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ABSTRACT

In some applications as in biomedical analysis, we encounter
the problem of estimating the common poles (angular-
frequency and damping-factor) in a multi-channel set-up
composed as the sum of Exponentially Damped Sinusoids. In
this contribution, we propose a new subspace algorithm be-
longing to the family of the Orthogonal Vector Methods which
solves the considered estimation problem. In particular, we
expose a root-MUSIC algorithm which deals with damped
components for an algorithmic cost comparable to the root-
MUSIC for constant modulus components. Finally, we show
by means of an example, that the proposed method is efficient,
especially for low SNRs.

1. INTRODUCTION

Common poles estimation in a multi-channel Exponentially
Damped Sinusoids (EDS) signal is an open problem since this
problematic has been treated rarely. We can find some work
for the two channels case [6, 7, 8] but, to our best knowl-
edge, only a single method has been proposed so far for the
case of more than two channels. This method, named MUS-
CLE [1] for MUlti-channel Subspace-based Common poLe
Estimation, has been applied to the biomedical signal analy-
sis and is based on shift-invariance of the signal subspace and
Total-Least-Squares [6] technique.
In this paper, we propose a new solution to the common poles
estimation problem which is based on the orthogonality of the
signal and noise subspaces. Thus, the proposed method be-
longs to the family of the Orthogonal Vector Methods [4]. In
addition, we propose an improved version of the DMUSIC al-
gorithm [3] which is the MUSIC algorithm for damped sinu-
soids. This algorithm has been introduced in the context of the
biomedical analysis processing and is based on a costly mul-
tidimensional search. In this paper, we propose a ”root” ver-
sion of the DMUSIC algorithm, called root-DMUSIC. More
specifically, we avoid the costly multidimensional search by
zeroing a polynomial form and by inspecting the orthogonal-
ity condition for preselected zeros. This is an efficient way to
decrease the complexity burden of the method without addi-

tional assumptions on the damping-factor values. Finally, the
overall complexity cost of the proposed method is compara-
ble to the root-MUSIC [2] for constant modulus components.
Consequently, this new algorithm allows the comparison with
shift-invariant techniques as the MUSCLE algorithm. More-
over, we show on noisy multi-channel EDS signal example
that in some situations, it is preferable, in terms of estima-
tion accuracy and even w.r.t the computational cost, to use the
root-DMUSIC algorithm instead of the MUSCLE algorithm.

2. COMMON POLE ESTIMATION FOR THE
MULTI-CHANNEL EDS MODEL

The multi-channel EDS model is given for k = 1, · · · ,K and
t = 0, · · · , N/2− 1 by:

xk(t) = Zcak(t) + Zkbk(t) ∈ CN/2, (1)

where K is the number of channels, N is the sample size,

ak(t) = [αk(1)zt
1,c, · · · , αk(Mc)zt

Mc,c]
T

bk(t) = [βk(1)zt
1,k, · · · , βk(Mk)zt

Mk,k]T

and αk = [αk(1), · · · , αk(Mc)]T , βk =
[βk(1), · · · , βk(Mk)]T are two vectors of complex am-
plitude,

Zc =




1 1 . . . 1
...

...
...

z
N/2−1
1,c z

N/2−1
2,c . . . z

N/2−1
Mc,c




N/2×Mc

(2)

contains the common poles zm,c = edm,c+iωm,c and:

Zk =




1 1 . . . 1
...

...
...

z
N/2−1
1,k z

N/2−1
2,k . . . z

N/2−1
Mk,k




N/2×Mk

(3)

is associated to the non-common poles zm,k = edm,k+iωm,k

of the k-th channel. The processing window is chosen equal

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



to N/2 as its optimal value belongs to the range [N/3, 2N/3]
as shown in [4, 5]. The common pole estimation problem can
be algebraically described according to:

K⋂

k=1

R ([
Zc Zk

])
= R (Zc) . (4)

whereR(A) denotes the column range space of matrix A. So,
we look for the intersection of K spaces.

3. MUSIC-LIKE CRITERION

3.1. First criterion

The N/2×N/2 Hankel matrix associated to the k-th channel
admits a Vandermonde-type decomposition according to:

Xk = [xk(0), · · · , xk(N/2− 1)]

=
[
Zc Zk

] [
Ak 0
0 Bk

] [
ZH

c

ZH
k

]
(5)

where Ak = diag(αk) and Bk = diag(βk). Now, consider
K projectors on the noise subspace of X1, · · · , XK , denoted,
respectively by {P⊥1 , . . . , P⊥K}, i.e. P⊥i = I − Pi where Pi

is the orthogonal projector on R([Zc Zi]). We can give the
following result:

Theorem 1 The MUSIC-like criterion defined by:

f(z) = d(z)H

(
K∑

k=1

P⊥k

)
d(z) (6)

where d(z) = [1, z, · · · , zN/2−1]T is zero (minimum) if and
only if z ∈ {z1,c, · · · , zMc,c}, i.e. iff z is a common pole.

Proof: First note that:

d(z)HP⊥k d(z) = 0 ⇐⇒ d(z) ∈ R([Zc Zk]),

and
d(z)HP⊥k d(z) > 0 otherwise.

Hence

d(z)H

(
K∑

k=1

P⊥k

)
d(z) = 0

is equivalent to

d(z) ∈
K⋂

k=1

R ([
Zc Zk

])
= R (Zc) .

3.2. Another criterion

Now assume that we know that several poles are common in
several channels (but not in all channels), in that case we can
exploit this knowledge to reduce the complexity burden of the
proposed method. The new algebraic problem is given by:

T⋂

i=1

{ ⋃

k∈Qi

R ([Zc Zk])

}
= R(Zc). (7)

where T is the number of partition of set {1, . . . , K}.
The expression below means that we associate channels for
which we know that there is common poles with constraint⋃T

i=1Qi = {1, . . . ,K} and Qi 6= ∅. In that case, we can
consider the following modified criterion:

g(z) = d(z)H

(
T∑

i=1

Π⊥i

)
d(z). (8)

where Π⊥i is the orthogonal projector on the noise subspace
of matrix:

[Xk1 , · · · , Xki ], with Qi = {k1, · · · , ki}. (9)

or equivalently matrix
∑

k∈Qi

XkXH
k , for i ∈ [1 : T ]. (10)

So, we have to estimate T projectors Π⊥i in comparison
with K projectors P⊥k in the general case, ie., without ad-
ditional knowledge. As T ≤ K, we reduce the algorithmic
burden.

For instance, we can give the following example. Consider
three channels according to:

channel 1 z1 z2 z3

channel 2 z1 z2 z4 z5

channel 3 z1 z2 z5 z6

The common pole set is {z1, z2} and if we assume that we
know that z5 belongs to channel 2 and 3. So, we associate
channels 2 and 3 according to Q1 = {1} and Q2 = {2, 3}.
As, we have two partitions (T = 2), we need only two pro-
jectors Π⊥2 associated to [X2 X3] and Π⊥1 associated to X1.
This approach reduces the algorithmic burden since we have
to consider only two SVDs in comparison to three in the gen-
eral case.

Another situation of interest is when the common poles
for any pair of channels are only those desired poles
{z1,c, · · · , zMc,c}. In that case, one can partition the set of
channels according to Q1 = {1} and Q2 = {2, · · · ,K}
which leads again to 2 SVD computations instead of K.
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3.3. Estimation of the projectors

The estimation of the noise projectors P⊥k is classically ob-
tained by the SVD [6] according to:

Xk = [ U
(S)
k︸︷︷︸

Mc+Mk

U
(N)
k︸ ︷︷ ︸

N/2−Mc−Mk

]ΣkV H
k (11)

where U
(S)
k (respectively U

(N)
k ) is the signal (respectively

noise) part of the left singular basis. Then, the noise projector

is P̂⊥k = U
(N)
k U

(N)
k

H
= I − U

(S)
k U

(S)
k

H
. Note, that we use

the same procedure for projector Π̂⊥k but we replace a single
Hankel matrix by a sum of Hankel matrices.

4. ROOT-MUSIC ALGORITHM FOR DAMPED
SINUSOIDS

The search procedure associated to the MUSIC criterion for
damped sinusoids is multidimensional and therefore is a very
costly operation. A MUSIC algorithm, called DMUSIC, has
been presented in [3] for damped sinusoids. So in this sec-
tion, we expose the ”root” version of the DMUSIC algorithm
which essentially consists of zeroing a polynomial form and
next by inspecting the orthogonality condition for the pres-
elected zeros. Thus, the overall complexity cost of the al-
gorithm is comparable to the complexity cost of the root-
MUSIC algorithm for undamped components.

The criterion of the root-MUSIC is given by f(z) defined
in expression (6) where we replace d(z)H by d(z−1). All z,
which are in the generator set of matrix Zc, are zeros of the
polynomial form f(z). Due to the Vandermonde structure of
vectors d (.), the estimation of the poles can be formulated in
term of finding the zeros of the following polynomial:

f(z) = z
N
2 −1

N
2 −1∑

`=−N
2 +1

q`z
` with q` = q∗−`. (12)

The above polynomial is of degree N − 2 and its explicit
computation is given by summing along the diagonals of ma-
trix

∑
k P̂⊥k . As a consequence of the Hermitian charac-

ter of
∑

k P̂⊥k , f(z) is a conjugate centro-symmetry polyno-
mial. In addition, q0 is real and equals to Tr(

∑
k P̂⊥k ) =

2N − (KMc +
∑

k Mk). According to formulation (12), we
can simply verify that:

f(z) = zN−2f∗
(

1
z∗

)
. (13)

This property implies that if zm is a zeros then 1/z∗m is also
a zero and therefore (zm, 1/z∗m) occur in pairs. Note that for
the Mc desired poles, we have not constraint |zm| = 1, ie., the
zeros are inside, outside or on the unit circle. The factorized

form of f(z) is then:

f(z) =
N−2∏
m=1

(z − zm)
(

z − 1
zm

∗

)
. (14)

At this stage, we assume that all the zeros {z1, . . . , zN−2}
of f(z) are possible poles. To further reduce the number of
zeros to Mc, we evaluate the orthogonality condition:

arg max
m∈[1:N−2]

1

d(zm)H
(∑T

i=1 Π̂⊥i
)

d(zm)
. (15)

for the preselected zeros. The Mc pics in the above criterion
provide the common poles.

Note also, that in most practical situation, the damping fac-
tor is non-positive and hence the desired poles are inside the
unit circle. This means that one can limit the above selection
only to halh of the zeros (only those inside the unit circle).

5. NUMERICAL SIMULATIONS

In this section, we compare the proposed method, called root-
DMUSIC, with the one presented in [1] by means of 300
Monte-Carlo runs. The latter, named MUSCLE, is based on
shift-invariance of the signal subspace. The considered test
signal is a 4 channels with two EDS in each where one is
common. In Fig. 1, we have drawn the zero locations of
the different sinusoidal component. We can see that only the
common pole is estimated.
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Fig. 1. Zero locations

As a brief comparison, we have reported on Fig.2 and 3, the
Mean Square Error (MSE) of the common angular-frequency
and the damping-factorestimates with respect to the SNR for
two situations: (1) four channels with spaced EDS and (2)
two channels with closely-spaced EDS.

5.1. Four channels case

As we can see on Fig.2, the proposed method shows an
interesting gain (compared to MUSCLE) for the angular-
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frequency and has a similar accuracy for the damping-factor
estimation.
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Fig. 2. MSE Vs. SNR, N = 20 (a) angular-frequency ωc =
0.6, ω1,1 = 1.2, ω1,2 = 1.5 and ω1,3 = 0.9, (b) damping-
factor dc = −0.1, d1,1 = −0.1, d1,2 = −0.3 and d1,3 =
−0.25.

5.2. Two channels case with closely-spaced sinusoids

In this part, we deal with closely-spaced sinusoids. This situ-
ation is difficult since the components of each channel can po-
tentially disturb the estimation of the component of interest.
On Fig.3, we can see that in this scenario the root-DMUSIC
can sligntly improve the estimation accuracy of the desired
parameters.

6. CONCLUSION

In this paper, we have proposed a new orthogonal vector
method for the common pole estimation of a multi-channel
Exponentially Damped Sinusoidal (EDS) model. Our method
is an evolution of the DMUSIC algorithm which is the MU-
SIC algorithm for damped sinusoids. In our solution, we
avoid the costly multidimensional search by zeroing a polyno-
mial form and by inspecting the orthogonality condition only
for the preselected zeros. This is an efficient way to decrease
the complexity burden of the method which allows possible
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Fig. 3. MSE Vs. SNR, MSE Vs. SNR, N = 20 (a) angular-
frequency ω1,c = 0.6, ω1,1 = 0.5 and ω1,2 = 0.55 (b)
damping-factor d1,c = −0.2, d1,1 = −0.01 and d1,1 = −0.2
.

comparison with shift-invariant techniques as the MUSCLE
algorithm.
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