

A sensitive procedure based on solid-phase microextraction and gas chromatography for determining pentachlorophenol in different foodstuffs

Manuel Hernandez-Cordoba, Natalia Campillo, Rosa Peñalver

▶ To cite this version:

Manuel Hernandez-Cordoba, Natalia Campillo, Rosa Peñalver. A sensitive procedure based on solid-phase microextraction and gas chromatography for determining pentachlorophenol in different food-stuffs. Food Additives and Contaminants, 2007, 24 (07), pp.777-783. 10.1080/02652030701216735. hal-00577286

HAL Id: hal-00577286 https://hal.science/hal-00577286

Submitted on 17 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Food Additives and Contaminants

A sensitive procedure based on solid-phase microextraction and gas chromatography for determining pentachlorophenol in different foodstuffs

Journal:	Food Additives and Contaminants
Manuscript ID:	TFAC-2006-338.R1
Manuscript Type:	Original Research Paper
Date Submitted by the Author:	12-Jan-2007
Complete List of Authors:	Hernandez-Cordoba, Manuel; University of Murcia, Department of Analytical Chemistry Campillo, Natalia; University of Murcia, Department of Analytical Chemistry Peñalver, Rosa; University of Murcia, Department of Analytical Chemistry
Methods/Techniques:	Chromatography - GC, Clean-up - SPME, Headspace
Additives/Contaminants:	Pesticides - organochlorine
Food Types:	Honey

SCHOLARONE[™] Manuscripts

1 2		
3	1	
4 5 6	2	A sensitive procedure based on solid-phase microextraction
7 8	3	and gas chromatography for determining pentachlorophenol in
9 10	4	different foodstuffs
11	5	
12	6	
14 15	7	Natalia Campillo, Rosa Peñalver, Manuel Hernández-Córdoba*
16 17	8	
18 19	9	Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia,
20	10	E-30071 Murcia, Spain
21	11	
23 24	12	
25 26	13	
27 28	14	*Corresponding author:
29	15	Prof. Manuel Hernández-Córdoba
30 31	16	Department of Analytical Chemistry
32 33	17	Faculty of Chemistry
34 35	18	University of Murcia
36 37	19	E-30071 Murcia
38	20	SPAIN
39 40	21	
41 42	22	Tel.: +34 968 367406
43 44	23	FAX: +34 968 364148
45 46	24	e-mail: <u>hcordoba@um.es</u>
47	25	
48 49		
50 51		
52 53		
54 55		
56		
ว <i>า</i> 58		
59 60		

2 Abstract

A new method for the determination of pentachlorophenol (PCP) in different foods was developed using capillary gas chromatography (GC) and microwave induced-plasma atomic emission spectrometry (MIP-AED) for detection. The analyte is first derivatized and then extracted and pre-concentrated by solid-phase microextraction (SPME) in headspace (HS) mode. A clear matrix effect was found for the different samples under study, so that standard addition was required for quantification. Detection limits ranging from 0.03 to 6.0 ng g⁻¹ were obtained, depending on the sample analyzed. The method gave recoveries from spiked samples in the 81-109% range. Concentration levels of PCP ranging from 0.3 to 1.5 ng g⁻¹ were found in honey, but no PCP was detected in other samples.

Keywords: Honey, Gelatine, Pentachlorophenol, Headspace Solid-Phase
Microextraction (HS-SPME), Gas Chromatography – Atomic Emission Detection
(GC-AED).

19 Introduction

Despite restrictions concerning the use of pentachlorophenol (PCP), its widespread use in the past together with its high resistance to biodegradation has led to its detection in the environment. PCP may be present in honey and related foods, having been transported by bees when travelling to collect nectar or even because of the treatment of wooden beehives. On the other hand, the

presence of PCP in sap syrups and gelatines can be attributed to its use in agriculture or to prevent mould and fungal growth in animal hides used for gelatine manufacture.

5 Pentachlorophenol is included in the most relevant priority pollutant lists (Pérez-6 Bendito and Rubio 1999) and has also been classified by the World Health 7 Organisation (WHO) as a possible carcinogenic agent to humans (Guidelines 8 for drinking-water quality 1998). Although the European Union (EU) considered 9 the need to improve the treatment conditions of beehives (Commission 10 Directive 97/1221/EC), no maximum residue limit (MRL) for PCP has been 11 established for honey or for edible gelatine.

Several techniques have been used for PCP analysis, including liquid chromatography (LC) (Han et al. 2005), supercritical fluid chromatography (SFC) (Bernal et al. 1997) and capillary electrophoresis (CE) (Martínez et al. 1996, Zhou et al. 2004); however, gas chromatography (GC) is the most widely used method since it provides the best sensitivity. Mass spectrometry (MS) (Crespin et al. 1999, Diserens 2001) and electron capture detector (ECD) (Insa et al. 2004, Domeño et al. 2005) are the most commonly used detectors for pentachlorophenol determination by GC. On the other hand, atomic emission detection (AED) provides selective information which cannot be obtained with other detectors. Compared to GC-MS the instrumentation used in GC-AED is easy to operate, and its chromatograms can be interpreted by a semi-skilled analyst.

 Solid-phase microextraction (SPME) (Buchholz and Pawliszyn 1994, Bianchi et al. 2002, Llompart et al. 2002, Ribeiro et al. 2002, Li et al. 2004, Martínez-Uruñuela et al. 2004, Bagheri et al. 2005, Domeño et al. 2005) appears as an interesting alternative to conventional liquid-liquid extraction (LLE) (Hoogerbrugge et al. 1999, Diserens 2001) and solid-phase extraction (SPE) (Muiño and Lozano 1991, Rodríguez et al. 1996, Crespín et al. 1999, Lacorte et al. 2000, Oliveira et al. 2002) because extraction can be made rapidly and directly, without organic solvent, and can easily be automated.

In spite of the importance of controlling the PCP content of foods, the number of articles dealing with its determination is relatively low. As far as we know, only three publications deal with honey samples (Muiño et al.1991, Sherma and McGinnis 1995, Campillo et al. 2006) and another three with gelatine samples (Borsetti and Thurston 1984, Yip 1985, AOAC Official Methods of Analysis 1990). The procedures proposed for gelatines are based on tedious sample treatment involving acid-hydrolisis, base partition, cleanup and LLE. Despite the advantages of using the SPME approach with the samples under study in the present work, only one previous report (Campillo et al. 2006) applies this methodology to PCP analysis in honey. This paper is an extension of that analytical procedure. The sensitivity is here enhanced and the optimized procedure applied to other samples for which the literature describes laborious and time-consuming procedures. If comparing the proposed method with relevant articles involving the use of SPME (Ribeiro et al. 2002, Domeño et al. 2005) two advantages are achieved by means of the approach here reported, namely a saving of time as well as an enhancement of the sensitivity.

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

1		
2 3 4	1	
5 6	2	Materials and methods
7 8 9	3	Chemicals
10 11	4	Pentachlorophenol (PCP) was purchased from Aldrich (Steinheim, Germany)
12 13	5	with 99% purity. A stock solution of 1000 μ g ml ⁻¹ was prepared in HPLC grade
14 15 16	6	methanol. Aqueous standard solutions of 100 ng ml ⁻¹ were freshly prepared for
17 18	7	spiking samples in order to optimize the analysis procedure. Acetic anhydride
19 20	8	and anhydrous potassium carbonate were purchased from Fluka (Buchs,
21 22 23	9	Switzerland) and sodium chloride of 99.5% purity from Sigma (St. Louis, MO,
24 25	10	USA).
26 27	11	
28 29 30	12	The plasma gas and carrier gas used for GC was helium. The reagent gas for
31 32	13	the AED was oxygen. Nitrogen was used for purging the AED system. All the
33 34 25	14	gases were supplied by Air Liquide (Madrid, Spain).
36 37	15	
38 39	16	Instrumentation
40 41 42	17	The SPME device for manual sampling consisted of a holder assembly and
43 44	18	several replaceable fibers, obtained from Supelco (Bellefonte, PA, USA).
45 46	19	SPME fibers of six different coating materials were obtained from Supelco:
47 48 49	20	polydimethylsiloxane (PDMS) of 100 µm thickness,
50 51	21	polydimethylsiloxane/divinylbenzene (PDMS/DVB) of 65 µm,
52 53	22	carboxen/polydimethylsiloxane (CAR/PDMS) of 75 $\mu m,$ polyacrylate (PA) of 85
54 55 56	23	$\mu m,$ divinylbenzene/carboxen/polydimethylsiloxane (DBV/CAR/PDMS) of 50/30
57 58	24	μm and carbowax/divinylbenzene (CW/DVB) of 70 $\mu m.$ Prior to use the fibers
59 60	25	were conditioned by heating in the injection port of the chromatographic system

under the conditions recommended by the manufacturer for each fiber coating. Whenever needed, the conditioning step was repeated for fiber cleanup. All analyses were performed in 15 ml clear glass vials and the solutions were stirred using PTFE-coated magnetic stir bars (10 mm x 6 mm o.d.). To prevent analyte evaporation, vials sealed with hole-caps and PTFE/silicone septa were used. A home-made system built in the Central Laboratory Service of the University of Murcia and consisting of a drilled block provided with an electronic temperature control system was used for heating.

An Agilent 6890 gas chromatograph was directly coupled by a transfer line to a G2350A microwave-induced plasma atomic emission detector (Agilent). Updated G2070AA ChemStation application with the G2360AA GC-AED software was used to control and automate many features of the GC and AED systems, and for data acquisition and treatment. The chromatograph was fitted with a 30 m x 0.32 mm i.d. HP-5, 5% diphenyl 95% dimethyl polysiloxane non-polar capillary column from Agilent with a 0.25 µm film thickness. Desorption of the fibers into the injection port was carried out in the splitless mode at 200 °C for 1 min. The oven temperature program simply consisted of rising temperature from 80 $^{\circ}$ C to 180 $^{\circ}$ C at 30 $^{\circ}$ C min⁻¹ and holding for 4 min. Helium was used as the carrier gas and as AED make-up gas, being set at 4 and 40 ml min⁻¹, respectively. Oxygen was used as the only scavenger gas at 20 psi. Solvent venting was switched on immediately after starting the desorption step and switched off 3.5 min later. The transfer line and the cavity temperatures were set at the same value as recommended by the manufacturer, 325 °C. Filter and backamount adjustment in the AED were set according to Agilent default

3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
20 04	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
25	
30	
36	
37	
38	
39	
40	
11	
41	
42	
43	
44	
45	
46	
47	
71 10	
40	
49	
50	
51	
52	
53	
50	
04 55	
55	
56	
57	
58	
50	
60	
OU	

specifications. The spectrometer was purged with a nitrogen gas flow rate of 2.5 I min⁻¹. The element monitorized was chlorine at the 479.45 nm line. Taking into account the time of 15 min adopted for the SPME adsorption step, and since the analyte eluted with a retention time of 6.09 min, the analysis of each sample lasts about 22 min.

6

7 Samples. SPME and in situ derivatization procedure

8 Ten different honey samples labelled as eucalypus (samples 1-3), *ericaceous* 9 (sample 4), rosemary (samples 5-7), orange blossom (samples 8-9) and 10 heather (sample 10) were obtained from a local supermarket. No indication of 11 the country of origin was provided on the label. Two royal jelly samples (fresh 12 and lyophilized), palm honey and a maple syrup samples were obtained from a 13 local dietetic shop. Three powdered mixtures containing approximately 15% 14 (w/w) of gelatine of different flavours (samples 1-3) were obtained from a local 15 supermarket and four pure gelatines (samples 4-7) used for sweets production 16 were provided by a local manufacturer.

17

18 To carry out the extraction, samples of 1.5 g (0.5 g for gelatine samples) were 19 weighed into a 15 ml SPME glass vial and 4 ml of a solution containing 4 and 20 0.75% (w/v) of sodium chloride and potassium carbonate, respectively, were 21 added. Then 160 µl of acetic anhydride were added, the vial was immediately 22 sealed with the cap after introducing the magnetic stir bar and the mixture was 23 homogenized by inserting the vial in the home-made heating block previously 24 programmed at 95 $^{\circ}$ C and maintaining the stirring at maximum power for 1 min. 25 After this simultaneous homogenization and derivatization step, the fiber was exposed for 15 min to the headspace over the aqueous mixture, which was continuously stirred at 1400 rpm and thermostated at 95 °C. Subsequently the <u>PDMS-DVB</u> fiber was retracted into the needle and transferred to the injection port of the GC with the split valve closed at 200 °C for 1 min. Each sampling was performed in triplicate.

7 Recovery assays

Since no reference materials are available for the validation of the method, spiked samples were prepared. Samples were spiked as follows: 0.1 ml of a working methanolic solution, containing pentachlorophenol at concentration levels ranging from 3.5 to 300 ng ml⁻¹, were added to 1.5 g of sample (0.5 g of gelatine) placed in a 15 ml SPME-vial, corresponding roughly to fortification levels of 0.25 and 20 ng g⁻¹, respectively. Fortification levels ranged between 0.5 and 5 ng g^{-1} in the case of the gelatine samples. The spiked samples were set aside for 60 min at room temperature to let the methanol evaporate before being analyzed as described above. The fortification procedure was applied to two different honey samples, to the fresh royal jelly, the palm honey and a gelatine sample at four concentration levels and three replicates corresponding to three aliquots of each sample independently fortified and analyzed, were analyzed in each case.

- - **Results and discussion**

Using the previously optimized derivatization conditions (Campillo et al. 2006),
the program temperature eluted the acetylated pentachlorophenol at 6.09 min
using a carrier gas flow-rate of 4 ml min⁻¹, while the oven temperature was

3	
4	
5	
6	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
30	
30	
31 20	
20	
39	
40 11	
41	
42	
43	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

maintained at 180 °C. Higher flow-rates are not recommended because
problems in the stationary phase appear.

3

4 *Optimization of the SPME stage*

5 All the optimization experiments were carried out in parallel for honey and 6 gelatine, in both cases dissolving 0.5 g of fortified samples in 7 ml of aqueous 7 solution containing the appropriate chemicals for the derivatization step.

8

9 Selection of the extraction mode and the type of fiber.

10 The extraction efficiency of six different fiber coatings was checked using both 11 the headspace and the immersion mode. These experiments were carried out 12 by exposing the fibers to the sample for 15 min at 90 °C, and desorbing the 13 analyte in the GC injection port for 1 min at a temperature 20 °C below that 14 recommended by the manufacturer for each coating. The carboxen/PDMS fiber 15 showed a marked memory effect, which persisted despite applying desorption 16 times as long as 10 min, for which reason its use was discarded. The results obtained for the other five fiber coatings appear in Figure 1, where the influence 17 of this parameter is expressed by reference to the maximum extraction 18 19 efficiency, which was obtained with the PDMS/DVB fiber in the headspace 20 mode. Except for the PDMS coating, the headspace mode provided better 21 extraction efficiencies than the immersion mode. Since the HS extraction mode 22 is also advisable for prolonging the life time of the fiber coatings, this extraction 23 mode was adopted. The extraction efficiency did not exceed 50% for any 24 coating except in the case of the PDMS/DVB fiber.

25

1	[insert Figure 1 about here]
2	
3	Addition of salt.
4	The effect of the ionic strength on the extraction efficiency of the acetylated
5	analyte was studied by changing the sodium chloride concentration between 0
6	and 40% (w/v). In the case of the honey sample, the sensitivity increased up to
7	a concentration of 4% (w/v) and then remained practically constant at
8	concentrations up to 15% (w/v), while higher salt concentrations led to a slight
9	decrease in the signal. Probably owing to the high salt content of the products
10	manufactured with animal tissues, the addition of sodium chloride did not
11	change the sensitivity for PCP in the gelatine matrix. A 4% (w/v) sodium salt
12	concentration was finally selected for all the samples.
13	
14	Extraction temperature.
15	The influence of the sample temperature was examined from 55 to 98 °C. The
16	extraction efficiency was significantly enhanced by increasing the temperature
17	up to 95 °C. While at 98 °C losses of the acetylated PCP were observed, owing
18	to a decomposition process of the analyte, providing a chromatographic peak
19	with a retention time of 5.2 min. Thus, 95 °C was selected as the optimum
20	temperature.
21	
22	Extraction time.
23	The extraction time was studied in the 5-60 min range with 95 $^{\circ}\mathrm{C}$ as the
24	sample-vial temperature, equilibrium being reached in 15 min. Of note is the
25	fact that the signal decreased at 60 min, probably as a consequence of the

Food Additives and Contaminants

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

decomposition of the analyte. An adsorption time of 15 min was adopted, for the
maximum sensitivity. Desorption parameters of 200 °C and 1 min were used, as
has been previously recommended (Campillo et al. 2006).

4

5

Agitation speed.

The stirring speed was varied between 0 to 2000 rpm, although sensitivity practically did not vary between 1000 and 2000 rpm. Therefore, 1400 rpm was adopted because it provided the best repeatability. Moreover, the peak areas obtained in the selected stirring conditions and without stirring indicated that stirring resulted in a 1.5 fold increase in the extraction efficiency of the acetylated pentachlorophenol.

12

13 Extraction solution volume and sample mass.

Extraction volumes of 4, 5, 6 and 7 ml were assayed, resulting that the lower the extraction solution volume the higher the extraction efficiency. A solution volume of 4 ml was finally selected, the headspace volume being 11 ml. Volumes below 4 ml are not recommended because of poor homogenization of the samples.

19

The influence of the sample mass was checked by pre-concentrating 4 ml of a 5 ng ml⁻¹ PCP solution in the presence of different masses of honey or gelatine in the 0.1-2 g range. The results obtained showed a clear matrix effect in both cases. Sample masses of 0.5 g were found to be suitable for gelatine samples and 1.5 g for honey and the rest of the samples considered. When higher amounts were assayed, the repeatability of the extraction step worsened.

2 Analytical characteristics of the method

The matrix effect was studied by comparing the slopes of aqueous standards and standard additions calibration graphs for two honey samples of different visual aspect and floral origin, two gelatines and the other four samples under study. Different values for the calibration slopes were obtained when standard addition calibration graphs were constructed, the values depending on the sample used. The slopes obtained for the different samples under the optimized conditions appear in Figure 2. In the case of the lyophilized royal jelly, 0.1 g of sample was submitted to analysis, which corresponds roughly to 1.5 g of the fresh royal jelly. In fact, if the total content of the lyophilized sample capsule was submitted to the whole procedure, the matrix effect was so high that the signal did not increase even after adding 100 ng PCP per gram of sample. In all cases, six spiking levels were preconcentrated and measured, peak areas being used for calibration purposes in all cases. The results clearly showed that the standard additions method is required for quantification. Correlation coefficients (r²) higher than 0.9989 were obtained in all cases for the standard additions graphs. Taking into account that the procedure involves derivatization of the analyte and SPME preconcentration, this good correlation is of note.

The detection limit for PCP using a signal-to-noise ratio of three and considering the slope of the calibration graph obtained for 1.5 g of honey sample 4 was calculated to be 0.075 ng g^{-1} . The quantification limit for the same honey

[insert Figure 2 about here]

Food Additives and Contaminants

sample using a signal-to-noise ratio of ten was calculated to be 0.25 ng g^{-1} . These values should be considered as orientative as they are dependent on the sample analyzed. Thus, the detection limits obtained for palm honey and lyophylized royal jelly (which correspond to the samples with the lowest and the highest matrix effect, respectively) were 0.03 and 6.0 ng g⁻¹, respectively. The repeatability was calculated using the relative standard deviation for ten successive injections of the honey sample 4 fortified at two concentration levels, the obtained values being 9.8 and 11.8% for 3.5 and 10 ng g⁻¹, respectively.

10 Real samples and validation of the method

The optimized procedure was applied to ten different honey samples, to four different related food samples, as well as to seven gelatine samples. Table I shows the results obtained. All the honeys and one of the gelatine samples analyzed provided signals for PCP which corresponded to very low concentration levels in the 0.3-1.5 ng g⁻¹ range. PCP was not detected in the other samples analyzed. Note that a 25 g-daily intake of the samples appearing in Table II is far from what considered as dangerous for human health. It should be noted that, taking into consideration the maximum admissible concentration in drinking water of 1.0 ng ml⁻¹ established by the US EPA (http://www.epa.gov), a daily intake of 1.4 kg of honey sample 2, would provide the same dose of PCP contained in 2 I of a drinking water containing the maximum residue limit permitted (1.0 ng ml⁻¹). Obviously, such a honey intake is not viable, so that the low PCP value found does not represent a risk for the consumer.

[insert Table I about here]

2	
2 3 4	1
5 6	2
7 8 9	3
10 11	4
12 13	5
14 15 16	6
17 18	7
19 20	8
21 22 23	9
24 25	10
26 27	11
20 29 30	12
31 32	13
33 34 35	14
36 37	15
38 39	16
40 41 42	17
43 44	18
45 46 47	19
47 48 49	20
50 51	21
52 53 54	22
55 56	23
57 58	24
59 60	

1	
2	As no reference materials were available, recovery studies were carried out in
3	order to check the accuracy of the proposed method, fortifying honey samples 2
4	and 6, gelatine sample 6, as well as the fresh royal jelly and the palm honey at
5	four concentration levels with PCP as described above. The data of PCP found
6	for honey samples 2 and 6 have been calculated by subtracting the
7	corresponding analyte contents. The data obtained appear in Table II, providing
8	recovery values ranging from 81 to 109%, with an average recovery ± SD
9	(n=60) of 96.4 ± 8.2.
10	[insert Table II about here]
11	
12	
13	Conclusion
14	The SPME-GC-AED combination provides a rapid and sensitive procedure that
15	can be useful in the routine control of PCP residues in honey as well as in
16	several other foodstuffs. The high pre-concentration power of solid phase
17	microextraction under the selected conditions and the excellent sensitivity of the
18	atomic emission detector provide nearly specific chromatograms, and detection
19	limits for the samples analyzed never before attained, applying low extraction
20	times and disposable commercial fibers. Nevertheless, the complexity of the
21	matrix of the samples under study makes it necessary to quantify the analyte by
22	means of the standard additions method.

Acknowledgements

1		
2 3 4	1	The authors are grateful to the Spanish Ministerio de Educacion y Ciencia, MEC
5 6	2	(Project CTQ2006-08037/BQU) for financial support. R. Peñalver acknowledges
7 8	3	a fellowship from MEC.
9 10 11	4	
12 13		
14 15		
16 17		
18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49 50		
50 51		
5∠ 53 54		
54 55 56		
50 57 58		
59 60		
00		

LEGENDS FOR THE FIGURES

Figure 1. Influence of the type of fiber coating and the extraction mode on the extraction efficiency of pentachlorophenol for 0.5 g of honey fortified at the concentration level of 20 ng g⁻¹, dissolved in 7 ml water and acetyled under the adopted conditions.

8 Figure 2. Slopes obtained when using aqueous calibration and standard
9 addition method to different samples applying the finally selected conditions.
10 Vertical bars indicate standard deviations from n=3.

References

- Association of Official Analytical Chemists 1990. Pentachlorophenol in gelatine,
 gas chromatographic method. Official Mehtods of Analysis, 15th Ed. p.
 308. Kenneth Helrich, ed. Virginia: USA.
- Bagheri H, Mir A, Babanezhad E. 2005. An electropolymerized aniline-base
 fiber coating for solid phase microextraction of phenols from water.
 Analytica Chimica Acta 532:89-95.
- Bernal JL, Nozal MJ, Toribio L, Serna ML, Borrull F, Marce RM, Pocurull E.
 1997. Determination of phenolic compounds in water samples by online
 solid-phase extraction-supercritical-fluid chromatography with diode-array
 detection. Chromatographia 46:295-300.
- Bianchi F, Careri M, Mucchino C, Musci M. 2002. Improved determination of
 chlorophenols in water by solid-phase microextraction followed by

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 //1	
42	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 57	
55	
56	
57	
58	
59	
60	

benzoylation and gas chromatography with electron capture detection.
 Chromatographia :595-600.

Borsetti AP, Thurston LS. 1984. Gas chromatographic determination of
 pentachlorophenol in gelatin. Journal of Association of Official Analytical
 Chemistry 67:275-277.

Buchholz KD, Pawliszyn J. 1994. Optimization of solid-phase microextraction
 conditions for determination of phenols. Analytical Chemistry 66:160-167.

Campillo N, Peñalver R, Hernández-Córdoba M. 2006. Evaluation of solidphase microextraction conditions for the determination of chlorophenols
in honey samples using gas chromatography. Journal of
Chromatography A 1125:31-37.

Crespín MA, Cárdenas S, Gallego M, Valcárcel M. 1999. Discrimination of
 structural isomers of chlorinated phenols in waters using gas
 chromatography-mass spectrometry in the negative chemical ionization
 mode. Journal of Chromatography A 830:165-174.

Commission Directive 97/1221/CE of 25 June 1997. Official Journal of the
 European Communities. European Community, Brussels.

Diserens JM. 2001. Rapid determination of nineteen chlorophenols in wood,
 paper, cardboard, fruits, and fruit juices by gas chromatography/mass
 spectrometry. Journal of AOAC International 84:853-860.

Domeño C, Munizza G, Nerín C. 2005. Development of a solid-phase
 microextraction method for direct determination of pentachlorophenol in
 paper and board samples: comparison with conventional extraction.
 Journal of Chromatography A 1095:8-15.

Guidelines for drinking-water quality, 2nd ed. Vol.2 Health criteria and other
 supporting information 1996, 940 and Addendum to vol. 2 1998, 281;
 Geneva, World Health Organization.

 Han DM, Fang GZ, Yan XP. 2005. Preparation and evaluation of a molecularly
imprinted sol-gel material for on-line solid-phase extraction coupled with
high performance liquid chromatography for the determination of trace
pentachlorophenol in water samples. Journal of Chromatography A
1100:131-136.

9 Hoogerbrugge RH, Gort SM, van der Velde Piet van Zoonen. 1999. Multi- and 10 univariate interpretation of the interlaboratory validation of PrEN 12673; 11 GC determination of chlorophenols in water. Analytica Chimica Acta 12 388:119-135.

Insa S, Salvadó V, Anticó E. 2004. Development of solid-phase extraction and
 solid-phase microextraction methods for the determination of
 chlorophenols in cork macerate and wine samples. Journal of
 Chromatography A 1047:15-20.

Lacorte S, Guiffard I, Fraisse D, Barceló D. 2000. Broad spectrum analysis of
109 prioriy compounds listed in the 76/464/CEE council directive using
solid-phase extraction and GC/EI/MS. Analytical Chemistry 72:14301440.

Li X, Zeng Z, Zhou J. 2004. High termal-stable sol-gel-coated calyx[4]arene fiber for solid-phase microextraction of chlorophenols. Analytica Chimica Acta 509:27-37.

Llompart M, Lourido M, Landín P, García-Jares C, Cela R. 2002. Optimization
 of a derivatization-solid-phase microextraction method for the analysis of

<u> </u>		
- 3 4	1	thirty phenolic pollutants in water samples. Journal of Chromatography A
5 6	2	963:137-148.
7 8 9	3	Martínez D, Pocurull E, Marce RM, Borrull F, Calull M. 1996. Comparative study
10 11	4	of the use of high-performance liquid chromatography and capillary
12 13	5	electrophoresis of phenolic compounds in water. Chromatographia
14 15 16	6	<u>43:619-624.</u>
17 18	7	Martínez-Uruñuela A, González-Sáiz JM, Pizarro C. 2004. Optimisation of the
19 20 21	8	derivatization reaction and subsequent headspace solid-phase
22 23	9	microextraction method for the direct determination of chlorophenols in
24 25	10	red wine. Journal of Chromatography A 1048:141-151.
26 27 28	11	Muiño MAF, Lozano JS. 1991. Mass spectrometric determination of
29 30	12	pentachlorophenol in honey. Analytica Chimica Acta 247:121-123.
31 32	13	Oliveira EC, Ruaro Peralba M, Bastos Caramão E. 2002. Solid phase extraction
33 34 35	14	applied to chlorinated phenolics present in the effluent from a pulp mill.
36 37	15	Journal of Separation Science 25:356-360.
38 39 40	16	Pérez-Bendito D, Rubio S. 1999. Environmental Analytical Chemistry. In: Weber
40 41 42	17	SG. Comprehensive Analytical Chemistry. Vol. XXXII. Amsterdam:
43 44	18	Elsevier. p 568.
45 46 47	19	Ribeiro A, Neves MH, Almeida MF, Alves A, Santos L. 2002. Direct
48 49	20	determination of chlorophenols in landfill leachates by solid-phase micro-
50 51	21	extraction-gas chromatography-mass spectrometry. Journal of
52 53 54	22	Chromatography A 975:267-274.
55 56	23	Rodríguez I, Turnes MI, Mejuto MC, Cela R. 1996. Determination of
57 58 59 60	24	chlorophenols at the sub-ppb level in tap water using derivatization, solid-

3 ⊿	
4	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 22	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/ 50	
50 50	
60	

phase microextraction and gas chromatography with plasma atomic
 emission detection. Journal of Chromatography A 721:297-304.

Sherma J, McGinnis SC. 1995. Determination of pentachlorophenol and
 cymiazole in water and honey by C-18 solid-phase extraction and
 quantitative HPTLC. Journal of Liquid Chromatography 18:755-761.

- 6 US Environmental Protection Agency [internet]. Available from:
 7 <u>http://www.epa.gov/safewater/mcl.htm</u>. Accessed 2006 November 6.
- 8 Yip G. 1985. Gas chromatographic determination of pentachlorophenol in
 9 gelatin: collaborative study. Journal of Association of Official Analytical
 10 Chemistry 68:419-421.
- Zhou QX, Liu JF, Jiang GB, Liu GG, Cai YQ. 2004. Sensitivity enhancement of
 chlorinated phenols by continuous flow liquid membrane extraction
 followed by capillary electrophoresis. Journal of Separation Science
 27:576-58

1
2
3
4
5
5
6
7
8
q
10
10
11
12
13
14
15
15
16
17
18
19
20
20
21
22
23
24
2-7 0E
25
26
27
28
20
29
30
31
32
33
55
34
35
36
37
20
30
39
40
41
42
40
43
44
45
46
<u>4</u> 7
10
4ð
49
50
51
52
52
53
54
55
56
57
57
58
59
60

209x251mm (150 x 150 DPI)

Table I

Results of pentachlorophenol for the honey samples analyzed using the proposed SPME/GC-AED method

Sample	Content*, ng g ⁻¹					
Honey 1 (eucalyptus)	1.34 ± 0.27					
Honey 2 (eucalyptus)	1.46 ± 0.21					
Honey 3 (eucalyptus)	0.83 ± 0.20					
Honey 4 (<i>ericaceous</i>)	0.61 ± 0.12					
Honey 5 (rosemary)	0.51 ± 0.10					
Honey 6 (rosemary)	0.89 ± 0.11					
Honey 7 (rosemary)	0.92 ± 0.12					
Honey 8 (orange blossom)	0.61 ± 0.20					
Honey 9 (orange blossom)	0.32 ± 0.05					
Honey 10 (heather)	1.1 ± 0.11					
Gelatine 1 (orange flavour)	0.30 ± 0.09					
* Mean value ± standard deviation (n=3).						

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table II

Determination results of the recovery study in several samples for the optimized procedure

Honey 2		Honey 6		Fresh royal jelly		Palm honey		Gelatine 6	
Added*	Found * ^{,†}	Added*	Found* ^{,†}	Added*	Found ^{*,†}	Added*	Found ^{*,†}	Added*	Found ^{*,†}
0.98	0.80 ± 0.35	0.62	0.56 ± 0.13	2.02	1.74 ±0.91	0.25	0.23 ± 0.09	0.50	0.42 ± 0.10
1.5	1.61 ± 0.22	1.04	0.96 ± 0.19	5.10	4.87 ± 0.35	1.04	0.91 ± 0.21	2.20	1.60 ± 0.11
5.02	5.22 ± 0.15	2.37	2.25 ± 0.15	10.25	11.09 ± 0.22	2.51	2.63 ± 0.14	2.98	2.09 ± 0.20
10.4	10.7 ± 0.30	5.02	4.85 ± 0.13	18.39	19.41 ± 0.24	5.09	4.74 ± 0.29	4.98	4.89 ± 0.24

10/1

Only

* Concentration in ng g⁻¹.

[†] Mean value \pm standard deviation (n=3).