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WEISS-WEINSTEIN BOUND AND SNR THRESHOLD ANALYSIS FOR DOA ES TIMATION
WITH A COLD ARRAY

Dinh Thang VU, Alexandre RENAUXéRy BOYER, and Sylvie MARCOS

Laboratoire des Signaux et Systemes (L2S), Universitisf&ud XI, CNRS, SUPELEC
Gif-Sur-Yvette, France

ABSTRACT Due to its complexity (in comparison with the CRB), there are
few publications related to the WWB in the literature. Sorhere-
vious works, such as [6], have evaluated the WWB only by way
of simulations {.e., without closed-form expressions). The bound

h : has been compared to the MSE of the MUSIC algorithm and clas-
evaluat'e these performance for both asymptotic _and ”O'WC sical Beamforming using al x 8 element array antenna. In [7],
scenarios (low number of snapshot and/or low signal to aite) the authors have introduced a numerical comparison betiween

we derive (_:Io_sed-form expressions of the _V_Veiss-Weins_t(_aimu. Bayesian CRB, the Ziv-Zakai bound and the WWB for DOA estima-
The analysis is performed under both conditional and uritiondl tion. In [8], numerical simulations of the WWB to optimizerser

Eourcde signa(lj_mogels. IIV\Iie showhthehgcl)é)dﬁability of tlhe p[t(:i)ose positions for non-uniform linear arrays have been preserite[9],
ound to predict the well known threshold effect. We alsors by considering the matched-field estimation problem, thihaas

influence of the polarization parameters. have derived a semi closed-form expression of the WWB in the s
Index Terms— DOA and polarization estimation, Weiss- called unconditional observation modeg(when the source signals
Weinstein bound, COLD array are assumed to be Gaussian). Concerning the aforementioned
text of the conditional observation model a closed-formregpion
of the WWB is given in the simple case of spectral analysid0.[
Recently, the closed-form expressions of the WWB for DOA-est
mation with a classical planar array were derived in [11} arere
applied for the array geometry design. Note that all thesd&svoave

In the context of polarized sources localization using aeotered
orthogonal loop and dipole array, direction-of-arrivaimstion per-
formance in terms of mean square error are investigated.der ¢o

1. INTRODUCTION

In array processing, the use of an antenna able to handl®tinees
olarization is of importance for a large class of applmatisee [1 .

I{e)md references therl?ain). One of suchgantenna is tﬂg smim@@&[D] been_per_formed in the context where arrays are not able tiidiire

(cocentered orthogonal loop and dipole) array. Severa¢nzape- polarlzat.|on of the source §|gnals.

lated to the COLD array can be cited: in [1], the authors hatmi In this paper, we consider the WWB performance bound on the

duced an efficient Direction-Of-Arrival (DOA) and polartizan es- DOA and the SNR threshold analysis (_)f a polarized source w_lth

timation technique and the COLD array was shown to improta bo COLD array. The closed-form expressions of the WWB are given

the DOA and the polarization estimation performance coegan under both conditional and unconditional observation roder

the cocentered crossed-dipole array. Another exampleecoimg ~ Which we present simulation results.

asymptotic performance is given in [2] where the statitieaolu-

tion limit, under the conditional observation modek( when the

source signals are assumed to be deterministic) was igassd. 2. MODEL SETUP

The authors have introduced an approach based on the CRemér

bound (CRB), and again, under some conditions, the COLDyarrawe consider the context of DOA estimation of a single polar-
was ShOWI’l to prOVide better performance than a Conventiﬂl'ﬂj/. ized source using a linear (poss|b|y non_uniform) arrany

In this paper, we are interested by the ultimate performafice cOLD sensors. The source signal is assumed to be narrow-band
such an array in non-asymptotic scenarios, when the Signal to  and to be located in the far-field area. The sensor positions
Noise Ratio (SNR) and/or the number of snapshots are loveeldd ith respect to a reference axis are characterized by theowec
it is well known that such an array processing problem is anonq — [d,...dy]. As in [1, 12] we assume that the source is
linear estimation problem for which a threshold phenomei@  coplanar with the array. Therefore, the DOA of the source sig
when a drastic increase of the DOA estimator mean squarea@@¥o nal depends only on the azimuth angle, denatediVe assume that

pears) [3]. Unfortunately, the CRB can not capture thisshotd  the source polarization is known or previously estimateet ws
effect [4]. Therefore, we are herein interested to inveséiga more setu — [ jzwAAd cosp  — Laasin pel®) }T7 the polarization

relevant bound for the COLD array observation model: thealted : it

i ; . . __vector, with polarization angles € [0,7/2] andy € [—m7,7].
Welss-Welnsteln bqund (WWB) [5]. Moreover, since the WWB is X denotes the wavelength, antl;, L., denote the dipole lengths
a.Bayes"'?‘” bc_)un_d, it takes into account the support of trenpeter and the loop perimeters, respectively, with the assumptiat
via the prior distribution of the parameters. Consequetiiy WWB Ay < 3)\/10, andLyq < A/10. The output at thé'" sensor and

provides a powerful tool to pre_dict the global MSE behawioboth ¢, ye 4th snapshot is a two components vector given by [4]:
asymptotic and non-asymptotic regions.

This project is funded by both the Digiteo Research Park hedRegion
lle-de-France.

gf(tg } — a(@)s(utni(t), t=1,....T, (1)



wheres (¢ )denotes the source signal, whéiép)|; = (I dising)  \whereh is the difference between the parameter of interest and a
denotes the'" element of the steering vectat¢) and wheren; (t) test-point and where the functionis defined as
is an additive noise. This noise is assumed to be complesy-cir

lar, uncorrelated (spatially, temporally and between topland the ne,8) = [[+/ply,w+a)ply,w+ B)dydw
dipole of each sensors) Gaussian with zero mean and thengaria AL )
o%. We will use the two classical alternative hypothesis alibat = év p(w + a)p(w + B)¢(a, B)dw

source signal

e Hi: the source signal is assumed to be deterministic andy denoting¢(e, 8) = [v/p(ylw +a)p(y|w + B)dy. € and
known. This is the so-called conditional signal model [13].

Q
© are the observation space and the parameter space, resjyecti
e 7{>: the source signal is assumed to be a complex circulap(y,.) andp(.) denote the joint distribution of the full observation
random Gaussian vector, independent of the noise, with zergector and the parameter (possibly a test point) anctbeori dis-
mean and known covariance matsigl. This is the so-called tribution of the parameter (possibly a test point). Note tiee has
unconditional signal model [13]. to respectv + h € O.

For mathematical convenience, we consider the estimafion o - _
w = sin ¢, and we assume that follows a uniform distribution ~ 3.1. Conditional observation model

w~U-1,1),ie. From (4), the expression @f o, §) is given by:

Lif —1<w<1
w)=1| 2 — = 2 1
p) { 0 otherwise. @ g = /W
The output signal for the/" snapshot of the whole array can be TQ
then expressed as: <726%2 > (IIy(t)7b<w+a)s(t>ll2+Hy(t)fb<w+6)s<t)H2)>
xe t=1 dy. (8)
_ v ]
y(t) = { () } = b(w)s(t) +n(t), ®) By substitutingx(t) = y(£)— 2 (b(w + a)s(t) + b(w + 8)s(1)),

it easily leads to

whereb(w) = u ® a(w), witf; ® denotes the Kronecker produc;,
wherey (¢) = [§1(t) ... g~ (¢)]", andwheregy(¢) = [§1(t) ... g~ (¢)]" . L & 2

With the aforementioned assumptions, un@ér, the full ob- _2_1; (Ily (8) = blw +a)s(OI + ly (£) = blw + B)s (@)l )
servation vectofVt) follows a Gaussian distribution with parame- L & 9
terized meanj.e, ylw ~ CN(Ir ® b(w)s,c’Ianr), With s = =T 2 (Il + 3 b(w + @) = bw + B)[)
[s(1)...s(T)]". And, underHz, y(t) follows a Gaussian distribu- - (9)
tion with parameterized covariance matiig,, y|w ~ CN(0,Ir ® Since
R(w)), whereR(w) = o2b(w)b(w)? + o?I,n Consequently, the
likelihood function undef4; can be expressed as: / 1 ox <7L HX||2) dx — 1 (10)

(no2)2NT P~ =5

1
p(ylw) = W exp ( QZ lly (t) )5 >7 @) one obtains

and the likelihood function undét is given by
A

1 )E
p(ylw) = 2T [R(o)[” exp ( Zy R(w) 'y (t )) ®)
) _ ) L2, sin? p, the closed-form expression i (w + o) — b(w + 8) ||
where|.| denotes the matrix determinant ajidl~ denotes the norm  is phtained by noting that
operator. The Weiss-Weinstein bound will be derived undeh b
models#; andH.. Ibw+a)|> = |blw+ )H

Q

C(aﬂ):eXp( I8l o 4 ) b<w+5>||2). 1)

2 42
Sinceb(w) = u ® a(w), and sincenu = 2L cos® p +

N (L& AA” cos? p+ L2, sin p) (12)
3. WEISS-WEINSTEIN BOUNDS FOR THE COLD ARRAY
The Weiss-Weinstein bound is a lower bound on the mean sgeare ~ b(w + a)?b(w + ) = (% cos? p + L2, sin? p)
ror well known to accurately predict the SNR threshold dffelaich (1% du (- ))
appears in non-linear estimation problems [5]. The WWB is-ge X Ze mee
erally obtained by taking the supremum of a function overteoe (13)

test point and over a set of parametec [0, 1]. Concerning the  gnq that
parametes, one often set = 1/2, see [9-11], although there are

no proof thats = 1/2 could leads to the tightest WWB. The WWB b(w+B8)"b(w+a) = (47r2;‘31 cos? p + L2, sin? p)
for s = 1/2 is given by: A 3

X3 (i 5 o)
hQU(h,O)’O(O,h) i

201(h ) — n(h, —h)) ©) - (14)

WW B = sup
h



One observes that the functiofigy, 3) are no longer depending

on the parametep, consequentlyy(«, 3) can be rewritten as:

n(e B) = (e, B) / @)@t Bdw. (1)
(€]

10

-2

10

Under the uniform distribution prior assumption, one ofai “gJ
N T CET laf + 18] ]
/ p(w + a)p(w + ﬁ) =1 2 ' (16) 10 — Conditional WWB
© Unconditional WWB
From (6), (12), (13), (14), (15) and (16), one obtains theetb oo
expression of WWB as (17) (shown on the top of next page). Note 10°® ‘ ‘
that the bound is independent of the parameter 30 20 s;{éo[ds] 0 10

3.2. Unconditional observation model
From (5), the expression df «, 8) can be expressed as:

1
o= éww IR(w + o) R(w+ )72

t=1

(— > ymH (Bloto)pmeers =) )y<t>>
xXe

dy (18)

By settingT'™! = R<w+a>*1;rﬁ<w+m*1

22N
[R(wta)"14+R(w+p) 1]’

, one obtains|T’| =
which leads to

(™
IR(wta)|T/2|R(w+8)[T/?
T

| et exp (- Ey O Ty ) dy.
Q =
(19)
T
Sincefw exp (— 21Y(t)HF_1y(t)) dy = 1, one ob-
Q t=
tains

C(avﬁ) =

- r”
) = R Tl P Ret A"

Due to the special structure Bf(w+6) = o2b(w+8)b(w+8)" +
o%In, one easily gets

(20)

R(w+68)| = oV <1+ Z—z Hb(w+6)||2). (21)

Furthermore, thanks to Woodbury identity, one gets

- afb(w+6)b(w+6)H) 22)
o2 b+ o) +o? )

_ 1
R(w+6) 1 ; (IQN

thus

Rw+a) ' +Rw4+p) =
A (o1, _ Ziblwtablwta)  olb(wtB)b(wts)!
o2 2N o2|b(w+a)|2+02 o2|b(w+B)P+02 )~

(23)

The matrix determinant oR(w + a)™' + R(w + B)~* equals
to the product of their eigenvalues. Particularly, theme2d¥ — 2

eigenvalues equal t®/02, and the eigenvectors corresponding to

the two remaining eigenvalues is a linear combination offthen
b(w + a) + gb(w + B). Furthermore, the two above eigenvalues
are the solution of the following equation

(Rw+a) ' +R(w+B)7") (b(w+ a) + gb(w + B))
=v(b(w+ a) + gb(w+ A)), (24)

Fig. 1. MAP versus WWB.

which reduces to

b(w+a) (L (2—Albw+a)|® — gAC) —v)

+b(w+8) (77 (24 = Bq|lb(w + )|* = BC") —qv) =0,
(25)

oz andC =

-G B = - os
o2[lb(wta)|? 402’ T o2lb(w+A)I?

b(w + a)”b(w + B). Sinceb(w + ) andb(w + ) are nonlinear,
thus, their coefficients are equal@oSolving the first coefficient for

q and then substituting into the second coefficient one obtains the
equation

whereA =

V2ot 4+ vo? (2 —A|b(w+ a)||2 — 2+ B|b(w+ B)HQ)
—4+2A|b(w + )| + 2B [b(w + B)|I*

—AB|b(w+a)|* [b(w + B)|* + ABCC™ =0.  (26)

Solving (26) forv, and sincd|b(w + a)||* = ||b(w + 8)||* =
[[b(w)||?, one obtains
2N
R(w+a) "' +R(w+8)"| = [Tv
i=1

i 1 ot(Ib@*=llcl?)
1 (Ib@)2o2+02)* )

@7)

_ 22N o2
AN\ [b(w)[Po2+02

Finally, substituting (21), (27) into (20), we have

o2(Ib@)[|* - ||b(w + a)"b(w +ﬁ)l\2)> o
102 ([b(@)[* 02 + 02) '

(28)
From (12), (13), and (14), one observes that, as for the tondl
case(a, B) does not depends on the parameterConsequently,
the closed-form expression of the WWB is given by (29) (shanwn
the top of next page). Note that the bound is independentef th
parameter).

4. SIMULATION RESULT

In a first simulation, we compare the MSE behavior of the max-
imum a posteriori estimator (MAP) versus the WWB. We use an
uniform linear COLD array consisting df = 10 sensors with the
intersensors spacing equalXg2 andT' = 20 snapshots. The polar-
ization parameter are setto= 7 /4, ¢ = 7/3, Ay = 2)2/10, and
Lsq = A/10. The empirical MSE of the MAP is obtained ovE100



2 2 <2 A2 . N
2 (1 _ @) exp (_ “:.lzl (4 )\;451 cos? p 4+ L2, sin? p) (N — kzl cos (QT"dkh)))

WWB = su = . 17
h'p [k lIs|? (4n2AZ 2 2 2 ol 4 (0

2(1—7) —2(1—|h|)exp | — 5oz ( 5=t cos? p 4 L2 sin p) N — " cos (42dyh)

k=1
242 2 N 2 —2T
) In| 2 03(4—A2A‘ﬂ cos? p+L§dsin2 p) <N27‘k§1exp(j2Tﬂdkh) >
w(1=15)" 1+ a2a? .
402(N X sl cos? p+de sin? p | o2402)
WW B = sup (29)
h

4r2A2

2
2 sl cos? p+L§d sin2 p) (sz

N

N
p4m
‘kgl exp(] 3 dkh)

2(17@)72(17|h|) 1+0§(

2 4”2A3L 2 2 <in2 24452
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Fig. 2. WWB w.r.t the parametep [7]

Monte Carlo trials. Fig. 1 shows that the WWB is a tight bound,
which well capture the SNR threshold of the MAP MSE (arodnd
[dB)).

On the other hand, the impact of the polarization paramgter,
is investigated. The scenario is the same as the previougagion.
Fig. 2 shows the WWB versus the SNR, according to differehteva  [9]
of p under both assumptions. One observes that in each casks, bot
the SNR threshold and asymptotic MSE are affected.by

(8]

(10]

5. CONCLUSION
In this paper, we have derived closed-expressions of the it~ [11]
context of source localization with a COLD array under bathdti-
tional and unconditional observation models. The WWB isngho
to be a useful tool to capture the threshold effect. Furtioeemwe
showed that the polarization parametehas a strongly impact on

the MSE behavior. [12]

6. REFERENCES
(13]
[1] J. Li, P. Stoica, and D. Zheng, “Efficient direction andare
ization estimation with a COLD arraylEEE Trans. Antennas
Propagat, vol. 44, no. 4, pp. 539-547, Apr. 1996.

[2] M. N. ElKorso, R. Boyer, A. Renaux, and S. Marcos, “Sttis

cal resolution limit of the uniform linear cocentered orglooal
loop and dipole array,” vol. 59, no. 1, pp. 425-431, 2011.

H. L. VanTrees and K. L. BellBayesian bounds for parameter
estimation and nonlinear filtering/trackingNew York: Wiley,
2007.

R. Boyer, “Analysis of the cold uniform linear array,” Proc.
IEEE Int. Work. Signal Processing, Wireless Communication
Perugia, Italy, 2009.

E. Weinstein and A. J. Weiss, “A general class of loweriimgi
in parameter estimationlEEE Trans. Inform. Theoryol. 34,
pp. 338-342, Mar. 1988.

T. J. Nohara and S. Haykin, “Application of the Weiss-
Weinstein bound to a two dimensional antenna array[EEBE
Trans. Acoust., Speech, Signal Processid 36, no. 9, Sep.
1988, pp. 1533-1534.

H. Nguyen and H. L. VanTrees, “Comparison of performance
bounds for DOA estimation,” ifEEE Seventh SP Workshop on
Statistical Signal and Array Processint®94, pp. 313-316.

F. Athley, “Optimization of element positions for dirgen
finding with sparse arraysProceedings of the 11th IEEE Sig-
nal Processing Workshop on statistical signal processpm
516 — 519, 2001.

W. Xu, A. B. Baggeroer, and C. D. Richmond, “Bayesian
bounds for matched-field parameter estimatidBEE Trans.
Signal Processingvol. 52, pp. 3293-3305, Dec. 2004.

A. Renaux, “Weiss-Weinstein bound for data aided eaesti-
mation,”|IEEE Signal Processing Lettol. 14, no. 4, pp. 283—
286, Apr. 2007.

D. T. Vu, A. Renaux, R. Boyer, and S. Marcos, “Closedafor
expression of the Weiss-Weinstein bound for 3D source {ocal
ization: the conditional case,” iaroc. IEEE Sensor Array and
Multichannel Signal Processing Workshdfibutz Ma’ale Ha-
hamisha, Israel, Oct. 2010.

J. Li, “Direction and polarization estimation usingays with
small loops and short depolesEEE Trans. Antennas Propa-
gat, vol. 41, no. 3, pp. 379-387, Mar. 1993.

B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai, “Exa
and large sample maximum likelihood techniques for param-
eter estimation and detection in array processing,Radar
Array ProcessingS. Haykin, J. Litva, and T. J. Shepherd, Eds.
Berlin: Springer-Verlag, 1993, ch. 4, pp. 99-151.



