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Deoxynivalenol (DON) and ochratoxin A (OTA) in agricultural commodities present hazards 15

to human and animal health. Bulk lots are routinely sampled for their presence, but it is 16 widely acknowledged that designing sampling plans is particularly problematical because of 17 the heterogeneous distribution of the mycotoxins. Previous studies have not explicitly looked 18 at the interactions between the spatial distribution of the mycotoxin and the strategy used to 19 take samples from bulk. Sampling plans are therefore designed on the assumption of random 20 distributions. The objective of this study was to analyse the spatial distribution of DON and 21 OTA in bulk commodities with geostatistics. This study was the first application of 22 geostatistical analysis to data on mycotoxins contamination of bulk commodities. Data sets 23 for DON and OTA in bulk storage were collected from the literature and personal 24 communications, of which only one contained data suitable for geostatistical analysis. This 25 data set represented a 26 t truck of wheat with total of 100 sampled points. The mean 26 concentrations of DON and OTA were 1342 µg kg -1 and 0.59 µg kg -1 , respectively. The 27 results showed that DON presented spatial structure whilst OTA was randomly distributed in 28 space. This difference between DON and OTA probably reflected the fact that DON is 29 produced in the field, whereas OTA is produced in storage. The presence of spatial structure 30 for DON implies that sampling plans need to consider the location of sample points in 31 addition to the number of points sampled in order to obtain reliable estimates of quantities 32 such as the mean contamination.

Designing sampling plans for mycotoxins is particularly problematic because of the 38 heterogeneous distribution of these contaminants in bulk lots of different commodities 39 [START_REF] Stroka | Novel sampling methods 384 for the analysis of mycotoxins and the combination with spectroscopic methods for 385 the rapid evaluation of deoxynivalenol contamination[END_REF], Schatzki 1995aand 1995b[START_REF] Jewers | aflatoxin distribution studies on a 4 tonne batch 348 of maize[END_REF]. For example, 40 contamination within a lot may result from a very small proportion of grains or kernels 41 containing high concentrations of the mycotoxin. Because of the heterogeneous nature of 42 mycotoxins, the problems lead to uncertainty over both how many samples to take and how 43 to decide on the sampling positions. Normal practice is to aggregate incremental samples 44 taken from a bulk commodity and test a sub-sample to estimate the mean concentration of the 45 mycotoxin. As a result, information on the spatial variability and distribution of the 46 mycotoxin is lost. 47

Extensive work on mycotoxin sampling has been carried out by the group of Whitaker 48 [START_REF] Whitaker | Theoretical investigations into the accuracy of sampling 393 shelled peanuts for aflatoxin[END_REF][START_REF] Whitaker | Variability associated 395 with sampling, sample preparation and chemical testing for aflatoxin in farmers stocks 396 of peanuts[END_REF][START_REF] Whitaker | Variability associated with testing corn for fumonisin[END_REF]Whitaker et al., 49 2000;[START_REF] Whitaker | standardisation of mycotoxin sampling procedures: an urgent necessity[END_REF][START_REF] Whitaker | Mycotoxins in food: detection and control[END_REF][START_REF] Whitaker | Sampling foods for mycotoxins[END_REF]. These studies concentrate on the 50 relative magnitude of errors relating to sampling and the processing of samples but they 51 provide little or no information on the interaction between the spatial distribution of the 52 mycotoxin and the strategy used to take samples from bulk. It is usually assumed that the 53 samples are independent, but this may not be the case if spatial structure is present. 54

If spatial autocorrelation is present, it is necessary to design sampling programmes 55 that take the spatial distribution into account, to reduce the probability of falsely classifying a 56 batch below or above the acceptance level [START_REF] Macarthur | Statistical modelling as an aid to 352 the design of retail sampling plans for mycotoxins in food[END_REF]. For example, hot spots of 57 deoxynivalenol (DON) found in wheat may differ from other mycotoxins in wheat or other 58 commodities because it is mainly generated in the field rather than in storage, which may 59 have an effect on its distribution in subsequent storage and transport the mycotoxin is 60 distributed on a loaded truck. Sampling methods must be both representative and practicable 61 [START_REF] Stroka | Novel sampling methods 384 for the analysis of mycotoxins and the combination with spectroscopic methods for 385 the rapid evaluation of deoxynivalenol contamination[END_REF]) so the error associated with the sampling protocol selected is reduced 62 [START_REF] Whitaker | Sampling foods for mycotoxins[END_REF]. tests using Moran's I, which was one of the first measures of spatial autocorrelation to be 74 developed. Slight non-randomness and autocorrelation were seen at some scales in some 75 cases. [START_REF] Schmale | Spatial patterns of viable spore deposition of 376 Gibberella zeae in wheat fields[END_REF], studying spore deposition, had insufficient data points to use lag 76 correlation measures, so applied nonparameteric methods (SADIE statistics and Mantel tests), 77 while noting that the data sets were small even for these methods, and found that spore counts 78 above the canopy were usually random, but deposition counts were often aggregated. 79 However, these approaches give only limited consideration, if any, to the relationship 80 between distance and autocorrelation, and have all considered field data, rather than bulk 81

commodities. 82

Geostatistics is a branch of statistical science that deals with the spatial structure of 83 the variables under study and has the advantage over other methodologies of accounting for 84 the spatial autocorrelation of the sampled variable, in this case mycotoxin concentration. In 85 geostatistics the spatial variation is considered random and is modelled through a stochastic 86 process. Geostatistics is based on the variogram calculation, a plot that relates the distance 87 between any two sampled points with their semivariance. Effective and efficient sampling 88 strategies can be designed through the characterisation of the variogram parameters: the 89 range, the sill and the nugget. Examples of studies where the variogram was used to analyse 90 the spatial pattern of diseases are provided by [START_REF] Orum | Using predictions based on 358 geostatistics to monitor trends in Aspergillus flavus strain composition[END_REF] and [START_REF] Rekah | Spatial distribution and temporal development of 365 fusarium crown and root rot of tomato and pathogen dissemination in field soil[END_REF]. 91

The former used the variogram to determine the trends and distribution of the aflatoxigenic 92 species Aspergillus flavus in soil. The latter used it to study the spatial pattern of fusarium 93 crown and root rot in tomatoes. 94

Geostatistics has also been used as a tool to investigate the spatial dynamics of plant 95 disease propagation. [START_REF] Chellemi | Analysis of the spatial pattern of 343 plant-pathogens and diseased plants using geostatistics[END_REF] used geostatistics to examine the spatial pattern of 96 a population of plant pathogens and diseased plants. [START_REF] Stein | A 381 geostatistical analysis of the spatio-temporal development of downy mildew 382 epidemics in cabbage[END_REF] applied geostatistics 97 for the analysis of the spatio-temporal pattern of downy mildew pathogen (Peronospora 98 parasitica) in cabbage to predict the disease at any point in time, to develop optimal sampling 99 patterns for future assessments, to calculate the expansion rate of the disease and to determine 100 the source of the initial inoculum in space and time. [START_REF] Gottwald | Spatial and temporal 346 analyses of citrus tristeza virus in eastern spain[END_REF] analysed the 101 spatial, temporal and spatio-temporal dynamics of citrus tristeza virus (CTV) in Valencia 102 (Spain) to determine the likely rates of disease increase and spread. 103 As part of a project for the UK Food Standards Agency, six different sources of data 104 were obtained through the literature review and personal contact [START_REF] Parsons | Development of 361 representative sampling plans for mycotoxins in foods using distribution modelling[END_REF]. Table 105 1 shows a description of each of the data sets considered for analysis. Each set of data was 106 first assessed for its suitability for geostatistical analysis based on the number of points 107 available for the analysis. [START_REF] Webster | Sample adequately to estimate variograms of soil properties[END_REF] suggest that variograms computed with 108 fewer than 50 data points are of little value and that at least 100 points are needed for a soil 109 variable to be analysed. The only reference on the number of points required for the 110 variogram calculation of mycotoxins is provided by [START_REF] Stein | A 381 geostatistical analysis of the spatio-temporal development of downy mildew 382 epidemics in cabbage[END_REF] who determined that 111 49 observations were necessary to estimate the spatial variogram of downy mildew pathogen 112 in cabbage. Similar requirements would be expected for DON. Those data sets with fewer 113 than 50 points were not considered for analysis. Of the six data sources, only the one 114 collected by [START_REF] Biselli | Investigation of variability associated 339 with testing lots of wheat kernels for deoxynivalenol and ochratoxin A (case study 340 truck)[END_REF] was for mycotoxins in grain and contained sufficient data 115 points with their coordinates. 116

This study focuses on using a geostatistical approach to characterise the spatial 117 distribution of DON and OTA in the data collected by [START_REF] Biselli | Investigation of variability associated 339 with testing lots of wheat kernels for deoxynivalenol and ochratoxin A (case study 340 truck)[END_REF]. 118 119

Materials and Methods 120

Data set 121

The data set contained DON and OTA results obtained from a 26 t lot of wheat on a truck in 122 Germany. The truck was 2.5 m wide and 10 m long. The data were recorded from 100 points 123 at 20 x 5 grid positions at 0.5 m spacing in the horizontal plane through the truck, using a 5 124 aperture probe sampler. The probe was vertically inserted into the load in the centre of each 125 grid cell to take a single incremental sample containing grain from 5 depths. Each 126 incremental sample was mixed and sub-sampled before the DON and OTA concentrations 127 were measured [START_REF] Biselli | Investigation of variability associated 339 with testing lots of wheat kernels for deoxynivalenol and ochratoxin A (case study 340 truck)[END_REF]. Thus the final sets of values described the DON and 128 OTA concentrations in a two dimensional horizontal plane aggregated over the depth of the 129 lorry. 130 131

Geostatistical approach 132

Geostatistics describes the spatial autocorrelation among sampled points based on the semi-133 variogram, a plot that relates the distance between any two points in the space with their 134 semivariance (Figure 1). The semi-variogram shows how similar any two points separated by 135 a distance h are: if the semi-variance is small, the points are closely correlated. The distance h 136 is known as the lag distance or lag. Each variogram is characterised by three parameters 137 known as the range, the sill and the nugget (Figure 1). The range is the distance at which the 138 spatial autocorrelation between any two points is lost. The sill is the semi-variance value that 139 corresponds to the range. The nugget is the intrinsic variance of the data (e.g. measurement 140 and sampling error). 141

The geostatistical analysis included three phases: (i) data preparation, (ii) variogram 142 calculation and (iii) analysis of the spatial structure. Appendix 1 provides a more detailed 143 explanation of the methodology. 144

The selected data set was prepared for geostatistical analysis. The methods require 145 that the data are normally distributed and stationary, that is they do not exhibit spatial trends. 146

For this purpose, the data were analysed for linear and quadratic trends in the coordinate 147 variables. The data set was considered to present a trend if the model explained more than 148 20% of the variance. Normality was tested visually by plotting the histogram, box plot 149 (showing median, quartiles, extremes and outliers), and Q-Q plot (quantile-quantile plot, 150 which should be a straight line for a normal distribution). The skewness and kurtosis (Kenney 151 and Keeping, 1961) were calculated. The normal distribution has a skewness of 0 and a 152 kurtosis of 3. If the data do not have an approximately normal distribution, they may be 153 transformed using one of a range of standard transformations to give a close approximation to 154 normality [START_REF] Webster | Meso-and microscale patterns of Fusarium Head Blight in 391 spring wheat field in Minesota[END_REF][START_REF] Sokal | Biometry: the principles and practice of statistics in biological 378 research[END_REF]. 155

The empirical variogram was calculated in 4 directions defined by azimuth 0°, 90°, 156 45° and 315° to detect anisotropy (differences in the variogram depending on direction). 157

Azimuth 0° was along the axis of the truck facing forward and angles were measured 158 clockwise in the horizontal plane. The lag distance, azimuth tolerance and maximum distance 159 of analysis were selected according to the results obtained from a sensitivity analysis on these 160 variables. The exponential and spherical models [START_REF] Webster | Meso-and microscale patterns of Fusarium Head Blight in 391 spring wheat field in Minesota[END_REF] The OTA data were strongly skewed with mode 0 and therefore could not be transformed to a 167 normal distribution. They were fitted by an exponential distribution with mean 0.57 µg kg -1 168 and standard deviation of 1.13 (Figure 2). (present/absent) variable. The results showed a pure nugget variogram: that is, there was no 171 evidence of spatial structure. Figure 3a shows the distribution of OTA in space: OTA 172 presented a random spatial distribution of foci of contamination which is consistent with the 173 variogram results obtained. 174

The DON data were log transformed (natural log) to meet the normality requirement; 175 Table 2 summarises the descriptive statistics of the original and transformed data. The 176 skewness and kurtosis for the transformed data were close to 0 and 3 respectively, which 177 indicated that the assumption of normality could be accepted. Figure 3c shows the spatial 178 distribution of the log transformed values of DON concentration. In the trend analysis, the 179 linear model accounted for 2.2% of the variance and the quadratic model accounted for 180 18.9%, which were both below the level at which the data would be considered to present a 181

trend. 182

The minimum distance between points in the data set was 0.5 m, due to the sampling 183 scheme. The sensitivity analysis on the lag distance showed that a lag distance of 0.7 m 184 provided a good compromise between the number of pairs of points for each lag distance and 185 the number of points in the variogram. 186

The anisotropy analysis showed that the variogram calculated with azimuth tolerance 187 60° was significantly different along (azimuth 0°) and across the truck (azimuth 90°). A 188 second analysis was carried out to determine if the anisotropy was due to differences in the 189 spatial pattern of DON or lack of points to compute the variogram across the sampled area. 190

The results showed that the number of pairs of data points per lag distance was significantly 191 smaller when calculating the variogram for azimuth 90°: the apparent anisotropy was an 192 artefact of the smaller number of points across the truck. Therefore, the omnidirectional 193 variogram was used. 194 The maximum number of pairs of data points for each lag distance was reached at 195 about 4 m for the majority of the azimuths when analysing the longitudinal direction. This 196 indicated that the maximum distance of analysis for the variogram should be around 4 m. The 197 final omnidirectional variogram was calculated with lag distance step 0.7 m and maximum 198 distance 4 m. The spherical model was found to fit better than the exponential. 199

The results obtained (Figure 4) showed that there was spatial correlation for DON 200 concentration in the selected batch. The variogram was defined by a 4.35 m range, a 0.07 sill 201 and a 0.013 nugget. The non-zero nugget indicates that there was a small amount of variation 202 that either was not captured by the sampling strategy applied or was intrinsic to the 203 mycotoxins. Most of these ignore the spatial component. Geostatistics provides an explicit 214 characterisation of spatial autocorrelation, so is capable of quantifying effects that would not 215 be detected by other methods. Geostatistics also allows prediction of the value of the variable 216 under study at non measured locations using interpolation techniques such as kriging. 217

The data set came from a truck load of wheat that was selected for sampling because a 218 high level of contamination was found. The results for this need, therefore, to be treated with 219 caution when attempting to generalise to other situations. 220

The data set showed clear evidence of spatial structure for DON, but none for OTA. 221 This difference may reflect the fact that DON is mainly produced in the field by a widespread 222 organism, whereas OTA is typically produced in localised 'hot spots' in storage, but this 223 needs to be tested in other data sets, including other commodities. [START_REF] Biselli | Investigation of variability associated 339 with testing lots of wheat kernels for deoxynivalenol and ochratoxin A (case study 340 truck)[END_REF], using 224 classical statistics, also found that the OTA was present in hot spots and had higher 225 variability than DON. 226 The analysis of the DON data set showed that there was a significant spatial 227 correlation to the distribution of DON mycotoxins in stored grain. The presence of spatial 228 structure implies that samples cannot always be assumed to be independent and that sampling 229 plans need to consider the location of sample points in addition to the number of points 230 sampled in order to obtain reliable estimates of quantities such as the mean contamination 231 and the variance. 232

The spatial pattern was lost for lag distances greater than 4 m. If this is typical, it has 233 two different implications for sampling, depending on its purpose. If the intention were to Surveillance sampling always aggregates the incremental samples before analysis, so 240 all information about the distribution of contaminants is lost. In order to provide better data 241 for the design of sampling protocols and risk management, there is a need for more good 242 quality data sets in which the incremental samples are analysed and recorded separately. 243 Furthermore, in order to determine the importance of spatial structure in mycotoxins and its 244 potential effect on sampling, experimental sampling should be based on regular grids and 245 record the sample coordinates. On the basis of experience in soil sampling, data sets should 246 contain of the order of 100 points or more [START_REF] Webster | Meso-and microscale patterns of Fusarium Head Blight in 391 spring wheat field in Minesota[END_REF]Webster and Oliver, 247 1992). 248 The semi-variance is a measure of the similarity between points at a given lag 269 distance. The smaller the semi-variance, the more alike the points are. The graph of semi-270 variance against lag distance is the experimental semi-variogram (Figure 1). The semi-271 variogram shows how similar any two points separated by a lag distance h are. In general, the 272 closer any two points are, the more similar their value is. In the empirical semi-variogram the 273 semi-variance increases with lag distance up to a distance a, called the range, at which the 274 semi-variance remains constant. The range is the point at which the autocorrelation between 275 points becomes 0 and marks the limit of spatial dependence: points further apart are spatially 276 independent. The semi-variance value at the range is called the sill (c). The sill is the 277 maximum of the empirical semi-variogram and is the a priori variance, σ 2 , of the process.
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The semi-variance at lag distance 0 is called the nugget (c 0 ) and identifies the measurement 279 error and the variations that occur over lag distances less than the shortest sampling interval 280 [START_REF] Webster | Meso-and microscale patterns of Fusarium Head Blight in 391 spring wheat field in Minesota[END_REF]. The sill, the range and the nugget are the three parameters that 281 characterise the semi-variogram. 282

The model fitted to the experimental semi-variogram is called the empirical semi-283 variogram (Figure 1) and is a simplification of the experimental variogram. The model is 284 fitted using one of the 'authorised' functions [START_REF] Webster | Meso-and microscale patterns of Fusarium Head Blight in 391 spring wheat field in Minesota[END_REF]. The spherical 285 (equation 2) or exponential (equation 3) functions are two of the most frequently used models 286 in geostatistics so these models were selected for the variogram fitting in this study. The 287 fitting of the model was done using ordinary least squares. 288 289
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where c o is the nugget, c is the sill, a is the range, h is the lag distance and r is a distance 294 parameter that defines the spatial extent of the model. The exponential model approaches its 295 sill asymptotically and therefore, does not have a finite range. Generally, r or effective range 296 is assumed to be the lag distance at which the semi-variance equals 95% of the sill variance, 297 which is approximately 3r. 298 These definitions extend to the case of two-dimensional data by measuring the lag 299 distance h in all directions instead of along the transect. However, even if the data are 300 sampled using a regular grid, the distances between points are not all multiples of the grid 301 size, because all possible pairs of points are considered, not just those lying on the same row 302 or column. In this case, the semi-variance for a given lag distance is estimated by using all 303 the points separated by distances within a certain tolerance of the required lag distance. In 304 effect, the lag distance axis of the variogram is divided into a series of discrete intervals 305 whose width is the lag tolerance. 306

For the empirical semi-variogram model to be fitted accurately it is necessary to have 307 sufficient points in the experimental semi-variogram, but for the semi-variance value to be 308 accurate requires sufficient pairs of observations contributing to each point. Increasing the lag 309 tolerance will reduce the first of these, but increase the second. Therefore, the choice of 310 tolerance is a compromise between the accuracy of model fitting and the accuracy of the 311 estimation of the semi-variance. 312

It is also possible to consider the effect of direction within a two-dimensional data set, 313 by considering pairs of points separated from one another at a specific angle (for example at 314 45° to the grid rows). The angle relative to some reference direction is called the azimuth. If 315 the variograms differ with azimuth, the data are said to be anisotropic or to present 316 anisotropy. For example, the spatial structure of contamination in a wheat field might differ 317 parallel and perpendicular to the prevailing wind direction or the tramline direction. In a 318 similar way to lag tolerance, the points included for each azimuth are defined by the azimuth 319 tolerance. If the azimuth tolerance is 180°, all directions are included and the variogram is 320 said to be omnidirectional. 321

The number of points used to estimate each point in the variogram depends on the lag 322 tolerance, as described above, and similarly on the azimuth tolerance. It may also depend on 323 the azimuth itself, either because the sample space has different extents in each direction, or 324 because of the geometry of the sampling grid. Finally, there is a maximum distance beyond 325 which the number of pairs decreases significantly. A sensitivity analysis may be carried out 326 to quantify the effects of these four parameters. 327

For the geostatistical analysis to be effective the variable under study must be 328 normally distributed, second-order stationary and must present no trend. Data that are not 329 normally distributed may be transformed to achieve normality. A second-order stationary 330 process is characterised by a mean, variance and covariance that depend only on the 331 ab Measurements of Fusarium head blight were taken at five study sites. At each site 16 quadrants of 0.5 m x 0.5 m were randomly selected along a W-shape walk. [START_REF] Biselli | Investigation of variability associated 339 with testing lots of wheat kernels for deoxynivalenol and ochratoxin A (case study 340 truck)[END_REF].

The data were recorded from 20 x 5 grid positions at 0.5 m spacing in the horizontal plane through a truck containing wheat, using a 5 chamber probe sampler. After aggregation and subsampling, DON and OTA concentrations were measured. [START_REF] Oerke | Spatial distribution of Fusarium spp. causing head 355 blight in wheat fields[END_REF].

a Measurements of 8 Fusarium species in wheat were recorded at 5 x 6 grid points on a skewed grid with spacings of 12 x 18 m. [START_REF] Schaafsma | Effect of previous crop, tillage, field 368 size, adjacent crop, and sampling direction on airborne propagules of Gibberella 369 zeae/Fusarium graminearum, Fusarium head blight severity, and deoxynivalenol 370 accumulation in winter wheat[END_REF].

a A total of 68 wheat fields were sampled for Fusarium. In each field a transect was selected. DON content was measured from samples of wheat heads randomly hand-harvested from nine traps equidistantly distributed along the transect. Wilhelm and Jones (2005).

c Fusarium head blight data in wheat field were collected at four different sampling resolutions: mesoscale, full-field, microscale and adjacent-scale. For mesoscale study 100 points were collected at sixty fields. For the fullfield scale nine fields were analyzed with a total of 45 points per field. For the microscale analysis three different grid resolutions were analysed. For the adjacent-head scale a total of 60 consecutive wheat heads were sampled in each of the each of the eight plots. Prof. P. Battilani, Catholic Univ. of Italy, Piacenza, Personal Communication b A total of 10 measurements of F. verticillioides and fumonisins were taken in a 10 m x 10 m area along the diagonals of each of three maize storehouses. Two different sub-samples were measured at each point at two different depths. The samples were aggregated and only the average for the three storehouses were reported. 418
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  63A few studies have looked at the effect that sample size has on determining the mean 64 concentration of DON and ochratoxin A (OTA) in a bulk commodity based on individual the distance between samples. Similarly, Wilhelm and Jones (2005) 70 compared frequency distributions of Fusarium head blight incidence in fields with binomial 71 and β-binomial distributions at scales from 1 m to mesoscale (several counties). Agreement 72 with the β-binomial would indicate greater aggregation. The also performed lag correlation 73

  were used for 161 the fitting of the variogram. The spatial structure of the mycotoxin was assessed according to 162 the sill, range and nugget values obtained for each variogram.

  concentration. The variogram sill is generally assumed to be equal to 204 the variance of the population[START_REF] Barnes | The variogram sill and the sample variance[END_REF]. The sill was consistent with the variance 205 (0.055) obtained from the standard deviation in Table2the first application of geostatistical analysis to data on mycotoxin 210 contamination of bulk agricultural/food commodities. Previous studies have used statistics 211 such as the Moran's I, SADIE and Mantel's tests and the dispersion index[START_REF] Webster | Meso-and microscale patterns of Fusarium Head Blight in 391 spring wheat field in Minesota[END_REF] 212 Jones, 2005 and[START_REF] Schmale | Spatial patterns of viable spore deposition of 376 Gibberella zeae in wheat fields[END_REF] to try to detect non-random distributions of fungi or 213

  account for the spatial structure of the mycotoxin when determining 238 levels of contamination to minimise these errors. 239

  on the variogram model which relates the distance between any two 258 points in the space with their semivariance. Consider a transect along which observations of a 259 variable Z are taken at regular intervals. The positions are denoted as x i and the value of the 260 observation is z(x i ), i= 1,2…n. The variance of the differences between all the pairs of points 261 at a lag distance h apart can be calculated as follows: 262 263

  h) is the number of pairs of data points separated by lag distance h and γ(h) is the 266 average variance of all pairs of data points separated by lag distance h. The per-observation 267 variance or semi-variance )

  and not on their absolute positions. A systematic component in the 332 spatial variation is an indication of a trend. The trend must be removed from the data when 333 identified so the geostatistical analysis is only carried out for the residuals after subtracting

  Figures 420 421 Figure 1. Diagram showing the variogram parameters (i.e. range, sill and nugget). The 422 diagram shows both the experimental (dots) and the empirical (line) variograms. 423 424 Figure 2. Ochratoxin A concentration: histogram of observations and fitted exponential 425 distribution. 426 427 Figure 3. Spatial distribution of (a) OTA, (b) DON and (c) log e transformed DON. All 428 distances are in metres. Data collected are represented by a cross and each cell has been 429 coloured according to the measured value. 430 431 Figure 4. Spherical variogram for the log e transformed DON data (omnidirectional 432 variogram) calculated with lag distance 0.7 m and maximum distance 4 m. 433

  Table 2 summarises the descriptive statistics 169 obtained for OTA. The variogram was calculated by treating OTA as an indicator 170
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Table 1 . Description of data sources collected for analysis and criteria for rejection 415 ( a insufficient measurements available; b lack of coordinates identifying the location of 416 each measurement, c the original data were not available)
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		Xu et al. (2008).

. Descriptive statistics for the data analysed.
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