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ABSTRACT

detection theory. In [8], the ARL based on the Minimum Prdbab
ity of Error (MPE) for the deterministic signals is invesitgd. The

The Angular Resolution Limit (ARL) on resolving two closely authors used the first order Taylor expansion of the MPE tiveler

spaced polarized sources using vector-sensor arrays $sdeoed

the ARL. Whereas, in [9] Liu and Nehorai have defined the ftiati

in this paper. The proposed method is based on the informatiocg| angular resolution limit using the asymptotic equinake of the

theory. In particular, the Stein’s lemma provides, asyrigadly,

a link between the probability of false alarm and the retat@n-
tropy between two hypothesis of a given statistical binast.t We
show that the relative entropy can be approximated by a qtiadr
function in the ARL. This property allows us to derive and lsme
a closed-form expression of the ARL. To illustrate the iagtrof
our approach the ARL, in the sense of the detection theowlsis
derived. Finally, we show that the ARL is only sensitive te ttorm
of the polarization state vector and not to the particuléwes of the
polarization parameters.

Index Terms— Angular resolution limit, polarized source lo-
calization, distance measure, information theory, detetheory.

1. INTRODUCTION

The Direction-Of-Arrivals (DOA) estimation for polarizesburces
based on the vector-sensor arrays have been largely ig&tstiin
the last decade. In [1], the authors considered the probfesowce
localization in a multipath environment by using a vectensor ar-
ray consisting of three electric and three magnetic dipolagq2],
a tensorial version of the MUSIC algorithm for vector-seresways
was presented. On the other hand, the polarized seismic egtive
mation was considered in [3]. Whereas, in [4], closed foripres-
sions of Cramér-Rao Bound (CRB) have been derived.

In array processing, the Angular Resolution Limit (ARL) cha
acterizes the minimum angular separation to resolve tweetyo
spaced sources. In the literature, there are three apm®actob-

Generalized Likelihood Ratio Test (GLRT). On the other heStuhr-
man and Milanfard [10] derived the frequency resolutionitimthe
spectral analysis using the GLRT.

In this paper, we propose a new approach of the ARL based on
the information theory, and more specifically on the Stelerama
[11]. The Stein’s lemma links the false alarm probabilify;{) re-
sulted from the Neyman-Pearson decision criterion to tlaive en-
tropy (also called Kullback-Leiber pseudo-distance). e telative
entropy can be approximated by a quadratic function in th& AR
is possible to determine the ARL by this way. To illustrate ap-
proach, the ARL is derived in the Neyman-Pearson sense icotte
text of the Bayesian detection theory. Finally, we also carapmur
approach to the one presented by Amar and Weiss in refer8hce [

2. MODEL SETUP

2.1. Polarized signal model

We consider the context of DOA estimation of two narrow-band
polarized source signals using a linear two elements vaeosor
array. Without loss of generality, we assume that the aragg |
on theOx axis of the Cartesian coordinate. The array consists of
N vector-sensors and the known positions of these vect@esen

in the array are given by the vectdr = [d;...dx]". The two
sources are assumed to be located in the far-field, detestmgirand
coplanar with the array,e., the source elevations equl = /2,

tain the ARL.(1) The first approach based on the estimation accus. — {1,2}2. For mathematical convenience, we consider the esti-

racy. In this way, Smith [5] proposed the following criteribased
on the CRB: two signals are resolvable if the separation &etw

the two DOAs6; and - is less than the standard deviation of the

separation estimation. Consequently, the ARL in the Sndttss is
defined as the angular separation between the parametarenf i
est that is equal to the standard deviation of the angularagpn.
Furthermore, in [6], the extension of the ARL in the case oftimu
ple parameters per signal based on Smith criteria was pgek€0n)

The second approach based on the concept of the mean null spec

trum [7]. This approach is quite intuitive but is only reletvao a

mation ofu;, = 2= sin ¢, whereX denotes the wavelength.

We assume that the source polarization is constant in tirde an
along the array. The polarization of the sources is charaet: by
the vector [2]

-l

specific high-resolution algorithn{3) The third approach based on Wherep and ¢ denote the amplitude ratio and the phase shift be-

This project is funded by both the Digiteo Research Park hedRegion
lle-de-France.

tween the second component of the sensor and the first [2]héAt t
t*" snapshot, the output signal in the time domain atithevector-
sensor consists of two components (the model in frequensyado



is available in [2])

2

2:(t) =Y [p(p @), [a(ur)isk(t) + A (t) 2
Z(t) = [P(p, 0), [alur)]isk(t) + i (t) 3)
k=1
wherea(uy) = [e 7% e‘de“k}T, and wherei(t),

7(t) denote the additive noises at tHé snapshot, andy(t) de-
notes the source signal of thé" source at the'” observation.
We assume that; (¢) # s2(t),Vé. The noises are assumed to be
complex, circular, white Gaussian with zero mean and cawag
matrix 0?1, i.e, n ~ CN(0,0°I). Furthermore, we assumed the
signal sequences of the two sources are deterministic wittivk
sequences at the observer. Consequently, at'thenapshot, the
response vectar(t) = [21(t) ... Zn(t) Z1(t) ... Zn(2)]" of the
array is given by

2

z(t) = > b(ux)sk(t) + n(t)

k=1

4)

wheren(t) denotes the noise vector abdur) = p(p, ¢) ® a(ux)
in which ® stands for the Kronecker product.

2.2. Bayesian MPE based binary hypothesis test

We can now adopt the two detection hypotheses (see [8]): runde
hypothesisH,, the observer detects only a single signal, which is a

combination of the two sources, and un@éer, the observer detects
two signals:

Ho :
Hi e

(t)
(t) =

a(t))5(t) +n(t),

z b(
z kz::1b(uk)8k (t) + n(t)

©)

where 4(t) and 5(t) denote the parameter and signal amplitude

under Ho, whereas the probability of erraP. given by P,
p(Ho)Pra + p(H1) P, in which Py, and P,,, denote the probabil-
ity of false alarm and the probability of miss, respectivalyd where
p(Ho), p(H1) denote the prior probability of the two hypotheses.
Without loss of generality, we assume théto) = p(H1) = 1/2.
Thus, settingu. = “12*2 and the ARL given bys = uy — u1,
then, the values ofi(¢), ands(¢) chosen according to the minimal
probability of error (MPE) criteria are given by [8]:

(t) = ue +(1)3,

8(t) = ~

N

©
b7 (0(0) (bl = §)sa(6) + bluc + Foa(t)) )

where~(t) = ls2(O)[2 =51 (8)[2
2(Js2 (D12 +] 51 ()P +2R {5 (Ds2(D })

mentioned assumption, it is clear that

{

From the afore-

Ho:zu)~Cthuxaﬁxmmammu):gmu»ﬂw
Hi: z(t) ~ CN(u,(t),0%T) wherep, (t) = k;b(uk)sk(t).
- (8)

2.3. First-order Taylor expansions

Assume that the polarization parameters are all équal p, =
P = po @andy,; = ¢, = .. The first-order Taylor expansions of
the vectors of interests are considered as follows:

)
b(ul) = b(uc) — ib(uc) at(ul = Ue — %7P07‘700):

b(u2) = () + () at(us = ue + 4. 5. 00).
b(ﬂ(t)) = b(UC) + ’Y(t)&.’(UC) at(u/(t) = Uc + fy(t)é, Pos %00)

in which the first-order derivativev.r.t. wu. of vector b(u.)

P(po, Po) @ a(uc) is defined ai’(“ﬂ) P(py, ¢o) @ a(uc) where
a(uc) = jdiag{d}a(u.). So, the optimal value (7) becomes

() = p(t) + oem(1) ©)
in which p(t) = s1(t) + sa2(t), ke = b (uc)b(uc), m =
[m(1)...m(T)]" = VTswheres = [s1(1) s2(1) ...51(T) s2(T)]"
andV = Bdiag{v(1),...,v(T)} with v(t) = [y(t) + 3 () —
%]T. According to the previous expression, we can see that the
optimal sources(t) is approximated by a linear combination of the
sourcess: (t) ands2(¢). Consequently, using the above expression
the first-order Taylor expansion of the mean un@éierand 7, can

be rewritten as

pot) = B((D)S(D) = Swo(0), (10)
mw:iuw%wzwmy )

where
vo(®) = p(n b + (“H b))
vi(t) = %B(uc). (13)

in which ¢(t) = s2(t) — s1(¢). So, the linearized hypothesis test is
given by

Ho: z=6vo+n,
{’Hl : z20v1+n (14)
wherez = [z(l)Tj.ﬂ..z(T)T]T, n=[n07... nTT)T]T, vy =
[vo (1)...v5(T)] andvy = [v1(1)...v{(T)] .

3. ARL BASED ON INFORMATION THEORY

3.1. Stein’s lemma

By maximizing the probability of detectioné. P; ~ 1) for Py, <

€ with e goes to zero slowly, the best error exponent resulting from
using Neyman-Pearson test is given by the Stein’s lemmdplBs
follows:

Jim In Pro = —=D(p(z|H1)|lp(z|Ho)), (%)

INote that this situation is the worst case in the resolutiointof view.



whereD(p(z|H1)||p(y|Ho)) denotes the relative entropy. L@the
the observation space. The relative entropy between tweskau
distributions with parameterized means is given by:

e ,

D@@Hﬁﬂ@@ww»::/f”““”“<MMHM
Q

| 2

25 o 8) = i (1)

3.2. Geometrical expression of the relative entropy

Using relations (10) and (11), we can link the relative emyrand
the ARL according to

2

D(p(y[H1)llp(y|Ho)) %—QZIIVO

—vi(t)|
_ 62I|mll2 2
- 2

b(uc)

Ke
= s
*|[m|[*||d[|* -
I — cos”(0)
using[[p(p, )| = 1, la(uc)l|* = N, ||auc)|[* = [|d|* and
O is the largest canonical angle between vectqrs.) anda(uc).
The important point is that the relative entropy can be axprated

by a quadratic (ind) expression. In addition, the relative entropy is

a function of the source waveforms, of the array distributiaf the
noise variance and of the a useful geometrical quantity kvisiche
"angle” between the steering vector and its first-ordendgixie. It
is interesting to note that the minimal valuelgfcos?(©) which is
reached for collinear vectors€. © = 0) is not relevant since by
construction the steering vector and its first-order dérigacannot
be collinear. Another geometrical interpretation is: therenorthog-
onal the two vectors, the smaller the relative entropy. Théans
that it could be more and more difficult to discriminate the tay-
pothesis. According to the expression of the relative gytrave
can see that to ensure a "good” discrimination of the two Hygsis,
we must have a large ARL or/and a large array distributiori@ral
small noise variance.

3.3. ARL based on the Stein’s lemma

Thus, from the above expressions and using the fact thaptimal
P, (close to one)Py. =~ 2P. = 2(1 — 1), the ARL takes a closed-
form expression according to

~ 70\/log ) + log(1 —n)
P T cos(®) (16)
wheren > 1/2, p = vs#VVTs in which
vv” = Bdiag{G(1) ... G(T)}
where
O+ P+
G(t) = 9 17
O=1"20+T (-1 )

Itis interesting to note that the ARL is affected by the wavef

design, ¢f. quantity ) but not from the polarization state in case of

unit norm of the polarization vector.

4. DETECTION THEORY APPROACH

In this Section, we derive the ARL using the detection theapy
proach, particularly, using the well-known Neyman-Pear8dP)
criterion in the Bayesian context, denoted by BNP. It can diech
that the ARL in this context has not been derived in the exgslit-
erature. The BNP will minimize the probability of errét. Even
if the proposed approach is Bayesian as the one presentedhay A
and Weiss [8], our approach is different. Indeed, Amar anis8\ie-
rive the ARL, denoted Theoretical Resolution Limit (TRLad®d on
the linearization of the error probability. In our methods shoose
to linearize directly the observation signal as done by ®harand
Milanfard [10].

In order to simplify the calculation, we perform the follovg
change of variable formula:

/ z

zZ = g — Vo. (18)
Consequently, plugging (18) into (14), one obtains
Ho: 2z =n’
1
{7—[1: zZ =2(+n (19)

Gnp(z') =

denotingTnp(z') = In (Gnp(z')) andT = In (77), the statistics
test can be given by
N ( |H1 _ o 2 12
Te(a) =t (BB ) = 2 ('~ <|f - 1)

- j_z (> -2 {a"2'}) 51 7.

4]

(1)

Since we have assumed thdf,) =

Ho :
Hi e

=R {¢"2'}, one can easily obtain

Ho :
Hi -

p(H1) = 1/2, one obtains

Tnp (Zl) >0
Tnp (Zl) < 0. (22)
Let L(z")

L(2") ~ N (0, ¢°)

L) ~ N, &) (e3)

where

Thus [13],

(o) ()

in which Q(.) denotes the right-tail function of the probability func-
tion for a Gaussian random variable with zero mean and unit va

P. =

ance. Since) _'\'/C“_z -Q g‘i‘\/%),thus, one obtains
o o

(25)

o



Consequently, the ARL based on the BNP criteria is given by quadratic function in the ARL. So, it is possible to derive thRL
following this methodology. In addition, a geometrical eagsion
ov2Q7 (1 —1n) of the ARL is provided. Finally, we compare our approach t® th

w|d]| cos(©) Bayesian Neyman-Pearson test (also derived in this papéitpahe

Theoretical Resolution limit (TRL) proposed by Amar and ¥¢eiln

whereQ~'(.) is the inverse of the right-tail function of the proba- particular, we show that for all these methods, the ARL isrefion

bility function for a Gaussian random variable with zero mead  of the (unit) norm of the polarization vector but not of theesific
unit variance. values of the polarization parameters.

)

R

(26)
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6. CONCLUSION
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