonary edema and hydrothorax in swine produced by fumonisin-B1, a toxic
55 56	23	metabolite of Fusarium moniliforme. Journal of Veterinary Diagnostic Investigation,
57 58 59	24	2, 217-221.
60		

2 3 4	1	HENDRICH, S., MILLER, K. A., WILSON, T. M., and MURPHY, P. A., 1993, Toxicity of Fusarium
- 5 6	2	proliferatum-fermented nixtamalized corn-based diets fed to rats: Effect of nutritional
7 8 0	3	status. J. Agric. Food Chem. 41: 1649–1654.
9 10 11	4	HUMPF, HU., SCHMELZ, EM., MEREDITH, F.I., VESPER, H., VALES, T.R., MENALDINO, D.S.,
12 13	5	LIOTTA, D.C., and MERRILL, A.H. JR., 1998, Acylation of naturally occurring and
14 15 16	6	synthetic 1-deoxysphinganines by ceramide synthase: formation of N-palmitoyl-
17 18	7	aminopentol (PAP1) produces a toxic metabolite of hydrolyzed fumonizin (AP1), and
19 20 21	8	a new category of ceramide synthase inhibitor. J. Biol. Chem., 273: 19060-19064.
22 23	9	KIM, M.Y., LINARDIC, C., OBEID, L. and HANNUN, Y., 1991, Identification of sphingomyelin
24 25	10	turnover as an effector mechanism for the action of tumor-necrosis-factor-alpha and
26 27 28	11	gamma-interferon – specific role in cell-differentation. Journal of Biological
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	12	Chemistry, 266 , 484-489.
	13	KÖHLER, T. 1993. Evaluation of techniques to collect ileal digesta in pigs. Ph.D.thesis of
	14	Anim. Nutr. Dept. Wageningen Agric. Univ.
	15	MARASAS, W.F.O., KELLERMAN, T.S., GELDERBLOM, W.C.A., COETZER, J.A.W., THIEL, P.G.
	16	and VAN DER LUGT, J.J., 1988, Leukoencephalomalacia in a horse induced by
	17	fumonisin B1 isolated from Fusarium moniliforme. Onderstepoort. Journal of
	18	Veterinary Research, 55 , 197–203.
45 46 47	19	MARASAS, W. F. O., 1996, Fumonisins: history, worldwide occurrence and impact, p. 1-17. In
47 48 49 50 51 52 53 54 55 56	20	L. S. Jackson, J. W. DeVries, and L. B. Bullerman (ed.), Fumonisins in food. Plenum
	21	Press, New York, N.Y.
	22	MARASAS, W. F. O., MILLER, J. D., RILEY, R. T., VISCONTI, A. (eds). 2000. Fumonizin B ₁ ,
	23	International Programme on Chemical Safety (IPCS, UNEP, ILO, and WHO).
57 58 59 60	24	Environmental Health Criteria 219 (Geneva: WHO)

1		
2 3 4	1	MARASAS, W. F. O., MILLER, J. D., RILEY, R. T., and VISCONTI, A. (EDS), 2000, Fumonisin B1,
5 6 7	2	International Programme on Chemical Safety (IPCS, UNEP, ILO, and WHO).
7 8 9	3	Environmental Health Criteria 219 (Geneva: WHO)
10 11	4	MARTINEZ-LARRANAGA, M.R., ANADON, A., DIAZ, M.J., FERNANDEZ-CRUZ, M.L., MARTINEZ,
12 13 14	5	M.A., Frejo, M.T., Martinez, M., Fernandez, R., Anton, R.M., Morales, M.E.
14 15 16	6	TAFUR, M. 1999. Toxicokinetic and oral bioavailability of fumonisin B1. Vet. Hum.
17 18	7	Toxicol. 41:357–362.
19 20 21	8	MERRILL A. H. JR., WANG E., GILCHRIST D. G., and RILEY R. T., 1993, Fumonisins and other
22 23	9	inhibitors of de novo sphingolipid biosynthesis. Adv. Lipid Res. 26:215-234
24 25 26	10	MIHARA, M., UCHIYAMA, M. AND FUKUZAWA, K., 1980, Thiobarbituric acid value of fresh
27 28	11	homogenate of rat as parameter of lipid peroxidation in ageing, CCl4 intoxication and
29 30	12	vitamin E deficiency. Biochemical Medicine 23 (5), 302–311.
31 32 33	13	PAGLIUCA G, ZIRONI E, CECCOLINI A, MATERA R, SERRAZANETTI GP, and PIVA A., 2005,
34 35	14	Simple method for the simultaneous isolation and determination of fumonisin B1 and
36 37 38	15	its metabolite aminopentol-1 in swine liver by liquid chromatographyfluorescence
39 40	16	detection. J Chromatogr B Analyt Technol Biomed Life Sci. 5;819(1):97-103.
41 42	17	PLACER, Z.A., CUSHMAN, L.L., JOHNSON, B.C., 1966, Estimation of product of lipid
43 44 45	18	peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry
46 47	19	16 (3), 359–364.
48 49 50	20	POLING, S.M. and PLATTNER, R.D., 1999, Rapid purification of fumonisins and their
50 51 52	21	hydrolysis products with solid-phase extraction columns. J. Agric. Food Chem.
53 54	22	47 :2344-2349.
55 56 57	23	PRELUSKY, D.B., TRENHOLM, H.L. and SAVARD, M.E., 1994, Pharmacokinetic fate of 14C-
58 59 60	24	labelled fumonisin-B1 in swine. <i>Natural Toxins</i> , 2 , 73–80.

1	RICE LG, and ROSS PF., 1994, Methods for detection and quantitation of fumonizins in corn,			
2	cereal products and animal excreta. J Food Prot, 57: 536-540.			
3	SEDLAK, I., LINDSAY, R.H., 1968, Estimation of total, protein-bound and non-protein sulfhyd-			
4	ryl groups in tissues with Ellmann's reagent. Analytical Biochemistry 25 (2), 192–205.			
5	SHEPHARD GS, THIEL PG, SYDENHAM EW, VLEGGAAR R, and Alberts JF., 1994,			
6	Determination of the mycotoxin fumonizin B1 and identification of its partially			
7	hydrolysed metabolites in the faeces of non-human primates. Food Chem Toxicol, 32:			
8	23-29.			
9	SHEPHARD GS, THIEL PG, SYDENHAM EW, and SAVARD ME., 1995, Fate of a single dose of			
10	[14C]-labelled fumonizin B1 in vervet monkeys. <i>Nat Toxins</i> , 3 : 145-150.			
11	SHEPHARD, G.S., SNIJMAN, P.W. 1999. Elimination and excretion of a single dose of the			
12	mycotoxin fumonizin B_2 in a non-human primate. Food Chem. Toxicol. 37:111–116.			
13	SHIER, W.T., 1992, Sphingosine analogues: an emerging new classof toxins that includes the			
14	fumonisins. Journal of Toxicology - Toxin Reviews, 11, 241–257.			
15	SPSS for Windows, ver. 10.0., 1999, SPSS Inc., Chicago, IL, USA			
16	STOCKMANN-J. H., MIKKOLA J, NAARALA J, LOIKKANEN J, ELOVAARA E, SAVOLAINEN K.,			
17	2004, Fumonisin B1-induced toxicity and oxidative damage in U-118MG glioblastoma			
18	cells. Toxicology. 202 (3):173-83.			
19	TOSSENBERGER J., FÉBEL H., BABINSZKY L., GUNDEL J., HALAS V., and BÓDISNÉ GARBACZ Z.			
20	2000, Ileal digestibility of amino acids in pigs. 1 st paper: Determination of ileal			
21	digestibility with different methods. (Review) (in Hungarian, with English abstract).			
22	Állattenyésztés és takarmányozás. 49 .375-384.			
23				
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23			

Figure 1. The amount of reduced glutathione (GSH) in blood plasma (plasma) and red blood cell haemolysate (haem) samples (C=contol group; T=group fed contaminated feed)

Sampling 1: at the beginning of the intoxication period (day 1); Sampling 2: at the end of the intoxication period (day 10); Sampling 3: 10 days after withdrawal the contaminated feed (day 20)

Figure 2. Amount of fumonisins (mg) recovered in faeces during the 10-day long exposure (mean±S.E.; n=10)

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
40	
-73 E0	
50	
51	
52	
53	
54	
57	
55	
56	
57	
58	
50	
60	
1111	

<u>Carran</u> 1a		Recovery	LOQ ^b	LOD ^c
Sample		$\pm SD^{a}(\%)$ (n=5)	$(\mu g k g^{-1})$ (n=5)	$(\mu g k g^{-1}) (n = 5)$
	FB_1	140.0 ± 14.7	100	38.6
Faccas obumus	FB_2	107.2 ± 11.7	1000	155.1
Faeces, cityinus	AP_1	123.9±19.2	100	56.0
	$PHFB_1$	106.3 ± 16.2	100	35.6
	FB_1	98.2±11.0	10	1.2
Urino	FB_2	101.3±9.3	10	3.6
Ullile	AP_1	104.7 ± 14.0	10	1.9
	$PHFB_1$	101.7±11.8	10	1.2
	FB_1	92.1±4.2	10	1.4
Lung	FB_2	84.1±12.5	10	2.2
Lung	AP_1	98.1±9.1	10	1.3
	$PHFB_1$	67.9±13.3	10	0.9
	FB ₁	90.3±3.9	10	1.2
Livan	FB_2	44.1±2.5	10	2.1
Liver	AP_1	93.6±19.6	10	1.4
	PHFB ₁	47.9±6.0	10	0.8
	FB ₁	60.3±13.3	1	0.9
Vidnav	FB ₂	54.7±1.4	10	1.4
Kidney	AP_1	115.2±8.2	1	0.8
	PHFB ₁	47.2±5.7	1	0.8
	FB_1	90.2±4.7	10	1.0
Calera	FB_2	72.2±3.7	10	1.3
Spleen	AP_1	86.7±8.0	1	0.7
	$PHFB_1$	65.7±5.0	1	0.5
	FB_1	92.6±12.6	1	0.6
Davia	FB_2	91.08±6.8	10	2.3
Brain	AP_1	97.1±15.9	1	0.8
	PHFB ₁	69.9±10.2	1	0.4
	FB ₁	87.5±11.0	10	0.6
Muscle (m.l.d.,	FB_2	60.4±7.2	10	1.2
m.p.m.)	AP_1	91.3±8.6	10	0.6
• ·	PHFB ₁	84.3±15.0	10	0.4
	FB ₁	84.4±4.2	1	0.7
Fat (subcutaneous,	FB_2	35.1±2.7	100	3.9
abdominal)	AP_1	109.0 ± 20.1	1	0.6
*	PHFB ₁	89.2±19.9	1	0.6
^a standard dev	iation			
^b limit of quan	tification			

Table 1. Validation data of the analysis

^c limit of detection

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22 22
23
24
20
20
21
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Table 2. Accumulati	ve absorption of the f	fumonisin B	1 compound
		Absorption	rate* (%)
Animals	Number of chymus samples (n)	Mean	S.E. ^a
T1	9	8.2	1.7
T2	10	2.6	0.6
T3	6	3.4	0.8
T4	8	0.8	0.2
T5	7	1.9	0.6
T6	8	6.1	1.5
T7	8	2.0	0.6
T 8	8	5.7	1.1
Т9	6	4.0	0.4
T10	10	5.1	0.9
mean of T1-T10	80	3.9	0.7

ls

^a Standard error

* correcting with the molecular masses

		Fumonisins' concentration (mean \pm SE; μ g kg ⁻¹)* and the FB ₁					
		conversion (%) into the			separate metabolite		
Organs/Tissu	es	Sampling 1 (n=5)			Sa	mpling 2 (n:	=5)
		mean	±SE	%	mean	±SE	%
	FB_1	4.59	1.9		0.93	0.1	
Lung	AP_1	0.56	1.1	17.0	0.31	0.28^{1}	37.5
Dung	$PHFB_1$	0.25	0.2^{3}	5.4	ND^5	-	
	FB_2	0.53	0.4^{4}		ND^5	-	
	FB_1	17.4	1.7		8.25	0.5	
Liver	AP_1	0.38	0.7^{3}	3.1	0.16	0.2^{3}	3.3
Liver	$PHFB_1$	2.45	1.0^{3}	14.9	ND^5	-	
	FB_2	0.86	0.2^{2}		ND^5	-	
	FB_1	9.95	0.3		3.62	0.1	
Kidnov	AP_1	7.53	3.2	53.1	2.1	0.9	51.0
Kluncy	PHFB ₁	1.5	0.04	7.6	ND^5	-	
	FB_2	0.53	0.24^{2}		0.34	0.2^{2}	
	FB_1	0.2	0.2^{2}		ND^5	-	
Brain	AP_1	0.57	0.4^{2}	83.6	0.25	0.1^{1}	
Diam	PHFB ₁	ND ⁵	-		ND^5	-	
	FB ₂	ND^5	-		ND^5	-	
	FB_1	4.2	0.5		0.41	0.1^{2}	
Sloop	AP_1	1	0.3	23.3	0.18	0.04^{3}	41.2
Sleep	$PHFB_1$	0.55	0.05	9.2	0.04	0.0^{2}	6.6
	FB_2	0.27	0.1		ND^5	-	
	FB_1	11.2	1.2		0.95	0.2^{2}	
M. longissi-	AP_1	0.72	0.3^{1}	5.4	0.03	0.02^{2}	5.3
mus dorsi	$PHFB_1$	8.8	1.8	47.7	ND^5	-	
	FB_2	7.9	1.3		0.23	0.1^{3}	
	FB_1	4.75	1.5		1.41	0.1	
M. psoas	AP_1	0.35	0.1	7.9	2.59	1.5	76.7
Major	$PHFB_1$	1.92	0.3 ²	31.0	ND^5	-	
	FB_2	4.06	1.4^{1}		0.28	0.1^{4}	
	FB_1	1.2	0.2		0.9	0.13	
Abdominal fat	AP_1	5.6	3.2	76.1	3.6	0.7	80.6
Abuommai lat	$PHFB_1$	1.5	0.8	14.7	0.5	0.1	8
	FB_2	ND^5	-		ND^5	-	
	FB_1	2.58	0.7		0.3	0.1^{2}	
Subautanaous fat	AP_1	0.47	0.3^{3}	17.2	0.1	0.1^{2}	37.5
Subcutaneous lat	$PHFB_1$	1.12	0.8^{3}	29.7	ND ⁵	-	
	FB_2	0.3	0.3 ²		ND ⁵	-	

Table 3. The concentration of the different FB ₁ derivatives in the organs and	d the
conversion of the FB ₁ molecule into metabolites	

* superscripts indicate the number of samples in which toxin was not detected

ND not detected

SE standard error

sampling 1. immediately after the 10-day long toxin exposure sampling 2. 10 days after withdrawal the contaminated feed

