Food Additives and Contaminants

Application of a liquid-chromatography tandem mass spectrometric multi-mycotoxin method to different raw cereals and evaluation of matrix effects

Journal:	Food Additives and Contaminants
Manuscript ID:	TFAC-2007-146.R1
Manuscript Type:	Special Issue
Date Submitted by the Author:	05-Jun-2007
Complete List of Authors:	Krska, Rudolf; Christian Doppler Laboratory for Mycotoxin Research
Methods/Techniques:	LC/MS, Mycology
Additives/Contaminants:	Mycotoxins
Food Types:	Cereals

SCHOLARONE[™] Manuscripts

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

1	Application of a liquid-chromatography – tandem mass
2	spectrometric multi-mycotoxin method to different raw cereals
3	and evaluation of matrix effects
4	
5	Michael Sulyok, Rudolf Krska* and Rainer Schuhmacher
6	
7	
8	Christian Doppler Laboratory for Mycotoxin Research, Department IFA-Tulln, University of
9	Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenzstr. 20, A-3430 Tulln
10	
11	
12	*corresponding author
13	Phone: +43-2272-66280-401
14	Fax: +43-2272-66280-403
15	Email: rudolf.krska@boku.ac.at

16 Abstract

A multi-analyte method for the liquid-chromatography – tandem mass spectrometric determination of mycotoxins in crude grain extracts without any clean-up has been applied to the analysis of spelt, rice and barley. The method performance characteristics were determined after spiking blank samples at multiple levels and were found to be comparable for all investigated matrices as concerns linearity (linear calibration functions were obtained for all analyte/matrix combinations except for moniliformin), precision (coefficient of variations < 6 %) and sensitivity. Matrix induced signal suppression/enhancement was studied in detail and varied significantly between the investigated matrices as well as between individual samples (relative standard deviation was as high as 40% within three rice varieties) and individual toxins. It was therefore concluded that a reliable quantitative analysis using matrix-matched calibration requires a careful consideration of the model matrix as it should match the investigated samples as close as possible.

30 Keywords:

mycotoxins, multi-target analysis, liquid chromatography, tandem mass spectrometry, matrix
effects

34 Introduction

In the past few years, a trend towards the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) in mycotoxin analysis has been observed (Sforza et al. 2006, Krska and Molinelli 2007). In contrast to most screening methods for mycotoxins that are based on immunoassays, unambiguous analyte confirmation can be obtained by mass spectrometry (Zöllner and Mayer-Helm 2006). The broad applicability of this analytical approach enables the development of multi-analyte methods and thus the simultaneous screening of different classes of mycotoxins, which is essential to assess the health risks

Food Additives and Contaminants

posed by mycotoxin contaminated food and feedingstuffs. Another important aspect is that, in comparison to fluorescence or UV-detection, mass spectrometry drastically enhances selectivity, e.g. minimizes the occurrence of interfering peaks deriving from matrix components. However, this led some researchers to the misconception that the use of LC-MS/MS effectively eliminates matrix effects. In reality, unpredictable increase or decrease of the analytical signal intensities may occur in the analysis of real world samples due to co-eluting matrix components (such as carbohydrates, proteins or fats) that disturb the ionization of the analytes. For details on the mechanism of ion suppression, the interested reader is referred to the reviews of Antignac et al. 2005 and of Niessen et al. 2006.

Several approaches can be found in the literature to reduce or compensate matrix effects. These include improvements of sample pre-treatment, the use of longer columns or two-dimensional chromatography to improve separation, use of atmospheric pressure chemical ionisation instead of electrospray ionisation, use of mobile phase additives and suitable standardisation. This may lead to success for tailor made clean-up/chromatography for single toxins or toxins with very similar physico-chemical properties. However, the applicability of these approaches must be considered to be problematic as concerns multi-target methods for different classes of analytes exhibiting a broad range of physical and chemical properties. In addition, many of the clean-up methods widely used in mycotoxin analysis are incapable of completely eliminating matrix effects in complex matrices (Cavaliere et al. 2005a, Biselli and Hummert 2005). For example, recoveries significantly higher than 100% have been reported in some studies (Launay et al. 2004, Tanaka et al. 2006), which is a clear indicator that matrix effects were not taken into account (Matuszewski et al. 2003). Therefore, most papers dealing with LC-MS/MS analysis of mycotoxins try to counteract the adverse effect of co-eluting matrix components on the accuracy of the results by applying internal or matrix-matched standards.

Closely related compounds that are not occurring in naturally contaminated samples and show similar chemical structures as the target toxins, such as verrucarol, deepoxy-deoxynivalenol and zearalanone, are frequently applied as internal standards (Zöllner et al. 2000, van Bennekom et al. 2002, Royer et al. 2004, Berthiller et al. 2005, Klötzel et al. 2005, Delmulle et al. 2006, Klötzel et al. 2006). However, it has been shown by post-column addition experiments that signal suppression deriving from co-eluting matrix compounds may affect only very small retention time periods (Klötzel et al. 2005). In addition, it is known that the extent of these effects also depends on the properties of the analyte (Rundberget and Wilkins 2002, Martinez Vidal et al. 2005, Niessen et al. 2006). Therefore, some authors expressed doubts about the applicability of a single non-coeluting analogue compound as internal standard (Royer et al. 2004, Zöllner and Mayer-Helm 2006). Studies investigating ²D- or ¹³C-labelled internal standards (Lindenmeier et al. 2004, Asam and Rychlik 2006, Bretz et al. 2006, Hartmann et al. 2006, Häubl et al. 2006a and 2006b) have shown that stable isotope labelled mycotoxins are the best choice as internal standards as they completely compensate matrix effects even in crude extracts due to their identical chemical and chromatographic properties compared to the target toxins. However, this approach covers only a limited number of analytes of a multi-mycotoxin method as the related standards are available only for a few toxins.

Another option that is widely used in mycotoxin analysis is the use of matrix-matched calibration, i.e. the fortification of a blank sample extract (representing a typical matrix) with a standard solution containing the analytes. This may be regarded as a simplified version of a standard addition approach in which each individual sample has to be fortified with a series of standard solutions and which is clearly too laborious for routine analysis. Ideally, a single representative matrix can be used to compensate for matrix effects of both, samples that are

Food Additives and Contaminants

allocated to other matrices, as has been investigated for the determination of twenty pesticides
in different commodities (Martinez Vidal et al. 2005) as well as of different varieties
(different brands, origins, ..) of the same matrix. Differences in the extent of matrix effects
between individual samples of the same type of matrix may have a large influence on the
precision and the trueness of a method, as has been shown for the analysis of pharmaceutical
compounds in different lots of human plasma (Matuszewski et al. 2003).

It can be concluded from the data published so far that the existing LC-MS(/MS) methods for mycotoxin analysis still suffer from large matrix effects (in spite of application of clean-up procedures) whereas differences between individual samples of the same matrix seem to be manageable. In a multi-toxin method developed for milk including protein precipitation and subsequent SPE on Oasis HLB, matrix effects ranged from 75 to 110%, depending on the analyte, while differences in matrix effects within 20 investigated milk brands did not influence the precision of the method, only zearalenone showed slightly higher signal intensities in low-fat milk (Sorensen and Elbaek 2005). Similarly, fluctuations of matrix effects within 6 corn samples in a multi-Fusarium mycotoxin method including a two-step clean-up occurred only in case of nivalenol (Cavaliere et al 2005a and b). Almost no matrix effect for deoxynivalenol was observed in grain-based commodities such as wheat flour, oats and rye, whereas strong signal suppression was observed in soybeans and in matrices with a high sugar content, although the extracts had been cleaned with Mycosep[®] columns (Biselli and Hummert 2005). Uhlig and Ivanova (2004) analysed enniatins and beauvericin in different types of grain without any clean-up and obtained relative standard deviations of <30% for the recoveries of spiked samples. Signal suppression of trichothecenes and zearalenone in extracts of durum wheat, corn and bread was reduced from >30% to <20% by applying deepoxy-deoxynivalenol as internal standard, and was quite comparable between the three matrices (Klötzel et al. 2005). Zearalanone was used as internal standard for the

determination of zearalenone, α - and β-zearalenol in different beer brands including an SPEbased clean-up (Zöllner et al. 2000). The authors concluded that the elimination of the matrix effect is only possible within each beer brand, but not between the different brands.

Most of these methods include a clean-up step, as a reduction of sample preparation was found to result in unacceptably large matrix effects and in extreme cases to complete suppression of the detector signal (Biselli and Hummert 2005). In contrast to that, it was shown in our group that the latest generation of MS interfaces tolerates the injection of crude sample extracts of wheat and maize (Sulyok et al. 2006). In spiked wheat extract, significant matrix effects were observed for only few of the 39 analytes, whereas the maize matrix showed a more pronounced influence on the detector signal intensities, especially in case of aflatoxins and ergot alkaloids. The excellent values obtained for the coefficients of variation of the overall process indicated that these matrix effects were stable within the investigated matrices and caused purely proportional errors, which may in principle be compensated by matrix-matched standards. The present work includes the extension of our recently developed method to three further matrices as well as an investigation of the variability of the matrix effects between three individual samples of maize and rice, respectively. Based on these additional data on matrix effects, the applicability of the concept of matrix matched calibration for the developed method is evaluated.

49 139

140 Materials and methods

Chemicals and reagents

Methanol and acetonitrile (both LC gradient grade) were purchased from J.T. Baker
(Deventer, The Netherlands), ammonium acetate (MS grade) and glacial acetic acid (p.a.)
were obtained from Sigma-Aldrich (Vienna, Austria). Water was purified successively by
reverse osmosis and a Milli-Q plus system from Millipore (Molsheim, France).

Mycotoxin standards were dissolved in acetonitrile (ACN) if not stated otherwise. Stock solutions of nivalenol (NIV), deoxynivalenol (DON), fusarenon X (FUSX), 3-acetyldeoxynivaleonol (3ADON), deepoxy-deoxynivalenol (DOM), neosolaniol (NEO), diacetoxyscirpenol (DAS), HT-2 toxin (HT-2), T-2 toxin (T-2), zearalenone (ZON), alpha-zearalenol (α -ZOL), beta-zearalenol (β -ZOL), ochratoxins A and B (OTA, OTB), ochratoxin alpha (OTα, in ACN/H₂O 1+1, v+v), fumonisins B₁ and B₂ (FB₁, FB₂, in ACN/H₂O 1+1), hydrolysed fumonisin B₁ (HFB₁, in ACN/ H₂O 1+1), and aflatoxins B₁, B₂, G₁ and G₂ (AFB₁, AFB₂, AFG₁, AFG₂) were obtained from Biopure Referenzsubstanzen GmbH (Tulln, Austria). 15-monoacetoxyscirpenol (MAS), vertucarol (VOL), beauvericin (BEA), moniliformin (MON, dissolved in MeOH), ergocornine (ERC, dissolved in MeOH/H₂O 1+1) and ergotamine-D-tartrate (ERA, dissolved in MeOH/H₂O 1+1) were received from Sigma-Aldrich (Vienna, Austria). A stock solution of enniatin A, A₁, B and B₁ (ENN A, ENN A₁, ENN B, ENN B₁) was provided by Dr. Marika Jestoi (EELA Helsinki, Finland). Agroclavine (AGR, dissolved in MeOH) was received from Dr. Miroslav Flieger (Institute of Microbiology, Sciences of the Czech Academy of Republic, Prague). Dihydroergosinmethanesulphonate (DHE, dissolved in MeOH) was purchased from Dr. Danka Pericic (Ruder Boscovik Institute, Zagreb, Croatia). Ergovaline (ERV, dissolved in MeOH) was purchased from Prof. Forrest Smith (Auburn University, AL, USA). Deoxynivalenol-3-glucoside (D3G) was isolated from wheat treated with DON (Berthiller et al. 2005), zearalenone-4-glucoside (Z4G, dissolved in MeOH) was synthesized according to a modified protocol from Grabley et al. 1992 and zearalenone-4-sulfate (Z4S, dissolved in MeOH/H₂O 1+1) was extracted in our laboratory from rice inoculated with Fusarium graminearum. Four combined working standard solutions were prepared weekly by dilution of the stock solutions of the analytes in the related solvents, i.e. MeOH (for Z4G, AGR, MON, EV and DHE), MeOH/H₂O 1+1 (for Z4S, ERA and ERC), ACN/H₂O 1+1 (for OTa,

 FB_1 , FB_2 and HFB_1) and ACN (for all other analytes), respectively. All solutions were stored 173 at -20°C and were brought to room temperature before use.

 Maize samples deriving from the harvest 2002 (sample A), 2003 (sample B) and 2004
(sample C) were collected from fields in Lower Austria. Spelt, barley, Arborio peeled rice,
Arborio brown rice and red rice samples were purchased from a local store in Vienna.

179 Sample preparation

Spiking. 0.5 g of ground sample were spiked by consecutively adding the appropriate amounts of the 4 combined working solutions. The samples were subsequently stored for three days at 40°C to allow the evaporation of the solvent and to establish equilibration between the analytes and the matrix.

Extraction. 2 mL of extraction solvent (CH₃CN/H₂O/HAc 79+20+1) were added to 0.5 g of 186 ground sample. The samples were extracted for 90 min using a GFL 3017 rotary shaker (GFL, 187 Burgwedel, Germany) and subsequently centrifuged for 2 min at 3000 rpm (radius: 15 cm) on 188 a GS-6 centrifuge (Beckman Coulter Inc., Fullerton, CA). The extracts were transferred into 189 glass vials using Pasteur pipettes and aliquots of 350 μ L were diluted with the same amount 190 of a mixture containing CH₃CN/H₂O/HAc 20+79+1. After appropriate mixing, 5 μ L of the 191 diluted extract were injected into the LC-MS/MS system without further pre-treatment.

- 51 192
 - 193 Instrumental conditions

Parameters of the instrumental set-up have been described in detail in Sulyok et al. 2006.
Briefly, a 1100 Series HPLC System (Agilent, Waldbronn, Germany) was coupled to a QTrap
4000 LC-MS/MS System (Applied Biosystems, Foster City, CA) equipped with a
TurboIonSpray electrospray ionization (ESI) source. Chromatographic separation was

Food Additives and Contaminants

performed at 25°C on a Gemini[®] C₁₈-column, 150 x 4.6 mm i.d., 5 µm particle size, equipped with a C_{18} 4 x 3 mm i.d. security guard cartridge (all from Phenomenex, Torrance, CA, US). Both eluents contained 5 mM ammonium acetate and were composed of methanol/water/acetic acid 10+89+1 (v+v+v; eluent A) or 97+2+1 (eluent B), respectively. ESI-MS/MS was performed in multiple reaction monitoring (MRM) mode in both positive and negative polarity using two separate chromatographic runs per sample.

Performance characteristics

For the determination of the analytical performance of the method in spelt, rice and barley, the whole spiking and extraction procedure was carried out at 8 different concentration levels (each in triplicate) with relative concentrations of 1:4:7:10:40:70:100:400. The concentration ranges of the spiked samples were chosen to cover the respective limits of detection of each toxin as well as the concentration ranges found in naturally contaminated samples. For external calibration, liquid standards were diluted in mobile phase A as well as in blank extracts (diluted 1+1, as described in "Extraction"). The related analyte concentrations were matched on each level to the expected concentrations in the final diluted extract of the spiked samples. Linear, 1/x weighted calibration curves were constructed from the data obtained from the analysis of each sample type (spiked sample, liquid standard, matrix-matched standard) using the Analyst[®] software version 1.4.1. To differentiate between extraction efficiency and matrix induced signal suppression/enhancement, the slope ratios of the linear calibration functions were calculated to yield the apparent recovery (R_A) and the signal suppression/enhancement (SSE) due to matrix effects. Eventually, the recovery of the extraction step (R_E) was obtained as follows (modified after Matuszewski et al. 2003):

8 221
$$R_A(\%) = 100 * \text{slope}_{\text{spiked sample}} / \text{slope}_{\text{liquid standard}}$$
 (1)

- $SSE (\%) = 100 * slope_{matrix-matched standard} / slope_{liquid standard}$ (2)

 $R_{\rm E}(\%) = 100 * R_{\rm A} / SSE$ (3)

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

2
3
4
4 5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
19
20
21
22
$\begin{array}{c} 7\\ 7\\ 8\\ 9\\ 10\\ 11\\ 13\\ 14\\ 16\\ 17\\ 19\\ 21\\ 22\\ 24\\ 25\\ 27\\ 29\\ 31\\ 23\\ 33\\ 34 \end{array}$
24
25
26
20
21
28
29
30
31
32
33
32 33 34 35
34
35
36
36 37 38
38
39
40
41
42
43
44
45
46
47
48
49
49 50
50
51
52
53
54
55
56
57
58
59
60

The coefficients of variation of the end determination (CVs) were calculated from linear, 1/x weighted calibration curves obtained from the analysis of spiked samples using Validata[®], a Microsoft Excel macro developed by Wegscheider et al. (1999).

227

231

1

In order to determine the variation of matrix effects between individual samples of the same matrix (rice and maize), blank extracts of three different samples of each matrix were spiked on multiple levels and SSE was calculated according to equation 2.

- 232 **Results and Discussion**
- 233 Analysis of rice, spelt and barley

234 In order to further investigate the limits of the universal applicability of the LC-MS/MS based 235 method developed by our group, the method performance was investigated in 3 additional 236 matrices. Figures 1 and 2 show the chromatograms of the spiked rice samples, Tables I-III summarize the results for peeled rice, barley and spelt, respectively. The number of 237 238 concentration levels that were evaluated for a given toxin were not identical in all three 239 investigated matrices, as the lowest levels were near the respective limits of detection and the 240 sensitivity of the detector varied depending on the condition of the mass spectrometer. For 241 spelt, data evaluation had to be restricted to the 4 highest concentration levels due to an 242 experimental error.

- 243
 - 244 [Insert Figure 1 and 2 approximately here]
 - [Insert Table I-III approximately here, preferably on the same double page]
- 246

The CVs obtained from linear calibration data were < 6.0% for all analytes and matrices with the exception of AFB1 and AFB2 in barley and of Z4S in all matrices. The latter was probably a result of the tendency of this compound to hydrolyse. The sole analyte exhibiting a Page 11 of 28

Food Additives and Contaminants

non-linear calibration curve was MON that showed a logarithmic response in all three matrices and in the liquid standard. This effect was already observed by Jestoi et al. 2003 in case of the liquid standard (but not in the presence of matrix) and is probably a result of the unfavourable ionisation conditions due to the large water content of the eluent at the retention time of MON. The relative standard deviations of the whole procedure applied to the spiked samples were generally lower than 10% at the highest concentration levels except for AFG2, ERV and DHE in barley and D3G in rice and spelt. The limits of detection have not been calculated for every analyte/matrix combination (as this work focuses on the transferability of the method other matrices, which primarily hampered to is by signal suppression/enhancement effects caused by co-eluting matrix components), but they are comparable to those presented for wheat and maize (Sulyok et al. 2006), as the related concentration ranges during evaluation of method performance characteristics were very similar. The recoveries of the extraction step were comparable between the three matrices for many analytes, slightly larger variations were observed for those analytes showing incomplete extraction (fumonisins and MON and to a lesser extent other polar analytes such as D3G, Z4G, Z4S and NIV) and for several aflatoxins and ergot alkaloids.

Signal suppression/enhancement due to co-eluting matrix compounds was pronounced in barley (SSE for 14 analytes outside $100\pm15\%$) and spelt (9 analytes outside $100\pm15\%$), whereas in the case of the rice matrix only AFB1 was outside that range. As concerns the prediction of the susceptibility of different analyte classes to signal variations and/or deviations from 100% SSE, the data presented so far indicate that the most critical compounds are aflatoxins, ergot alkaloids and polar analytes (like MON and D3G). The latter are considered to be generally critical due to insufficient chromatographic separation from polar matrix components (Niessen et al. 2006). In this aspect, the different SSE values obtained for the co-eluting DON and D3G seem to be contradictory, but it must be kept in

mind that matrix effects are both compound- and matrix-dependent. This might also explain the different SSE values observed for aflatoxins and other analytes such as MAS, DAS and HFB1, that are eluting closely (see Figure 1). Concerning the aflatoxins, the hypothesis of hydrolysis under acidic conditions (Ventura et al. 2006) was tested by analysing spiked neutral maize extracts. In addition, spiked acidic maize extracts were analysed omitting the dilution step with ACN+H₂O+HAc (20+79+1, v+v+v; see "extraction" in the experimental section) to investigate whether aflatoxins adsorb on particulate matter emerging from dilution of the raw extracts (Sulvok 2006). Neither of these two variations led to a decreased signal suppression (data not shown).

In general, these results were comparable to those obtained for wheat and maize (Sulyok et al. 2006). The main conclusion is that all effects/losses deriving from co-eluting matrix compounds as well as from incomplete extraction were repeatable on all concentration levels for a given analyte/matrix combination: They caused changes of the slope of the linear calibration function of spiked samples in comparison to liquid standards, but did not result in non-linear calibration curves. Moreover, low CV values have been observed, which indicates that the precision of the method is not significantly decreased by those effects. This suggests that the method transfer to other grain matrices is feasible using calibration with pure standard solutions together with correction factors for each analyte/matrix combination (for example 0.67 for ZON in barley, see Table II). However, this demands for low variations of matrix-induced signal suppression within a given matrix type.

298 Variation of matrix effects between individual samples of the same matrix

In order to assess the applicability of the concept of matrix-matched calibration, the variation
of SSE between individual samples was investigated for maize and rice by spiking blank
extracts obtained from three different individual samples of the same commodity at multiple

Page 13 of 28

Food Additives and Contaminants

3 1	302	concentration levels. Although maize seems to be a more critical matrix compared to rice as
5	303	concerns the extent of signal suppression/enhancement (especially for aflatoxins and ergot
3	304	alkaloids), the situation was somewhat different regarding the variation of matrix effects
, 0 1	305	between different varieties (Table IV):
2 3	306	
4 5 6	307	[Insert Table IV about here]
17	308	
18 19		With the exception of D3G, the relative standard deviation of signal/suppression enhancement
20 21	309	with the exception of D3G, the relative standard deviation of signal/suppression enhancement
22 23 24 25	310	was < 15% between the three individual maize samples. In contrast to that, larger differences
	311	were observed between the three rice samples (RSD of SSE > 15% for 13 analytes), which
26 27	312	was caused by dramatically reduced signal intensities in red rice. It should be pointed out that
28 29 30	313	the variation of the texture of the three rice samples was larger compared to the maize
31 32	314	samples: brown and red rice is not peeled and still contains its sprout. In addition, red rice
33 34	315	grows on clayey soil, which imparts the colour to the peel. It is highly probable that red rice
35 36 37	316	contains particular matrix components, that are responsible for the pronounced signal
38 39	317	suppression. This example shows that the general applicability of standards matched to a
40 41 42	318	single sample for the calibration of all other samples of a given matrix can not be taken as
13 14	319	granted.
15 16	320	
17 18 19	321	In view of a routine application of the developed method, we recommend that matrix-matched
50 51	322	calibration is effectively carried out even if samples allocated to a single, validated matrix are
52 53 54	323	analysed. The use of a standard prepared in pure solvent (if necessary in combination with
55 56	324	some sort of empirical correction factor for the matrix effect – e.g. 0.56 for AFG1 in maize,
57 58	325	see Table IV) seems to be insufficient. That approach does not take into account that under

routine conditions the interface of the mass spectrometer is contaminated with matrix components, which may have an effect on the analytical signal intensities and also on the

extent of matrix effects. Indeed, we observed a slight continuous increase in the MS response (similar to Klötzel et al. 2005, who, however cleaned the extract prior to analysis) in the course of some measurement sequences.

From the data presented here, it is evident that a thorough compensation of the matrix effects by using standards which are matched to a carefully chosen representative matrix is a prerequisite for a reliable quantitative analysis. Relative biases of as large as 40% must be accepted in a worst-case scenario in the case of the red rice for example, if only a single rice sample is used as typical representative for the matrix rice. This is, however, still acceptable for the purpose of a semi-quantitative screening of a large set of samples followed by target analysis of the positive samples including dedicated clean-up procedures and/or standard addition. Based on the results shown for maize in Table IV, it might be assumed that this error may be significantly reduced if model-samples are available for each individual brand or variety. In view of a routine application, we suggest to carry out standard-addition in case of doubt of positive samples exhibiting mycotoxin concentrations near the levels stated in the related regulations. In addition, an adequate number of random blank samples should be fortified and analysed over a longer period of time in order to obtain statistically meaningful data on the variation of matrix effects within a given type of matrix.

Conclusion

The developed LC-MS/MS multitoxin method may be transferred to other grain matrices without any adaptations concerning the instrumental parameters or sample preparation, as the method performance parameters were found to be comparable in all investigated matrices. The main limitation for obtaining accurate quantitative results are differences in the extent of matrix effects between different matrices as well as between variations of a given matrix. Using a single "model" sample which is used to represent all samples of a chosen matrix, the

Food Additives and Contaminants

2 3 4	354	method is suitable for a semi-quantitative screening of the investigated toxin classes in a large
5 6	355	number of grain samples, as there is no clean-up involved. For a quantitative analysis, the
7 8 9	356	model matrix used for calibration must match the investigated samples as close as possible.
10 11	357	
12 13 14	358	Acknowledgements
15 16	359	The authors thank the Lower Austrian Government and the Christian Doppler Society for the
17 18 19	360	financial support and Marika Jestoi for providing the enniatin standard. Greatly acknowledged
20 21	361	are also Claus Zeppelzauer and the Ecoplus business agency of Lower Austria.
22 23	362	
24 25 26	363	References
20 27 28	364	Antignac JP, De Wasch K, Monteau F, De Brabander H, Andre F, Le Bizec B. 2005. The ion
29 30	365	suppression phenomenon in liquid chromatography-mass spectrometry and its consequences
31 32 33	366	in the field of residue analysis. Analytica Chimica Acta 529:129-136
34 35	367	
36 37	368	Asam S, Rychlik M. 2006. Synthesis of four carbon-13-labeled type A trichothecene
38 39 40	369	mycotoxins and their application as internal standards in stable isotope dilution assays.
41 42	370	Journal of Agricultural and Food Chemistry 54:6535-6546
43 44 45	371	
45 46 47	372	Berthiller F, Dall'Asta C, Schuhmacher R, Lemmens M, Adam G, Krska R. 2005.
48 49 50 51 52	373	Determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat
	374	by liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food
53 54	375	Chemistry 53:3421-3425
55 56	376	
57 58 59	377	Berthiller F, Schuhmacher R, Buttinger G, Krska R. 2005. Rapid simultaneous determination
60	378	of major type A- and B-trichothecens as well as zearalenone in maize by high performance

379 liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1062:209-380 216

Biselli S, Hummert C. 2005. Development of a multicomponent method for *Fusarium* toxins using LC-MS/MS and its application during a survey for the content of T-2 toxin and deoxynivalenol in various feed and food samples. Food Additives and Contaminants 22:752-

Bretz M, Beyer M, Cramer B, Humpf HU. 2006. Stable isotope dilution analysis of the *Fusarium* mycotoxins deoxynivalenol and 3-acetyldeoxynivalenol. Molecular Nutrition and
Food Research 50:251-260

391 Cavaliere C, D'Ascenzo G, Foglia P. Pastorini E, Samperi R, Lagana A. 2005a.
392 Determination of type B trichothecene and macrocyclic lactone mycotoxins in field
393 contaminated maize. Food Chemistry 92:559-568

Cavaliere C, Foglia P, Pastorini E, Samperi R, Lagana A. 2005b. Development of a
multiresidue method for analysis of major Fusarium mycotoxins in corn meal using liquid
chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry
19:2085-2093

400 Delmulle B, De Saeger S, Adams A, De Kimpe N, Van Peteghem C. 2006. Development of a
401 liquid chromatography/tandem mass spectrometry method for the simultaneous determination
402 of 16 mycotoxins on cellulose filters and in fungal cultures. Rapid Communication in Mass
403 Spectrometry 20:771-776

1 2		
3 4	405	Grabley S, Gareis M, Bockers W, Thiem J. 1992. Glucosylation of mycotoxins. Synthesis
5 6 7	406	11:1078-1080
8 9	407	
10 11	408	Hartmann N, Erbs M, Wettstein FE, Schwarzenbach RP, Bucheli TD. 2006. Quantification of
12 13 14	409	estrogenic mycotoxins at the ng/L level in aqueous environmental samples using deuterated
15 16	410	internal standards. Journal of Chromatography A 1138:132-140
17 18 19	411	
20 21	412	Häubl G, Berthiller F, Krska R, Schuhmacher R. 2006. Suitability of a fully ¹³ C isotope
22 23 24	413	labelled internal standard for the determination of the mycotoxin deoxynivalenol by LC-
25 26	414	MS/MS without clean-up. Analytical and Bioanalytical Chemistry 384:692-696
27 28	415	
29 30 31	416	Häubl G, Berthiller F, Rechthaler J, Jaunecker G, Binder EM, Krska R, Schuhmacher R,
32 33	417	2006. Chracterization and application of isotope-substituted $({}^{13}C_{15})$ -deoxynivalenol (DON) as
34 35	418	an internal standard for the determination of DON. Food Additives and Contaminants
36 37 38	419	23:1187-1193
39 40	420	
41 42	421	Jestoi M, Rokka M, Rizzo A, Peltonen K, Parikka P, Yli-Mattila T. 2003. Moniliformin in
43 44 45	422	Finnish grains: Analysis with LC-MS/MS. Aspects of Applied Biology 68:211-216
46 47	423	
48 49	424	Jestoi M, Somma MC, Kouva M, Veijalainen P, Rizzo A, Ritieni A, Peltonen K. 2004. Levels
50 51 52	425	of mycotoxins and sample cytotoxicity of selected organic and conventional grain-based
53 54	426	products purchased from Finnish and Italian markets. Molecular Nutrition and Food Research
55 56	427	48:299-307
57 58 59 60	428	

Klötzel M, Gutsche B, Lauber U, Humpf HU. 2005. Determination of 12 type A and B

2	
3	
1	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
$3\ 4\ 5\ 6\ 7\ 8\ 9\ 1\ 1\ 1\ 2\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\$	
22	
23	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5 0	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

429

430 trichothecenes in cereals by liquid chromatography-electrospray ionization tandem mass 431 spectrometry. Journal of Agricultural and Food Chemistry 53:8904-8910 432 433 Klötzel M, Lauber U, Humpf HU. 2006. A new solid phase extraction clean-up method for 434 the determination of 12 type A and B trichothecenes in cereals and cereal based food by LC-435 MS/MS. Molecular Nutrition and Food Research 50:261-269 436 Krska R, Molinelli A. 2007. Mycotoxins: State-of-the-art and future trends. Analytical and 437 438 Bioanalytical Chemistry 387:145-148 439 Launay FM, Young PB, Sterk SS, Blokland MH, Kennedy DG. 2004. Confirmation assay for 440 441 zeranol, taleranol and the Fusarium spp. toxins in bovine urine using liquid chromatography-442 tandem mass spectrometry. Food Additives and Contaminants 21:52-62 443 444 Lindenmeier M, Schieberle P, Rychlik M. 2004. Quantification of ochratoxin A in foods by a stable isotope dilution assay using high-performance liquid chromatography-tandem mass 445 446 spectrometry. Journal of Chromatography A 1023:57-66 447 Martinez Vidal JL, Garrido Frenich A, Lopez Lopez T, Martinez Salvador I, Hajjaj el Hassani 448 449 L, Hassan Benajiba M. 2005. Selection of a representative matrix for calibration in 450 multianalyte determination of pesticides in vegetables by liquid chromatography-electrospray 451 tandem mass spectrometry. Chromatographia 61:127-131 452

2	
3 4	453
5 6	454
7 8 9	455
10 11	456
12 13 14	457
14 15 16	458
17 18	459
19 20 21	460
22 23	461
24 25	462
26 27 28	463
29 30	464
31 32 33	465
34 35	466
36 37	467
38 39 40	468
41 42	469
43 44 45	470
46 47	471
48 49	472
50 51 52	473
53 54	474
55 56 57	475
57 58 59	476
60	477

453 Matuszewski BK, Constanzer ML, Chavez-Eng CM. 2003. Strategies for the assessment of 454 matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical 455 Chemistry 75:3019-3030

457 Niessen WMA, Manini P, Andreoli R. 2006. Matrix effects in quantitative pesticide analysis 458 using liquid chromatography-mass spectrometry. Mass Spectrometry Reviews 25:881-899

460 Royer D, Humpf HU, Guy PA. 2004. Quantitative analysis of *Fusarium* mycotoxins in maize using accelerated solvent extraction before liquid chromatography/atmospheric pressure 461 462 chemical ionization tandem mass spectrometry. Food Additives and Contaminants 21:678-463 692

465 Rundberget T, Wilkins AL. 2002. Determination of Penicillium mycotoxins in foods and 466 feeds using liquid chromatography-mass spectrometry. Journal of Chromatography A 467 964:189-197

Sforza S, Dall'Asta C, Marchelli R. 2006. Recent advances in mycotoxin determination in 469 470 food and feed by hyphenated chromatographic techniques/mass spectrometry. Mass 471 Spectrometry Reviews 25:54-76

473 Sorensen LK, Elbaek TH. 2005. Determination of mycotoxins in bovine milk by liquid 474 chromatography tandem mass spectrometry. Journal of Chromatography B 820:183-196

476 Sulvok M, Berthiller F, Krska R, Schumacher R. 2006. Development and validation of a 477 liquid chromatography/tandem mass spectrometric method for the determination of 39 478 mycotoxins in wheat and maize. Rapid Communications in Mass Spectrometry 20:2649-2659

່ ດ	
2	
3	
3 4 5	
4	
5	
6	
U	
7	
8	
9	
۲	~
1	0
1	1
ż	0 1 2 3 4
I	Ζ
1	3
ż	4
1	4
	ົ
1	č
1	6
1	7
ż	
1	8 9
1	9
	~
2	υ
2	1
~	0123456789012345670
2	2
2	3
~	2
2	4
2	5
_	5
2	6
\mathbf{c}	7
_	'
2	8
ი	o
2	9
3	0
2	1
0	I
3	2
S	2
0	3
3	4
ົ	E
J	Э
3	6
ົ	-
S	1
3	8
ັ	õ
3	9
4	0
,	4
4	I.
4	2
4	2
4	3
4	4
4	F
4	J
4	6
4	7
4	1
4	8
,	0
4	9
5	0
5	4
c	L
5	2
-	-
5	კ
5	4
5	÷
5	5
5	6
5	1
5	8
~	-
	\sim
ວ	9
с 6	9 0

480 Tanaka H, Takino M, Sugita-Konishi Y, Tanaka T. 2006. Development of a liquid
481 chromatography/time-of-flight mass spectrometric method for the simultaneous determination
482 of trichothecenes, zearalenone and aflatoxins in foodstuffs. Rapid Communications in Mass
483 Spectrometry 20:1422-1428

484

487

1

479

485 Uhlig S, Ivanova L. 2004. Determination of beauvericin and four other enniatins in grain by
486 liquid chromatography-mass spectrometry. Journal of Chromatography A 1050:173-178

Van Bennekom EO, Brouwer L, Laurant EHM, Hooijerink H, Nielsen MWF. 2002.
Confirmatory analysis method for zeranol, its metabolites and related mycotoxins in urine by
liquid chromatography-negative ion electrospray tandem mass spectrometry. Analytica
Chimica Acta 473:151-160

492

Ventura M, Guillen D, Anaya I, Broto-Puig F, Lliberia JL, Agut M, Comellas L. 2006. Ultraperformance-liquid chromatography/tandem mass spectrometry for the simultaneous analysis
of aflatoxins B1, G1, B2, G2 and ochratoxin A in beer. Rapid Communications in Mass
Spectrometry 20:3199-3204

497

498 Wegscheider W, Rohrer C, Neuböck R. 1999. Validata (Excel-Macro for method validation),
499 Version 3.02

3 500

501 Zöllner P, Berner D, Jodlbauer J, Lindner W. 2000- Determination of zearalenone and its 502 metabolites α - and β -zearalenol in beer samples by high performance liquid chromatography-503 tandem mass spectrometry. Journal of Chromatography B 738:233-241

504

1		
2 3 4	505	Zöllner P, Mayer-Helm B. 2006. Trace mycotoxin analysis in complex biological and food
5 6 7	506	matrices by liquid chromatography-atmospheric pressure ionisation mass spectrometry.
3 4 5 6 7 8 9 10 1 12 13 4 5 6 7 18 9 00 12 22 22 22 22 22 22 33 32 33 33 34 4 4 4		
53 54 55 56		
57 58		

Figure 1. LC/ESI (+)-MS/MS MRM-chromatograms of spiked Arborio peeled rice; peak

heights are given in counts per second (cps); Different time scales are reported for five

Figure 2. LC/ESI (-)-MS/MS MRM-chromatograms of spiked Arborio peeled rice; peak

heights are given in counts per second (cps); Different time scales are reported for three

r second

2 3 4 5	508
5 6 7 8	509 510
9 10	511
11 12 13	512
14 15 16 17	513 514
18 19	515
$\begin{array}{c} 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 37\\ 38\\ 9\\ 41\\ 42\\ 43\\ 445\\ 46\\ 7\\ 48\\ 9\\ 51\\ 52\\ 34\\ 55\\ 57\\ 58\\ 9\\ 60\\ \end{array}$	516

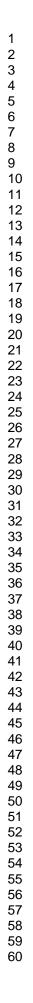

1

Figure captions:

retention time groups.

retention time groups.

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

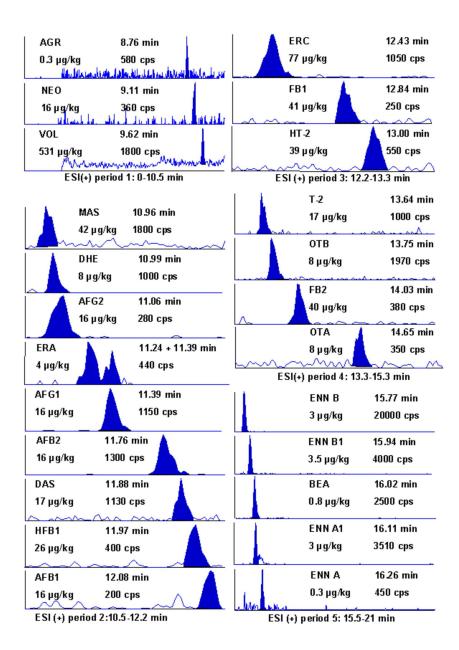
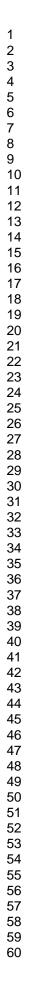



Figure 1: LC/ESI (+)-MS/MS MRM-chromatograms of spiked Arborio peeled rice; peak heights are given in counts per second (cps); different time scales are reported for five retention time groups 158x221mm (600 x 600 DPI)

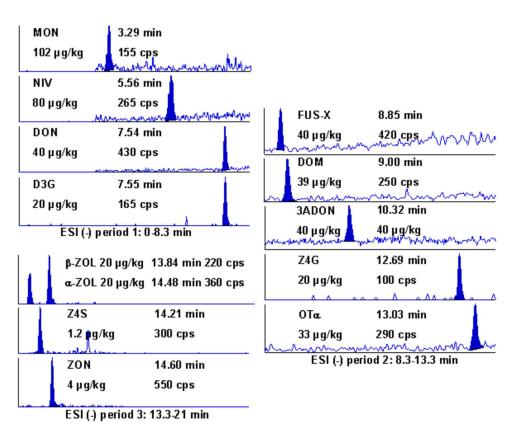


Figure 2: LC/ESI (-)-MS/MS MRM-chromatograms of spiked Arborio peeled rice; peak heights are given in counts per second (cps); different time scales are reported for three retention time groups 160x129mm (600 x 600 DPI)

Food Additives and Contaminants

Table I. Performance characteristics for peeled Arborio rice (n=3): apparent recoveries (R _A),
signal suppression/enhancement (SSE), recoveries (R _E), relative standard deviations at the
highest concentration levels and coefficients of variation of the overall procedure (CV)

	Conc. range		$R_A(\%)$	SSE (%)	$R_{E}(\%)$	RSD (%)	CV (%
	[µg/kg]	levels					
NEO	16-1620	7	98	99	99	1.7	1.2
VOL	531-5310	4	98	99	99	2.8	0.7
MAS	17-1680	7	105	101	104	10.4	1.6
DAS	4.2-1660	8	105	105	100	2.5	1.0
HT-2	16-1570	7	101	105	96	2.0	1.2
T-2	4.2-1660	8	101	103	97	3.5	1.2
NIV	40-1600	5	88	99	89	6.5	0.9
DON	28-1600	6	96	100	96	4.4	1.5
D3G	10-400	5	93	97	96	26	5.9
FUSX	28-1620 🧹	6	105	105	101	2.3	1.2
DOM	27-1560	6	97	106	91	1.8	0.8
3ADON	28-1600	6	102	104	98	2.8	0.7
AFG ₂	4.0-160	5	95	101	93	4.6	3.8
AFG ₁	2.8-160	6	98	93	106	7.0	5.6
AFB_2	4.0-160	5	94	86	109	8.7	3.7
AFB_1	16-160	4	96	82	116	5.8	2.7
AGR	0.30-118	8	95	99	96	4.4	3.4
ERV	8.6-86	4	97	95	102	4.0	1.5
DHE	3.4-339	7	93	98	94	6.2	2.1
ERA	4.2-419	7	112	106	106	4.0	1.7
ERC	14-778	6	147	104	142	8.4	2.4
BEA	0.80-320	8	101	100	101	0.3	4.1
ENN B	32-320	4	101	105	97	2.1	2.9
ENN B ₁	6.1-346	6	111	104	107	3.9	2.6
ENN A ₁	3.2-224	6	100	105	96	2.3	1.7
ENN A	0.87-345	8	98	99	99	1.6	1.4
HFB ₁	26-262	4	88	103	85	2.0	1.4
FB_1	41-1630	5	74	100	74	1.7	0.7
FB_2	40-1620	5	86	108	80	3.2	0.9
ΟΤα	8.2-330	5	71	114	62	5.5	1.9
OTB	2.0-800	8	98	103	95	3.4	0.9
OTA	3.3-330	7	96	99	97	5.7	2.2
Z4G	20-800	5	89	100	88	3.1	1.3
β-ZOL	2.0-800	8	102	103	99	2.4	1.1
Z4S	0.30-12	5	90	108	83	3.0	8.9
α-ZOL	2.0-800	8	104	99	105	0.5	0.7
ZON	4.0-1620	8	110	109	103	0.8	0.7
MON	71 -4060	6	58	103	51	5.4	-

Table II. Performance characteristics for barley (n=3): apparent recoveries (R_A) , signal suppression/enhancement (SSE), recoveries (R_E) , relative standard deviations at highest concentration levels and coefficients of variation of the overall procedure (CV); (enniatins and OTA are not included due to contamination of the blank barley)

	conc. range	evaluable	$R_A(\%)$	SSE (%)	$R_{E}\left(\% ight)$	RSD (%)	CV (%
	[µg/Kg]	levels					
NEO	4.1-1620	8	96	96	101	4.4	1.5
VOL	531-5310	4	94	95	99	9.4	0.6
MAS	17-1680	7	93	96	97	8.0	1.2
DAS	4.2-1660	8	99	94	106	4.3	1.8
HT-2	4.0-1570	8	105	105	100	5.8	3.2
T-2	4.2-1660	8	96	97	99	1.5	2.5
NIV	40-1600	5	97	113	85	2.7	0.9
DON	40-1600 🧹	5	100	100	100	4.0	0.9
D3G	10-400	5	156	196	80	9.9	5.5
FUSX	162-1620	4	103	101	102	5.8	0.8
DOM	27-1560	6	101	100	101	3.0	0.9
3ADON	28-1600	6	87	82	106	4.6	1.6
AFG ₂	16-160	4	88	75	117	13.1	4.5
AFG_1	4.0-160	5	76	66	115	4.3	3.7
AFB_2	2.8-160	6	56	54	104	5.0	7.2
AFB_1	16-160	4	49	47	105	8.9	7.6
AGR	0.30-118	8	77	89	87	1.7	4.9
ERV	8.6-86	4	79	70	114	11.2	4.8
DHE	3.4-339	7	76	73	104	10.3	4.7
ERA	4.2-419	7	78	89	87	1.7	4.9
ERC	19-778	5	61	66	93	4.3	3.1
BEA	8.0-320	5	94	105	90	2.9	4.9
HFB_1	26-262	4	98	105	93	2.5	2.8
FB_1	41-1630	5	69	108	64	3.7	1.5
FB_2	40-1620	5	83	113	74	2.3	1.9
ΟΤα	58-330	3	87	95	91	5.7	1.7
OTB	2.0-800	8	92	103	89	3.6	1.9
Z4G	20-800	5	104	101	103	6.7	2.0
β-ZOL	2.0-800	8	53	52	103	1.9	1.4
Z4S	0.3-12	5	82	93	88	5.9	12.6
α-ZOL	2.0-800	8	70	69	101	5.2	1.3
ZON	4.0-1620	8	68	67	101	3.7	1.0
MON	71 -4060	7	115	195	59	5.8	-

Table III. Performance characteristics for spelt (n=3): apparent recoveries (R_A), signal suppression/enhancement (SSE), recoveries (R_E), relative standard deviations at the highest concentration levels and coefficients of variation of the overall procedure (CV); (enniatins are not included due to contamination of the blank spelt)

	Conc. range		$R_A(\%)$	SSE (%)	$R_{E}(\%)$	RSD (%)	CV (%
	[µg/kg]	levels					
NEO	162-1620	4	100	101	99	3.3	0.9
VOL	531-5310	4	102	107	96	2.6	0.1
MAS	168-1680	4	107	101	106	6.8	0.7
DAS	166-1660	4	96	98	99	4.1	0.7
HT-2	157-1570	4	103	100	103	8.4	1.0
T-2	166-1660	4	98	102	96	5.6	0.9
NIV	160-1600	4	91	87	104	6.7	0.2
DON	160-1600	4	99	100	99	4.3	1.0
D3G	40-400	4	78	99	79	15.5	2.8
FUSX	162-1620	4	111	105	105	7.4	0.8
DOM	156-1560	4	115	108	106	1.8	0.6
3ADON	160-1600	4	105	93	113	2.5	0.4
AFG ₂	16-160	4	70	91	77	4.4	4.7
AFG_1	16-160	4	69	75	92	0.9	5.8
AFB_2	16-160	4	83	86	97	6.8	3.0
AFB_1	16-160	4	84	86	98	3.5	4.6
AGR	12-29	3	102	99	104	1.5	5.4
ERV	8.6-86	4	74	77	96	5.2	4.3
DHE	34-342	4	75	70	106	6.3	4.3
ERA	42 - 419	4	93	78	118	3.0	1.7
ERC	78-778	4	108	81	132	2.2	1.5
BEA	32-80	3	84	87	96	3.2	4.5
HFB ₁	26-262	4	75	105	72	4.7	3.6
FB_1	163-1630	4	54	102	53	4.0	0.5
FB_2	162-1620	4	61	102	59	6.4	0.6
ΟΤα	33-330	4	110	127	87	5.9	2.2
OTB	80-800	4	94	101	93	7.0	1.4
OTA	33-330	4	91	102	89	4.0	1.6
Z4G	80-800	4	73	126	58	9.5	2.4
β-ZOL	80-800	4	104	101	103	4.1	1.1
Z4S	1.2-12	4	114	114	100	3.9	11.8
α-ZOL	80-800	4	106	112	95	4.5	1.3
ZON	162-1620	4	130	106	123	1.4	0.6
MON	406-4060	4	91	130	70	4.2	-

Table IV: Variation of signal suppression/enhancement (in %) within spiked blank extracts of individual samples of maize and rice. Values for maize C are taken from Sulyok et al. (2006).

	Maize	Maize	Maize	RSD	Arborio	Arborio	Red rice	RSD (%
	А	В	С	(%)	peeled rice	brown rice		
NEO	103	102	90	7.4	110	101	57	31.7
VOL	68	73	78	6.8	118	117	79	21.2
MAS	100	105	91	7.2	106	107	92	8.2
DAS	96	89	89	4.4	122	110	103	8.6
HT-2	86	95	74	12.4	110	106	106	2.2
T-2	99	97	92	3.8	116	110	109	3.4
NIV	100	108	92	8.0	118	119	125	3.1
DON	103	110	108	3.4	121	126	98	13.0
D3G	96	108	157	26.9	140	135	36	56.6
FUSX	100	113	110	6.3	129	134	78	27.3
DOM	99	107	108	4.7	128	135	89	21.1
3ADON	98	102	107	4.4	130	109	83	21.9
AFG ₂	71	76	62	10.2	92	82	65	17.1
AFG_1	55	57	56	1.8	106	87	66	23.2
AFB_2	56	52	48	7.7	102	98	56	29.9
AFB_1	20	24	18	14.8	99	90	92	5.0
AGR	102	103	93	5.5	112	101	87	12.5
ERV	49	62	62	13.0	95	85	40	40.0
DHE	40	44	50	11.3	90	64	34	44.7
ERA	38	43	41	6.2	96	83	61	22.1
ERC	32	34	27	11.6	108	80	45	40.6
BEA	100	108	109	4.7	107	104	111	3.3
ENN B	101	109	101	4.5	112	112	105	3.7
ENN B_1	87	92	101	7.6	109	106	109	1.6
ENN A ₁	101	107	103	2.9	107	106	101	3.1
ENN A	92	97	104	6.2	107	97	103	4.9
HFB_1	65	74	63	8.7	115	106	112	4.1
FB_1	108	104	101	3.4	107	98	96	5.8
FB_2	113	109	104	4.1	112	116	107	4.0
ΟΤα	84	99	83	10.1	110	104	113	4.2
OTB	107	102	96	5.4	110	109	106	1.9
OTA	102	104	100	2.0	120	101	112	8.6
Z4G	126	125	141	6.9	124	123	128	2.1
β-ZOL	77	77	81	2.9	120	115	112	3.5
Z4S	78	91	78	9.1	110	109	111	0.9
α-ZOL	90	87	95	4.5	128	123	140	6.7
ZON	93	91	108	9.5	128	121	119	3.9
MON	142	147	124	8.8	135	153	119	12.5