

Feeding of pregnant sows with mycotoxin contaminated diets has no effect on fetal and maternal hepatic transcription of genes of the insulin-like growth factor system

Ute Tiemann, Klaus-Peter Brüssow, Sven Dänicke, Jens Vanselow

▶ To cite this version:

Ute Tiemann, Klaus-Peter Brüssow, Sven Dänicke, Jens Vanselow. Feeding of pregnant sows with mycotoxin contaminated diets has no effect on fetal and maternal hepatic transcription of genes of the insulin-like growth factor system. Food Additives and Contaminants, 2008, 25 (11), pp.1365-1373. 10.1080/02652030802112619 . hal-00577392

HAL Id: hal-00577392 https://hal.science/hal-00577392

Submitted on 17 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Food Additives and Contaminants

Feeding of pregnant sows with mycotoxin contaminated diets has no effect on fetal and maternal hepatic transcription of genes of the insulin-like growth factor system

Journal:	Food Additives and Contaminants
Manuscript ID:	TFAC-2007-410.R1
Manuscript Type:	Original Research Paper
Date Submitted by the Author:	17-Mar-2008
Complete List of Authors:	Tiemann, Ute; Research Institute for the Biology of Farm Animals, Reproductive Biology Brüssow, Klaus-Peter; Research Institute for the Biology of Farm Animals, Reproductive Biology Dänicke, Sven; Federal Agriculture Research Center (FAL) Vanselow, Jens; Research Institute for the Biology of Farm Animals, Molecular Biology
Methods/Techniques:	Molecular biology - PCR
Additives/Contaminants:	Mycotoxins - fusarium
Food Types:	Animal feedingstuffs

SCHOLARONE[™] Manuscripts

1		
2 3 4	1	Feeding of pregnant sows with mycotoxin contaminated diets has no effect
5 6 7	2	on foetal and maternal hepatic transcription of genes of the insulin-like
8 9 10	3	growth factor system
11 12	4	
13 14 15	5	
16 17	6	
18 19 20	7	Tiemann Ute ¹ , Brüssow Klaus-Peter ¹ , Dänicke Sven ² , and Vanselow Jens ^{3*}
21 22	8	
23 24 25	9	
25 26 27	10	¹ Research Unit Reproductive Biology, ³ Research Unit Molecular Biology, Research Institute
28 29	11	for the Biology of Farm Animals (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf,
30 31	12	Germany
32 33 34	13	² Federal Agriculture Research Center (FAL), Bundesallee 50, D-38116 Braunschweig,
35 36	14	Germany
37 38	15	
39 40 41	16	
42 43	17	Running title: Effects of mycotoxins on hepatic expression of IGF genes
44 45	18	
46 47 48	19	
49 50	20	
51 52	21	* Correspondence to: J. Vanselow, Research Unit Molecular Biology, Research Institute for
53 54	22	the Biology of Farm Animals (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf,
55 56	23	Germany, Tel: +49 38208 68706; Fax: +49 38208 78702; E-Mail: vanselow@fbn-
57 58 59 60	24	dummerstorf.de

25 Abstract

The insulin-like growth factor (IGF) system regulates foetal and placental growth. It can be influenced by dietary factors, but little is known about effects of mycotoxin feeding on hepatic levels of the IGF system. We aimed to determine (1) the normal foetal and maternal hepatic transcription of major IGF genes at distinct stages of pregnancy and to find out, (2) if the mycotoxins deoxynivalenol (DON) and zearalenone (ZON) affect transcript concentrations. Pregnant sows were fed with naturally contaminated diets from days 35 to 70 (experiment 1), or from days 75 to 110 (experiment 2), or with control diets. Foetal hepatic IGF transcripts were determined at days 70 and 110, maternal transcripts at day 70 by qPCR. Highest levels of IGF-I transcripts were found in sows. Contrary, IGF-II was predominantly expressed in foetuses at day 70. Expression of IGF-IR and IGFBP-3 decreased, whereas that of IGFBP-2 increased towards term. IGF-IIR and IGFBP-1 expression was similar in both, foetuses and full-term piglets. IGF-IIR showed reduced levels in the maternal liver. Exposure of pregnant sows to DON and ZON contaminated diets significantly reduced the maternal and tended to reduce the weight gain of piglets in experiment 2 but had no effects on hepatic levels of IGF transcripts in both experiments. This suggests that mycotoxin contaminated diets can induce growth depression in pigs during pregnancy without affecting hepatic transcription of major IGF genes.

44 Keywords: Deoxynivalenol, Zearalenone, IGF-system, foetus, neonatal pig, liver

47 Introduction

Mycotoxins are biologically active secondary fungal metabolites found as contaminants of feedstuffs, which exert toxic effects on animals and human beings (Fink-Gremmels 1999). Among farm animals, pigs are most susceptible to deoxynivalenol (DON), resulting in guidance values for critical dietary concentrations of 0.9 mg DON/kg for all pig categories; of 0.1 mg zearalenone (ZON)/kg for piglets and gilts, and of 0.25 mg ZON/kg for sows and fattening pigs (The Commission of the European Communities 2006). The presence of DON in swine feedstuffs decreases feed intake, causes feed refusal, and induces occasional vomiting (Conkova et al. 2003; Dänicke 2002; Diekman and Green 1992). Besides these effects, reproductive alterations have been observed in humans and pigs (Alm et al. 2006; Hussein and Brasel 2001; Tiemann and Dänicke 2007).

Food Additives and Contaminants

The data reported here were collected in the context of a large study analyzing the transfer of DON and ZON from sows to their foetuses during pregnancy and their influence on physiological parameters in sows and foetuses/piglets (Dänicke et al. 2007; Goyarts et al. 2007; Tiemann et al. 2008). Feeding pregnant sows with a *Fusarium* toxin contaminated triticale diet (4.42 mg DON and 0.048 mg ZON per kg diet) in the period from day 35 to 70 of gestation, DON, ZON and their metabolites were detected foetally on day 70 (Goyarts et al. 2007), but neither the live weight of sows nor the foetus weight was significantly reduced. Furthermore, no teratogenic or embryolethal effects could be observed in experimental groups. Histopathological evaluation of tissues from sows of the treated group revealed changes in liver and spleen tissues, whereas no significant changes were observed in these tissues in their piglets (Tiemann et al. 2008). However, pregnant sows which were fed a Fusarium toxin contaminated diet containing 9.57 mg DON and 0.36 mg ZON per kg between the gestation days 75 to 110, reduced their mean feed intake. As a result of the initial maternal feed intake depression, the mean live weight of foetuses and the live weight gain in mothers was reduced. However, macroscopic lesion in any organs of sows and piglets were not observed (Dänicke et al. 2007).

The IGF axis is highly responsive to the nutritional status (Ketelslegers et al. 1995; Simmen et al. 1998; Thissen et al. 1994). In sheep, reduced growth correlates with lower IGF-I expression in the liver, but not in skeletal muscles, where no changes occurred (Pell et al. 1993). The liver is generally thought to be the major production site for IGFs (Jones and Clemmons 1995; Ohlsson et al. 2000). In adult rats, IGF-I transcripts were found in many tissues, but had highest concentrations in the liver (Murphy et al. 1987). The IGF-system is important in regulating foetal and placental growth (DeChiara et al. 1990; deVrijer et al. 2006; Han and Hill 1992; Liu et al. 1991). It acts via endocrine as well as via autocrine/paracrine mechanisms and has metabolic and anabolic functions (Ashworth et al. 2001; Jones and Clemmons 1995). Functionally, the IGF-system comprises the ligands, IGF-I and -II, their receptors, and the IGF-binding proteins (IGFBP). The various IGFBPs are modulators of the biological activity of IGFs and each IGFBP can act in either a paracrine or autocrine manner to elicit its own set of biological responses (McCusker and Clemmons 1992).

90 During the present study, firstly, the hepatic expression of major genes of the IGF-system 91 during pregnancy as reflected by transcripts for IGF-I, IGF-II, their receptors IGF-IR and 92 IGF-IIR and the binding proteins IGFBP-1, 2, and 3 was recorded in foetal livers at days 70 93 and 110 and in maternal livers at day 70 of gestation. Secondly, to find out if the hepatic 94 expression of the IGF system is affected by mycotoxin contaminated diets, sows were fed 95 with diets naturally contaminated with *Fusarium* toxins during days 35 to 70 and 75 to 110 of 96 pregnancy and the respective levels of IGF transcripts were determined.

98 Materials and methods

99 Experimental design and diets

Experiments were performed with pregnant gilts (German Landrace). Sows were kept individually without bedding on a partially slatted floor. Water and food was provided ad *libitum.* Animals were fed on a wheat diet, blended with batches of triticale or wheat that were partly naturally contaminated with Fusarium toxins. In experiment 1, the contaminated diet contained 15% of *Fusarium* toxin contaminated triticale which resulted in a dietary DON and ZON concentration of 4.42 and 0.048 mg/kg, respectively (Tab. 1). This diet was fed from days 35 to 70 of pregnancy. In experiment 2, 40% of a *Fusarium* toxin contaminated wheat was included in the diet of the experimental group which resulted in dietary DON and ZON concentrations of 9.57 and 0.358 mg/kg, respectively (Tab. 1). This diet was fed from days 75 to 110 of pregnancy. The diet for the control groups in both experiments also contained 15% and 40% of triticale and wheat, respectively. However, the DON and ZON concentrations of control diets were 0.15 and 0.004 mg/kg, respectively, in experiment 1, and 0.210 and 0.004 mg/kg diet in experiment 2. Both, according to diet composition (commonly used feedstuffs) and because of the very low toxin levels, these control diets are in the range of commonly used complete diets for pigs (Meng et al. 2006). Analysis of wheat and triticale by GC-MS for a detailed characterization of the trichothecene mycotoxin pattern revealed that further B-trichothecene mycotoxins such as 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol and nivalenol, and of the A-trichothecene mycotoxin HT-2 toxin were all lower than the detection limits.

50 119

Detailed information on the composition of the diet was also described by Goyarts et al. (2007) for experiment 1 and by Dänicke et al. (2007) for experiment 2. The experiments were terminated by delivering the foetuses by Caesarean section. Liver samples from foetuses (n=10)/full-term piglets (n=10) were collected on days 70 and 110, from sows (n=5) only on days 70 of pregnancy. The samples were cut into pieces of about 0.5 cm diameter, immediately transferred to RNAlater solution (Qiagen, Hilden, Germany), incubated for 24 hrs at 4°C and subsequently stored at -20°C until RNA preparation.

1 2		
3	127	
5	128	Mycotoxin determination
6 7	129	DON content of diets was analyzed by HPLC with DAD (diode array detection) after a clean-
8 9	130	up with IAC (immunoaffinity column, DONprep [™] , R-Biopharm Rhone Ltd., Darmstadt,
10	131	Germany) according to a slightly modified procedure of R-Biopharm Rhone. The detection
12	132	limit was 0.03 mg/kg and the recovery approximately 89%. Further trichothecenes in wheat
13 14 15 16	133	and triticale were analysed by the Institute of Animal Nutrition of the University of
	134	Hohenheim, Germany, using a GC-MS method (Dänicke et al. 2005).
17 18	135	
18 19 20	136	Caesarean section and collection of physiological samples
20 21	137	Both experiments were terminated after exposure to the experimental and control diets for 35
22 23	138	days. At both time points, pregnant sows were anaesthetized by an intravenous injection with
24 25	139	ketamin/xylazin (15 mg/kg Ursotamin® and 1.5 mg/kg Xylazin [®] , Serumwerk Bernburg,
26 27	140	Germany). Following anaesthesia, the fetuses/full-term piglets were delivered by Caesarean
28	141	section. The fetuses/full-term piglets where euthanized after cutting the umbilical cord by
29 30	142	injecting T61 [®] (embutramide/mebezoniumiodide/tetracainhydrochloride, Intervet
31 32	143	Unterschleißheim, Germany) via the umbilical vein. Fetuses/full-term piglets were weighed
33 34	144	and the head-rump-length was measured. Thereafter, livers were dissected and weighed. After
35 36	145	euthanizing the sows with T61, livers were dissected and weighed too.
37	146	
38 39	147	The present study was approved by the Committee for Animal Use and Care of the
40 41	148	Ministerial Agricultural Department of Mecklenburg-Vorpommern, Germany, according to
42 43	149	the German Law for Animal Protection (TierSchG).
44	150	
45 46	151	RNA preparation, cDNA synthesis and quantitative PCR (qPCR)
47 48	152	Total RNA was prepared with the RNeasy mini kit (Qiagen, Hilden, Germany). Briefly, tissue
49 50	153	chunks, previously conserved in RNAlater (Qiagen), were transferred into a guanidine iso-
51 52	154	thiocyanate containing buffer and homogenized with an Ultra Turrax (IKA instruments,
53	155	Germany). Subsequently one volume of 70% ethanol (v/v) was added to the homogenized
54 55	156	lysates and the RNA was extracted from the samples by adsorption to silica gel spin columns.
56 57	157	After three washing steps and elution in 30 μl deionised, RNAse free water (washing buffers
58 59	158	and water provided by the kit), RNA was quantified in a GeneQuant II instrument
60	159	(Pharmacia, Freiburg, Germany). Quality of RNA was monitored from randomly selected
	160	samples by denaturing agarose (1%) gel electrophoresis.

Gene-specific primers for cDNA synthesis and amplification of porcine IGF-I, IGF-II, IGF-IR, IGF-IIR, and IGFBP-1, 2, 3 transcripts were designed according to published mRNA sequences (Tab. 2). For cDNA synthesis, 0.5 µg total RNA was reversely transcribed in a 25µl reaction volume using M-MLV reverse transcriptase, RNase H Minus, Point Mutant (Promega, Mannheim, Germany) with gene-specific primers. The freshly synthesized cDNA samples were cleaned with the High Pure PCR Product Purification Kit (Roche, Mannheim, Germany) and eluted in 50 µl elution buffer. The identity of products generated with different primer pairs was controlled by sequencing.

For qPCR, routinely, 0.25 and 0.5µl of the cDNA samples were amplified with the LightCycler-FastStart DNA Master^{PLUS} SYBR Green I Kit (Roche) in 10µl total reaction volume. Amplification and quantification of products were performed in a LightCycler® I instrument (Roche) under the following cycling conditions: Pre-incubation at 95°C for 10', followed by 45 cycles denaturation at 95°C for 15⁻⁻⁻, annealing at 60°C for 10⁻⁻⁻, extension at 72°C for 10⁻⁻⁻ and single point fluorescence acquisition at 83°C for 6⁻⁻⁻. The melting peaks of all samples were routinely determined by melting curve analysis in order to ascertain that only the expected products had been generated. Additionally, the length of all PCR products was monitored by agarose gel electrophoresis analysis (3% agarose, ethidium bromide stained). Cloned PCR products of the respective genes were used to generate external standard curves. Routinely, dilutions of standards covering five orders of magnitude (5 x 10^{-16} to 5 x 10^{-12} g DNA/reaction) were freshly diluted from stocks of 10ng DNA/µl and co-amplified during each run. Copy numbers were calculated relative to the amount of total RNA previously subjected to cDNA synthesis. To normalize for variations between individual LightCycler runs one or two arbitrarily selected samples were co-amplified as calibrators.

48 186

187 Statistical analysis

The data were analyzed using the Student-Newman-Keuls test following one-way analysis of variance (ANOVA) using the SigmaStat Statistical Analysis System (Jandel Scientific, San Rafael, CA). The data represent means \pm SEM. All results with P<0.05 were considered statistically significant. The number of animals used in both of the experiments is described in the figures.

Results

Hepatic transcripts of IGF genes show very different levels during ontogenesis

Hepatic transcript levels of different IGF genes were found at very different expression levels covering several orders of magnitude. IGF-II transcripts exceeded levels of $4x10^7$ copies/µg RNA in foetal livers at day 70, whereas foetal expression of IGF-I was more than three orders of magnitude lower (Fig. 1). Most of the transcripts, IGF-II, IGF-IR, IGF-IIR, and IGFBP-2, showed highest hepatic concentrations during foetal life. However, two of the transcripts showed an opposite ontogenetic regulation. Particularly, levels of IGF-I transcripts in livers of pregnant sows, exceeded foetal levels by 14 to 17 fold. But also IGFBP-3 showed significantly increased levels in adult animals. The levels of some transcripts significantly decreased during foetal development as observed in case of IGF-II, IGF-IR, and IGFBP-3. However, IGFBP-2 transcript concentrations significantly increased towards term. Transcript levels of IGF-I and IGF-IIR did not show significant differences between both foetal stages but had significantly higher or lower levels in adult sows, respectively. IGFBP-1 transcripts showed similar levels at all ontogenetic stages but tended to slightly decrease with age.

Hepatic transcript levels are not affected by diets naturally contaminated with mycotoxins

In experiment 1 no differences in feed intake were observed between the experimental and control groups. The live weight gain over the tested gestation period between day 35 and 70 was not significantly influenced by feeding the mycotoxin contaminated diet. The mean fetus weight was not significantly different between the control group and the group fed with a Fusarium toxin contaminated diet (Goyarts et al. 2007).

In experiment 2, the sows fed with the Fusarium toxin contaminated diet consumed 38% less feed than the sows fed with the control diet and the live weight over the tested gestation period between day 75 and 110 was significantly reduced by 93%. The mean weight of piglets also tended to be reduced from 1335.2 ± 347.0 g to 1120.9 ± 260.2 g (p=0.087) in the control and experimental group, respectively. The liver weight was not altered in sows. At terminal necropsy there was no macroscopic lesion observed in any organ of sows and piglets exposed to the Fusarium toxin (Dänicke et al. 2007).

The hepatic transcript concentrations of all IGF genes however were not significantly affected by feeding pregnant sows for 35 days at different stages of gestation with diets naturally contaminated with *Fusarium* toxins. Instead, the ontogenetic expression profiles of IGF-I,

IGF-II, IGF-IR, IGFBP-1, IGFBP-2, and IGFBP-3 were virtually identical between the experimental and respective control groups (Fig. 2).

Discussion

We observed that the hepatic expression of IGF-I was remarkably high in pregnant sows. This is in line with data reported by others (Olausson and Sohlstrom 2003). The enhanced IGF-I transcript levels in the maternal liver could act as an endocrine growth factor necessary to promote foetal growth and development (Persson et al. 1997; Sterle et al. 1998). IGFBP-3 expression was also significantly higher in the sow compared to foetal levels. It has been shown that levels of IGFBP-3 secretion in humans increase during pregnancy (Giudice et al. 1991). The liver seems to be the major source for circulating IGFBP-3 in pig (Dunaiski et al. 1999; Lee et al. 1993). Studies suggest that GH may indirectly regulate IGFBP-3 expression by enhanced IGF-I production (Chin et al. 1994; Silha and Murphy 2002). But IGFBP-3 levels may also be modified by a pregnancy-specific protease as in some other species (Donovan et al. 1991; Lassarre and Binoux 1994).

Low level expression of IGF-I in foetal livers is consistent with several other reports (Adams et al. 1983; Gluckman et al. 1983; Gluckman and Butler 1983; Liu et al. 1991; Peng et al. 1996). This is also in line with the view, that IGF-I is an important factor regulating postnatal but not prenatal growth (Daughaday and Rotwein 1989; Lee et al. 1991; Peng et al. 1996).

In contrast to data of others (Peng et al. 1996) we clearly detected IGF-IR transcripts in foetal livers, however with quite lower levels in full term fetuses compared to the earlier stage. This discrepancy is most likely due to the enhanced sensitivity of qPCR used during the present study, compared to Northern blot analysis used by Peng et al. (1996).

Most of the IGF genes however showed higher levels of expression in foetal compared to adult liver tissue. Particularly IGF-II, which showed highest levels of expression in fetuses at day 70 is considered to have a major role in foetal growth (Butler and LeRoith D. 2001; DeChiara et al. 1990; DErcole 1996; Kampman et al. 1993; Martin et al. 2005). Hepatic expression levels of IGF-II and of IGF-IR were significantly down-regulated in full term piglets compared to earlier foetal stages. IGF-II is considered as a dominant regulator of foetal adrenal growth during mid-gestation, due to high expression and regulation by ACTH (Coulter et al. 1996). A marked rise of cortisol and triiodothyronine concentrations close to

Food Additives and Contaminants

term has been shown to play an important role for the maturation of the GH/IGF-system activating expression of growth factors and their receptors. Down-regulation of the hepatic IGF-II gene toward term has been previously shown to be dependent on the prepartum cortisol surge (Li et al. 1996; Li et al. 1993). The authors found that the prepartum rise in foetal plasma cortisol was responsible for down-regulating IGF-II gene expression in the foetal ovine liver close to term. Additionally, it was demonstrated by others (Forhead et al. 1998) that increased concentrations of both, cortisol and triiodothyronine, appear necessary to induce down-regulation of hepatic IGF-II transcripts in foetal sheep close to term. The pre-term down-regulation of hepatic IGF-II gene expression is part of a general ontogenetic change along the somatotrophic axis. At birth, IGF synthesis switches from a local GH-independent production of predominantly IGF-II in utero to the adult GH-dependent production of endocrine IGF-I (Gluckman 1995). After birth, IGF-II expression is decreased in most tissues (Sara and Hall 1990). This is completely in line with the data of our present study.

Foetal levels of IGFBP-2 transcripts increased from day 70 towards term, which is consistent with earlier reported data in pig (Lee et al. 1993) and sheep (Delhanty and Han 1993), indicating that hepatic IGFBP-2 transcripts and serum IGFBP-2 levels increase during the second half of gestation. This suggests that IGFBP-2 derived from the foetal liver is an important endocrine factor during late gestation.

In experiment 2, we observed that mothers showed a significant decrease in feed intake after feeding the mycotoxin-contaminated diet from day 75 to 110 of gestation. The mean weight of piglets tended to be reduced in the experimental group (Dänicke et al. 2007). However, this was not paralleled by any significant effects on the hepatic expression profiles of IGF-I, IGF-II, IGF-IR, IGF-IIR, or IGFBP- 1, 2, 3 genes. Based on these results, we suggest that the transcription of hepatic genes of the IGF system was not associated with the observed tendency of growth restriction in the mycotoxin group on day 110. This is in line with previous studies demonstrating that a moderate food restriction during pregnancy did not reduce the expression of hepatic mRNA for IGF-I and IGF-II in rats (Monaco and Donovan 1996) and guinea pigs (Olausson and Sohlstrom 2003). However, we can not exclude the possibility that levels of individual IGF proteins could be changed directly by mycotoxin actions or indirectly by mycotoxin induced food refusal through post-transcriptional or even post-translational mechanisms.

1 2		
3	297	
5	298	From the present data we conclude that diets naturally contaminated with mycotoxins do not
6 7	299	affect hepatic transcript concentrations of major IGF genes even if growth depression can be
8 9	300	observed.
10 11	301	
12	302	Acknowledgments
14	303	The authors are grateful for support through a grant from the Deutsche
15 16	304	Forschungsgemeinschaft (Ti 189/5-3; DA 558/3-3) and from the technical assistance of Mrs.
17 18	305	M. Anders, P. Reckling, and V. Tesch.
19 20	306	
21	307	References
22	308	Adams SO, Nissley SP, Handwerger S, Rechler MM. 1983. Developmental patterns of
24 25	309	insulin-like growth factor-I and -II synthesis and regulation in rat fibroblasts. Nature 302:150-
26 27 28	310	153.
29	311	Alm H, Brüssow KP, Torner H, Vanselow J, Tomek W, Dänicke S, Tiemann U. 2006.
30 31	312	Influence of Fusarium-toxin contaminated feed on initial quality and meiotic competence of
32 33	313	gilt oocytes. Reprod.Toxicol. 22:44-50.
34 35	314	Ashworth CJ, Finch AM, Page KR, Nwagwu MO, McArdle HJ. 2001. Causes and
36 37	315	consequences of foetal growth retardation in pigs. Reprod.Suppl. 58:233-246.
38 39	316	Butler AA and LeRoith D. 2001. Control of growth by the somatropic axis: growth
40 41	317	hormone and the insulin-like growth factors have related and independent roles.
42 43	318	Annu.Rev.Physiol. 63:141-164.
44 45	319	Chin E, Zhou J, Dai J, Baxter RC, Bondy CA. 1994. Cellular localization and regulation
46 47	320	of gene expression for components of the insulin-like growth factor ternary binding protein
48 49	321	complex. Endocrinology 134:2498-2504.
50 51	322	Conkova E, Laciakova A, Kovac G, Seidel H. 2003. Fusarial toxins and their role in
52 53	323	animal diseases. Vet.J. 165:214-220.
54 55	324	Coulter CL, Goldsmith PC, Mesiano S, Voytek CC, Martin MC, Han VK, Jaffe RB. 1996.
56 57	325	Functional maturation of the primate foetal adrenal in vivo: I. Role of insulin-like growth
58 59	326	factors (IGFs), IGF-I receptor, and IGF binding proteins in growth regulation. Endocrinology
60	327	137:4487-4498.
	328	Dänicke S. 2002. Fusariumtoxine in der Tierernährung. Großtierpraxis 3:5-18.

Food Additives and Contaminants

1 2		
3	329	Dänicke S, Brüssow KP, Valenta H, Ueberschär KH, Tiemann U, Schollenberger M.
5	330	2005. On the effects of graded levels of Fusarium toxin contaminated wheat in diets for gilts
6 7	331	on feed intake, growth performance and metabolism of deoxynivalenol and zearalenone.
8 9	332	Mol.Nutr.Food Res. 49:932-943.
10 11	333	Dänicke S, Brüssow KP, Goyarts T, Valenta H, Ueberschar KH, Tiemann U. 2007. On the
12	334	transfer of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from the sow
14 15	335	to the full-term piglet during the last third of gestation. Food Chem.Toxicol. 45:1565-1574.
16 17	336	Daughaday WH and Rotwein P. 1989. Insulin-like growth factors I and II. Peptide,
18 19	337	messenger ribonucleic acid and gene structures, serum, and tissue concentrations.
20 21	338	Endocr.Rev. 10:68-91.
22 23	339	DeChiara TM, Efstratiadis A, Robertson EJ. 1990. A growth-deficiency phenotype in
24 25	340	heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting.
26 27	341	Nature 345:78-80.
28 29	342	Delhanty PJ and Han VK. 1993. The expression of insulin-like growth factor (IGF)-
30 31	343	binding protein-2 and IGF-II genes in the tissues of the developing ovine fetus.
32	344	Endocrinology 132:41-52.
33 34 35	345	DErcole AJ. 1996. Insulin-like growth factors and their receptors in growth.
36 37	346	Endocrin.Metab.Clin.of North America 25:573-590.
38 39	347	DeVrijer B, Davidsen ML, Wilkening RB, Anthony RV, Regnault TR. 2006. Altered
40 41	348	placental and foetal expression of IGFs and IGF-binding proteins associated with intrauterine
42 43	349	growth restriction in foetal sheep during early and mid-pregnancy. Pediatr.Res. 60:507-512.
44 45	350	Diekman MA and Green ML. 1992. Mycotoxins and reproduction in domestic livestock.
46 47	351	J.Anim Sci. 70:1615-1627.
48 49	352	Donovan SM, Giudice LC, Murphy LJ, Hintz RL, Rosenfeld RG. 1991. Maternal insulin-
	353	like growth factor-binding protein messenger ribonucleic acid during rat pregnancy.
51 52	354	Endocrinology 129:3359-3366.
53 54	355	Dunaiski V, Dunshea FR, Walton PE, Goddard C. 1999. Effect of growth hormone
55 56	356	administration on IGF binding protein-3 mRNA levels in porcine tissues. J.Mol.Endocrinol.
57 58	357	22:261-272.
60	358	Fink-Gremmels J. 1999. Mycotoxins: their implications for human and animal health.
	359	Vet.Q. 21:115-120.

2 3	360	Forhead AJ, Li J, Gilmour RS, Fowden AL. 1998. Control of hepatic insulin-like growth
4 5	361	factor II gene expression by thyroid hormones in foetal sheep near term. Am.J.Physiol.
6 7	362	275:E149-E156.
8 9 10	363	Giudice LC, Milkowski DA, Lamson G, Rosenfeld RG, Irwin JC. 1991. Insulin-like
11	364	growth factor binding proteins in human endometrium: steroid-dependent messenger
12 13 14	365	ribonucleic acid expression and protein synthesis. J.Clin.Endocrinol.Metab. 72:779-787.
15	366	Gluckman PD. 1995. Insulin-like growth factors and their binding proteins. In: Hanson,
16 17	367	M. A, Spencer, J. A. D., and Rodeck, C. H., editors. Fetus and Neonate. Physiology and
18 19	368	Clinical Applications p. 97.
20 21	369	Gluckman PD and Butler JH. 1983. Parturition-related changes in insulin-like growth
22 23	370	factors-I and -II in the perinatal lamb. J.Endocrinol. 99:223-232.
24 25	371	Gluckman PD, Johnson-Barrett JJ, Butler JH, Edgar BW, Gunn TR. 1983. Studies of
26 27	372	insulin-like growth factor -I and -II by specific radioligand assays in umbilical cord blood.
28 29	373	Clin.Endocrinol.(Oxf) 19:405-413.
30 31	374	Goyarts T, Dänicke S, Brüssow KP, Valenta H, Ueberschar KH, Tiemann U. 2007. On the
32 33	375	transfer of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from sows to
34 35	376	their fetuses during days 35-70 of gestation. Toxicol.Lett. 171:38-49.
36 37	377	Han VKM and Hill DJ. 1992. The involvement of insulin-like growth factors in
38 39	378	embryonic and foetal development. In: Schofield, P. N., editors. The Insulin-Like Growth
40 41	379	Factors. Structure and Biological Functions p. 178.
42 43	380	Hussein HS and Brasel JM. 2001. Toxicity, metabolism, and impact of mycotoxins on
44 45	381	humans and animals. Toxicology 167:101-134.
46 47	382	Jones JI and Clemmons DR. 1995. Insulin-like growth factors and their binding proteins:
48 49	383	biological actions. Endocr.Rev. 16:3-34.
50 51	384	Kampman KA, Ramsay TG, White ME. 1993. Developmental changes in hepatic IGF-2
52 53	385	and IGFBP-2 mRNA levels in intrauterine growth-retarded and control swine. Comp
54 55	386	Biochem.Physiol B. 104:415-421.
56 57	387	Ketelslegers JM, Maiter D, Maes M, Underwood LE, Thissen JP. 1995. Nutritional
58 59	388	regulation of insulin-like growth factor-I. Metabolism 44:50-57.
60	389	Lassarre C and Binoux M. 1994. Insulin-like growth factor binding protein-3 is
	390	functionally altered in pregnancy plasma. Endocrinology 134:1254-1262.

Food Additives and Contaminants

1 2		
3 ⊿	391	Lee CY, Bazer FW, Etherton TD, Simmen FA. 1991. Ontogeny of insulin-like growth
5	392	factors (IGF-I and IGF-II) and IGF-binding proteins in porcine serum during foetal and
6 7 8	393	postnatal development. Endocrinology 128:2336-2344.
9 10	394	Lee CY, Chung CS, Simmen FA. 1993. Ontogeny of the porcine insulin-like growth factor
11 12	395	system. Mol.Cell Endocrinol. 93:71-80.
13 14	396	Li J, Owens JA, Owens PC, Saunders JC, Fowden AL, Gilmour RS. 1996. The ontogeny
15	397	of hepatic growth hormone receptor and insulin-like growth factor I gene expression in the
16 17	398	sheep fetus during late gestation: developmental regulation by cortisol. Endocrinology
18 19	399	137:1650-1657.
20 21	400	Li J, Saunders JC, Gilmour RS, Silver M, Fowden AL. 1993. Insulin-like growth factor-II
22 23	401	messenger ribonucleic acid expression in foetal tissues of the sheep during late gestation:
24 25	402	effects of cortisol. Endocrinology 132:2083-2089.
26 27	403	Liu F, Powell DR, Styne DM, Hintz RL. 1991. Insulin-like growth factors (IGFs) and
28 29	404	IGF-binding proteins in the developing rhesus monkey. J.Clin.Endocrinol.Metab. 72:905-911.
30 31	405	Martin MA, Serradas P, Ramos S, Fernandez E, Goya L, Gangnerau MN, Lacorne M,
32 33	406	Pascual-Leone AM, Escriva F, Portha B, Alvarez C. 2005. Protein-caloric food restriction
34 35	407	affects insulin-like growth factor system in foetal Wistar rat. Endocrinology 146:1364-1371.
36 37	408	McCusker RH and Clemmons DR. 1992. The insulin-like growth factor binding proteins:
38 39	409	structure and biological functions. In: Schofield, P. N., editors. The Insulin-Like Growth
40 41	410	Factors. Structure and Biological Functions p. 110.
42 43	411	Meng W, Lahrssen-Wiederholt M, Dänicke S. 2006. Undesirable substances in animal
44 45	412	nutrition - minimising is possible. Kraftfutter/Feed Magazine 1-2/06:26-33.
46 47	413	Monaco MH and Donovan SM. 1996. Moderate food restriction abolishes the pregnancy-
48	414	associated rise in serum growth hormone and decreases serum insulin-like growth factor-I
49 50 51	415	(IGF-I) concentrations without altering IGF-I mRNA expression in rats. J.Nutr. 126:544-553.
52 53	416	Murphy LJ, Bell GI, Friesen HG. 1987. Tissue distribution of insulin-like growth factor I
54 55	417	and II messenger ribonucleic acid in the adult rat. Endocrinology 120:1279-1282.
56 57	418	Ohlsson C, Sjogren K, Jansson JO, Isaksson OG. 2000. The relative importance of
58	419	endocrine versus autocrine/paracrine insulin-like growth factor-I in the regulation of body
59 60	420	growth. Pediatr.Nephrol. 14:541-543.

2		
3 4	421	Olausson H and Sohlstrom A. 2003. Effects of food restriction and pregnancy on the
5	422	expression of insulin-like growth factors-I and -II in tIssues from guinea pigs. J.Endocrinol.
6 7 8	423	179:437-445.
9 10	424	Pell JM, Saunders JC, Gilmour RS. 1993. Differential regulation of transcription initiation
11	425	from insulin-like growth factor-I (IGF-I) leader exons and of tissue IGF-I expression in
12 13	426	response to changed growth hormone and nutritional status in sheep. Endocrinology
14 15	427	132:1797-1807.
16 17	428	Peng M, Pelletier G, Palin MF, Veronneau S, LeBel D, Abribat T. 1996. Ontogeny of
18 19	429	IGFs and IGFBPs mRNA levels and tissue concentrations in liver, kidney and skeletal muscle
20 21	430	of pig. Growth Dev.Aging 60:171-187.
22 23	431	Persson E, Sahlin L, Masironi B, Dantzer V, Eriksson H, Rodriguez-Martinez H. 1997.
24 25	432	Insulin-like growth factor-I in the porcine endometrium and placenta: localization and
26	433	concentration in relation to steroid influence during early pregnancy. Anim Reprod Sci.
28	434	46:261-281.
29 30 31	435	Sara VR and Hall K. 1990. Insulin-like growth factors and their binding proteins. Physiol
32 33	436	Rev. 70:591-614.
34 35	437	Silha JV and Murphy LJ. 2002. Insights from insulin-like growth factor binding protein
36 37	438	transgenic mice. Endocrinology 143:3711-3714.
38 39	439	Simmen FA, Badinga L, Green ML, Kwak I, Song S, Simmen RC. 1998. The porcine
40 41	440	insulin-like growth factor system: at the interface of nutrition, growth and reproduction.
42 43	441	J.Nutr. 128:315S-320S.
44 45	442	Sterle JA, Boyd C, Peacock JT, Koenigsfeld AT, Lamberson WR, Gerrard DE, Lucy MC.
46	443	1998. Insulin-like growth factor (IGF)-I, IGF-II, IGF-binding protein-2 and pregnancy-
47 48	444	associated glycoprotein mRNA in pigs with somatotropin-enhanced foetal growth.
49 50 51	445	J.Endocrinol. 159:441-450.
52	446	The Commission of the European Communities. 2006. Commission recommendation of
53 54	447	17 August 2006: on the presence of deoxynovalenol, zearalenone, orchratoxin A, T-2 and HT-
55 56	448	2 and fumonisins in products inteded for animal feeding. Off.J.Eur.Union L220:7-9.
57 58	449	Thissen JP, Ketelslegers JM, Underwood LE. 1994. Nutritional regulation of the insulin-
59 60	450	like growth factors. Endocr.Rev. 15:80-101.

Food Additives and Contaminants

451 Tiemann U and Dänicke S. 2007. In vivo and in vitro effects of the mycotoxins
452 zearalenone and deoxynivalenol on different non-reproductive and reproductive organs in
453 female pigs: a review. Food Addit.Contam. 24:306-314.

Tiemann U, Brüssow KP, Küchenmeister U, Jonas L, Pöhland R, Reischauer A, Jäger K,
Dänicke S. 2008. Changes in the spleen and liver of pregnant sows and full-term piglets after
feeding diets naturally contaminated with deoxynivalenol and zearalenone. Vet.J.
doi:10.1016/j.tvjl.2007.02.019:

Figure captions

Figure 1: Normal hepatic transcript concentrations of genes of the IGF system in fetuses/fullterm piglets at days 70 and 110 and sows at day 70 of gestation. The sows were fed with a control diet. Each bar represents the mean (\pm SEM) transcript abundance of IGF genes. Bars denoted by different letters represent significantly different means (P < 0.05).

Figure 2: Hepatic transcript concentrations of genes of the IGF system in fetuses (B and C) and sows (A) fed with a control or *Fusarium* contaminated diet on the 35^{th} to the 70^{th} and the 75th to the 110th day of gestation. Each bar represents the mean (± SEM) transcript concentrations of IGF genes of each experimental and control group. Bars denoted by different letters represent significantly different means (P < 0.05).

Table 1. Composition of th	Experim	imont 1	Evneri	iment ?
	CON	MYCO	CON	MYCO
Components:	CON	MICO	con	MICO
Control triticale	150	0		
Contaminated triticale	0	150		
Control wheat	250	250	400	0
Contaminated wheat			0	400
Barley	284.3	284.3	284.3	284.3
Dried chips	100	100	100	100
Soybean meal	175	175	175	175
Soy oil	10	10	10	10
Vilomin 19730 ^a	30	30	30	30
L-lysin HCL	0.7	0.7	0.7	0.7
Calculated composition:				
Dry matter	875	875	884	877
Crude protein	167	167	159	162
Deoxynivalenol (mg/kg) ^b	0.15	4.42	0.21	9.57
Zearalenone $(\mu g/kg)^{b}$	3.5	48.3	4	358

• • • C .1 4-1 .1: .4

CON= control group; MYCO=Fusarium toxin contaminated group

^a Premix provided per kg diet: Ca, 6.3 g; P, 2.1 g; lysine, 0.6 g; Na, 1.8 g; Mg, 0.3 g;

vitamin A, 15000 IE; vitamin D₃, 1500 IE; vitamin E, 45 mg; Cu, 22.5 mg; Se, 0.36 mg ^b Measured by HPLC-methods

Table 2. Primers used for cDNA synthesis and qPCR.

	Forward primers	Reverse primers	Primers for cDNA synthesis	size (bp)	Acc. Nos.
gf1	GCACATCACATCCTCTTCGCATC	AGCTCCGGAAGCAGCACTCATC	ATCCTGCCAGTGGCATGTCATTC	212	NM_214256
gf1r	GACTGGTCCCTGATCCTGGATG	CTCGGGGTGGCAGCACTCGTG	GCACTCGCCATCATGGATCAC	237	NM_214172
gf2	GCCTTGGCCTCGTGCTGCTATG	CAGCTACGGAAGCAGCACTCTTC	AGGTGTCATAGCGGAAGAACTTG	176	NM_213883
gf2r	GCCTCCAGATCTCTTCTGGAATTC	GCTCTCTGTCAAACACGTAGCAC	AAGGGACAGGCACGCAACTGTG	232	AF339885
fbp1	TCCTGGACAGTTTCCACCTGATG	ATAGAATCCGTTCTTGTTGCAGTTC	CGTGGAGCCCAGGATCTTCTTC	236	AB053605
fbp2	CCCGAGCAGGTTGCAGACAATG	GCGGCGGCCGCAGCTTCTTG	GTTCCAGGACCTGGTCCAACTC	235	NM_214003
fbp3	GAGCACGGACACCCAGAACTTC	GAAGCCCTTCTTGTCGCAGTTAG	GAGGGGCTGCCCGTACTTATC	157	J05228

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

Figure 1: Normal hepatic transcript concentrations of genes of the IGF system in fetuses/full-term piglets at days 70 and 110 and sows at day 70 of gestation. The sows were fed with a control diet. Each bar represents the mean (± SEM) transcript abundance of IGF genes. Bars denoted by different letters represent significantly different means (P < 0.05). 139x86mm (600 × 600 DPI)

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

Figure 2: Hepatic transcript concentrations of genes of the IGF system in fetuses (B and C) and sows (A) fed with a control or Fusarium contaminated diet on the 35th to the 70th and the 75th to the 110th day of gestation. Each bar represents the mean (\pm SEM) transcript concentrations of IGF genes of each experimental and control group. Bars denoted by different letters represent significantly different means (P < 0.05). 80x199mm (600 x 600 DPI)