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Mohammed Nabil El Korso, Ŕemy Boyer, Alexandre Renaux and Sylvie Marcos

Laboratoire des Signaux et Systèmes (L2S)
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ABSTRACT

Recently, a criterion for Multidimensional Statistical Resolution
Limit (MSRL) evaluation, which is defined as the minimal sepa-
ration to resolve two closely spaced signals depending on several
parameters, was empirically proposed in [1] but without a statistical
analysis. In this paper, we fill this lack by demonstrating that this
MSRL criterion is asymptotically equivalent (upon to a translator
factor) to a UMP (Uniformly Most Powerful) test among all in-
variant statistical tests. This result is an extension of a previous
work on mono-dimensional SRL (i.e.,when the signals only depend
on one parameter). As an illustrative example, the 3-D harmonic
retrieval case for wireless channel sounding is treated to show the
good agreement of the proposed result.

I NDEX TERMS1

Multidimensional statistical resolution limit, Cramér-Rao bound,
uniformly most powerful test, performance analysis.

1. INTRODUCTION

Characterizing the ability of resolving closely spaced signals is an
important step to quantify performance in array signal processing.
The concept of Statistical Resolution Limit (SRL),i.e.,the minimum
distance between two closely spaced signals that allows a correct
resolvability, is rising in several applications (especially in parame-
ter estimation problems such as radar, sonar, spectral estimation [2],
etc.)

It is important to note that, in several estimation problems, the
signals are parameterized by more than one parameters of interest
per signal, for example, in the context of, near-field source local-
ization (bearing, elevation and range), polarized source localization
(DOA and the polarization state parameters) and more generally in
communication applications. However, the SRL has only been de-
fined/derived in the mono-dimensional case [3–7] (i.e., for only one
parameter of interest per signal.) This is way we recently have pro-
posed an intuitive extension of the SRL for the multidimensional
case [1], called the Multidimensional Statistical Resolution Limit
(MSRL). This criterion is based on the extension of the so-called
Smith criterion [5] (i.e., based on a Craḿer-Rao Bound (CRB) ap-
proach) using thek-norm distance.

Nevertheless, no analysis on the MSRL (which was proposed
in [1]) was done to check its behavior. Thus, the aim of this paper
is to fill this lack. First, we link the concept of the MSRL to a bi-
nary hypothesis test which is a slight extension of [4].Second, we
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prove that the MSRL criterion [1] is asymptotically equivalent to a
Uniformly Most Powerful (UMP) test among all invariant statistical
tests (which is, in the asymptotic case, considered as the strongest
statement of optimality that one could expect to obtain [8]). Note
that, while the aforementioned equivalence is derived in the context
of 1-norm distance, the same conclusion can be extended for the
MSRL based on otherk-norm distances (k ≥ 2 with k integer). Fi-
nally, we illustrate our result in the case of a 3-D harmonic retrieval
model for wireless channel sounding.

2. PROBLEM SETUP AND BACKGROUND

Let
{
Ω,F ,y,Y,A,Pξ, ξ ⊆ R2P+Q

}
be the statistical experiment

generated by a random vectory taking values on the measurable
space{Y,A} . An observationy (ω) is the realization of the random
vectory whereω takes its value on the measurable space{Ω,F} .
The distribution ofy is assumed to belong to a family of probability
measuresPξ onY and parameterized by the vectorξ ⊆ R2P+Q. It
is also assumed thatPξ is absolutely continuous w.r.t. aσ-finite pos-
itive measureµ onY, such that the Radon-Nikodym derivative (i.e.,

the likelihood function)p (y|ξ)
∆
= dPξ (y) /dµ (y) , ∀ξ ⊆ R2P+Q

exists. More precisely, the observation model is assumed to be struc-
tured as follows

y = f(ξ1) + f(ξ2) + n, (1)

where, from a signal processing point of view,y ∈ RN andn ∈ RN

denote the noisy received data2 and the additive noise with a known
probability density function (pdf). The noiseless received data are
assumed to be the sum of two signalsf(ξm), m = 1, 2 each one
modelled from the same deterministic known waveformf(.) param-
eterized by a set of deterministic unknown vectorsξm⊆ RP+qm ,
m = 1, 2 in which q1 + q2 = Q. The functionf(.) is assumed to
be measurable and the model (1) is assumed to be parameter iden-
tifiable (i.e., the Fisher information matrix considered through this
paper is non singular). All the parameters are collected inξ =[
ξT
1 ξT

2

]T ⊆ R2P+Q. With a proper rearrangement3 of ξ one ob-

tainsξ =
[
ωT ρT

]T
whereω ⊆ R2P andρ ⊆ RQ denote, respec-

tively, the parameter vector of interest, and the unwanted or nuisance
parameters vector. This means that we considerP parameters of in-
terest for each signal. To the best of our knowledge, the result of
the literature [5] on the SRL have been only proposed in the case of

2Let us note that the study where the observation are complex can be
handled by the real model (1) by stacking the real and imaginary parts of the
observation vector.

3To avoid a complication of notation,ξ denote both the vector parameter
before and after the rearrangement. In the following we will only use the
vector parameter after the rearrangement.



one parameter of interest per signal. Nevertheless, the problem of
deriving the so-called Multidimensional Statistical Resolution Limit
(MSRL) based on the Craḿer-Rao Bound (CRB) in the case of more
than one parameter of interest per signal was recently studied in [1].
The assumptions used for the MSRL derivation are the following:

• A1. The element of theω are of the same nature,i.e., the
parameters of interest have the same unit measurement. If no,
please refer to [1, Remark 2] to overcome this assumption.

• A2. Each parameter of interest w.r.t. to the first signal,ω
(p)
1 ,

can be as close as possible to the parameter of interest w.r.t.
to the second signalω(p)

2 , but not equal. This is not really
a restrictive assumptions, since in most applications, having
two or more identical parameters of interest is a zero proba-
bility event [9, p74]. Nevertheless, in the case where it exists
p such thatω(p)

1 = ω
(p)
2 , please refer to [1, Subsection 3.1] to

overcome this assumption.

Under these assumptions, the intuitive MSRL criterion is defined
in [1] as follows:

Criterion 1 The MSRL, denoted byδ, for the model (1) in the case
of two signals andP parameters of interest per signal is given as the
implicit solution of the following equation

δ2 = CRB(δ) (2)

where

δ =

P∑
p=1

δp (3)

in which the so-called local SRLs are given byδp ,
∣∣∣ω(p)

2 − ω
(p)
1

∣∣∣
and where CRB(δ) denotes the CRBw.r.t. δ for the observation
model (1).

In the following the latter MSRL criterion is shown to be asymp-
totically equivalent (upon to a translator factor) to a UMP test among
all invariant statistical tests.

3. ANALYSIS OF THE MSRL

3.1. Hypothesis test formulation

Resolving two closely spaced sources, with respect to their parame-
ter of interest, can be formulated as a binary hypothesis test [6,7,10].
Let us consider the hypothesisH0 which represents the case where
the two emitted signal sources are combined into one signal (i.e.,
∀p ∈ [1 . . . P ], ω

(p)
1 = ω

(p)
2 ), whereas the hypothesisH1 embod-

ies the situation where the two signals are resolvable (i.e., ∃p ∈
[1 . . . P ], such thatω(p)

1 6= ω
(p)
2 ). Consequently, one can formu-

late the hypothesis test as a simple one-sided binary hypothesis test
as follows: {

H0 : δdetection = 0

H1 : δdetection > 0
(4)

whereδdetection denotes a distance between two sets containing the
parameters of interest. Let us denote these sets asC1 andC2 where

Cq =
{

ω
(1)
q , ω

(2)
q , . . . , ω

(P )
q

}
, q = 1, 2. Consequently,δdetection

can be defined as

δdetection ,
P∑

p=1

∣∣∣ω(p)
2 − ω

(p)
1

∣∣∣ . (5)

Since the separation termδdetection is unknown, it is impossible
to design an optimal detector in the Neyman-Pearson sense. Alterna-
tively, the Generalized Likelihood Ratio Test (GLRT) [8,11] is a well
known approach appropriate to solve such a problem. The GLRT is
expressed as:

LG(y) =
maxδdetection,ρ1 p(y|δdetection, ρ1,H1)

maxρ0 p(y|ρ0,H0)

=
p(y|δ̂detection, ρ̂1,H1)

p(y|ρ̂0,H0)

H1
≷
H0

ς ′ (6)

whereδ̂detection, ρ̂1 andρ̂0 denote the Maximum Likelihood Esti-
mator (MLE) of δdetection underH1, the MLE of ρ underH1 and
the MLE of ρ underH0. ς ′ denotes the test threshold. We rewrite
(6) to obtain

TG(y) = Ln LG(y)
H1
≷
H0

ς = Lnς ′, (7)

in which Ln denotes the natural logarithm.

3.2. Asymptotic equivalence of the GLRT

To find the analytical expression ofTG(y) in (7) is generally in-
tractable. This is mainly due to the fact that the derivation of
δ̂detection is a highly non linear optimization problem [12] (aside
from the linear parameter model [8, 13]). Consequently, in the fol-
lowing, and as in [6], we consider the asymptotic case (in terms of
number of samples). In [11, eq (6C.1)] it has been proved that, for a
large number of snapshots, the statisticTG(y) follows a chi-squared
pdf underH0 andH1 given by

TG(y) ∼

{
χ2

1 underH0

χ′
2
1(κ

′ (Pfa, Pd)) underH1

(8)

whereχ2
1 andχ′

2
1(κ

′ (Pfa, Pd)) denote the central chi-square and
the noncentral chi-square pdf with one degree of freedom.Pfa and
Pd are, respectively, the probability of false alarm and the probabil-
ity of detection w.r.t. hypothesis test (4). Whereas, assuming that
CRB(δdetection) exist, the the noncentral parameterκ′ (Pfa, Pd) is
given by [11, p.239]

κ′ (Pfa, Pd) = δ2
detection (CRB(δdetection))−1 . (9)

On the other hand, one can notice that the noncentral parameter
κ′ (Pfa, Pd) can be determined exclusively by the choice ofPfa and
Pd [6,8] as the solution of

Q−1

χ2
1
(Pfa) = Q−1

χ2
1(κ′(Pfa,Pd))

(Pd), (10)

in whichQ−1

χ2
1

andQ−1

χ′21(κ′(Pfa,Pd))
are the inverse of the right tail

of theχ2
1 andχ′

2
1(κ

′(Pfa, Pd)) pdf.
Finally, (9) and (10) leads to

δdetection = κ(Pfa, Pd)
√

CRB(δdetection) (11)

where
√

κ(Pfa, Pd) = κ′(Pfa, Pd) is the so-called translation fac-
tor which is determined for a given probability of false alarm and
probability of detection (see Fig. 1).



Fig. 1. The translator factorκ vs. the probability of detectionPd and
Pfa. One can notice that increasingPd or decreasingPfa has the
effect to increase the value of the translator factorκ. This is expected
since increasingPd or decreasingPfa leads to a more selective de-
cision [8,11].

Remark 1 It is worth noting that, the hypothesis test (4) is a binary
one-sided test and that the MLE used is an unconstrained estimator.
Thus, one can deduce that the GLRT, used to derive the asymptotic
SRL, is [6, 11]: i) the asymptotically uniformly most powerful test
among all invariant statistical tests, andii) has an asymptotic Con-
stant False-Alarm Rate (CFAR). This is, in the asymptotic case, con-
sidered as the strongest statement of optimality that one could hope
to obtain [8].

Finally, from (2) and (11), one can state the following result:

Result 1 The asymptotic MSRL based on the empirical extension
of the Smith criterion given in (2) is equivalent (upon to a trans-
lation factor) to the binary one-sided hypothesis test given in (4).
Consequently, it is equivalent to an asymptotically uniformly most
powerful test among all invariant statistical tests.

Remark 2 Consequently, one should note that the MSRL based on
the Smith criterion is exactly equal to the MSRL based on the detec-
tion approach for all values ofPfa andPd such thatκ(Pfa, Pd) = 1
(cf, Fig. 1).

4. NUMERICAL EXAMPLE

In this Section we present a numerical example of the MSRL applied
to the 3-D Harmonic retrieval model for wireless channel sounding
[9, 14]. First we briefly introduce the considered model, then, we
numerically derive its MSRL.

4.1. Model setup

The observation model can be written as [9]

[Y(t)]k,l,m = [X (t)]k,l,m + [N (t)]k,l,m , t = 1, . . . , T,

for k = 1 . . . K, l = 1 . . . L, m = 1 . . . M , in which K, L andM
denote the number of acquired data samples per channel, the num-
ber of receive antenna sensors and the number of transmit antenna
sensors, respectively.Y(t), X (t) andN (t) denote the noisy obser-
vation multiway array, the noiseless observation multiway array and

the noise multiway array at thetth snapshot, respectively. Whereas,
the noiseless observation multiway array is given by [14]

[X (t)]k,l,m =

2∑
q

sq(t)e
jω

(1)
q kejω

(2)
q lejω

(3)
q m, (12)

where the so-called electrical angles are given by

ω(1)
q ,

−2π

K
τq,

ω(2)
q ,

−2πdR

λ
cos(φq),

ω(3)
q ,

−2πdT

λ
cos(θq),

and τq, φq, θq denote delay, direction of arrival, and direction of
departure, of the theqth multipath, respectively.dR, dT andλ are
the inter-element spacings of the transmit and receive array and the
carrier wavelength, respectively.sq(t) is theqth complex amplitude
path [9]. It can be proved that the 3-D harmonic retrieval model for
wireless channel sounding follows a PARAFAC (PARallel FACtor)
decomposition [15] given by

X (t) =

2∑
q=1

sq(t)
(
a(ω(1)

q ) ◦ a(ω(2)
q ) ◦ a(ω(3)

q )
)

, (13)

where
[
a(ω

(p)
q )

]
i

= ejω
(p)
q (i−1) and◦ denotes the multiway array

outer-product [16]. After vectorization, the full noise free observa-
tion vector is given by

x =
[
vecT (X (1)) . . . vecT (X (L))

]T
.

In the same way, we definey, the noisy observation vector, and
n, the noise vector, by the concatenation of the proper multiway
array’s entries.

4.2. MSRL derivation

First we derive the CRB for the 3-D Harmonic retrieval model. Then,
we use the change of variable formula [13, p 45] to deduce CRB(δ).
Assumingi.i.d. complex circular white Gaussian noise with zero-
mean and unknown varianceσ2I, the joint pdf ofy for a given un-
known deterministic parameter vectorξ is

p(y| ξ) =

T∏
t=1

p(vec(Y(t))| ξ)

=
1

(πσ2)TLMK
e
−1
σ2 (y−x)H (y−x)

. (14)

The unknown parameter vector is given by

ξ =
[
ω

(1)
1 ω

(2)
1 ω

(3)
1 ω

(1)
1 ω

(2)
1 ω

(3)
1 σ2

]T

,

where the parameters of interest areω
(1)
1 , ω

(2)
1 , ω

(1)
2 , ω

(2)
2 (repre-

senting the direction of arrival and the direction of departure of each
sources). After some calculus, the Fisher information matrix of the
noisy observationsy for orthogonal known amplitudes, is given by

FIM(ξ) =
2

σ2

[
Fω 0
0 ×

]
, (15)



where,
Fω = TKML(∆⊗G), (16)

in which

∆ =

[∑T
t=1 ‖s1(t)‖2 0

0
∑T

t=1 ‖s2(t)‖2
]

and

G =

 (2K−1)(K−1)
6

(K−1)(L−1)
2

(K−1)(M−1)
2

(L−1)(K−1)
2

(2L−1)(L−1)
6

(L−1)(M−1)
2

(M−1)(K−1)
2

(M−1)(L−1)
2

(2M−1)(M−1)
6

 .

Now one can apply Criterion 1. From (15), one deduces nu-
mericallyCRB(ξ) = (FIM(ξ))−1 . Then, applying the change of
variable formula [13, p 45], one obtains

CRB(δ) =

2∑
p=1

2∑
q=1

CRB(ω(p)
q ) +

2∑
q=1

CRB(ω(1)
q , ω(2)

q ).

Finally, solving numerically the implicit equationδ2 = CRB(δ)
gives the desired MSRL as reported in Fig. 2.

From Fig. 2 one can notice that the numerical MSRL based on
Criterion 1 is in good agreement with the MSRL derived using the
hypothesis test approach. One can notice that, forPd = 0.37 and
Pfa = 0.1 the MSRL based on Criterion 1 is exactly equal to the
MSRL based on the hypothesis test derived in the asymptotic case.
From the casePd = 0.49 and Pfa = 0.3 and Pd = 0.32 and
Pfa = 0.1, one can notice the influence of the multiplicative factor
κ on the MSRL.

Fig. 2. MSRL vs. σ2 for L = 100: one can notice that the MSRL
based on the Criterion 1 is in good agreement with the MSRL based
on the hypothesis test approach (which uses an asymptotically uni-
formly most powerful test among all invariant statistical tests).

5. CONCLUSION

In this paper, we have analyzed the multidimensional statistical res-
olution limit based on the empirical extension of the Smith criterion.
More precisely, it has been demonstrated that the empirical MSRL
criterion based on the 1-norm distance is asymptotically equivalent
(upon to a translator factor) to a uniformly most powerful test which
is (in the asymptotic case) considered as the strongest statement of
optimality that one could expect to obtain.
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