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Abstract 

Control (crops grown in natural conditions) and Fusarium head blight (FHB) damaged (crops 

inoculated with Fusarium culmorum conidia) grain of four wheat cultivars was ground and sieved 

into three fractions of different particle size.   A series of blended samples differing in content of 

damaged material were prepared within fractions and cultivars, and diffuse reflectance spectra 

recorded within the 200-2500 nm wavelength range. PLS models for the percentage of damaged 

material in blended samples were built for each of 12 series within different spectral ranges, and the 

root mean squared error of cross-validation (RMSECV) used for assessment of model performance. 

Errors using the models were lowest for the finest fraction independent of spectral range, however, 

their values depended on the cultivar. RMSECV for the finest fraction averaged over cultivars 

ranged from a little below 3.0 (when the UV sub range was used or participated with another one)  

to 8.1 % (when only the NIR sub-range was used). For the medium and coarse fractions, averaged 

errors showed the same tendency of dependence on the sub-range(s), however, with higher values 

that increased with an increase in particle size. In conclusion, within the different fractions of 

particle size and spectral ranges, the most sensitive to the presence of damaged material were 

models developed for the finest fraction and when the UV sub-range was used in modeling.   

 

  

 

Key words: fusarium head blight, scab, wheat, reflectance spectroscopy. 
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Introduction 

 

The quality of cereal grains, primarily their possible contamination with harmful substances, is of 

key importance for a safe human diet. An obvious strategy in delivering safe grain is the detection 

of possible contamination at the earliest possible stage in the “farm-to-table” chain of food 

production. One of the problems that arise here is the protection of grain, before its storage and/or 

processing, from contamination by any grain that has been infected with soil fungi, since 

developing fungi can produce harmful secondary metabolites (Mirocha et al. 2003). In countries 

with a temperate climate, the soil fungi most frequently infecting flowering cereals and then their 

grain are Fusarium spp. Fusarium spp. infecting cereals are known to cause a disease called 

fusarium head blight (FHB) (or scab, or fusariosis). FHB causes considerable economic loss 

(Johnsson et al. 2003) and often causes contamination of damaged grain with mycotoxins (Dexter 

and Nowicki 2003), first of all with deoxynivalenol (DON, vomitoxin). DON contaminated food 

and feed can cause severe health problems, both in humans and livestock (see Dexter and Nowicki 

2003, and references therein). Regulations for DON content specify different limits for unprocessed 

wheat in different countries (see, e.g., Dexter and Nowicki 2003). These limits are mostly 1 mg/kg 

or higher (with the exception of Austria). There are reports of the occurrence of DON in cereal-

based commodities on the market in many countries (Gareis et al. 2003). For these reasons 

considerable effort has been made to develop quick and cost effective methods that could be useful 

in the detection of fusariosis in cereal grain and that could replace tedious chemical methods, which 

are mostly based on chromatographic analysis (Mirocha et al. 2003). Of such methods the most 

popular ones seem to be those fully, or in part based on optical measurements. Quantitative 

evaluation of change in kernels colour and other visible symptoms supplemented with evaluations 

extended into near infrared region was found useful for detection of scab/DON damaged single 

kernels (Dowell et al. 1999, 2002, Delwiche and Kim 2000, Delwiche 2003, Delwiche and 

Hareland 2004, Polder et al. 2005), and can be also used for development of automatic systems for 

Page 3 of 23

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

single kernel classification (Pasikatan and Dowell 2001, Pearson et al. 2004, Dowell et al. 2006). 

Another approach that can be useful in the detection of scab/DON damaged grain is based on 

optical measurements of ground grain followed with multivariate calibration (Abramović et al. 

2007, Kos et al. 2002, 2003, 2004, Siuda et al. 2006, 2008). Errors of calibration models are a key 

question in such an approach as they determine the ability of the method to detect fusariosis. Our 

previous papers (Siuda et al. 2006, 2008) showed that the most promising PLS models for the fine 

fraction (particle size less than 0.180 mm) of ground winter wheat were the models based on spectra 

recorded within the UV range, or when the measurement covered additionally the VIS range. Errors 

of these models when applied to DON content resulted in a limit of detection below 1 ppm (Siuda 

et al. 2008).  This paper aims to check whether that finding is valid when other fractions of ground 

winter wheat are used in diffuse reflectance measurements and to find which fraction ensures the 

lowest error (highest accuracy) in the calibration model. 

 

Experimental 

Material 

Two lots of winter wheat (Triticuum aestivum ssp. vulgare, cv. Turnia harvested in 2005) grain were 

obtained from two plots. One lot (referred to as control) was harvested from a plot where plants 

grew in natural conditions, while the other one (damaged) was from a plot where heads were 

inoculated with a suspension of Fusarium culmorum conidia (1·10
6
·ml

-1
) during the flowering stage. 

The F. culmorum isolate used for inoculation was previously classified as DON chemotype on the 

basis of the presence and functioning of Tri7 and Tri13 genes detected with a PCR assay. After 

harvesting, control and inoculated lots were dried in air at room temperature to a moisture content 

of ca. 11% and then stored in a refrigerator at temperature 4
o
C. Grain from both categories was 

ground (1.0 mm screen, rotor speed 7000 rpm, ZM1, Retsch, Haan, Germany) and sieved. Three 

fractions of particle size were sieved: fine (<0.180mm), medium (>0.180 and <0.25mm) and coarse 

(>0.25). Within the fractions control and damaged material was blended in different proportions 
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ranging from 0% to 100% of damaged constituent in the mass of the sample. Essentially, the same 

procedure for gaining and processing the material was repeated the following year (2006) with cvs. 

Tonacja, Satyna and Trend. Grain was ground with a ZM200 Retsch grinder (screen and rotor speed 

the same as above), while the set of screens used for sieving was: fine (<0.18mm), medium (>0.180 

and <0.355mm) and coarse (>0.355 and <0.710mm). Sieving was done with a sieve shaker (AS20, 

Retsch) operating at maximum amplitude in a sequence (up to five) of 10 min time intervals, 

interrupted for manual manipulations necessary to prevent clogging of the material.  As a result, 

three series of blended samples of different fractions, each consisted of ca. 30 samples were 

obtained for each analysed cultivar. 

 

Measurements  

A UV-VIS-NIR commercial spectrophotometer Cary 5000 (Varian Inc., Mulgrive, Australia) was 

used to record diffuse reflectance spectra in log(1/R) mode in the range 200 to 2500 nm, every 2 

nm. For each sample, 5 scans at two crossed positions of the cuvette were taken and averaged. Each 

spectrum was scaled with reference to a base line spectrum recorded from the PTFE reference plate 

(a part of internal DRA accessory, Varian Inc.). An equal volume of approximately 1-ml of the 

material was taken from each blended sample and put into a quartz cuvette of diameter 17-mm 

equipped with a spring driven piston (a part of internal DRA accessory, Varian Inc.) that pressed the 

material. No special circumstances, such as air- and/or temperature conditioning in the laboratory 

during measurements were maintained. 

 

Multivariate calibration  

The PLS (Partial Least Squares) foundations have been broadly presented elsewhere (see eg. Geladi 

and Kowalski 1986, Vandeginste et al. 1997; 1998).  Briefly PLS tries to find a relationship between 

the latent structure in spectra set and the latent structure in responses. It is carried out by finding 

specific directions in data space, the so-called latent variables (LV). In practical use of modelling by 
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latent variables methods such as PLS, first of all, the number of significant latent variables 

(components) has to be determined for each calibration model. Cross-validation approach provides 

a very reliable way for this (Wold 1978). A number of alternations is performed accordingly to 

some permutations schemes. Parameters used for assessment of PLS models are then the root mean 

square error of calibration (RMSEC) and cross-validation (RMSECV). It is commonly accepted that 

the number of LV giving the lowest RMSECV is used as an optimal. Besides other statistical 

parameters are used (eg.  the coefficient of multiple determination (R
2
), for more complete review 

see ASTM Standards 2000 ). 

 

Calibration models for the percentage of damaged material in blended samples (assumed as a 

measure of the severity of fusariosis) were built using commercial software PLS_Toolbox3.0 

(Eigenvector Research, Inc., Wenatchee, USA). Different pre-processing of spectra were tested, 

including MSC, SNV and differentiation. As the models based on differentiation (eleven-points 

Savitzky-Golay first derivative smoothing filter) and centring of the spectra give the best 

performance, these models were studied. Additional manipulations on spectra mentioned in the 

following sections were performed with our own codes written in Matlab®
 
software package 

(Mathworks Inc., Natick, MA, USA).   

 

Results and discussion 

Calibration models for differing levels of severity of fusariosis within each cultivar and fraction 

were built in the UV, VIS and NIR spectral ranges and for all possible combinations. The results 

obtained are presented in Table 1. R
2
 is not shown in the results of calibration, since it was always 

satisfactory (better than 0.9). Model parameters presented in Table 1 show noticeable differences 

when moving from one cultivar to another within a fraction, and from fraction-to-fraction within a 

cultivar. In order to make these results more easily visible, the RMSECV model errors were 

averaged over cultivars within each fraction and spectral range, and plotted in Figure 1. It can be 
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seen from Figure 1 that independently of spectral range, model errors tend to increase considerably 

with an increase of particle size. This error enlargement is especially prominent when the UV range 

is included in the measurements and the NIR range excluded. The former finding can be supposed 

to be caused by changes in path length of diffusely reflected radiation with the change of mean 

particle size. This effect is well known in NIR reflectance spectroscopy (see, Osborne et al. 1993, 

Pasikatan et al. 2001). In some publications a tendency has been reported towards model errors 

being dependent on particle size that was qualitatively similar to that seen in Figure 1, despite the 

subject of their investigations being different from those reported here. Hareland (1994) used NIR 

reflectance spectroscopy to predict the percent volume of wheat flour particles of three size ranges: 

<10, 10-41 and 41-300 µm. The authors obtained an increase of both standard errors of cross-

validation (0.26, 0.87 and 1.11) and errors of prediction (0.35, 1.17 and 1.13) with increasing 

particle size. Pasikatan et al. (2003) investigated the possibility of application of PLS models based 

on reflectance spectra (recorded in the 400-1700 nm wavelength range) to predict the granulation of 

wheat ground with an experimental roller mill. The authors found SEP equal to 3.53, 1.83, 1.43 and 

1.30 for the >1041, >375, >240 and >136 µm size fractions respectively. Kos et al. (2007) reported 

results on optimizing particle size for ATR-MIR measurements used as a tool for screening fungal 

infection and assessment of DON content in ground maize. The authors compared the repeatability 

of MIR spectra at several wavelengths for fractions of particle size >0.71, 0.71-050, 0.50-0.25, 

0.25-0.10 and <0.10 mm, and they found an increase of repeatability with decreasing particle size. 

The results presented here together with the results from the cited reports suggest that a general rule 

may be that an increase of errors in multivariate calibration models based on reflectance spectra of 

ground wheat follows from an increase in the mean particle size of analysed samples. In addition, 

our results suggest that this dependence holds its validity also in the spectral ranges other than NIR, 

in particular in the UV.  

 

As regards the improvement of the models observed when the UV range is included in modelling, 
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this finding is in line with our previous results obtained for fine fraction only and a lower number of 

cultivars (Siuda et al. 2006; 2008). Therefore, considering the results presented here, there now 

exists better evidence to suggest that improved results can be obtained from the UV sub-range than 

from the two other sub-ranges considered. However, even though better results can be obtained  

when UV is merged with other spectral ranges, it is worth noting that the NIR range, which is the 

most commonly used range for the analysis of food and grain properties, provided results of 

noticeably poorer quality (unless it was merged with other sub ranges) especially in the case of 

fractions other than fine. Hence, one can state that inclusion of the UV sub-range improves the 

quality of PLS calibration. This observation remains in accordance with the fact that the main 

constituents contributing to the chemical composition of wheat have absorption bands located in the 

UV (for references see Siuda et al. 2008). Also, general properties of the spectra support this 

opinion about the importance of this spectral range. Exemplary spectra (shown for cultivar Tonacja 

only, since the general features of the spectra discussed below are similar for the other cultivars) 

presented in Figure 2a show vertical shifts caused by differences in particle size not only in the NIR 

range but also in the UV range. Plots presented in Figure 2b show that the variance in sets of spectra 

depends considerably on both the sub range of wavelength and on the particle size, nevertheless 

they illustrate the considerable amount of variance present in the UV range. In the NIR range, the 

variance due to the presence of spectral bands is superimposed on a monotonic background that 

contributes more strongly for coarser fractions. In the UV range, a strong contribution to variance 

from a background of perhaps non-monotonic character, can also be seen.  

 

This considerable contribution from the background to the variance present in sets of spectra seems 

to explain why PLS models based on differentiated spectra were found to be better than models 

based on non differentiated spectra (Siuda et al. 2006), since differentiation of the spectra reduces 

the  variance coming from broad shaped features present in the structure of the spectra. Careful 

inspection of the curves which have been presented seems to suggest that after subtraction of the 
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background, variance caused by changes in intensity of absorption bands could appear to be most 

prominent in the UV sub range, especially for fine fractions. Additional insight into the information 

that spectra contain in particular spectral sub ranges can be found from inspecting the values of the 

regression coefficient of PLS model. This coefficient, usually denoted as b, has a greater absolute 

value at wavelengths that contribute more to a calibration model. In Figure 3 are shown plots of 

absolute values of b versus wavelength for the best PLS models based on the whole spectral range 

for all 12 series of blended samples. Although the details of the superimposed plots cannot clearly 

be seen, the figure demonstrates that the largest absolute values of regression coefficients appear in 

the UV sub region. In order to evaluate quantitatively the importance of particular spectral ranges 

for PLS modelling, mean squared values of regression coefficients, defined as  

∑=
=

N

1i
ifractioncultivar,range,

b
N

1
b ,  

where bi is the value of the coefficient at the i-th wavelength, and N is the number of wavelengths in 

the spectral range, were calculated for all cultivars, fractions and the UV, VIS and NIR spectral sub 

ranges. These values were next averaged over cultivars within fractions and ranges, and the results 

relevant for particular spectral sub ranges and fractions are presented in Figure 4. These values 

plotted against the errors of relevant PLS models presented in Figure 1 resulted in the data points 

shown in Figure 5. The data points in Figure 5 demonstrate regularity within a fraction: the larger is 

the mean correlation coefficient, the lower is the error of the model. This regularity also supports 

what has been stated above, i.e. that the UV sub-range can be considered as more informative than 

the other two.   

 

Conclusions 

In conclusion, the results presented suggest that the most promising approach for detecting 

fusariosis in winter wheat grain with diffuse reflectance spectroscopy seems to be that using of fine 

fractions of ground material and performing the measurements in the UV-VIS spectral range. 

However, as the measurements made solely in the UV range provide results of almost the same 
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quality as those in the UV-VIS range, such measurements can be recognised as an even more 

advantageous alternative because they need a narrower spectral range and less data to be processed.  

It is worth noting that the NIR spectral range, the most commonly used range in an evaluation of 

grain quality, when applied to an evaluation of the severity of fusariosis in ground wheat provides 

models of considerably poorer performance, even although the NIR  range provides measurements 

from a number of wavelengths that much exceed the number in the UV. 
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Figure Captions 

 

Figure 1. Averaged over cultivars the RMSECV model errors for all spectral ranges and fractions. 

 

Figure 2. a) Exemplary (for cv. Tonacja) spectra averaged within fractions of particle size, b) 

variance in sets of spectra recorded from series of blended samples of different fractions (for cv. 

Tonacja). 

 

Figure 3. Absolute values of regression coefficients in best PLS models for all cultivars and 

fractions. 

 

Figure 4.  Averaged over cultivars mean values of regression coefficients of PLS models for 

particular fractions and spectral sub ranges. 

 

Figure 5. Plots of averaged over cultivars RMSECV of PLS models (cf. Figure 1) versus mean 

values of regression coefficient (cf. Figure 4) for fractions (diamonds for fine fraction, circles for 

medium and triangles for coarse) and spectral sub ranges (dark symbols for the UV, grey ones for 

VIS and empty for NIR). (Lines are just to guide the eye.) 
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Table 1. Calibration (RMSEC) and cross-validation (RMSECV) errors and number of latent variables of the best PLS models for all cultivars, 

spectral ranges and particle size fractions. Errors values are given as percentage of damaged material in blended samples. 

 

 

 

Fine Medium Coarse 
Cultivar Range 

RMSEC RMSECV LV RMSEC RMSECV LV RMSEC RMSECV LV 

UV 1.77 2.52 4 2.63 4.34 5 3.12 6.42 7 

VIS 3.86 4.30 2 4.37 7.98 4 3.77 8.70 6 

NIR 4.95 8.10 5 5.45 7.44 3 1.09 3.10 6 

UV-VIS 1.45 2.43 5 2.54 4.41 5 1.75 5.07 8 

VIS-NIR 2.44 5.06 6 5.46 7.40 3 1.23 3.39 6 

UV-NIR 1.61 2.70 5 1.60 3.65 6 1.82 4.10 6 

TURNIA 

Whole 1.56 2.76 5 1.37 3.55 6 0.99 3.80 6 

UV 1.92 3.62 6 4.61 6.31 5 8.18 11.3 4 

VIS 3.04 3.98 3 4.52 5.48 3 5.02 6.41 4 

NIR 3.25 7.38 5 3.26 7.55 5 4.43 13.4 5 

UV-VIS 2.00 3.41 5 3.67 4.81 4 5.76 8.25 4 

VIS-NIR 1.87 3.97 5 4.06 6.14 4 5.96 7.11 2 

UV-NIR 1.21 3.72 8 3.52 6.29 6 8.39 12.4 4 

SATYNA 

Whole 2.62 4.04 4 3.11 5.33 5 5.30 8.79 4 
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Table 1 – continued. 

 

UV 1.75 2.23 4 4.98 6.11 3 6.65 8.94 4 

VIS 5.32 6.09 2 5.88 10.6 7 6.84 10.4 5 

NIR 3.47 8.29 5 5.82 10.8 5 5.78 16.2 5 

UV-VIS 1.54 2.22 5 5.03 6.02 3 6.20 8.43 4 

VIS-NIR 2.24 5.56 6 4.94 10.1 6 5.24 10.8 5 

UV-NIR 1.38 2.14 6 2.82 4.62 5 6.01 10.3 5 

TONACJA 

Whole 1.61 2.24 4 3.02 4.74 4 4.95 9.32 5 

UV 1.72 3.11 7 6.30 8.42 4 5.24 8.26 6 

VIS 2.00 3.93 7 3.28 6.42 8 5.91 10.6 6 

NIR 2.64 8.63 6 3.20 8.15 6 5.42 12.6 5 

UV-VIS 1.66 2.97 6 6.21 8.13 4 6.39 8.30 3 

VIS-NIR 2.29 5.55 6 6.54 10.2 4 8.55 12.4 3 

UV-NIR 1.90 3.21 5 6.66 8.98 4 3.16 7.10 6 

TREND 

Whole 1.59 2.90 6 6.50 8.03 3 6.03 8.30 3 
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