Reduction of fumonisin B1 in extruded corn breakfast cereals with salt, malt and sugar in their formulation
Miren Castells, Antonio J. Ramos, Vicent Sanchis, Sonia Marín

To cite this version:
Miren Castells, Antonio J. Ramos, Vicent Sanchis, Sonia Marín. Reduction of fumonisin B1 in extruded corn breakfast cereals with salt, malt and sugar in their formulation. Food Additives and Contaminants, 2009, 26 (04), pp.512-517. 10.1080/02652030802562896. hal-00577340
Reduction of fumonisin B₁ in extruded corn breakfast cereals with salt, malt and sugar in their formulation

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Food Additives and Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>TFAC-2007-412.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Research Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>07-Sep-2008</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Castells, Miren; University of Lleida, Food Technology Ramos, Antonio; University of Lleida, Food Technology Sanchis, Vicent; University of Lleida, Food Technology Marin, Sonia; University of Lleida, Food Technology</td>
</tr>
<tr>
<td>Methods/Techniques:</td>
<td>Chromatography - HPLC</td>
</tr>
<tr>
<td>Additives/Contaminants:</td>
<td>Mycotoxins - fumonisins</td>
</tr>
<tr>
<td>Food Types:</td>
<td>Cereals</td>
</tr>
</tbody>
</table>
Reduction of fumonisin B₁ in extruded corn breakfast cereals with salt, malt and sugar in their formulation

Abstract

The objective of this study was to determine the effect of added sodium chloride, barley malt and sucrose on the stability of fumonisin B₁ (FB₁) present in corn flour. Two levels of both sodium chloride (0.4 and 2%) and barley malt (0.8 and 5%) were added to the unextruded corn flour and six levels of sucrose (from 3 to 10%) were used. Addition of sucrose at the lowest salt content (0.4%) as well as addition of salt, either at 0.4 or 2%, led to a significant decrease of FB₁ levels in extruded samples whereas malt, either at 0.8 or 5%, did not significantly affect FB₁ stability. Decontamination rates depended on the concentrations of added ingredients and ranged from 2 to 92%. The greatest reductions in FB₁ content were achieved with extrusion cooking with high salt content whilst the lowest reductions were the result of processing corn flour with low contents of both salt and sucrose. Salt at 2% was the most effective ingredient in reducing FB₁ content of the final extruded food.

Keywords: barley malt, extrusion cooking, fumonisins B₁, salt, sucrose.

Introduction

Fumonisins are a group of related polar metabolites produced mainly by *F. verticillioides* and *F. proliferatum*, the most ubiquitous seed-borne fungi associated with corn (Weidenbörner 2001). They have been shown to be the causative agents of several toxicoses, such as equine leucoencephalomalacia (ELEM), porcine pulmonary edema (PPE), toxicity to poultry and hepatosis and nephrotoxicity in rodents (Norred & Voss 1994). Epidemiological evidence has also linked fumonisin contaminated corn consumption with the high incidence of human esophageal cancer in Transkei region of South Africa, Lixian country of China and north eastern Italy (Sydenham et al. 1990, 1991, Chu & Li 1994, Doko & Visconti 1994). Current investigations are also aiming to
clarify the effect of fumonisins on the heart. It has been suggested that cardiac effects may occur at relatively low levels of exposure (Pitt & Tomaska 2001). The International Agency for Research on Cancer (IARC) evaluated fumonisins and classified them in Group 2B (possibly carcinogenic to humans) (IARC, 1993).

Fumonisins predominantly contaminate corn and corn based feed and food products. It has been demonstrated that the highest levels of fumonisin B₁ (FB₁), which is the most abundant and toxic contaminant in corn-based foods and feeds among the several structurally related homologues (Lu et al. 2002), are found in those products that undergo only a physical milling or grinding process, such as cornflour, corn polenta, muffin mix, and corn grits. By contrast, low levels have been detected in more highly processed products such as cornflakes, corn tortillas, and popcorn, where thermal (baking, roasting, extrusion cooking) and alkali (nixtamalization) processes are involved (Patel et al. 1997, Solovey et al. 1999, Machinski & Soares, 2000, Velluti et al. 2001).

Extrusion cooking was developed in the 1940s to make puffed snacks and ready-to-eat cereals (RTE) from cereal flours or grits. In the 1960s, the process found numerous new applications and during the 1970s, extension of its applications occurred (increasing numbers of RTE cereals, salty and sweet snacks, croutons for soups and salads, dry pet foods, biscuits, etc.). This technology is known as high temperature short time technology (HTST) which produces a wide variety of final and intermediate foods and feeds. It offers several advantages over traditional processes such as versatility, high quality of resulting products, processing of relatively dry viscous materials, minimum nutrient degradation and significant improvement in digestibility and biological value of proteins (Riaz 2001).

The high shear, pressure and temperature reached inside the screw channel result in mixing and forming the material and lead to several chemical reactions, such as gelatinization of starch, denaturation of proteins, inactivation of many food enzymes and reduction of microbial counts (Gopalakrishna & Jaluria 1992). Due to the evident advantages over the traditional cooking techniques, extrusion cooking is being widely applied in the industrial cereal processing plants. Although its main aim is not that of decontamination of raw material, it has been demonstrated that extrusion cooking can lead to reduction in mycotoxin levels in different cereals (Cheftel 1989, Accerbi et al. 1999, Piñeiro et al. 1999, Castells et al. 2006). As the potential of extrusion cooking in
decontaminating cereal based foods was already demonstrated in earlier studies, the present study tried to assess the effect of industrially used ingredients, salt, barley malt and sucrose, on the stability of FB$_1$ during extrusion cooking of naturally contaminated corn flour.

Material and methods

Corn flour

Naturally contaminated corn flour with a concentration of FB$_1$ of 1.74 ± 0.25 µg g$^{-1}$ (dry weight basis) and a moisture content of ca. 14% was used. The moisture content of the flour was raised from initial 14 to 24% by adding distilled water to the flour. A preliminary curve was constructed to show the relationship between the volume of added water and the resulting moisture content (%). Based on the resulting linear regression, 0.098 mL of water per gram of corn flour was added for a moisture content of 24%. Rehydrated flour was placed into sealed containers and allowed to equilibrate at 5 ºC with periodic hand-shaking during 48 h.

Barley malt was supplied by Moravia S.A. (malting company), Lleida, Spain. Salt (Prolabo, VWR International, Fontenay-sous-Bois, France) and sucrose (Prolabo, VWR International, Fontenay-sous-Bois, France) were thereafter added to rehydrated corn flour. Finally, the flour was thoroughly mixed until a homogenous dough was obtained.

Extrusion cooking

A laboratory-scale single screw extruder (Compact E 19/25 D; Brabender, Duisburg, Germany) with a 19/25D screw, a compression ratio of 3:1 and a 3-mm-diameter cylindrical die was used.

Corn flour wetted to 24% was extruded at 140 ºC at a screw speed of 100 rpm. A temperature of 140 ºC was chosen because in a preliminary study where temperatures of 140, 160 and 180 ºC where set up, it was observed that lowest temperature resulted in a product whose texture resembled industrially processed RTE breakfast cereals at most. A screw speed of 100 rpm resulted in 45 s of the dough inside the barrel, an intermediate level of residence time, as measured by interpolating the screw speed value.
in a curve previously obtained which correlated screw speed values with residence times (data not shown).

A three-factorial design with salt, barley malt and sucrose concentrations as factors affecting the stability of \(\text{FB}_1 \) was carried out. Two levels of both salt (0.4 and 2\%) and malt (0.8 and 5\%) were set up whereas six levels were used for sucrose (3, 4.4, 5.8, 7.2, 8.6 and 10\%). These levels were chosen based on a patent on breakfast cereals processing (Vollink 1962). This design yielded 24 treatments which were carried out in triplicate.

For each replicate, 650 g of corn flour was extruded. The extruder was neither stopped nor cleaned between samples hence a portion of the next sample was used to purge the extruder. For each extruded sample, 150 g was collected, ground and stored at -18 °C until analyzed.

Moisture analysis

The air oven method was used to measure the moisture content of the extruded and unextruded samples; each sample (10 g) was dried in an oven at 105 °C for 17 h. \(\text{FB}_1 \) concentrations were then calculated in a dry weight basis.

Extraction and determination of \(\text{FB}_1 \)

\(\text{FB}_1 \) in corn flour before and after extrusion was determined by high performance liquid chromatography (HPLC). The CEN (European Committee for Standardization) method (2002) was adopted with slight modifications. Briefly, 20 g ground sample was extracted with 40 mL 75+25 methanol:water for 15 min using a magnetic stirrer. A 15-25 mL aliquot of the extract was filtered through a fluted filter paper.

Bond-Elut SAX (strong anion exchange) columns (Varian, Harbor City, CA., USA) were attached to a vacuum manifold and conditioned with 5 mL of methanol followed by 5 mL of 75+25 methanol:water solution. Aliquots of 10 mL of the filtered sample extracts were then loaded into the columns and allowed to flow at a rate of no more than 2 mL min\(^{-1}\). The cartridges were then washed with 8 mL of methanol:water (75+25) followed by 3 mL of methanol. The rinses were discarded and fumonisins were eluted with 10 mL methanolic acetic acid 1% at a flow rate of 1 mL min\(^{-1}\).
The eluate was evaporated to dryness in a rotavapor, redissolved in methanol, transferred to a vial, evaporated to dryness again under a gentle stream of nitrogen at ca. 40 °C and dissolved in 1 mL methanol for HPLC.

50 µL of the extract were derivatized with 450 µL o-phthaldialdehyde reagent (OPA) prepared according to the method. The samples were injected into HPLC within 1 min after derivatization.

The HPLC system was equipped with a 474 fluorescence detector (Waters, Mildford, MA, USA) (λ_ex 335 nm; λ_em 440 nm) and a C_{18} column (Waters Spherisorb 5 µm, ODS2, 4.6x250 mm), all under control of Waters Millenium^{32} software. The analysis was performed under isocratic conditions at a flow rate of 1 mL min^{-1} of the mobile phase (methanol:0.1M sodium phosphate (75+25) adjusted to pH 3.35 with orthophosphoric acid). A standard curve was constructed with FB1 levels ranging from 0.1 to 2 µg mL^{-1}. FB1 was quantified by interpolating peak areas of the sample extracts in the standard curve. The detection limit of the method was 0.04 µg g^{-1}.

The recovery rates obtained by spiking corn flour samples with 0.1, 1 and 10 µg FB1 g^{-1} in triplicate were 119, 108 and 100%, respectively. Regarding repeatability, the RSDr was 21.1, 16.7 and 7.4 for 0.1, 1 and µg FB1 g^{-1}, respectively.

Statistical analysis

In order to determine the effect of added salt, malt and sucrose on FB1 content present in corn flour, final FB1 concentrations resulting from each treatment were transformed to a percentage according to the initial content in unextruded corn flour, which were analyzed by analysis of variance (ANOVA) using SAS program (α = 0.05) version 8.2 (SAS Institute Inc., Cary, NC, USA). Significant mean differences were assessed by Duncan’s test (α = 0.05).

Results and discussion

Salt, malt and sucrose concentrations were foreseen as factors affecting the stability of FB1 due to their common use in industrial extrusion processing plants. These ingredients are basic in ready-to-eat breakfast cereal production at different concentrations.
Extruded samples were significantly affected by the addition of salt and sucrose while malt did not affect them (Table I). The more obvious effect observed was that the higher the salt content, the greater the decontamination achieved in the extruded product (Figure 1).

The mean reduction in FB$_1$ levels when processing with 2% salt was as high as 91% whereas when processing corn flour with 0.4% of salt, the mean reduction was 24% of the initial FB$_1$ content. The biggest differences in decontamination rates between processing with high and low salt levels were observed with corn flour containing 3% sucrose; in this case, the reduction in FB$_1$ which was achieved when processing with 2% salt was almost 10-fold the reduction achieved at 0.4%. The fact that salt addition significantly affected FB$_1$ initial content is consistent with studies carried out by previous authors who also observed a significant effect of different types of salts in decontaminating cereals. Abramson et al. (1995) demonstrated that levels of deoxynivalenol (DON) were significantly reduced when sodium carbonate was added to contaminated barley, which was heated at 80 ºC for different time periods. As observed in the present study, reductions with the highest salt content were greater than those reached with the lowest ones. Trenholm et al. (1992) also demonstrated the effectiveness of sodium carbonate to reduce DON and zearalenone (ZEN) present in both barley and corn. Washing contaminated grain with sodium carbonate increased DON and ZEN removal above that reached with water alone. In the case of extrusion cooking, the effect of the addition of sodium metabisulphite, ammonium hydroxide and ammonium bicarbonate on aflatoxin stability was studied. Greater aflatoxin decontamination rates were found when extrusion cooking of corn and peanut meal containing the above mentioned additives than when processing raw material alone (Cheftel 1989, Hameed 1993, Cazzaniga et al. 2001). By contrast, other additives used during extrusion processing, such as calcium hydroxide, were not found to affect the stability of total aflatoxins present in extruded corn meal (Hameed 1993).

Statistical analysis also demonstrated that sucrose addition had a significant effect on FB$_1$ reduction; its effect, however, depended on the added salt concentration, as
demonstrated by the two-way interaction between salt and sucrose. Even though the main effect of sugar addition proved to be significant, reduction of FB$_1$ was not significantly affected by sucrose addition when corn flour contained 2% salt. By contrast, when processing with 0.4% salt, sucrose significantly affected FB$_1$ stability, as seen in Figure 1. Nevertheless, and even though the observed trend was that greater decontamination rates were reached as sucrose concentration increased, decontamination rates reached in samples containing medium sucrose levels (5.8 to 8.6%) and low salt (0.4%) levels were not significantly different.

This is not the first study reporting on the potential of sugars in decreasing mycotoxin contamination; Murphy et al. (1996) concluded that the stability of FB$_1$ present in a model system was affected by the presence of fructose and glucose due to the non-enzymatic browning reaction of the reducing sugar with the amino group present in its structure. Stability of FB$_1$ was also studied during the extrusion cooking of corn grits containing three types of sugars at levels of 2.5 and 5% (Castelo et al. 2001). Significant reductions were obtained when glucose was added into the corn grits, with FB$_1$ decontamination ranging from 40 to 92%. Contrary to the significant effect of sucrose found in the present study, they demonstrated that neither added sucrose nor fructose significantly affected FB$_1$ levels in extruded corn grits. However, they found that even though the reduction resulting from processing with sucrose was not statistically relevant, a decontamination rate of 19-39% was achieved. As sucrose is a non-reducing sugar, covalent binding to FB$_1$ via the Maillard browning reaction is not possible, as reported earlier (Murphy et al. 1996). The fact that in the present study levels of FB$_1$ were reduced during processing of corn flour mixed with sucrose may be the result of the formation of conjugates between the sugar and FB$_1$ with a modified chemical structure which could not be detected by the HPLC procedure used, as suggested by Park et al. (2004). Seefelder et al. (2003) performed a model system in an attempt to explain the fate of FB$_1$ during thermal food processing, where FB$_1$ was incubated with sucrose at 150 ºC for 40 min. They demonstrated that a covalent binding was formed between sucrose and the mycotoxin. The formation of this conjugate was also studied when spiked corn grits were extrusion cooked at 180 ºC (Seefelder et al. 2001), where reduction in FB$_1$ initial levels ranged from 68 to 77%. The potential of FB$_1$ to bind to food matrix ingredients in heat-processed foods was also reported by Kim et al. (2003).
and Park et al. (2004). They demonstrated that there was 1.3 to 2.6 times more FB$_1$-protein conjugate than native FB$_1$.

Contrary to what was observed for salt and sugar, malt addition was found not to reduce FB$_1$ levels of extruded corn flour. Reductions in FB$_1$ levels (60%) with up to 5% malt, irrespective of salt and sugar concentrations, were not statistically different (53%) from those obtained at 0.8% malt content. Even though it was not statistically relevant, it was observed that when corn flour contained the lowest salt content, higher reductions were reached with 0.8% malt than with 5%. By contrast, at the highest salt content and at 4.4% of sucrose, greater reduction resulted from processing with 5% of malt, as can be seen from Figure 1.

Conclusions

Our results demonstrate that the combination of extrusion cooking and the addition of salt, malt and sucrose as food ingredients is an effective way that can decontaminate corn flour by as much as 92% of FB$_1$. Nevertheless, it is important to emphasize that the measured FB$_1$ concentrations in extruded samples might underestimate the toxicological potential of the final extruded product due to the formation of conjugates resulted from the binding of FB$_1$ to sucrose, with still an unclear toxicological activity. Therefore, more research is needed to identify and chemically characterize fumonisin reaction products resulted from the binding of FB$_1$ to food matrix ingredients such as sugars and proteins.

Acknowledgments

The authors are grateful to the Spanish Government (CICYT, AGL 2002-00555 and Ramón y Cajal Program).

References

1 Dupuy J, Le Bars P, Boundra H, Le Bars J. 1993. Thermostability of Fumonisin B1, a
2 mycotoxin from Fusarium moniliforme, in corn. Applied and Environmental
3 Microbiology 59:2864-2867.

5 extruder. In: Kokini JL, Ho C-T, Karwe MV, editors. Food extrusion science and

7 Hameed HG. 1993. Extrusion and chemical treatments for destruction of aflatoxin in
9 from: University Microfilms, Ann Arbor MI; 48106-1346.

11 evaluation of carcinogenic risks to humans, Toxins derived from Fusarium moniliforme:

16 Characterization of fumonisin B1-glucose reaction kinetics and products. Journal of
17 Agricultural and Food Chemistry 50:4726-4733.

18 Machinski MJr, Soares LMV. 2000. Fumonisins B1 and B2 in Brazilian corn-based

20 Murphy PA, Hendrich S, Hopmans EC, Hauck CC, Lu Z, Buseman G, Munkvold G.
21 1996. Effects of processing on fumonisin content of corn. In: Jackson LS, DeVries JW,

23 Norred WP, Voss KA. 1994. Toxicity and role of fumonisins in animal diseases and

Sydenham EW, Thiel PG, Marasas WFO, Shephard GS, Schalkwyk DJvan, Koch KR. 1990. Natural occurrence of some Fusarium mycotoxins in corn from low and high
For Peer Review Only

Table I. Effects of salt, malt and sucrose addition on FB\textsubscript{1} content in extruded corn flour product.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>DF</th>
<th>MS</th>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt</td>
<td>1</td>
<td>82527</td>
<td>1220.76*</td>
</tr>
<tr>
<td>Malt</td>
<td>1</td>
<td>155</td>
<td>2.30ns</td>
</tr>
<tr>
<td>Sucrose</td>
<td>5</td>
<td>200</td>
<td>2.96*</td>
</tr>
<tr>
<td>Salt*malt</td>
<td>1</td>
<td>978</td>
<td>14.48*</td>
</tr>
<tr>
<td>Salt*sucrose</td>
<td>5</td>
<td>216</td>
<td>3.20*</td>
</tr>
<tr>
<td>Malt*sucrose</td>
<td>5</td>
<td>129</td>
<td>1.92ns</td>
</tr>
<tr>
<td>Saltmaltsucrose</td>
<td>5</td>
<td>115</td>
<td>1.71ns</td>
</tr>
</tbody>
</table>

DF: degrees of freedom; MS: mean square. * significant p<0.05; ns not significant
Figure 1. Percent (%) reduction of FB1 in extruded samples containing different sucrose contents. Each bar (S: salt, M: malt) represents the average of 3 replicate runs. Bars with different letters (within each sucrose level) are significantly different (p < 0.05). Numbers above the bars indicate the mean FB1 reduction level for each treatment.