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A GLRT-BASED FRAMEWORK FOR THE MULTIDIMENSIONAL STATISTICAL
RESOLUTION LIMIT

Mohammed Nabil El Korso,&ny Boyer, Alexandre Renaux and Sylvie Marcos

Laboratoire des Signaux et Sgates (L2S)
Universié Paris-Sud XI, CNRS, SUPELEC
Gif-Sur-Yvette, France

ABSTRACT prove that the MSRL criterion [1] is asymptotically equivalent to a

L . . _ . Uniformly Most Powerful (UMP) test among all invariant statistical
Recently, a criterion for Multidimensional Statistical Resolution y ( ) 9

o . L . . tests (which is, in the asymptotic case, considered as the strongest
Llrtr_ut (L\ASRL)levaﬂxat'Oln’ V\llh'Ch IS gefl_nedlasdthe rgl_nlmal SEPA- gratement of optimality that one could expect to obtain [8]). Note
ration fo resolve two Closely spaced signals depending on SeVergya e the aforementioned equivalence is derived in the context

parameters, was empirically proposed in [1] but without a statistic f 1-norm distance, the same conclusion can be extended for the
analysis. In this paper, we fill this lack by demonstrating that thisMSRL based on otk;elf-norm distancesk(> 2 with k integer). Fi-

?ASRL crlterlarlz/lg, ajy_rpptoflczla\ll:y eqFl)uvaIePtl (upon to a tranl_?lgatorna”y’ we illustrate our result in the case of a 3-D harmonic retrieval
actor) to a (Uniformly Most Powerful) test among all in- 4ot \vireless channel sounding.

variant statistical tests. This result is an extension of a previous

work on mono-dimensional SRILL¢.,when the signals only depend

on one parameter). As an illustrative example, the 3-D harmonic 2. PROBLEM SETUP AND BACKGROUND

retrieval case for wireless channel sounding is treated to show the

good agreement of the proposed result. Let {Q, 7.y, ¥, A, Pe, & C R*FT?} be the statistical experiment
generated by a random vectgrtaking values on the measurable

INDEX TERMS® space{), A} . An observatiory (w) is the realization of the random

vectory wherew takes its value on the measurable spgQeF} .

Multidimensional statistical resolution limit, CrémRao bound, ~The distribution ofy is assumed to belong to a family of probability
uniformly most powerful test, performance analysis. measure$’ on) and parameterized by the vecIC R*"+<. It

is also assumed th& is absolutely continuous w.r.t.cafinite pos-

itive measurq: on ), such that the Radon-Nikodym derivatives(,

the likelihood function) (y|¢) £ dPe (y) /du (y) , V€ C R2F+Q
§Xists. More precisely, the observation model is assumed to be struc-

1. INTRODUCTION

Characterizing the ability of resolving closely spaced signals is a
important step to quantify performance in array signal processingt"ed as follows
The concept of Statistical Resolution Limit (SRLE., the minimum y=rF(&)+ (&) +n @)
distance between two closely spaced signals that allows a correghere, from a signal processing point of vigwe RY andn € RY
resolvability, is rising in several applications (especially in paramedenote the noisy received datnd the additive noise with a known
ter estimation problems such as radar, sonar, spectral estimation [Zrobability density function (pdf). The noiseless received data are
etc.) assumed to be the sum of two signélg,,), m = 1,2 each one

It is important to note that, in several estimation problems, thenodelled from the same deterministic known wavefdif) param-
signals are parameterized by more than one parameters of intereserized by a set of deterministic unknown vectgrsC RE+am
per signal, for example, in the context of, near-field source localyn, = 1,2 in whichq; + g2 = Q. The functionf(.) is assumed to
ization (bearing, elevation and range), polarized source localizatiope measurable and the model (1) is assumed to be parameter iden-
(DOA and the polarization state parameters) and more generally ififiable (.e., the Fisher information matrix considered through this
communication applications. However, the SRL has only been depaper is non singular). All the parameters are collected ie
fined/derived in the mono-o_llmensmn_r:ll case [3-+4@.(for only one [Enggf C R2PHQ_ With a proper rearrangeménf ¢ one ob-
parameter of interest per signal.) This is way we recently have pro-", T T op o
posed an intuitive extension of the SRL for the multidimensionalf&iNSé = [w” p"]" wherew C R*" andp C R denote, respec-
case [1], called the Multidimensional Statistical Resolution Limittlvely, the parameter vector of interest, and the unwanted or nuisance

(MSRL). This criterion is based on the extension of the so-calleP@rameters vector. This means that we consitiparameters of in-
Smith criterion [5] (.e., based on a Craér-Rao Bound (CRB) ap- terest for each signal. To the best of our knowledge, the result of
proach) using th@-nor;n distance. the literature [5] on the SRL have been only proposed in the case of

. Nevertheless, no analy3|s on the MSRL (Whlch was proposed 2Let us note that the study where the observation are complex can be
in [1]) was done to check its behavior. Thus, the aim of this papepandied by the real model (1) by stacking the real and imaginary parts of the
is to fill this lack. First, we link the concept of the MSRL to a bi- gbservation vector.

nary hypothesis test which is a slight extension of [4].Second, we 3To avoid a complication of notatio, denote both the vector parameter

R before and after the rearrangement. In the following we will only use the
1This project is funded by regidte de France and Digiteo Research Park. vector parameter after the rearrangement.




one parameter of interest per signal. Nevertheless, the problem of Since the separation terdctection IS UNKNown, it is impossible
deriving the so-called Multidimensional Statistical Resolution Limit to design an optimal detector in the Neyman-Pearson sense. Alterna-
(MSRL) based on the Craen-Rao Bound (CRB) in the case of more tively, the Generalized Likelihood Ratio Test (GLRT) [8,11] is a well
than one parameter of interest per signal was recently studied in [Lknown approach appropriate to solve such a problem. The GLRT is
The assumptions used for the MSRL derivation are the following: expressed as:

e Al. The element of thev are of the same naturee., the

parameters of interest have the same unit measurement. If no, La(y) = MAX5gqicction1_PY|0detection, Py, H1)
please refer to [1, Remark 2] to overcome this assumption. max,, P(Y|po, Ho)

e A2. Each parameter of interest w.r.t. to the first signgf, _ p(y|5detec‘f10m p1, M) 2 / ©)
can be as close as possible to the parameter of interest w.r.t. p(Y|po, Ho) Ho

to the second signa‘bép), but not equal. This is not really )

a restrictive assumptions, since in most applications, havingvheredgctection, p; andp, denote the Maximum Likelihood Esti-
two or more identical parameters of interest is a zero probamator (MLE) of dgetection UnderH;, the MLE of p underH; and
bility event [9, p74]. Nevertheless, in the case where it existshe MLE of p underH,. ¢’ denotes the test threshold. We rewrite
psuch thato'” = w{” | please refer to [1, Subsection 3.1] to (6) to obtain

overcome this assumption.

Hi
Under these assumptions, the intuitive MSRL criterion is defined Te(y) =Ln Lg(y) = ¢ = Lng’, (7
in [1] as follows: Ho

Criterion 1 The MSRL, denoted by for the model (1) in the case in which Ln denotes the natural logarithm.
of two signals and® parameters of interest per signal is given as the

implicit solution of the following equation 3.2. Asymptotic equivalence of the GLRT

6% = CRB(6) (2)  To find the analytical expression @i (y) in (7) is generally in-
tractable. This is mainly due to the fact that the derivation of
P Saetection i @ highly non linear optimization problem [12] (aside
5= Z 5y (3) from the linear parameter model [8, 13]). Consequently, in the fol-
— lowing, and as in [6], we consider the asymptotic case (in terms of
number of samples). In [11, eq (6C.1)] it has been proved that, for a
in which the so-called local SRLs are givendy£ wép large number of snapshots, the statidiig(y) follows a chi-squared

and where CRBS) denotes the CRBU.r.t. § for the observation ~Pdf underio and?, given by

model (1).
Ta(y) Xt underH, -
oV X'3(K' (Pfq, P1)) underH;

where

) _ @

In the following the latter MSRL criterion is shown to be asymp-
totically equivalent (upon to a translator factor) to a UMP test among

all invariant statistical tests. .
wherex? and X’f(m’ (Pta, Ps)) denote the central chi-square and

the noncentral chi-square pdf with one degree of freedBm.and
3. ANALYSIS OF THE MSRL P, are, respectively, the probability of false alarm and the probabil-
ity of detection w.r.t. hypothesis test (4). Whereas, assuming that
CRB(Jdetection) €XiSt, the the noncentral parameté Py,, Py) is

Resolving two closely spaced sources, with respect to their paraméiven by [11, p.239]
ter of interest, can be formulated as a binary hypothesis test [6,7,10].

3.1. Hypothesis test formulation

Let us consider the hypothesi, which represents the case where K’ (Pta, Pa) = Sgetection (CRB(8actection)) - ©)
the two emitted signal sources are combined into one sigral (
Vpell...P] wgm _ wgp))’ whereas the hypothesig; embod- On the other hand, one can notice that the noncentral parameter

ies the situation where the two signals are resolvabte @p €  * (Pra, Pa) can be determined exclusively by the choicé®f and

[1...P], such that!” # w{”). Consequently, one can formu- ! [6:8]as the solution of
late the hypothesis test as a simple one-sided binary hypothesis test

“1/p N _ -1
as follows: Q2 (Pra) = QX%(N,(pmed))(Pd)y (10)
{HO : 6detecti0n =0 (4) . ) ) L . ) .
Hi:  ddetection > 0 in which QX% agd Qx’%(n’(Pfa,Pd)) are the inverse of the right tail
wheredaetection denotes a distance between two sets containing thef thele andx'y(x"(Pfa, P4)) pdf.
parameters of interest. Let us denote these set§ andC» where Finally, (9) and (10) leads to
Cy = {wy),wg?),...,wg”)}, ¢ = 1,2. Consequentlydactection
can be defined as 6detection = /{(Pfa, Pd) CRB(ddetection) (11)

where/k( Py, Pa) = k' (Pfa, Pa) is the so-called translation fac-
) (5) tor which is determined for a given probability of false alarm and
probability of detection (see Fig. 1).

P
2 2 : (p) (p)
Odetection = ‘wg — Wy
p=1



the noise multiway array at th&" snapshot, respectively. Whereas,
the noiseless observation multiway array is given by [14]

2
D), s (2, . (3)
(X ()] = Y sq(t)e?a Felwitedeamm, 12)

q

where the so-called electrical angles are given by

(1) o =27
(.dq = 77}17
—27d
wt(ZQ) 2 ;T £ cos(Pq),
—27d
wi? & =5 cos(0y),

Fig. 1. The translator factat vs. the probability of detectioR,; and
P;,. One can notice that increasirigy or decreasing’s, has the
effect to increase the value of the translator fagtofhis is expected
since increasing’; or decreasing’;, leads to a more selective de-
cision [8, 11].

and 7y, ¢4, 04 denote delay, direction of arrival, and direction of
departure, of the the®” multipath, respectivelydr, dr and A are

the inter-element spacings of the transmit and receive array and the
carrier wavelength, respectively, (¢) is theg*" complex amplitude
path [9]. It can be proved that the 3-D harmonic retrieval model for

Remark 1 Itis worth noting that, the hypothesis test (4) is a binary \évzlarc?cl)ifps) ocsri]t?gr? Fllff]o;\r;glnng;ollows a PARAFAC (PARallel FACtor)

one-sided test and that the MLE used is an unconstrained estimator.
Thus, one can deduce that the GLRT, used to derive the asymptotic

SRL, is [6, 11]: %) the asymptotically uniformly most powerful test X(t) = Z sq(t) (a(wgl)) o a(wéQ)) o a(wé‘?’))> , (13)
among all invariant statistical tests, arid) has an asymptotic Con- =1
stant False-Alarm Rate (CFAR). This is, in the asymptotic case, con-
tsci)d;;?;na[ssﬁhe strongest statement of optimality that one could hoggyqre a(wép)) = engmu_l) ando denotes the multiway array
' outer-product [1%]. After vectorization, the full noise free observa-
Finally, from (2) and (11), one can state the following result: tion vector is given by
@ =[ved (x(1) ... ved (x(L)]".

Result 1 The asymptotic MSRL based on the empirical extension
of the Smith criterion given in (2) is equivalent (upon to a trans-

lation factor) to the binary one-sided hypothesis test given in|(4).
Consequently, it is equivalent to an asymptotically uniformly most
powerful test among all invariant statistical tests.

In the same way, we defing the noisy observation vector, and
n, the noise vector, by the concatenation of the proper multiway
array’s entries.

4.2. MSRL derivation

Remark 2 Consequently, one should note that the MSRL based ofjrst we derive the CRB for the 3-D Harmonic retrieval model. Then,

the Smith criterion is exactly equal to the MSRL based on the detegge yse the change of variable formula [13, p 45] to deduce GRB

tion approach for all values aPy, and Py such thats(Pra, Pa) =1 Assumingi.i.d. complex circular white Gaussian noise with zero-

(cf, Fig. 1). mean and unknown variane€1, the joint pdf ofy for a given un-
known deterministic parameter vectpis

4. NUMERICAL EXAMPLE i
p(yl€) =[] p(vec(¥(®))|€)
In this Section we present a numerical example of the MSRL applied t=1
to the 3-D Harmonic retrieval model for wireless channel sounding - 1 e;ﬁ(y_x)H(y_x) (14)
[9, 14]. First we briefly introduce the considered model, then, we o (mjz)TLMK ’
numerically derive its MSRL.
The unknown parameter vector is given by

4.1. Model setup T
_ _ ¢ = [wu) L@ LB @ @) Jz}
The observation model can be written as [9] ! ! ! ! ! ! ’

VOt = [X Ol + N O ps t=1,...,T, where the parameters of interest arg’, w(?, w(", w? (repre-

) ] senting the direction of arrival and the direction of departure of each
fork=1...K,l=1...L,m=1...M,inwhichK,LandM  goyrces). After some calculus, the Fisher information matrix of the
denote the_number of acquired data samples per channel,_the NURLisy observationg for orthogonal known amplitudes, is given by
ber of receive antenna sensors and the number of transmit antenna
sensors, respectively (¢), X (t) and N (t) denote the noisy obser- 2 {Fw 0}

vation multiway array, the noiseless observation multiway array and FIM(§) = — 0 x

= (15)



where,

F, =TKML(A®G), (16)
in which
A= [Elds@rF o
0 Zt:l lls2()]]
and
(2K—1)(K—1) (K—1)(L—1) (K—1)(M—1)
G — (L71)6(K71) (2L71%(L—1) (LA)%MA)

(M-1¥Kk-1)  (M=131-1) (eM-1(M-1)
2 2 6

(1]

(2]

(3]

[4]

Now one can apply Criterion 1. From (15), one deduces nu-

mericalyCRB (&) = (FIM(.f;*))*1 . Then, applying the change of

variable formula [13, p 45], one obtains

2
CRB(6) =Y > CRBw{) + > CRBw"”,wi*).

p=1g=1 q=1

Finally, solving numerically the implicit equatiof = CRB(J)
gives the desired MSRL as reported in Fig. 2.
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